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 Key Points:  

• Iron and zinc stable isotope and elemental data are presented for a prograde suite of metabasalts and metagabbros from 

Western Alpine ophiolite complexes  

• Bulk rock δ56Fe and δ66Zn do not vary across metamorphic facies and the eclogitic samples show a MORB-like isotope 

composition  

• Blueschist facies metagabbros preserve evidence for infiltration of sediment derived fluids, that impart a light δ56Fe 

isotope composition to the gabbro 
Abstract 

Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of 

oxidised or oxidising components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are 

fractionated upon complexation by sulfide, chloride and carbonate ligands, to remark on the chemistry and oxidation state of 

fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from 

the Chenaillet massif, Queyras complex and the Zermatt-Saas ophiolite (Western European Alps), which have been 

metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no 

systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the 

eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde 

metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. 

Given that Zn isotopes are fractionated by S- and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilised 

from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in close 

proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected 

fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.  

 1. Introduction 
Oceanic lithosphere formed at mid-ocean ridges is progressively hydrated, altered and oxidised by interaction with seawater 

before being recycled into the deep mantle at convergent plate margins. During the subduction of oceanic lithosphere the increase 

in pressure and temperature (P-T) conditions leads to the destabilisation of hydrous mineral phases via a series of metamorphic 

reactions and the release of dehydration fluids and/or slab derived melts into the overlying crust and sub-arc mantle (e.g. Schmidt 

and Poli, 2014, Hermann and Green, 2001, Bouilhol et al., 2015). Alongside the release of structurally bound H2O from 

subducted sediments, mafic and ultramafic sections of the slab, the mechanical compaction of sediments at shallower depths 
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(<20km) can result in pore fluid expulsion in the fore arc region (Henson et al., 2004, Rüpke et al., 2004) and localised 

metasomatism of lithologies in the residual subducting slab (e.g. Marschall et al., 2009, Penniston-Dorland et al., 2012, Vitale-

Brovarone et al., 2014, Debret et al., 2016a). The release of slab derived sub- (Hermann et al., 2006) or super-critical (Kessel et 

al., 2005) fluids, and melts (Foley et al., 2000) has been invoked to explain a number of distinct geochemical signatures observed 

in arc lavas relative to Mid-Ocean Ridge (MORB) and Ocean Island Basalts (OIB), including the enrichment of fluid mobile 

elements (Hawkesworth et al., 1993) and their elevated Fe3+/∑Fe ratios (Brandon and Draper, 1996, Frost and Ballhaus, 1998, 

Parkinson and  Arculus, 1999, Kelley and Cottrell, 2009). At the same time, residual oceanic crust is ultimately recycled back 

into the deep mantle, providing a source for the geochemical heterogeneity that is sampled by MORBs and OIBs. Consequently, 

developing a clear understanding of the processes that govern element mobility during subduction zone metamorphism and 

metasomatism is crucial for elucidating both the controls on arc magmatism and the long-term chemical evolution of the mantle 

(Magni et al., 2014). This study aims to examine the effect of subduction zone metamorphism and metasomatism on the redox 

budget of subducted mafic oceanic crust using the stable iron (Fe) and zinc (Zn) isotopes as tracers of elemental mobility, which 

are thought to be sensitive to complexation by aqueous sulfate (SOX) and carbonate (COX) ligands (Fujii et al., 2011, Hill et al., 

2010, Black et al., 2011). 

 

Recent advances in mass spectrometric techniques have seen the emerging field of non-traditional stable isotope geochemistry 

applied to numerous scientific problems in both high- and low-temperature natural settings. Theory predicts that equilibrium 

stable isotope fractionation decreases with increasing temperature (1/T2) (Urey, 1947, Schauble, 2003). Nonetheless, high-

precision Fe and Zn stable isotope measurements have shown that both of these systems are sensitive to high temperature 

petrogenetic processes, such as mantle melting (Weyer et al., 2005, Williams et al., 2004; 2005; 2009; 2015, Weyer and Ionov, 

2007, Dauphas et al., 2014, Konter et al., 2016), igneous differentiation (Sossi et al., 2012, Telus et al., 2012, Chen et al., 2013, 

Schuessler et al., 2009, Teng et al., 2011; 2013, Doucet et al., 2016) and for Fe, changes in redox state (Williams et al., 2004, 

Dauphas et al., 2009). It is now well established from both radiogenic and stable isotopes that the loss of fluid mobile elements 

from sediments imparts a distinct signature to arc lavas (e.g. Pearce, 1982, Plank and Langmuir, 1993, Elliott et al., 1997, Nebel 

et al., 2010,  Freymuth et al., 2015), and the dissolution of carbonate sediments during subduction may play a role in controlling 

the redox budget of the sub-arc mantle (Frezzotti et al., 2011, Evans, 2012). Despite this, it has been suggested that subducted 

sediments exert little influence on the Fe isotope composition of arc lavas, and that Fe isotope variations in erupted arc products 

result from depletion of the mantle source and fractional crystallization of the resulting melt (Nebel et al., 2015). Additionally, the 

release of sulfur from the subducting slab could serve as a powerful oxidizing agent in this setting, as if sulfur was to be released 

from the slab as sulfate, then 1 mol of sulfur could serve to oxidise 8 mol of reduced Fe2+ to oxidized Fe3+. 

 

More recently both Fe and Zn stable isotopes have been utilized to trace the mobility of Fe and oxidising sulfate (SOX) and/or 

carbonate (COX) species during the prograde devolitisation of subducted slab serpentinites (Debret et al., 2016b, Pons et al., 

2016). However, while element depletion has been shown to occur from some parts of the mafic oceanic crust (e.g. Dale et al., 

2007), the nature of those fluids remains poorly constrained. This study aims to examine the effect of subduction zone 

metamorphism on redox sensitive elements in mafic oceanic crust. To this end we have measured stable Fe and Zn isotope in the 

metamorphic rocks of an exhumed subducted slab to trace the mobility of redox sensitive Fe and oxidizing SOx/COx-rich fluids 

during the subduction related, prograde metamorphism and metasomatism of the mafic oceanic crust.  

 

One approach to assessing the controls on Fe and Zn isotopes during subduction-related metamorphism is to compare their 

behaviour in oceanic crustal rocks across a range of P-T conditions. This study uses samples of metabasalts and metagabbros from 

three meta-ophiolite massifs in the Western European Alps - Chenaillet, Queyras and Zermatt-Saas. These meta-ophiolites record 

prograde metamorphic conditions that range from greenschist to blueschist to eclogite, that are taken to be representative of a P-T 

path for subducting mafic oceanic crust (e.g. Guillot et al., 2009) (Figure 1a). Samples have also been selected based on varying 
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degree of fluid related slab metasomatism (i.e. those that show evidence for interaction with externally derived fluids released 

from proximal subducting sediments), thus allowing us to not only examine the effect of prograde metamorphism but also how 

metasomatic modification could potentially alter the Fe and Zn isotope composition of down-going mafic lithologies.  

