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Abstract Relative sea-level (RSL) data provide constraints on land uplift associated with former ice 13 

loading and can be used to differentiate between contrasting ice unloading scenarios.  Isolation 14 

basin, coastal lowland and geomorphological evidence is employed to reconstruct RSL changes in 15 

northwest (NW) Iceland, which may have experienced contrasting uplift patterns.  Under local 16 

(NW) uplift, highest RSL would be expected in central Vestfirðir, whereas highest RSL would be 17 

closest to the main ice-loading centre under regional (central Iceland) uplift.  Four new RSL 18 

records are presented based on 16 sea-level index points and 4 limiting ages from sites principally 19 

focussed along a transect away from central Iceland.  The new RSL records highlight spatial 20 

variability of Holocene RSL changes and provide constraints on deglaciation.  There is an increase 21 

in marine limit elevation with proximity to the proposed principal ice loading centre in central 22 

Iceland.  Highest recorded marine limit shorelines are found in Hrútafjörður-Heggstaðanes 23 

(southeast), the lowest in Hlöðuvík and Rekavík bak Látrum (north), and at an intermediate 24 

elevation in Reykjanes-Laugardalur (central Vestfirðir).  Evidence from Breiðavik-Látrar records 25 

early rapid deglaciation in Breiðafjörður or a complex interplay of multiple uplift centres.  RSL fell 26 

rapidly following deglaciation in several locations as a result of the quick response of the Icelandic 27 

lithosphere to unloading.  The RSL data along the transect show an uplift pattern consistent with 28 

extensive regional glaciation emanating from central Iceland, which could have implications for ice 29 

sheet configuration and patterns of deglaciation, glacio-isostatic adjustment modelling and the 30 

volume of meltwater input into the North Atlantic. 31 
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Postglacial relative sea-level changes in northwest Iceland: evidence from isolation basins, 37 

coastal lowlands and raised shorelines 38 

1. Introduction 39 

A range of evidence has been used to investigate the lateral and vertical extent of the Last Glacial 40 

Maximum (LGM) Icelandic Ice Sheet (IIS), including glacial geomorphology, striation mapping (e.g. 41 

Thorodssen, 1905-1906; Hoppe, 1968; 1982), sedimentology (e.g. Syvitski et al., 1999; Andrews et 42 

al., 2000), seismic profiling (Egloff and Johnson, 1979), submerged feature mapping (Spagnolo 43 

and Clark, 2009), ice sheet modelling (Hubbard et al., 2006; Hubbard, 2006), marine limit mapping 44 

(Norðdahl and Pétursson, 2005; Norðdahl et al., 2008), and ocean coring (Andrews et al., 2000; 45 

Eiríksson et al. 2000). However, none of these methods have been able to unequivocally 46 

determine the most likely LGM ice loading scenario for Iceland.  Relative sea-level studies have 47 

the potential to produce high-resolution data to identify the location and thickness of former ice 48 

loading through constraint of the marine limit, the establishment of deglacial timing and the 49 

patterns of Lateglacial to Holocene relative sea-level changes.  In turn, these data act as important 50 

constraints for glacio-isostatic adjustment (GIA) models, which can further assist in the testing of 51 

ice loading hypotheses, lithospheric and mantle viscosity characteristics. This paper provides new 52 

relative sea level (RSL) data from northwest (NW) Iceland, which reflect post-(de)glacial loading 53 

and unloading of the crust as a result of near-equilibrium glacio-isostatic conditions during 54 

deglaciation (Norðdahl and Ingólfsson 2015).  Establishing the lateral and vertical extents of the 55 

LGM IIS, associated ice volumes and patterns of deglaciation, is crucial, due to Iceland’s location 56 

close to sensitive areas of deepwater formation in the Nordic Seas and northern North Atlantic 57 

(Dickson et al., 2002; Fig. 1).    58 

Isolation basins have been used in a number of locations close to present and former ice sheets to 59 

develop records of RSL change, including e.g. in Antarctica (Watcham et al., 2011), Canada 60 

(Hutchinson et al., 2004; Smith et al, 2005), Finland (Eronen et al, 2001), Greenland (Long et al, 61 

2011), Norway (Balascio et al, 2011), Russia (Corner et al, 1999), the UK (Shennan et al, 1994; 62 

Shennan et al, 1998) and Iceland (Rundgren et al, 1997; Lloyd et al, 2009).  Isolation basins are 63 

rock depressions which have been connected to or isolated from the sea due to RSL changes 64 

across an impervious rock sill that controls tidal inundation (e.g. Lloyd and Evans, 2002, Long et al, 65 

2011).  A series of stages of basin isolation have been identified (e.g. Lloyd and Evans, 2002) and 66 

analysis of sediment and microfossil datasets allows the identification of three isolation contacts – 67 

diatomological, hydrological and sedimentological - which can subsequently be linked to positions 68 

within the tidal frame (Kjemperud, 1986).  Radiocarbon dates at these isolation contacts provide 69 

constraints on the timing of RSL change and the resulting RSL curves may in turn determine 70 

patterns of postglacial land-level change (e.g. Long et al., 2011), allowing an assessment of former 71 

ice loading patterns. 72 



Coastal lowlands are situated close to present sea-level and encompass the environment from 73 

mud flat to above high marsh conditions, and have the potential to record past RSL changes where 74 

sufficient accommodation space is available to record changes in environmental conditions.  75 

Coastal lowland environments may therefore encompass saltmarshes, which have previously been 76 

used in Iceland to reconstruct patterns of RSL change (e.g. Gehrels et al., 2006; Saher et al., 77 

2015). 78 

 79 

Figure 1: A: Current oceanic circulation patterns in the North Atlantic, highlighting Iceland’s position close to 80 

several major currents. B: Field and modelling evidence for the lateral extent of the LGM IIS, including 81 

undated moraines (solid orange), diverse physical evidence (black dashed, Norðdahl and Pétursson, 2005, 82 

Norðdahl and Ingólfsson, 2015) and modelled extent (solid purple, Hubbard et al., 2006).   83 



In this study, 16 new sea-level index points (SLIPs) are presented, based on diatomological, 84 

tephrochronological and radiocarbon analyses on isolation basin and coastal lowland sediments, 85 

which are combined with new and existing data derived from geomorphological indicators.  The 86 

resulting new RSL curves allow an assessment of the spatial variability of former RSL in NW 87 

Iceland and thus the patterns of Lateglacial to Holocene ice loading in the region. 88 

2. RSL change in Iceland 89 

Until recently, RSL research in Iceland focussed on the investigation of the marine limit, which has 90 

been extensively surveyed (e.g. Ingólfsson, 1991; Norðdahl and Pétursson, 2005; Norðdahl et al., 91 

2008).  The marine limit is a raised shoreline which represents the highest point reached by post-92 

deglacial RSL (Andrews, 1970) and thus varies in age and elevation due to differences in ice 93 

thickness and the style and timing of deglaciation (Ingólfsson, 1991; Jennings et al., 2000; 94 