 

2. Geological Setting and Sample Petrology  
The ophiolite complexes of the Western European Alps provide a unique insight into the processes acting upon oceanic 

lithosphere during subduction (e.g Scambelluri and Philippot, 2001, Guillot et al., 2009, Debret et al., 2013, Vils et al., 2011 

Evans et al., 1979, Hermann et al., 2000, Scambelluri et al., 2001; 2014). These meta-ophiolites were formed in a magma-poor 

setting, i.e. a slow or ultra-slow spreading centre or an ocean-continent transition, during the opening of the Ligurian Ocean in the 

Jurassic (Lagabrielle and Cannat, 1990, Bernoulli et al., 2003, Lagabrielle et al., 2014), before being subsequently 

metamorphosed at various P-T conditions and exhumed during the Alpine orogeny (Rubatto et al., 1998, Brouwer et al., 2004). 

This study is focused on three Alpine ophiolitic complexes that record different P-T paths during alpine evolution (Figure 1a). 

These are the Chenaillet massif, the Queyras Schiste-Lustrés and Zermatt-Saas ophiolitic complexes. The Chenaillet massif 

mainly preserves low-pressure “ocean floor” parageneses, while the Queyras Schiste-Lustrés and Zermatt-Saas ophiolite 

complexes record the high-pressure transformation of subducted oceanic lithosphere, ranging from blueschist to eclogite facies, 

respectively.  

 

2.1 The Chenaillet massif 

The Chenaillet massif is located in the external Piedmont zone, 6 km west of Briançon (Figure 1b). It is a structural klippe, 

overlying the Lago Nero-Replatte unit (Caby, 1995). The massif preserves a classic sequence of oceanic lithosphere comprising, 

from top to bottom, oceanic sediments and/or basalts overlying gabbroic pods and serpentinised mantle peridotite. Detailed 

petrological, geochemical and structural studies have suggested that this ophiolite represents a fossil oceanic core complex, likely 

formed at a slow-spreading ridge setting (Lagabrielle et al., 1990, Charlot-Prat, 2005, Manatschal et al., 2011). Unlike the 

majority of the western Alpine ophiolites, the Chenaillet massif was only weakly affected by alpine subduction (Mevel, 1978, 

Debret et al., 2016a). Instead, the metagabbros here mainly record a low-pressure metamorphic overprint, ranging from 

amphibolite to greenschist facies conditions (Mevel et al., 1978, Debret et al., 2016a). One coarse-grained metagabbro sample 

(PR4) was analysed in this study. This sample represents an undeformed metagabbro, mainly composed of plagioclase and 

clinopyroxene. The clinopyroxene crystals display small (~20 μm) coronas of green and brown amphibole. Minor amounts 

(<10%) of actinolite are also observed, both within the plagioclase domain and associated with the amphibole coronas.  

 

2.2 Queyras Schiste lustrés complex 

The Queyras Schiste lustrés complex is located in the Piedmont zone of the south-western Alps (Figure 1b). It comprises units 

belonging to the distal European margin and from the nearby oceanic domain (Lemoine et al., 1987) that were juxtaposed during 

alpine subduction and collision in the Late Cretaceous to Tertiary (Tricart, 1984). This complex comprises ~10% meta-ophiolite 

bodies embedded in a sedimentary-rich environment, consisting of Jurassic to Lower Cretaceous clastic and metasedimentary 

rocks (Lagabrielle et al., 1984, Lemoine et al., 1987) and has previously been interpreted to represent a palaeo-sedimentary wedge 

(Tricart and Schwartz, 2006).  

 

Three tectono-metamorphic domains have been identified within the complex by Schwartz et al., (2013). The P-T conditions of 

these domains range from low-temperature blueschist facies conditions (P= 0.9-1.1 GPa, T= 320-340 °C) in the west, to medium-

temperature blueschist facies conditions (P= 1.0-1.2 GPa, T= 340-360 °C) and high-temperature blueschist facies conditions (P= 

1.2-1.5 GPa, T= 380-470 °C) towards the east (Figure 1b).  
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Eight metagabbros were collected from the medium- and high-temperature blueschist domains within five different metagabbroic 

massifs. Four metagabbro samples were collected from the Echassier (CE7 and CE12) and Clausis (QE1 and QE10) meta-

ophiolites that belong to the medium temperature domain (Figure 1b). These samples predominantly display coarse-grained 

textures and are typically composed of clinopyroxene, partially recrystallized to glaucophane, while plagioclase is no longer 

present and is replaced by fine aggregate of lawsonite, chlorite and albite with minor amounts of ilmenite, titanite and late zoisite. 

Within these massifs the interface between metasedimentary lithologies and metagabbros is demarked by metasomatic contacts, 

which represent a zone of intense localised fluid circulation, which has occurred during subduction (Debret et al., 2016a). In order 

to constrain the nature of the fluid circulating within these zones during subduction, we selected a sample from one metasomatic 

contact (CE8a) from the Echassier meta-ophiolite. This sample comprises glaucophane, chlorite, quartz, epidote and titanite. Four 

samples from the high temperature domain were collected from the Refuge du Viso (RV7), Tour Real (TR6 and TR9) and the 

Bric Bouchet (BB1) meta-ophiolites (Figure 1b). The sample RV7 preserves relicts of brown amphibole associated with green 

amphibole coronas and partially recrystallized into glaucophane, while the plagioclase domain is recrystallized to fine aggregates 

(<10 μm) of lawsonite, chlorite, quartz and magnetite. Samples TR6 and TR9 consist of lawsonite, magnetite, chlorite and 

glaucophane without any low-pressure relicts, while BB1 displays a similar coarse-grained texture as the Tour Real samples but is 

composed of stretched porphyroblasts of brown amphibole in association with needles of tremolite and actinolite. In this sample 

the plagioclase domain is finely recrystallized to aggregates of cloudy plagioclase and zoisite.  

 

In addition to the metagabbro samples, two sedimentary lithologies from the low- and high-temperature domains were also 

collected. One sediment sample (CP1) was taken from the Col Peas area within the low-temperature blueschist domain, while the 

second sediment sample (RV5) comes from the Refuge du Viso within the high-temperature domain. These samples are proximal 

within tens of meters to the sampled metagabbros. Both of these samples are similar in mineralogy and are comprised of calcite, 

quartz aggregates, stringy magnetite, phengite, chlorite and titanite, with both preserving a well-developed foliation.  

 

2.3 Zermatt-Saas 

The Zermatt-Saas complex of Alpine Switzerland (Figure 1c) represents a continuous slice of oceanic lithosphere, including 

ultramafic, mafic and metasedimentary lithologies, which have been metamorphosed under eclogite facies conditions during 

subduction (Bucher et al., 2005). The Zermatt-Saas ophiolite is preserved within a collisional nappe stack, underlain by the Monte 

Rosa continental basement, and overlain by the Dent Blanche nappe (Angiboust et al., 2009). Twelve metabasaltic and 

metagabbroic rocks were sampled in three different areas of the complex, which record various P-T conditions (Figure 1c): the 

Pfulwe area located to the east of the town of Zermatt which records a metamorphic climax of 24-26 kbar and 550-600 °C 

(Bucher et al., 2005); the Allalin gabbro which is situated between Zermatt and Saas-Fee and records a metamorphic climax of 2.5 

GPa and 610 °C (Bucher & Grapes, 2009); and the terminal moraine of the Hohlaub and Allalin glaciers at the Mattmark dam 

area, which derives from the Allalin gabbro and corresponds to the same peak metamorphic conditions as given for the Allalin 

gabbro (Dale et al., 2007). These samples are discussed in detail in Dale et al., 2007; 2009.  

 

Two different types of metabasalt were collected at Pfulwe. The first of these being samples of eclogitised pillow basalts that 

comprise garnet, omphacite, quartz, zoisite, paragonite and phengite. Samples were collected from both the core (S02/75iiiC) and 

rim (S02/75iiR & S02/75iiiR) of individual pillows. The second type of metabasalt collected at Pfulwe are massive basaltic 

eclogites (S02/41ii & S02/41v), which comprise garnet, omphacite, glaucophane, epidote, paragonite and phengite. In addition to 

the basaltic eclogites a range of metagabbros from the Allalin and Mattmark areas have also been studied. The three metagabbro 

samples collected from the Allalin gabbro body display a range in mineralogy. Samples S01/5G and S02/83viiixG consist of 

olivine, fresh and dusty plagioclase and pyroxene without any evidence of an eclogitic overprint, while sample S01/35iiix is a 

gabbroic eclogite and is composed of garnet, glaucophane, talc, zoisite, omphacite, paragonite and rutile. The occurrence of both 

primary gabbroic and metamorphic eclogitic assemblages within the Allalin metagabbros has been noted before (Meyer, 1983, 
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Dale et al., 2007, Bucher & Grapes, 2009) and is attributed to a combination of the relatively anhydrous nature of the gabbroic 

protolith, and the short period and only moderate peak temperature of metamorphism. Of the samples collected from the 

Mattmark moraine, three (S01/40viix, S02/85ixE, S01/40vx) display typical eclogitic assemblages of coranitic garnet, omphacite, 

paragonite, glaucophane, phengite and quartz, while S02/85ixB shows evidence for late retrogression (barroisite, talc, zoisite and 

chlorite).  

 

3. Analytical Methods 
3.1 Major and trace element concentrations 

Samples from Zermatt-Saas have been previously characterised for major and trace element concentrations by Dale et al., (2007). 

Samples from the Chenaillet and Queyras meta-ophiolites were analysed for major element concentration by wavelength 

dispersive X-Ray Fluorescence at the University of Edinburgh after the method detailed by Fitton et al., (1998). An external 

international rock standard (USGS BHVO-1) was measured alongside the samples as a check on precision and accuracy. 

Measured major element values of this geostandard compare well with the average values obtained in Edinburgh (<5%) and with 

accepted values published elsewhere (Govindaraju, 1994; <5%). The loss on ignition corrected major element concentrations of 

the samples and standards analysed as part of this study are presented in supplementary information (Table A1) 

 

Trace element concentrations for the Chenaillet and Queyras samples were determined at the National Oceanography Centre, 

Southampton. Sample powders were digested using concentrated HF and HNO3 acids, evaporated to dryness and re-dissolved in 

3% HNO3 spiked with 5 ppb In and Re and 20 ppb Be for use as internal standards. The samples were analysed on a Thermo X-

Series 2 Quadrupole Inductively Coupled Plasma-Mass Spectrometer (ICP-MS), calibrated against 5 international rock standards, 

with JA-2 and BHVO-2 run as unknowns. Analysis of these unknowns compare well to the published values, with the external 

reproducibility being <5% for Sc, Ti, V, Ni, Cu, As, Rb, Sr, Y, Cd, Sb, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Ho, Tm, Lu, Li, Co, Pr, 

Dy, Er and Yb and between 5-10% for all other elements. The trace element concentrations are presented in supplementary 

information (Table A1) 

 

3.2 Fe isotope measurements 

The Fe isotope measurements were carried out on whole rock powders at Durham University. Isotope ratios are reported as δ56Fe 

in permil notation relative to IRMM-014 external standard, and δ57Fe is given to demonstrate mass dependency of the 

measurements. All reported errors are 2SD unless stated otherwise.  

 

δ56Fe = ((56Fe/54Fesample)/ (56Fe/54FeIRMM-014)-1)*1000 

δ57Fe = ((57Fe/54Fesample)/ (57Fe/54Fe IRMM-014)-1)*1000 
 

The procedure for the chemical separation of Fe is described in detail by Williams et al., (2009) but is briefly outlined here. 

Samples were dissolved using concentrated HF and HNO3 acids in 7 mL PTFE Teflon square body beakers with wrench top 

closures in an oven at 165 °C for 3 days. These were then further attacked with a 1:1 mix of concentrated HCl and HNO3 to 

ensure all refractory phases, such as spinel and rutile, were fully digested. Finally samples were brought into solution in 6M HCl 

prior to column chemistry. Quantitative purification of Fe was achieved by chromatographic exchange, using Biorad AG1-X4 

anion exchange resin in an HCl medium. All reagents used in the chemistry and mass spectrometry procedures were distilled in 

sub-boiling Teflon two-bottle stills at Durham University. The total amount of Fe processed through the columns was typically 

around 650 μg. The total procedural blank contribution was <10 ng of Fe, which is negligible compared to the amount of Fe in the 

samples. Isotope measurements follow that of Weyer and Schwieters, 2003 but briefly described here. Measurements were 

performed by multiple-collector (MC) ICP-MS (Thermo Scientific Neptune Plus) in medium-resolution mode, using an Elemental 