Norðdahl and Ingólfsson, 2015).  However, difficulties in determining the age of the marine limit in 95 

Iceland have been noted, which is key if marine limit records are to be employed as robust 96 

reconstructions of former RSL.  In addition, marine limit datasets tend to produce single SLIPs, 97 

which are of limited value as constraints for glacio-isostatic adjustment models. Isolation basin 98 

studies have therefore provided additional constraints on proposed postglacial RSL changes in 99 

Iceland (Norðdahl and Pétursson, 2005; Pétursson et al., 2015).  In the majority of cases, the 100 

principal benefit of isolation basin studies is the provision of a complete RSL curve for a location, 101 

which provides information regarding the tendency of RSL change, compared to individual SLIPs 102 

from raised shorelines.  These records of RSL changes are particularly important as a test for 103 

glacio-isostatic adjustment (GIA) model outputs when exploring various ice loading scenarios (e.g. 104 

Hubbard et al., 2006; Patton et al., 2017).  105 

Mapping of the marine limit has identified that the highest marine limits are present at Akrafjall and 106 

Stóri-Sandhóll, western Iceland, at 105 and 148 m a.s.l. (Ingólfsson and Norðdahl, 2001).  Dating 107 

at Stóri-Sandhóll has revealed an age of 12,928 ± 95 14C a BP (uncalibrated; Ingólfsson and 108 

Norðdahl, 2001) or 14.7 cal. ka BP (Norðdahl and Ingólfsson, 2015).  The high marine limit 109 

elevations in western Iceland are taken as evidence for rapid deglaciation (Ingólfsson and 110 

Norðdahl, 2001; Norðdahl and Ingólfsson, 2015).  The pattern of marine limit elevation in NW 111 

Iceland is particularly complex, ranging from 14 m a.s.l. in northern Vestfirðir (Principato, 2008) to 112 

85 and 95 m a.s.l. in the Breiðavík-Látrar area in the southwesternmost part of Vestfirðir (Norðdahl 113 

and Pétursson, 2005, Fig. 2).   114 

Based on the existing data on raised marine shorelines in Iceland, Norðdahl and Pétursson (2005) 115 

were able to depict a pair of distinct and younger shorelines below the marine limit shoreline, dated 116 

to about 12.0 and 11.2 cal ka BP respectively, and both preceded by an increase in RSL (Norðdahl 117 

and Pétursson 2005; Pétursson et al. 2015).  A number of lower-elevation raised shorelines have 118 

also been identified in Iceland, including the Nucella beach, which is characterised by 'Nucella' 119 



shell deposits at ~4-5 m a.s.l. (Bárðarson, 1906, 1910a, 1910b).  An estimated age for the 120 

formation of the 'Nucella beach' in Hrútafjörður is ca. 4.5 cal. ka BP (Þórarinsson, 1956; John, 121 

1974: John and Alexander, 1975; Hansom and Briggs, 1991), whereas Eiríksson et al. (1998) 122 

estimated its formation between ca. 3.2 and 5.7 cal. ka BP. In northern Vestfirðir, Principato (2008) 123 

suggested an age of ca. 3 cal. ka BP for the 5 m beach and in southern Iceland Símonarson and 124 

Leifsdóttir (2002) dated the 6 m beach there between 2.3 and 2.9 cal. ka BP (original dates; 2625 ± 125 

40 and 3145 ± 35 14C a BP).  These dates provide constraints on late Holocene RSL change in 126 

Iceland. 127 

More recently, isolation basin studies have been completed in Iceland to produce comprehensive 128 

records of postglacial RSL changes (Rundgren et al., 1997; Lloyd et al., 2009; Brader et al., 2015).  129 

The first isolation basin study was undertaken on the Skagi peninsula (Rundgren et al., 1997), 130 

where a fall in RSL of 45 m between 13 cal. ka BP and 10.2 cal. ka BP is reported, during which 131 

there were two marine transgressions of around 5 m amplitude up to Younger Dryas and Preboreal 132 

shorelines.  Isolation basin and raised shoreline evidence in southern Vestfirðir (Lloyd et al., 2009) 133 

and northern Snæfellsnes (Brader et al., 2015) have provided an insight into RSL changes on the 134 

northern and southern shorelines of Breiðafjörður, western Iceland.  Lloyd et al. (2009) identified 135 

the local marine limit at 80 m a.s.l. (with raised shorelines between 84 and 98 m a.s.l.) and 136 

demonstrated a continuous RSL fall from ca. 14 cal. ka BP (estimated date from highest basin,  137 

12,185 ± 100 14C a BP) to the early Holocene in southern Vestfirðir.  Initial rates of RSL fall were 138 

high with a notable reduction in the rate of RSL fall during this period (Lloyd et al., 2009), with an 139 

intermediate elevation shoreline between 41 and 51 m a.s.l. dated to between 11.1 and 13.2 cal. 140 

ka BP.  Lloyd et al. (2009) highlight the potential for a RSL rise during the Younger Dryas in 141 

southern Vestfirðir, although additional data are required to further test this hypothesis.  An 142 

increase in RSL in Allerød/Younger Dryas times has been demonstrated in other parts of Iceland 143 

(Rundgren et al., 1997; Norðdahl and Pétursson, 2005; Norðdahl and Ingólfsson, 2015). Lloyd et 144 

al. (2009) also provide the first isolation basin evidence for a late-Holocene highstand in Iceland, 145 

which has been seen elsewhere through 'Nucella beach' deposits.   146 

In contrast to southern Vestfirðir, the marine limit in northern Snæfellsnes is identified as 65 – 69 m 147 

a.s.l. and limited influence of Younger Dryas ice re-advance is evident within the RSL record there 148 

(Brader et al., 2015).  In Snæfellsnes, RSL fell below present sea level at ca. 10 cal. ka BP, 149 

occurring a few centuries later than in south west Iceland (>10.5 cal. ka BP; Ingólfsson et al., 1995) 150 

and Skagi (>10.2 cal. ka BP; Rundgren et al., 1997).  There is however a clear contrast in the 151 

patterns of RSL changes over relatively short distances within the region, likely as a consequence 152 

of differences in lithospheric characteristics, the area available for ice accumulation, pattern and 153 

style of deglaciation and age of the elevated shorelines (Ingólfsson and Norðdahl, 2001; Norðdahl 154 

and Pétursson, 2005; Brader et al., 2015; Norðdahl and Ingólfsson, 2015).    155 



Late Holocene saltmarsh studies have been undertaken at Viðarhólmi, Snæfellsnes, western 156 

Iceland in order to investigate more recent RSL changes (Gehrels et al., 2006; Saher et al., 2015).  157 

The diatom record from Viðarhólmi highlights variability in the patterns of recent RSL changes, 158 

possibly as a result of changes in the North Atlantic Oscillation (NAO; Saher et al., 2015).  Deeper 159 

coring at the site also generated a series of basal SLIPs for the late Holocene (Gehrels et al., 160 