Scientific Instruments Apex HF desolvating nebuliser for sample introduction. The mass resolution, which is defined as 
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mass/Δmass at 95% and 5% of the beam intensity of the 56Fe peak edge, ranged between 7500-9000 depending on daily tuning of 

the instrument as well as the age of the medium resolution beam slit. At this resolution it was possible to adequately resolve the 
40Ar16O+, 40Ar16O1H+, 40Ar18O+ and 40Ar14N+ polyatomic species that can interfere on the 56Fe, 57Fe, 58Fe and 54Fe masses 

respectively. Instrumental mass bias was corrected for by sample-standard bracketing, where the beam intensities of the 

bracketing standard and sample were matched to within 10%. Both sample and standard solutions were run at 2ppm, giving a 

beam intensity of between 35-50 V on 56Fe, depending on daily sensitivity. In addition to all Fe masses, 53Cr and 60Ni were also 

monitored and an online Cr and Ni correction was applied to account for any isobaric interferences from 54Cr and 58Ni on the 54Fe 

and 58Fe masses. These corrections, were either negligible or non-existent due to the effective separation of Fe from Cr and Ni 

during column chemistry. An in-house standard of FeCl2, was analysed throughout each analytical sessions giving a mean δ56Fe 

value of -0.70 ± 0.06‰ and mean δ57Fe value of -1.05 ± 0.06, where n=69, these values are in excellent agreement with 

previously published measurements of this standard (Mikutta et al., 2009). In addition to this internal standard, an external 

geostandard, USGS BIR-1, was processed through chemistry and analysed alongside samples. The BIR-1 analysis gave a mean 

value of +0.06 ± 0.02‰ for δ56Fe and +0.08 ± 0.03‰ for δ57Fe based on nine measurements from different analytical sessions on 

the same dissolution. This value is in good agreement with previously published values (Millet et al., 2012, Hibbert et al., 2012, 

Sossi et al., 2015), which notably were carried out at both high- and low-resolution modes on Nu Plasma and Thermo Neptune 

instruments. 

 

3.3 Zn isotope measurements  

The method used for the chemical purification of Zn is based on that of Moynier et al., (2006), adapted by Pons et al., (2011). 

Depending on the Zn concentration of samples, between 30-50 mg of rock powder was digested in a 2:1 mix of concentrated HF-

HNO3 in in 7 mL PTFE Teflon square body beakers with wrench top closures in an oven at 165 °C for 3 days. As Zn is likely to 

partition into the fluoride phase as ZnF2, it is important that all fluorides are fully decomposed prior to column separation, and this 

was achieved by repeated refluxes of the sample residue in 6M and concentrated HCl. All samples were visually inspected for the 

presence of fluorides before being evaporated to dryness and brought back into solution in 1.5M HBr, ready for column 

chemistry.  

 

Quantitative separation of Zn from matrix elements was achieved using Teflon shrink fit columns filled with 0.5ml of Biorad 

AG1-X4 anion exchange resin.  The resin was cleaned on the column by 4 repeated passes of 0.5M HNO3 and Milli-Q (MQ) 

ultrapure (18.2 MΩ) H2O, before conditioning in 3 ml of 1.5M HBr. The sample solution was then added to the column and the 

matrix eluted in 3 ml of 1.5M HBr. Zn was collected from the column in 0.5M HNO3. To ensure total separation of Zn from 

matrix elements this column separation procedure was repeated twice. With the exception of the HBr, which was purchased from 

ROMIL Ltd. at ultra pure “UpA” grade, all reagents were distilled by sub-boiling in Teflon stills at Durham University. The total 

procedural blank is <20ng of Zn, which is negligible compared to the >2 μg of sample Zn processed.  

 

Isotope ratio measurements were performed on a Thermo Scientific Neptune Plus MC-ICPMS at Durham University running in 

low-resolution mode. Samples were introduced via an ESI PFA 50 μl/min nebuliser attached to an ESI cinnabar glass spray 

chamber. Sample solutions were run at a concentration of 750 ppb Zn in 0.5M HNO3, this typically gives signal intensities of ~3-4 

V on 64Zn. To correct for the effect of instrumental mass bias a combined standard-sample bracketing and empirical external 

normalisation method was adopted. This method applies an external normalisation correction (Maréchal et al., 1999, Mason et al., 

2004, Chen et al., 2009) by doping both sample and standard solutions with a pure Cu solution (Alfa-Aesar) at a Zn/Cu ratio of 

3/1. In addition, each sample analysis was bracketed against measurement of Alfa-Aesar pure Zn standard solution, which had 

been matched to the same concentration as the sample. During analysis the masses of 63Cu, 64Zn, 65Cu, 66Zn, 67Zn and 68Zn were 

collected, as well as 62Ni to correct, using Ni natural abundances, for 64Ni that is isobaric on 64Zn. In all cases no on- or off-line Ni 
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correction was performed, as the calculated contribution of 64Ni to the 64 mass peaks was always lower than 0.5% of the total 

beam intensity.  

 

The Zn isotope composition of the sample is presented as a delta value in permil notation relative to the JMC-Lyon isotopic 

standard. 

 

δ66Zn = ((66Zn / 64Zn sample)/ (66Zn / δ64Zn JMC-Lyon)-1)*1000 

 

Due to a limited supply of the JMC-Lyon standard solution, samples were measured relative to an Alfar-Aesar pure Zn solution. 

This standard is offset from JMC-Lyon by 0.27 ‰ for δ66Zn (2sd = 0.04 ‰; n = 87; over four different analytical sessions); as 

such we were able to correct our measured value by this factor and present our data relative to JMC-Lyon, as is widely accepted. 

Precision and accuracy were assessed using the international rock reference material, USGS BCR-2.  This rock was processed 

through chemistry alongside sample powders and measured during analytical sessions. The value obtained for δ66Zn was +0.30‰ 

± 0.04‰ based on five measurements of the same sample aliquot during two analytical sessions. This value agrees well with 

published results of BCR-2 (Herzog et al., 2009, Moeller et al., 2012).  

 

4. Results 
4.1 Major and trace element data  

Major and trace element data for all samples analysed in this study are given in the supplementary material (Table A1). With 

respect to Figure 2b and c, it is apparent that the range in Mg# ([MgMoles]/([MgMoles]+[FeMoles])) (51-84), MgO (5.6-14.3 wt%), 

FeO (4.1 -9.6 wt%) and Ni (45 -385 ppm) is consistent with the fields defined for gabbronorite, gabbro and olivine gabbro by 

previous work (Godard et al., 2009), with the majority of samples falling within the gabbro field. The Ca# 

([CaMoles]/([CaMoles]+[NaMoles])) of the analysed samples are lower than those of seafloor oceanic gabbros (Figure 2a), with a range 

between 36-73.  

 

The major element composition of the metasediments (RV5 and CP1) and metasomatic contact zone (CE8a) from Queyras are not 

shown but presented alongside the data for the metabasalt and metagabbros samples in supplementary material (Table A1). With 

the exception of SiO2, CaO and Na2O, the two metasediment samples are broadly similar to estimates of the mean major element 

composition of global subducted sediments (Plank and Langmuir, 1998). The metasomatic contact zone (CE8a) is best compared 

directly to metagabbros from the same meta-ophiolite (CE7 and CE12). Relative to these samples CE8a shows depletion in SiO2 

(37.1 wt%), Al2O3 (11.3 wt%), CaO (10.4 wt%), K2O (<0.1 wt%) and Na2O (2.5 wt%), whilst it is enriched in Fe2O3 (23.9 wt%), 

TiO2 (3.9 wt%), MnO (0.4 wt%) and P2O5 (0.3 wt%) and a consistent MgO concentration (8.4 wt%). 

 

Trace element data are presented for all of the samples used for this study, grouped by locality, in the form of multi-element 

spidergrams (Figure 3). Where available, relevant published data is presented alongside our sample data for comparison. The 

Chenaillet metagabbros elemental patterns (PR1 and PR4) are in good agreement with previous studies  (e.g. Chalot-Prat et al., 

2005) (Figure 3a). They are characterized by a relatively flat trace element profile (CeN/YN = 0.8-1.4; N: primitive mantle 

normalized), with notable depletions in Li (LiN/YN = 0.2-0.3) and an enrichment in Sr (SrN/NdN = 1.5-2.9). The blueschist facies 

metagabbros (CE7, CE12, QE1, QE10, RV7, TR6, TR9 and BB1) (Figure 3b) and metasomatic contact (CE8a) (Figure 3c) from 

the Queyras display similar trace element patterns to those of Chenaillet samples, but show significant enrichment in fluid mobile 

elements (e.g. SbN/PrN = 1.3-42.3, BN/KN = 1.5-30.5 and Li/Li* = 1.8-25.8; Table A1).  

 

The trace element profiles for the Zermatt-Saas samples are presented in Figures 3d to e. The two samples from the Allalin 

gabbro are plotted alongside additional data from Dale et al., (2007) and compared to the Chenaillet metagabbros (grey field). All 
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of the Allalin gabbros display trace element profiles that are consistent with each other, but are overall of lower concentrations 

than the patterns of the Chenaillet metagabbros. The trace element profiles are characterized by an enrichment in LREE relative to 

HREE (LaN/LuN = 2.2-3.3), positive anomalies in Sr (SrN/NdN = 21.3-22), Ba (BaN/ThN = 25.7-49.1) and Eu (EuN/TiN = 3.5-3.8) 

and negative anomalies in U (UN/KN = 0.1) and Nb (NbN/LaN = 0.1). The Zermatt gabbroic eclogites (Figure 3e) display similar 

trace element patterns to that of the Allalin gabbros (Figure 3d), with positive anomalies in Sr (SrN/NdN = 2.7-25.5), Eu (EuN/TiN 

= 2.2-3.9), and Ba (BaN/ThN = 2-9.5), and depletions in Rb (RbN/BaN = 0.29-0.3) and Nb (NbN/LaN =0.1-0.4). The basaltic 

eclogites from Zermatt are shown in Figure 3f. With the exception of K, they show consistent profiles for all elements, this is 

marked by broadly flay lying profile between LREE to HREE (LaN/LuN = 1.5-2.1) and varying depletions in Ba (BaN/ThN = 0.01-

0.6), Sr (SrN/NdN = 0.5-0.7) and Li (LiN/YN = 0.6-1).  

 

4.2 Fe and Zn stable isotopes 

The whole rock Fe isotope compositions are reported as δ56Fe and all errors as two standard deviations (2sd) of repeat analyses of 

the same sample aliquot. The δ56Fe values are presented in the supplementary information Table A2. The range of δ56Fe values 

for all samples analysed here is between -0.02 ± 0.03‰ to +0.30 ± 0.06‰. The only greenschist facies metagabbro from the 

Chenaillet that has been analysed for Fe isotopes (PR4) yields a δ56Fe of +0.14 ± 0.06‰, which is in good agreement with MORB 

analysed by Teng et al., 2013 and other basaltic rocks (Sossi et al., 2015). The blueschist facies metagabbros from the Queyras 

display a range of δ56Fe of between 0.00 ± 0.06‰ to +0.16 ± 0.04‰, with no systematic co-variation between metamorphic 

facies. The metasomatic contact zone sample, CE8a, yields the lightest δ56Fe observed: -0.02 ± 0.03‰. The two metasediments 

from the Queyras, RV5 and CP1 display δ56Fe values of +0.09 ± 0.03‰ and +0.05 ± 0.04‰ respectively. The samples from the 

Zermatt-Saas ophiolite display the greatest range in Fe isotope composition (δ56Fe = +0.03 ± 0.04‰ to +0.29 ± 0.04‰).  Of the 

two Allalin gabbros selected, one – S02/83viiixG, displays the heaviest δ56Fe value of any of the samples (+0.30 ± 0.06‰), whilst 

the other preserves a value indistinguishable from MORB (+0.11 ± 0.04‰). The δ56Fe values of the gabbroic eclogites from 

Zermatt ranges between +0.03 ± 0.04‰ to +0.29 ± 0.04‰, while the basaltic eclogites show similar δ56Fe values ranging between 

+0.05 ± 0.07‰ to +0.18 ± 0.02‰.  

 

The zinc isotope composition is reported as δ66Zn, with all errors again being given as 2sd of n. The δ66Zn values of all of the 

samples analysed here are presented alongside the Fe isotope compositions in the supplementary information Table A2. The 

δ66Zn values of the samples analysed here ranges from 0.00 ± 0.02‰ to +0.33 ± 0.03‰. As with Fe isotopes, there is no 

covariation between δ66Zn and metamorphic facies. The greenschist facies metagabbro displays a δ66Zn value of +0.20 ± 0.04‰, 

lower than the suggested MORB value of +0.27 ± 0.03 ‰ (Wang et al., 2017). Significant variation is observed within the 

blueschist facies metagabbros, which range between +0.03 ± 0.02‰ to +0.26 ± 0.03‰. The metasomatic contact zone from the 

Queyras has a δ66Zn of +0.03 ± 0.02‰, while the two metasediments show δ66Zn of 0.00 ± 0.02‰ to +0.13 ± 0.02‰. Samples 

from Zermatt display the greatest overall range in δ66Zn, being between +0.05 ± 0.03‰ to +0.33 ± 0.03‰. 

 

5. Discussion 
The overall goal of this study is to examine the effects of prograde metamorphism and metasomatism on the Zn and Fe isotope 

budget of the oceanic crust. To this end we have characterised a suite of metagabbros and metabasalts from three Western Alps 

ophiolite complexes. These samples display different parageneses from greenschist facies in the Chenaillet massif, representative 

of seafloor fluid interaction and oceanic crust hydration, to blueschist facies in the Queyras complex, which shows evidence for 

sediment interaction during subduction, through to high-pressure eclogite facies in the Zermatt-Saas ophiolite. This transect is 

taken to be representative of P-T path for subducting oceanic lithosphere and allows us to assess the effect of subduction zone 

metamorphism on the mafic portion of the subducting slab (e.g. Guillot et al., 2009, Schwartz et al., 2013) . Furthermore samples 

from the Queyras meta-ophiolites were selected as they have previously been demonstrated on the basis of strong enrichments in 
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fluid mobile elements to have been affected by fluid metasomatism from proximal devolatilization of metasedimentary rocks 

(Debret et al., 2016a).  