2006).    161 

In addition to terrestrial records of RSL change, additional research has been undertaken using 162 

marine records to constrain the RSL fall below present sea level in the early Holocene, including 163 

seismic profiling (e.g. Thors and Boulton, 1991), records of submerged peat (e.g. Ingólfsson et al., 164 

1995) and marine core analysis (e.g. Quillman et al., 2010).  At present, there remains uncertainty 165 

over the scale of the proposed early Holocene RSL lowstand, due to methodological limitations, 166 

conflicts between evidence from different sources and poor spatial coverage.  It is important to 167 

establish the timing and magnitude of any RSL lowstand, as data constraining RSL change will be 168 

important for the testing of GIA models in Iceland. New data from marine environments, which 169 

could be combined with the new terrestrial evidence from isolation basins, coastal lowlands and 170 

raised shorelines, would better constrain this RSL lowstand and in turn allow further testing of 171 

contrasting uplift scenarios.   172 

3. Study area 173 

The present study is based on data collected from a number of locations on the Vestfirðir 174 

Peninsula (NW Iceland) (Fig. 2). South of the study area is the Snæfellsnes Peninsula, which is 175 

dominated by the ice-capped Snæfellsjökull Volcanic System and forms the southern coastline of 176 

Breiðafjörður.  East of the study area is the Skagi Peninsula, a large peninsula in North Iceland 177 

characterized by a number of lake basins at its northernmost point (Rundgren et al., 1997). The 178 

peninsula forms the eastern coastline of Húnaflói, a major fjord system in North Iceland. 179 

Drangajökull glacier is situated in northern Vestfirðir.  The research locations explored within this 180 

study are situated on the Vestfirðir Peninsula: Hlöðuvík and Rekavík bak Látrum (5 sites); 181 

Reykjanes-Laugardalur in Ísafjarðardjúp (10 sites); and Breiðavík-Látrar (1 site; Fig. 2). 182 

Hrútafjörður-Heggstaðanes forms the southeasternmost section of the study area (8 sites; Fig. 2). 183 



 184 

Figure 2: Study area in NW Iceland, highlighting the key research locations – A: Rekavík bak Látrum, B- 185 

Hlöðuvík, C - Reykjanes-Laugardalur, D – Hrútafjörður-Heggstaðanes, E – Breiðavík-Látrar - and sites 186 

mentioned in the text. Blue hashed areas – current glaciers, light blue – lakes.  Base Map – Based on data 187 

from National Land Survey of Iceland. 188 

4. Methods 189 

 190 

4.1 Site Selection  191 



The sites were chosen to exploit RSL changes across a potential former ice loading centre above 192 

Vestfirðir. The sites in Hlöðuvík and Rekavík bak Látrum, Reykjanes-Laugardalur and Hrútafjörður-193 

Heggstaðanes form the research transect, with secondary sites at Breiðavík and Látrar at the 194 

mouth of Breiðafjörður.   195 

Figure 3 illustrates the hypothesised patterns of RSL change at the three main sites along the 196 

transect under two glacio-isostatic uplift scenarios.  Under a regional uplift scenario, with ice 197 

loading emanating from central Iceland (black line, Fig. 3), it is proposed that the marine limit 198 

elevation would increase with proximity to the former centre of unloading (and therefore uplift) in 199 

central Iceland.  Alternatively, the highest marine limit elevation would be found in Reykjanes-200 

Laugardalur under a local uplift scenario (grey dashed line, Fig. 3), due to a centre of localised ice 201 

unloading in NW Iceland. 202 

 203 

 204 

Figure 3: Hypothesised patterns of RSL change if the centre of uplift was situated in central Iceland or if 205 

there was a local centre of uplift in central Vestfirðir in each of the principal research locations – Hlöðuvík 206 

and Rekavík bak Látrum, Reykjanes-Laugardalur, and Hrútafjörður-Heggstaðanes – in northwestern Iceland.  207 

Under the central Iceland scenario (black), distance from the loading centre increases leftward, whereas 208 

distance from the loading centre increases away from Reykjanes-Laugardalur under the local scenario (grey 209 

dash). The hypothesized marine limit is denoted by the dashed lines. 210 

4.2 RSL reconstruction 211 

In order to assess patterns of RSL change in NW Iceland, we collected isolation basin and coastal 212 

lowland sediment samples from the marine limit to present sea level in each of the four field 213 

locations.  The isolation basins were selected using the criteria outlined by Long et al. (2011), 214 

ensuring a suitable size (<1 km2), depth (<10 m) and spacing of sites in each research location 215 

(see Long et al. (2011) for further information).  Where the basin sill was covered by overlying 216 



sediments, a grid of cores established the lowest high point in the underlying bedrock.  The 217 

elevation of the isolation basin sill was measured relative to mean high water spring tide (MHWST) 218 

in the field using an Electronic Distance Meter (EDM; ± 0.1 m) and subsequently corrected to mean 219 

sea level (MSL or m a.s.l.) using tide tables for the nearest tide station (Admiralty Tide Tables, 220 

2006).   221 

The stratigraphy of each isolation basin was established by coring perpendicular transects with a 222 

gouge corer from infilled sections or from the rear of a boat when a lake was present.  Samples 223 

extracted were described using the Troels-Smith (1955) classification scheme.  Following initial 224 

survey, a core was extracted from the deepest point along the transect using a Russian corer 225 

(Jowsey, 1966).  226 

Diatom preparation followed the standard procedures outlined by Palmer and Abbott (1986) and 227 

diatoms were classified using a range of sources (e.g. Brun, 1965; Foged, 1974; Hartley, 1996).  A 228 

minimum of 300 diatoms were counted per sample and subsequently grouped by halobian 229 

classification (Hustedt, 1957) as follows: polyhalobian (marine), mesohalobian (brackish), 230 

halophilous (salt tolerant), oligohalobous – indifferent (freshwater) and halophobous (salt 231 

intolerant).  Summary diatom figures are given in the main text with full diatom assemblage graphs 232 

provided within Supplementary Information.  Diatom zones are based on changes in taxa 233 

composition within individual assemblages.  Microfossil analyses of isolation basin sediment 234 

sequences can allow the identification of three isolation contacts - the diatomological, hydrological 235 

and sedimentological contacts (Kjemperud, 1986) - which can be related to key positions within the 236 

tidal frame.  Mean High Water Spring Tide (MHWST) is frequently used for the diatomological 237 

isolation contact (Long et al., 2011), which is characterised by predominantly freshwater conditions 238 

with a minor brackish element.  The hydrological isolation contact represents entirely freshwater 239 

conditions and equates to Highest Astronomical Tide (HAT). 240 

Chronological control of isolation contacts was established with a combination of radiocarbon and 241 

tephra analyses.  Due to a lack of macrofossil material, the accelerator mass spectroscopy (AMS) 242 

radiocarbon dates were based on bulk organic sediment samples in close proximity to the isolation 243 

contact and were analysed at the NERC Radiocarbon Facility (NRCF).  Tephra samples were 244 

analysed at the Tephra Analytical Unit, School of GeoSciences, University of Edinburgh using a 245 