 

5.1 The effect of high-pressure metamorphism and eclogitization of mafic lithologies on Fe isotopes – Zermatt eclogites   

The basaltic eclogites from Zermatt show MORB-like δ56Fe (between 0.07 to 0.14 ‰; Teng et al., 2013), ranging between +0.05 

to +0.18 ‰, with an average of +0.12 ± 0.11 ‰ (2sd, n=5) suggesting that they retain their primary magmatic composition. To 

full examine the effect of high-pressure dehydration we present a simple Rayleigh distillation model (shown in supplementary 

information A3), which has been calculated according to the equation below. 

 

δfinal – δinitial = (1000 + δinitial)(F (α – 1) – 1) 

 

Where δfinal and δinitial is taken as the average Zermatt basaltic eclogite composition and the average MORB value taken from Teng 

et al., 2013, respectively. The variable F represents the amount of Fe removed from the rock, and α is the fractionation factor 

between the rock and fluid. Here we have derived the α empirically, choosing to match the modeled δ56Fe to our average 

measured δ56Fe from the Zermatt basaltic eclogites. 

 

Given that the solubility of Fe in aqueous Cl-poor subduction zone fluids is low (Kessel et al., 2004), and considering the 

relatively small volume of H2O released during eclogite facies dehydration, it can be taken that the loss of Fe would not exceed 1 

wt %. Across the range of possible Fe concentrations (F) we show that the derived fractionation factor is insufficient to 

significantly perturb the whole-rock Fe isotope composition of the fully dehydrated eclogite, even with the maximum loss of Fe 

possible. Thus we suggest that, owing to mass balance constraints, Fe isotopes serve as poor tracers of Fe mobility within these 

particular rocks. Similarly the positive correlation (R2 = 0.78) between the δ56Fe and δ66Zn values of basaltic eclogite (Figure 4) 

suggests that both isotope systems are little affected by prograde metamorphism during subduction. In agreement with this 

hypothesis, is the observation that δ56Fe and δ66Zn values of the studied eclogitic basalts show a degree of co-variation with 

indices of magmatic differentiation such as Mg# and CaO (Figure 2), suggesting that both the δ56Fe and δ66Zn in these samples 

are largely controlled by primary magmatic differentiation. 

 

Many of the Zermatt metagabbro samples display δ56Fe values outside of the range seen in MORB (between 0.07 to 0.14 ‰; Teng 

et al., 2013). Although Fe isotopes can be fractionated in response to magmatic differentiation (Schuessler et al., 2009; Weyer and 

Seitz, 2012, Teng et al., 2008), there are no systematic co-variations between the δ56Fe of the gabbroic eclogites and any indicator 

of magmatic differentiation (Mg# and CaO) (Figure 5a and b). One possible explanation for the level of δ56Fe variation observed 

is seafloor fluid interaction and alteration of gabbroic oceanic crust, and in particular the incorporation of isotopically light Fe into 

secondary alteration minerals (including hydrothermal sulfides), which leaves the residual highly altered silicate minerals enriched 

in heavier Fe isotopes (Rouxel et al., 2003). Although this could account for such isotopic compositions, the absence of 

chalcophile element enrichment within the whole rock make it unlikely that these lithologies have been affect by hydrothermal 

alteration and the formation of secondary sulfides. Another possibility is that Fe isotope fractionation took place during prograde 

metamorphism and associated metasomatism or dehydration of the Zermatt metagabbro protoliths.  However, no co-variation 

between metamorphic grade and Fe isotope composition are observed. It should be noted, however, that the gabbroic eclogite with 

the heaviest δ56Fe (S02/85ixB) shows the most evidence for blueschist facies retrogression, and it is possible that retrograde 

processes could have modified the δ56Fe of these samples.  

 

5.2 Fe isotope fractionation in response to fluid metasomatism at blueschist facies – The Queyras meta-ophiolites 

A single metagabbro sample from the Chenaillet possesses a δ56Fe value of +0.11 ± 0.04 ‰, which is in good agreement with 

published values obtained for MORB of between +0.11 to +0.17 ‰ (Teng et al., 2013). The blueschist metagabbros from the 
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Queyras meta-ophiolites display a similar range of Fe isotope compositions to the gabbroic eclogites from Zermatt but, on average 

are offset towards lighter δ56Fe values, with a mean δ56Fe of +0.09 ± 0.12 ‰, (2sd, n=8) as opposed to +0.16 ± 0.21 ‰, (2sd, 

n=5) for the Zermatt gabbroic eclogites.  

 

A notable feature of the samples from the Queyras is the substantial enrichment in fluid mobile elements, such as Rb, B, Sb and Li 

(Figure 3b). This enrichment is thought to result from fluid infiltration from the surrounding metasediments and the incorporation 

of fluid mobile elements during recrystallisation under blueschist facies conditions. This type of high-pressure interaction between 

external fluids and surrounding lithologies, which results in the enrichment in fluid mobile elements has been noted elsewhere 

globally (Marschall et al., 2009, Penniston-Dorland et al., 2012, Vitale Brovarone et al., 2014). Consequently, it is possible to 

use these samples to document the effect of high-pressure fluid infiltration during subduction on the behavior of Fe (and Zn) 

isotopes. Owing g to the low solubility of, Th and B relative to Rb and Sb in aqueous fluids (e.g. Kessel et al., 2005, Zach et al., 

2007), we have used the ratios of Rb/Th and Sb/Th alongside elemental concentrations of B in these samples as an indicator of 

fluid-rock interaction occurring during subduction. A negative correlation is observed between indices of fluid-rock interaction 

(Rb/Th, Sb/Th and B) and the δ56Fe values of the samples (Figure 5c, d, and e). This correlation provides evidence for a 

relationship between fluid infiltration and Fe isotope systematics in the blueschist facies metagabbros in the Queyras. The 

perturbation of the bulk rock δ56Fe by an external fluid can be accounted for by two possible mechanisms: 1) isotopically heavy 

Fe is preferentially complexed into the fluid and lost from the metagabbros, leaving the residual rock enriched in light Fe isotopes, 

or; 2) isotopically light Fe is transported via the external fluid and incorporated into one or more of the blueschist facies minerals 

that make up the metagabbros, thus enriching the bulk rock in light Fe isotopes.  Mechanism 1, the loss of isotopically heavy Fe, 

appears unlikely, because previous work has demonstrated the preferential mobility of isotopically light Fe in slab derived 

dehydration fluids (Debret et al., 2016b). Specifically, it would be expected that the heavy isotopes of Fe would have a preference 

for Fe3+ complexes (Polyakov and Mineev, 2000), and the solubility of Fe3+ relative to Fe2+ in aqueous solution is known to be low 

(Ding and Seyfried, 1992). Consequently, it seems much more likely that the light Fe isotope composition of the metagabbros is 

caused by the incorporation of externally derived low- δ56Fe fluids (mechanism 2).  

 

Fluids can acquire distinctively light Fe isotope compositions through different means. These include: kinetic processes (i.e. 

enhanced mobility of isotopically light Fe); preferential dissolution of low-δ56Fe phases; or, equilibrium partitioning, where 

isotopically light Fe is preferentially complexed by aqueous SOX (Hill et al., 2010) and Cl (Testemale et al., 2009) ligands, as 

suggested to be the case for Western Alps subducted serpentinites (Debret et al., 2016b). Because there is no observed co-

variation between the δ56Fe and δ66Zn of the blueschist facies metagabbros we suggest that kinetic processes are not responsible, 

as if this was to be the case we would expect to see the two systems co-vary accordingly. Alternatively it could be considered that 

preferential dissolution of a low-δ56Fe phase within the sediments, such as a sulfide, could result in an isotopically light 

metasomatising fluid. The metasediments analysed here do show isotopically light Fe isotope compositions relative to the 

metagabbros from the same area, but show no evidence of sulfur bearing phase dissolution (A1 and A2). In order to test this 

further we have applied a simple mass balance calculation using the equation shown below. 

 

δ56Femixture = (([Fe]rock x δ56Ferock) + ([Fe]fluid x δ56Fefluid)) / ([Fe]rock x [Fe]fluid) 

 

 If we were to take the sediment composition as being representative of the fluid compositions, then mass balance suggests that we 

would have to add near ~60% of the sediment to the metagabbro reservoir to generate the lightest δ56Fe observed. As this is 

unrealistic we can only suggest that the Fe isotope composition of the bulk sediments analysed does not reflect that of the fluid. 

Hence, we are unable to precisely identify which reaction in the metasedimentary rocks could generate a fluid with an isotopically 

light Fe signature. Hydrothermal fluids from mid-ocean ridges are known to be isotopically light with respect to Fe (Rouxel et al., 

2004; 2008, Beard et al., 2003), if we were to assume that these fluids are representative of the type of fluids cycling in 
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subduction zones, and that have been responsible for metasomatising the metagabbros in the Queyras, the mass balance suggests 

that addition of ~20% fluid with a δ56Fe of -0.5‰ to the metagabbro could account for the light δ56Fe observed. The role of 

infiltrating fluids derived from other lithologies such as serpentinites could also be considered here. Indeed, it has been shown that 

the devolatilization of serpentinised ultramafic rocks can release fluids enriched in isotopically light Fe and heavy Zn, interpreted 

to reflect the release of sulphate-bearing fluids during serpentinite devolatilization (Debret et al., 2016b and Pons et al., 2016). If 

such fluids were to be released from proximal serpentinite bodies in the Queyras, and be the key metasomatic agent for the 

metagabbros here then we would expect to see a consistent, coupled Fe and Zn isotope variation. As we only see the process of 

fluid metasomatism reflected in the Fe isotope composition of the metagabbros, then we can only suggest that the fluids, and 

associated isotopically light Fe originates from the sediments.  

 

5.3 Zn isotope systematics of metabasalts and metagabbros from the Queyras and Zermatt-Saas ophiolites 

The igneous samples (metabasalts and metagabbros) analysed here possess δ66Zn isotope compositions that range from +0.03 ± 

0.02 ‰ to +0.30 ± 0.02 ‰, with a mean δ66Zn value of + 0.21 ± 0.16 ‰ (2sd; n=21). Recent work by Wang et al., 2017 suggests 

that MORB possesses a Zn isotope composition of δ66Zn = + 0.28 ± 0.03 ‰ (n = 6; samples from Carlsberg and North Atlantic), 

which is indistinguishable within error of the studied samples. The absence of any variation between Zn concentration and δ66Zn 

within the sample set suggests that the overall δ66Zn is not the result of Zn mobility during fluid loss under eclogite facies 

conditions. To demonstrate this we have modelled the evolution of δ66Zn within the dehydrated eclogite according to the same 

Rayleigh distillation equation given in section 5.1, the result of which is shown in the supplementary information A4. This model 

confirms that the solubility of Zn, even in the presence of aqueous SOx and/or COx species, is too low to lead to a significant 

fractionation of zinc isotopes in the metabasaltic eclogites during prograde metamorphism. 

 

In the case of the Queyras blueschist facies metagabbros, the lack of a correlation between δ66Zn and fluid mobile elements 

(supplementary material A5), suggests that the blueshist facies sediment interaction, which has affected Fe isotopes, has not 

perturbed the whole rock Zn isotope systematics of these samples. However it is possible that the external metasomatic fluid 

either possesses Zn concentrations that are too low to significantly affect the Zn isotope composition of the metagabbros, or else 

that the sediment derived fluid preserves a Zn isotope composition indistinguishable to that of the metagabbros, and owing to the 

mass balance this interaction is not traceable with Zn isotopes. It is notable that the metasomatic contact between metagabbros and 

metasedimentary rocks analysed here preserves the lightest δ66Zn (+0.03 ± 0.02 ‰) and δ56Fe (-0.02 ± 0.03 ‰) values. Previous 

studies have shown that kinetic fractionation can occur along such type of metasomatic interfaces (Teng et al., 2006, Marschall et 

al., 2007, Penniston-Dorland et al., 2010, Pogge von Strandman et al., 2015) resulting in a decrease of isotopic values. These 

compositions arise from a preferential diffusive partitioning of the lighter isotopes relative to the heavier isotopes.  It is thus 

conceivable that similar processes locally occur in the Queyras, however further work would be required to comment on this 

conclusively. 

 

Recently Zn isotopes have been shown to be sensitive to mantle partial melting (Doucet et al., 2016, Wang et al., 2017) and 

igneous differentiation (Chen et al., 2013), but owing to the complex metasomatic and metamorphic history of the studied 

samples, coupled with the lack of a comprehensive study of Zn isotopes in global MORB and oceanic gabbros, it is difficult to 

conclude if the variations in Zn isotope composition observed here reflect primary magmatic process or modification by late stage 

alteration and metasomatic processes. While it has previously been stated that the process of low temperature seafloor alteration of 

the upper, basaltic oceanic lithosphere has little effect on Zn isotopes, the same study demonstrated that high temperature (>350 

°C) hydrothermal circulation and complexing of light Zn isotopes in hydrothermal fluids could drive the Zn isotope composition 

towards heavier δ66Zn values in the gabbroic portion of the oceanic lithosphere (Huang et al., 2016). This observation could be 

invoked to explain the range of δ66Zn values observed in the Zermatt and Queyras metagabbros, but as the samples now preserve a 
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subduction related, alpine overprint to their mineralogy it is not possible to unambiguously conclude on the effect of seafloor 

hydrothermal activity on the Zn isotope compositions of these rocks.  