Cameca SX100 electron microprobe.  Details of the tephra analytical conditions can be found in 246 

Supplementary Information.  Both radiocarbon and tephra samples underwent an acid pre-247 

treatment prior to analysis.  Radiocarbon dates are calibrated with the Radiocarbon Calibration 248 

Program (CALIB) Rev. 7.1 html (Stuiver and Reimer, 1993) with the IntCal13 data set for terrestrial 249 

material (Reimer et al., 2013). 250 

In order to establish the elevation of former RSL, a correction is required based on the indicative 251 

meaning of the dated point in the diatom assemblage (see Shennan et al., 2015), with the error 252 

comprised of elevation uncertainty, sill determination uncertainty and the indicative range of the 253 



assemblage.  Establishment of a series of SLIPs for each research location has allowed the 254 

production of a series of new RSL curves for NW Iceland.  Full details of site stratigraphies, diatom 255 

assemblages and tephra geochemical results are presented as Supplementary Information. 256 

5. Results - New sea-level index points for NW Iceland 257 

Results of stratigraphic, diatom and chronological analyses are divided into the four principal 258 

geographical locations investigated as part of this research (Fig. 2).  In total, 16 new SLIPs and 4 259 

limiting points have been generated for NW Iceland. 260 

5.1 Hlöðuvík and Rekavík bak Látrum (Area A and B (Fig 2); five sites) 261 

Four lake basins and one raised shoreline were surveyed in Rekavík bak Látrum and Hlöðuvík 262 

(Fig. 2A and B).  The majority of these sites are found in Hlöðuvík, where the marine limit can be 263 

traced across the mouth of the valley at about 15 m a.s.l. and at ~ 26 m a.s.l. in nearby Hælavík 264 

(Hjort et al., 1985).  One basin was also surveyed in Rekavík bak Látrum, close to the local marine 265 

limit at 15-25 m a.s.l. (Hjort et al., 1985).  Sections 5.1.1 to 5.1.5 provide an overview of the 266 

stratigraphy and diatom assemblage for each site, with information for each location summarised in 267 

Fig. 4. 268 

5.1.1   Hlöðuvík 3 (HD3) - 66°24.965’ N, 22°38.857’ W - Sill Elevation: 18.01 ± 0.30 m a.s.l. 269 

HD3 is the lowest basin sampled in Hlöðuvík (Fig. 2B).  The stratigraphy is characterised by a 270 

basal tephra deposit overlain by olive green limus, sandy gravel and uppermost turfa peat, with a 271 

visible tephra at the base of the analysed core (Fig. 4).  Geochemical analysis of a dark grey/black 272 

tephra deposit allows identification as being part of the Saksunarvatn sequence of tephras (Fig. 5). 273 

It is now apparent that there were multiple eruptions of Grímsvötn between 9.9 cal ka BP and 10.4 274 

cal ka BP (Jennings et al., 2014), with up to 7 eruptions responsible for tephra deposits heading 275 

north and west of Grímsvötn onto the north Iceland and SE Greenland shelves. Three of these 276 

have major element characteristics which are indistinguishable from the Saksunarvatn tephra 277 

dated to approximately 10.2 ka (Jennings et al., 2014; Lohne et al., 2014). The oldest and thickest 278 

of these has been dated to around 10380 cal BP (10284–10501 cal BP) by Kristjánsdóttir et al. 279 

(2007) and Jennings et al. (2014) suggest that a correlation to the 10252-10342 cal BP ice-core 280 

dated ‘Saksunarvatn’ tephra (Rasmussen et al., 2007) is likely, but cannot be confirmed. It is likely 281 

that the ‘Saksunarvatn’ tephra found in our cores correlates with this too, but again cannot be 282 

confirmed.  Diatom analysis shows freshwater conditions dominate at the site, suggesting that RSL 283 

was lower than the sill elevation at 10.2 cal. ka BP.  This also acts as a limiting age for marine limit 284 

formation. 285 

5.1.2 Hlöðuvík 2 (HD2) - 66°25.156’ N, 22°38.846’ W – Sill Elevation: 18.13 ± 0.30 m a.s.l. 286 

HD2 is a small basin situated west of HD3 (Fig. 2B). The site stratigraphy is comprised of a basal 287 

silt, overlain by olive-green limus and turfa peats.  No tephra deposits were found at the site.  The 288 



diatom assemblage for HD2 is dominated by freshwater conditions (Fig. 4) suggesting that the site 289 

was situated above the influence of marine conditions and thus the site acts as a limiting elevation 290 

for postglacial RSL at the location. 291 

 292 

Figure 4: Summary diatom assemblages and stratigraphic profiles for sites in Hlöðuvík and Rekavík bak 293 
Látrum showing the key environmental changes recorded in each location: HD3 – Hlöðuvík 3, HD2  – 294 
Hlöðuvík 2, HD1 – Hlöðuvík 1 and REK1  – Rekavík bak Látrum 1. Diatoms are grouped by salinity: blue – 295 
marine, green – brackish, yellow – salt tolerant, orange – freshwater, red – salt intolerant. Full diatom 296 
assemblages and core stratigraphies are provided in Supplementary Information.  297 

5.1.3 Hlöðuvík 1 (HD1) - 66°25.142’ N, 22°38.776’ W – Sill Elevation: 18.71 ± 0.30 m a.s.l. 298 

HD1 is a small but the uppermost basin in Hlöðuvík (Fig. 2B).  The site stratigraphy is 299 

characterised by a basal blue-grey clay overlain by olive-green limus.  Above this layer, an organic 300 

rich layer is evident, covered by turfa peat.    The diatom assemblage is dominated by freshwater 301 

taxa (Fig. 4) and therefore the site acts as a limiting elevation for former RSL. 302 

5.1.4 Hlöðuvík Raised Shoreline (HD10) - 66°25.354’ N, 22°38.857’ W – Sill Elevation: 17.48 ± 303 

1.00 m a.s.l. 304 



The raised shoreline in Hlöðuvík was surveyed using an EDM in order to establish the highest 305 

postglacial RSL in the region (Fig. 2B).  Surveying established the minimum elevation of the 306 

marine limit at ~18 m a.s.l., just above the value reported by Hjort et al. (1985, 10-15 m a.s.l.).  The 307 

raised beach is characterised by a lower till deposit, overlain by marine sediments, with a 308 

subsequent upper till.  There was a lack of dateable material within the proposed ‘marine’ 309 

sediments, meaning that it has not been possible to establish an accurate chronology for this 310 

feature.  However, the discovery of the Saksunarvatn tephra (10.2 cal. ka BP) in the basins above 311 

the marine limit acts as a limiting age for feature formation.   312 

 313 

Figure 5: Geochemical results of tephra analyses on samples from Hlöðuvík and Rekavík bak Látrum, 314 

Reykjanes-Laugardalur and Hrútafjörður-Heggstaðanes. Samples are plotted against Saksunarvatn 315 

geochemistries (orange circles) sourced from Tephrabase (2015). 316 

5.1.5 Rekavík bak Látrum (REK1) - 66°24.500’ N, 23°0.441’ W – Sill Elevation: 18.63 ± 0.30 m 317 

a.s.l. 318 



REK1 is situated aside a kettle-hole lake (Hálsavatn) in Rekavík bak Látrum and represents the 319 

westernmost field site in the region (Fig. 2A).  The site stratigraphy is comprised of a basal tephra-320 

rich gravel overlain by clay rich silts, silty limus and an uppermost organic rich limus (Fig. 4).  The 321 

Saksunarvatn tephra was identified at the base of the core following geochemical analysis of a 322 

black tephra deposit (10.2 cal. ka BP; Fig. 5).  There is a clear dominance of freshwater conditions 323 

at the site, but the occurrence of limited numbers of brackish taxa suggests occasional inundation 324 

by highest times or storm events at the base of the core.  A radiocarbon sample at 330 cm 325 

produced an age of isolation of 9130 – 9412 (9.2 k) cal. a BP (Table 1), which provides a limiting 326 

(minimum) age for marine limit formation in the region. 327 

5.1.6 RSL curve for Hlöðuvík and Rekavík bak Látrum 328 

The results from Hlöðuvík and Rekavík bak Látrum provide one new SLIP and one limiting point for 329 

postglacial RSL in the region (Table 1; Fig. 6). Due to the geomorphology of the region, there are 330 

limited locations with sufficient coastal lowlands to produce a large number of SLIPs.  However, 331 

these new data provide valuable constraint on RSL change for the location, which is situated at the 332 

northwesternmost point of the principal research transect. 333 

 334 

Figure 6: Hypothesised and reconstructed RSL curves for NW Iceland, based on new and existing data from 335 

the region.  Hypothesised RSL curves are based on Figure 3, with grey representing localised uplift and 336 

black representing the central uplift scenario.  The hypothesised RSL curve for Breiðavík-Látrar is based on 337 

its position at an extreme terrestrial location from the principal uplift centre in central Iceland.  Reconstructed 338 

RSL curves are plotted along the principal research transect in NW Iceland - Hlöðuvík and Rekavík bak 339 

Látrum (NW), Reykjanes-Laugardalur (central) and Hrútafjörður-Heggstaðanes (SE) - with Breiðavík-Látrar 340 

(SW) plotted separately.   341 



5.2 Reykjanes-Laugardalur (Area C (Fig. 2); 10 sites) 342 

Ten sites in the Reykjanes-Laugardalur area were investigated from the marine limit to present sea 343 

level.  Reykjanes-Laugardalur represents the centre-point for the research transect to evaluate 344 

contrasting glacio-isostatic uplift scenarios due to different uplift centres (Fig. 3). 345 

5.2.1 Bólvík (BB1) - 65°56.392’ N, 22°29.029’ W – Sample Elevation: -0.50 ± 0.25 m a.s.l.  346 

BB1 is a small embayment close to the farm at Vatnsfjörður, (Fig. 2C).  A sample comprising basal 347 

gravel rich silt, overlain by a gravel rich turfa peat and uppermost gravel rich silt layer was collected 348 

close to the present beach (Fig. 7).  Diatom analysis reveals marine dominance in the lowermost 349 

unit, with a limited (~20%) freshwater component to the diatom assemblage.  Within the turfa peat, 350 

freshwater influence increases with a minor brackish component.  Diatom preservation in the 351 

uppermost sediment unit was poor and provided insufficient numbers for a reliable sample for 352 

analysis.  A radiocarbon date from the turfa peat (bulk sample) returned a ‘modern’ age for the 353 

deposit (Table 1). 354 

5.2.2 Sveinhúsavatn (SHV1) - 65°56.210’ N, 22°28.193’ W – Sill Elevation: 1.24 ± 0.30 m a.s.l. 355 

SHV1 is a relatively large lake basin close to the farm at Vatnsfjörður (Fig. 2C).  The site 356 

stratigraphy comprises sandy silts with distinct shell layers.  The diatom assemblage can be 357 

divided into eight distinct zones, showing the transition from brackish-marine to brackish-358 

freshwater dominance at the site, which is still connected to the sea at present.  A series of tephra 359 

layers are found through the sediment profile, which underwent geochemical analysis (Fig. 7; 360 

Anderson, personal communication, 2016).  The tephra layers at 270 cm, 215 cm and 165 cm 361 

were identified respectively as the Landnám layer (the Settlement Layer) 877AD (1073 cal. a BP), 362 

Eldgjá 939AD (1011 cal. a BP) (cf. Schmid et al., 2016) and Hekla 1693AD (257 cal. a BP) tephras 363 

(cf. Brynjólfsson et al. 2015).  In addition, two radiocarbon samples were analysed from 218 cm 364 

(1996 - 2299 (2.1 k) cal. a BP) and 228 cm (2158 – 2349 (2.25 k) cal. a BP), establishing a 365 

chronology for the site. Two SLIPs were generated providing constraint on late Holocene RSL 366 

changes in the region (Table 1). 367 

 368 

5.2.3 Reykjanes 6 (RK6) - 65°55.193’ N, 22°25.588’ W – Sill Elevation: 2.30 ± 0.30 m a.s.l. 369 

RK6 is a small basin, found north of the present airfield on Reykjanes (Fig. 2C).  The sediment 370 

profile at RK6 comprises a basal olive green mixed organic material, overlain by a lower peat layer, 371 

olive green humified organic material and middle peat layer.  Above this, is an upper olive green 372 

organic layer, overlain by an upper turfa peat layer.  The diatomological isolation contact is 373 

identified at 100 cm (Fig. 7) shown by a reduction in brackish conditions at the site.  A bulk organic 374 

radiocarbon sample at 100 cm produced an age for the SLIP of 9139 – 9432 (9.3 k) cal. a BP 375 

(Table 1).   376 



5.2.4 Vatnsfjörður Home Field (VHF1) - 65°56.324’ N, 22°30.000’ W – Sample Elevation: 4.50 ± 377 

0.30 m a.s.l. 378 

VHF1 is situated close to an archaeological site and present farm at Vatnsfjörður (Fig. 2C).  The 379 

stratigraphy is made up of a basal blue-grey sandy clay, overlain by extensive peats.  A number of 380 

sediment samples were extracted through the profile.  Diatom analysis shows the core dominated 381 

by freshwater conditions, with a weak brackish signal at the base (Fig. 7).  A radiocarbon sample at 382 

69 cm provides a marine limiting age of 5584 – 5711 (5.6 k) cal. a BP (Table 1). 383 