 

5.4 Implications for slab dehydration and the redox budget of the sub-arc mantle 

Mass transfer from the subducted slab can be considered with respect to three components: sediments; mafic oceanic crust, and; 

the serpentinised slab mantle. Of these, the serpentinised slab mantle has received much attention as the main carrier of fluids into 

subduction zones, as hydrated peridotite can contain up to 13wt% H2O (Ulmer and Trommsdorff, 1995). Indeed, the prograde 

dehydration of subducting serpentinites has been demonstrated to contribute significantly to the fluid budget of the sub-arc mantle 

(Scambelluri and Tonarini, 2012). When considered with the findings of Debret et al., 2016b and Pons et al., 2016, who show 

clear fractionation of both Fe and Zn stable isotopes with increasing subduction metamorphism, it is likely that serpentinite-

derived fluids, in combination with sediment melts, exert a strong control on the transfer of redox mediating elements between the 

slab and overlying sub-arc-arc. This is consistent with the results of many studies that have highlighted the importance of distinct 

contributions from serpentinite-derived slab fluids and sediment melts in the source regions of arc lavas (e.g. Plank and Langmuir, 

1993, Elliott et al., 1997, Freymuth et al., 2015, Nebel et al., 2015, Sossi et al., 2016). 

 

We have demonstrated that the effect of high-pressure subduction zone metamorphism and associated dehydration at eclogite 

facies, has no detectable effect on the whole rock Fe and Zn stable isotope composition of subducted metabasalts and metagabbros 

(Figure 6). This is significant with respect to two aspects. Firstly we show that an absence of resolvable Fe isotope variation at 

eclogite facies, with respect to a MORB protolith, demonstrates that Fe isotopes are not fractionated in response to loss of Fe 

during dehydration of mafic lithologies in subduction Secondly we show that Zn isotopes remain unfractionated, suggesting that 

the dehydration fluids released by the process of eclogitization are not major carriers of aqueous Zn-SOX and/or Zn-COX 

complexes. 

 

The results from this study, at least, suggest that high-pressure subduction zone metamorphism has no detectable effect on Fe or 

Zn isotope composition of the mafic lithologies within the subducting slab. Consequently, the mafic slab component that is 

recycled back into the mantle  preserves a MORB-like Fe and Zn isotope signature.  

 

6. Conclusions  
We have analysed a suite of metagabbros and metabasalts, which have been metamorphosed under the different conditions of a 

subduction zone gradient, and are taken to be representative of the mafic oceanic crust during subduction. Our data show that 

fluids released from subducting sediments can interact and metasomatise mafic slab lithologies. This metasomatism is capable of 

modifying bulk rock Fe isotope composition, with the samples displaying the most evidence for fluid interaction recording the 

lightest Fe isotope compositions. This is likely due to the incorporation of an isotopically light Fe component, which is derived 

from the associated subducted sediments. Within the same samples zinc isotopes show no evidence of being perturbed by this 

metasomatic process. Consequently we conclude that Fe isotopes in subducting oceanic crust are sensitive tracers of slab 

metasomatism, relating to fluid released from subducting sediments  

 

Contrary to this it is apparent that no systematic variation in isotopic composition across metamorphic grade is observed, 

suggesting that the mobility of Fe during the dehydration of the mafic lithologies in subduction zones is too low to lead to 

significant isotopic variations within the dehydrated lithologies. Additionally our Zn isotope data demonstrate that the fluids 

released by these dehydration reactions are not major carriers of dissolved Zn-SOX/COX complexes. 
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Figure captions 
 
Figure 1.  
Inset A shows the location of the three Western Alps ophiolitic complexes (Chenaillet, Queyras Schiste Lustrés and Zermatt Saas) 

that were sampled as part of this study, within the context of Alpine metamorphic conditions. Inset B shows the sampling 

localities for the Chenaillet massif and Queyras Schiste Lustré complex and the tectono-metamorphic conditions within the area 

(modified after Schwartz et al., 2013). Inset C shows the sampling localities for the Zermatt-Saas area and the key lithological 

units of the complex. 

 
Figure 2. 
Major element plots of the metagabbroic and metabasaltic samples analysed as part of this study. The samples are compared to the 

fields for oceanic gabbros defined by Godard et al., 2009. Ca# is defined as CaTOT [moles]/CaTOT [moles] + NaTOT [moles] and 

Mg# as MgTOT [moles]/MgTOT [moles] + FeTOT [moles],The field defined by the black dashed line is compiled data from Mid-

Atlantic Ridge gabbros, while the field defined by the black solid line is compiled data from South-West Indian Ridge gabbros. 

Both of these compilations are taken from Godard et al., 2009.  

 
Figure 3. 
Multi element spidergrams of selected elements for samples analysed as part of this study. Elements are arranged along the 

horizontal axis according to degree of compatibility. The grey field shown in b, c, d, e and f outline the “oceanic field” compiled 

from the Chenaillet metagabbros. Solid black lines denote samples used as part of this study. Dashed black lines represent 

literature data of comparable samples. The dashed black lines in panel a are metagabbro data for the Chenaillet taken from 

Charlot-Prat et al., 2004, while the dashed black lines in panel d are literature data for the Allalin gabbros taken from Dale et al., 

2007. Breaks in the sample profiles indciate elements that were not analysed. The primitive mantle normalization factors are taken 

from McDonough and Sun et al., 1995. 

 
Figure 4. 
The strong correlation (R2=0.73) between the δ56Fe and δ66Zn of the basaltic eclogites from the Zermatt-Saas suggest that both the 

Fe and Zn stable isotopes composition of these samples is controlled by the same process. 

All errors are 2sd of the mean of n. 

 
Figure 5. 
Iron isotope compositions (δ56Fe) plotted against indices of magmatic differentiation (panel a and b) and fluid-rock interaction 

(panel c, d and e). The Queyras metasomatic contact zone and the metasediments are not plotted on a and b as they have not 

undergone magmatic differentiation. Panels c and d present ratios of fluid mobile (Rb and Sb) and immobile (Th) elements.  The 

linear regression lines and associated R2 values plotted on c, d and e are for the Queyras blueschist metagabbro data only. Boron 

concentration data was only available for the Chenaillet and Queyras samples. Error bars represent two standard deviations of the 

mean of n. 

 
Figure 6. 
Schematic diagram (modified after Debret et al., 2016a) showing the approximate location of the metaophiolites studied as part of 

this work: i) Chenaillet massif; ii) Queyras complex; and iii) Zermatt-Saas ophiolite. Each of these metaophiolites has been 

metamorphosed under conditions representative of a subduction gradient (greenschist to blueschist to eclogite) and allows us to 

examine the effect of slab metamorphism and metasomatism on the mafic oceanic crust. For each of these ophiolites the average 

δ56Fe and δ66Zn values are presented.  
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