 384 



 385 

Figure 7: Summary diatom assemblages and stratigraphic profiles for sites in Reykjanes-Laugardalur 386 

showing the key environmental changes recorded in each location: BB1 – Bólvík, SHV1 – Sveinhúsavatn, 387 

RK6 – Reykjanes 6, VHF1 – Vatnsfjörður Home Field, RK3 – Reykjanes 3, RK10 – Reykjanes 10, VAT1 – 388 

Vatnsfjarðarháls 1, GR1 – Grímhólsvatn.  For the key, refer to Figure 4. 389 

 390 



5.2.5 Reykjanes 3 (RK3) - 65°54.171’ N, 22°25.069’ W – Sill Elevation: 6.19 ± 0.30 m a.s.l.  391 

RK3 is situated between RK6 and RK10, south of the present airfield on Reykjanes (Fig. 2C).  A 392 

sediment sample comprised a basal brown silty mixed organic material, overlain by a grey silt, 393 

brown mixed organic material and upper peat layer.  The diatom assemblage shows a transitional 394 

sequence and can be divided into five zones.  A radiocarbon sample at 147 cm produced a timing 395 

of isolation of 3829 – 4071 (3.9 k) cal. a BP (Fig. 7; Table 1).  There is a clear reduction in marine 396 

influence at the site over the course of the diatom record (Fig. 7). 397 

5.2.6 Reykjanes 10 (RK10) - 65°54.321’ N, 22°25.184’ W – Sill Elevation: 16.49 ± 0.30 m a.s.l. 398 

RK10 is a predominantly infilled basin on the Reykjanes peninsula, situated between RK3 and the 399 

airfield (Fig. 2C).  The site stratigraphy is characterised by a basal gravel, extensive limus deposits 400 

and turfa peat. Diatom analysis highlights two distinct zones (Fig. 7).  The diatomological isolation 401 

contact is clearly evident at 237 cm and a bulk radiocarbon sample at 238 cm returned an age for 402 

the SLIP of 9798 – 10190 (10.0 k) cal. a BP (Table 1).  In addition, the Saksunarvatn tephra was 403 

identified by geochemical analysis at 248 cm, providing a second (minimum) age of 10.2 cal. ka BP 404 

(Fig. 5).  There is a clear reduction in marine influence at the site, suggesting a RSL fall at the 405 

location. 406 

5.2.7 Vatnsfjarðarháls 1 (VAT1) - 65°57.823’ N, 22°31.175’ W – Sill Elevation: 22.22 ± 0.30 m 407 

a.s.l. 408 

VAT1 is situated at the head of the Vatnsfjarðarnes peninsula (Fig. 2C).  The stratigraphy was 409 

determined through a transect of 15 cores and comprises a basal gravel, grey silt, olive green 410 

limus and upper turfa peat.  An extensive tephra deposit is also evident at the site, occurring 411 

shortly after the transition from silt to limus.  Geochemical analysis of these dark grey deposits has 412 

identified the Saksunarvatn tephra at 163 cm (10.2 cal. ka BP; Fig. 5).  The diatom assemblage 413 

from VAT1 can be divided into four distinct zones (Fig. 7).  The diatomological isolation contact is 414 

identified at 204 cm from which a radiocarbon sample produces an age of 9918 – 10216 (10.1 k) 415 

cal a BP (Table 1) for the SLIP.  Consequently, a weak marine phase is terminated at ca. 10.1 cal. 416 

ka BP, with the Saksunarvatn tephra (10.2 cal. ka BP) found above the section. 417 

5.2.8 Grímhólsvatn (GR1) - 66°0.053’ N, 22°39.353’ W – Sill elevation: 28.52 ± 0.30 m a.s.l. 418 

GR1 is a large basin situated close to the local marine limit at ~25 m a.s.l. in Laugardalur (Fig. 2C).  419 

The core from the northern section of the present lake basin is characterised by a basal silty brown 420 

limus overlain by an olive green limus layer.  The diatomological isolation contact is identified at 421 

212 cm, with a radiocarbon sample generating an age of 10444 - 10724 (10.6 k) cal. a BP for the 422 

SLIP indicating a reduction in marine influence of a brackish environment at the location (Fig. 7).   423 

5.2.9 Vatnsfjarðarháls 2 (VAT2) - 65°57.553’ N, 22°30.956’ W – Sill Elevation: 29.59 ± 0.30 m 424 

a.s.l. 425 



VAT2 is a large basin found above and south of site VAT1 on the Vatnsfjarðarnes peninsula (Fig. 426 

2C).  The collected core was comprised of a basal gravel, overlain by silty clay, limus and peat 427 

layers.  The diatom assemblage is dominated by freshwater conditions.  There is a short-lived 428 

brackish component at 428 cm, which may represent a storm event or brief marine incursion of the 429 

basin.  A clear transitional sequence is not evident at the site, suggesting that the site was situated 430 

above the influence of marine conditions.  A radiocarbon sample at 428 cm produced an age of 431 

11712 – 12067 (11.9 k) cal. a BP (Table 1) for a short-lived brackish episode.   432 

5.2.10 Laugardalur (LG1) 433 

The raised shoreline at Laugardalur provides an elevation for the local marine limit in Reykjanes-434 

Laugardalur (Fig. 2C).  The distinctive feature is found at the mouth of Laugardalur valley and was 435 

surveyed in a number of locations using an EDM to ~25/30 m a.s.l.  A lack of dateable material 436 

means that it has not been possible to directly date the feature, although diatom analysis from GR1 437 

provides a limiting age for formation of the shoreline. 438 

5.2.11 RSL curve for Reykjanes-Laugardalur 439 

Eight new SLIPs and the surveyed marine limit produce a new RSL curve for the region (Fig. 6; 440 

Table 1).  The new RSL curve for Reykjanes-Laugardalur shows RSL rapidly falling from the 441 

marine limit at ~25/30 m a.s.l., which may have been formed at ca. 10.6 – 11.9 cal. ka BP, to below 442 

present sea level by ca. 9.3 cal. ka BP.  RSL then rose above present sea level to a mid-Holocene 443 

highstand at ~4 m a.s.l. between ca. 4 and 5.8 cal. ka BP, before falling to present sea level (Fig. 444 

6). The regression sequences from RK6 and VHF1 mean that sea-level must have risen to or close 445 

to the elevation of these sites during the early to mid- Holocene. 446 

5.3 Hrútafjörður-Heggstaðanes (Area D (Fig. 2); eight sites) 447 

Eight isolation basin and coastal lowland sites were investigated in the Hrútafjörður-Heggstaðanes 448 

area, which represents the innermost research location along the principal research transect 449 

through NW Iceland (Fig. 3).     450 

5.3.1 Kolbeinsárnes 2 (KB2) - 65°25.978’ N, 21°11.793’ W – Sill Elevation: 1.09 ± 0.30 m a.s.l. 451 

KB2 is a lake situated on the Kolbeinsárnes peninsula on the western coastline of Hrútafjörður 452 

(Fig. 2D) inundated at high tide.  A core for analysis was extracted from the infilled section to the 453 

rear of the basin, summarised as a basal grey silt, subsequent blue-grey silty clays and an 454 

overlying Sphagnum peat layer.  No tephra layers were evident at the site.  Diatom analysis 455 

reveals a gradual transition from brackish-marine dominance to an increase in freshwater taxa 456 

presence (Fig. 8).  A bulk radiocarbon sample at 30 cm provides an age of 308 – 484 (0.4 k) cal. a 457 

BP for the reduction of marine influence at the site and a known position within the tidal frame 458 

(ongoing isolation).   459 



 460 

Figure 8: Summary diatom assemblages and stratigraphic profiles for sites in Hrútafjörður-Heggstaðanes 461 

showing the key environmental changes recorded in each location: KB2 – Kolbeinsárnes 2, KB4 - 462 

Kolbeinsárnes 4, KB1 - Kolbeinsárnes 1, SN2 – Sandavatn 2, SN1 – Sandavatn 1, MY1 – Mýrar 1, AH2 – 463 

Álfhóll 2, AH1 – Álfhóll 1.  For the key, refer to Figure 4. 464 

 465 



5.3.2 Kolbeinsárnes 4 (KB4) - 65°25.906’ N, 21°11.992’ W – Sill elevation: 2.24 ± 0.30 m a.s.l. 466 

KB4 is found to the southwest of KB2 on the Kolbeinsárnes peninsula (Fig. 2D). The sediment core 467 

contains a lower silty clay, organic-rich limus and overlying turfa peat (Fig. 8).  The diatom 468 

assemblage shows a transition from brackish-marine to freshwater dominance (Fig. 8).  469 

Radiocarbon dating of a bulk sediment sample at the diatomological isolation contact at 100 cm 470 

returned an age of 1890 – 2107 (2.0 k) cal. ka BP, which is employed for the SLIP.  There is a 471 

clear decrease in marine influence at KB4, representing a fall in RSL below 2.24 m a.s.l. at the 472 

location. 473 

5.3.3 Kolbeinsárnes 1 (KB1) - 65°25.984’ N, 21°11.756’ W – Sill elevation: 3.45 ± 0.30 m a.s.l. 474 

KB1 is a small basin situated north of KB2 and northeast of KB4 (Fig. 2D).  The stratigraphy 475 

comprises of a basal blue-grey clay with silt, organic rich silt, olive-green limus with abundant 476 

rootlets and a distinct uppermost olive-green limus layer (Fig. 8). The diatom assemblage 477 

represents a gradual decrease in marine influence at the site (Fig. 8).  A bulk sediment sample for 478 

radiocarbon analysis from the diatomological isolation contact at 65 cm returned an age of 2185 – 479 

2465 (2.3 k) cal. a BP for RSL falling below the SLIP. 480 

5.3.4 Sandavatn 1 (SN1) - 65°20.249’ N, 20°59.381’ W – Sill elevation: 51.02 ± 0.30 m a.s.l.  481 

SN1 is situated north of SN2 on the Heggstaðanes peninsula (Fig. 2D). A transect of 4 cores 482 

produced a stratigraphy comprising a basal blue-grey silt, overlying limus layer and surface turfa 483 

peat deposits.  A tephra deposit was evident between the silt and limus layer at 578 cm, identified 484 

as the Saksunarvatn tephra (10.2 cal ka BP) following geochemical analysis. Diatom analysis 485 

reveals a transitional sequence from brackish to freshwater dominance (Fig. 8).  A radiocarbon 486 

sample at the apparent diatomological isolation contact at 610 cm produced a minimum age of 487 

10814 – 11216 (11.1 k) cal. a BP for the SLIP.   488 

5.3.5 Sandavatn 2 (SN2) - 65°20.026’ N, 20°59.230’ W – Sill elevation: 46.51 ± 0.30 m a.s.l. 489 

SN2 is a large infilled basin also situated on the eastern side of the Heggstaðanes peninsula (Fig. 490 

2D).  The site stratigraphy was established through 4 cores and is characterised as a basal silt 491 

overlain by organic rich limus containing a distinct tephra layer and an uppermost turfa peat layer.  492 

The Saksunarvatn tephra was identified within the limus deposit at 509 cm, providing an age of 493 

10.2 cal ka BP.  In addition, a radiocarbon sample from an apparent diatomological isolation 494 

contact at 610 cm (Fig. 8) gave a minimum isolation age of 11198 – 11327 (11.3 k) cal. a BP for 495 

the SLIP.  There is an indication of a reduced brackish influence at the site (at 614 cm), possibly 496 

indicating a RSL lowering at the location. 497 

5.3.6 Mýrar 1 (MY1) - 65°18.253’ N, 21°02.401’ W – Sill elevation: 57.90 ± 0.30 m a.s.l. 498 



Mýrar is situated on the western side of the Heggstaðanes peninsula (Fig. 2D).  The site 499 

stratigraphy was established by a transect of 3 cores and comprises a basal gravel with overlying 500 

blue-grey silts and clays, mixed organic sediments and uppermost peat layer.  A number of 501 

individual tephra layers were identified within the sedimentary profile.  The diatom assemblage can 502 

be divided into three distinct zones (Fig. 8).  A radiocarbon sample was analysed from 612 cm and 503 

returned an age of 11191 – 11311 (11.2 k) cal. a BP for the SLIP shown by the transition from 504 

marine, brackish to freshwater dominance in the diatom flora.  The Saksunarvatn tephra was also 505 

identified at 592 cm, providing additional chronological control for the site (10.2 cal ka BP). 506 

5.3.7 Álfhóll 2 (AH2) - 65°17.601’ N, 20°55.978’ W – Sill elevation: 68.22 ± 0.30 m a.s.l. 507 

AH2 is a small basin ~110 m west of AH1 in innermost Heggstaðanes (Fig. 2D).  A basal blue-grey 508 

sand, overlain by silty clay and an olive-green limus is present within the cores.  A dark grey tephra 509 

was identified as Saksunarvatn at 594 cm following geochemical analysis, providing an age of 10.2 510 

cal ka BP (Fig. 5 and 8).  Diatom samples were analysed throughout the core sample showing 511 

freshwater dominance but the lowermost samples provided insufficient diatoms to ensure a reliable 512 

count (Fig. 8).  A radiocarbon sample from 632 cm provided a limiting age for the deposition of 513 

organic material and the site was therefore above RSL at 11109 – 11242 (11.2 k) cal. a BP. 514 

5.3.8 Álfhóll 1 (AH1) - 65°17.657’ N, 20°55.821’ W – Sill elevation: 70.62 ± 0.30 m a.s.l. 515 

AH1 is the highest basin investigated in Hrútafjörður-Heggstaðanes, situated to the northeast of 516 

AH2 (Fig. 2D).  The sediment stratigraphy was established through a transect of 3 cores and 517 

comprises basal blue-grey clay and silty clay overlain by an olive-green limus.  A dark grey tephra 518 

layer was evident at 609 – 612 cm, which was identified as the Saksunarvatn tephra following 519 

geochemical analysis, providing an age of 10.2 cal ka BP (Fig. 5 and 8).  In total, nine diatom 520 

samples were analysed, although the lowermost samples failed to produce sufficient diatoms to 521 

ensure a valid count (Fig. 8).  A radiocarbon sample at 613 cm produced an age of 10781 – 11174 522 

(11.0 k) cal. a BP and acts as a limiting age for the site, although this should be treated with some 523 

caution, given the close proximity to the Saksunarvatn tephra (10.2 cal. ka BP).  524 

5.3.9 RSL curve for Hrútafjörður-Heggstaðanes 525 

Six new SLIPs and two limiting points have been produced in Hrútafjörður-Heggstaðanes, the 526 

innermost location along the research transect in NW Iceland.  These new SLIPs have allowed the 527 

construction of a tentative new RSL curve for the region, highlighting initial RSL fall and more 528 

recent RSL changes (Fig. 6).  The lack of mid-elevation sites in the region means that it has not 529 

been possible to constrain RSL changes between ca. 11200 and 2400 cal. a BP (Fig. 6).  530 

Pétursson (pers. comm, 2016) has measured the marine limit at 47 m a.s.l. in Hrútafjörður and 53 531 

m a.s.l. in Hvammstangi (east of Heggstaðanes), which provide a similar constraint on maximum 532 

postglacial RSL as MY1 (58 m a.s.l.) where a clear transitional sequence is evident. AH1 and AH2 533 



act as limiting RSL points, suggesting that RSL has most likely been below this level since 534 

deglaciation.  535 

5.4 Breiðavík-Látrar (Area E (Fig. 2); one site) 536 

A series of sites were investigated in the Breiðavík-Látrar area in order to investigate the high 537 

marine limit elevations recorded in the region.  A number of higher elevation sites recorded 538 

evidence for marine influence, yet suffered from poor chronological control, and thus are not 539 

presented here.  Consequently, only one site is presented here in full, from close to present sea 540 

level (Fig. 9). The elevational data from the higher sampled sites can however be seen in Fig. 6.   541 

 542 

5.4.1 Breiðavík 10 (BR10) - 65°32.631’ N, 24°25.081’ W – Sill elevation: 4.40 ± 0.30 m a.s.l. 543 

The BR10 locality is situated in Breiðavík, a large bay on the westernmost part of Iceland (Fig. 2E).  544 

The site stratigraphy can be summarised as a basal sand overlain by silt-rich limus and organic 545 

rich silts, with visible shell remains likely deposited into the basin by aeolian transport.  The diatom 546 

record shows a reduction and subsequent increase in marine influence at the location, with the 547 

diatomological isolation contact therefore identified at 218 cm (Fig. 9).  A bulk radiocarbon sample 548 

from 218 cm produced an age of 1301 – 1407 (1.4 k) cal. a BP. 549 

 550 

Figure 9: Summary diatom assemblages and stratigraphic profile for Breiðavík 10 in Breiðavík-Látrar, 551 

showing the key environmental changes recorded. For the key, refer to Fig. 4. 552 

 553 
5.4.2  RSL record from Breiðavík-Látrar 554 



One new SLIP has been generated for the region (see Table 1), which is supported by the local 555 

marine limit at ~85 m a.s.l. by Norðdahl and Pétursson (2005).  Prominent shorelines have been 556 

identified at intermediate elevations (38 m and 79 m a.s.l. at Seljavík, southwest of BR10 557 

(Pétursson, pers. comm, 2016).  Additional sites with brackish diatoms were recorded at ~64 m, 67 558 

m and 73 m a.s.l. (Fig. 9) but suffered from poor chronological control.  It is likely that organic 559 

productivity was low immediately following deglaciation and as a result, limited organic material 560 

was available for dating within these sediment sequences.  The ages generated are not consistent 561 

with the elevation of the samples and thus probable timing of isolation.   562 

 563 

6. Discussion 564 

 565 

6.1 RSL changes in northwest Iceland 566 

Investigation of isolation basin, coastal lowland and geomorphological evidence has allowed the 567 

reconstruction of RSL changes at four locations in NW Iceland.  The reconstructed patterns of RSL 568 

changes allow the testing of the contrasting uplift hypotheses, with the results having implications 569 

for GIA modelling, ice sheet configuration and deglacial pattern, as well as meltwater input into the 570 

North Atlantic. 571 

6.1.1 Hlöðuvík and Rekavík bak Látrum 572 

In Hlöðuvík and Rekavík bak Látrum, the new RSL data provide constraint on marine limit 573 

formation.  The marine limit in Hlöðuvík is recorded at ~17.5 ± 1.0 m a.s.l. and is characterised by 574 

a basal till overlain by marine sediments and an upper till (15-26 m a.s.l., Hjort et al., 1985).  Lake 575 

basin samples from close to the marine limit demonstrate entirely freshwater assemblages and 576 

therefore support the interpretation of this feature.  The presence of the Saksunarvatn tephra in 577 

these lake basin sediments suggests that the lower part of the valley was ice free by 10.2 cal ka 578 

BP and provides a limiting (minimum) age for local marine limit formation.  This interpretation is 579 

supported by Hjort et al (1985) who identified that the Saksunarvatn tephra was deposited close to 580 

sea-level, suggesting that RSL was below the elevation of the lake basin sites at 10.2 cal. a BP. 581 

In Rekavík bak Látrum, following deglaciation RSL fell from the local marine limit at 15-25 m a.s.l. 582 

(Hjort et al., 1985).  This RSL fall is constrained by the new RSL data to between 9.3 cal. ka BP 583 

and 10.2 cal. a BP, which acts as both the minimum age for marine limit formation and 584 

deglaciation.  Additional sites explored in Rekavík bak Látrum demonstrate extensive gravel and 585 

sand deposits, limiting the potential for reconstructing environmental change for the westernmost 586 

section of the study area.   587 

6.1.2 Reykjanes-Laugardalur 588 



Following deglaciation, RSL fell from the local marine limit at ~30 m a.s.l. at ca. 10.6 cal ka BP until 589 

9.3 cal. ka BP, after which RSL fell below present (Fig. 6).  The RSL record generated in 590 

Reykjanes-Laugardalur therefore demonstrates that deglaciation may have occurred at a later date 591 

(10.6/11.9 cal. ka BP, GR1/VAT2) in Ísafjarðardjúp than north of Breiðafjörður (Lloyd et al., 2009 592 

[ca. 14.1 cal. ka BP]) and on the north coast of Snæfellsnes (Brader et al., 2015 [ca. 12.7 cal. ka 593 

BP]). The fall of RSL below present during the early Holocene (9.3 cal. ka BP) in this area can be 594 

compared with dates for a similar fall below present elsewhere in NW Iceland of ca. 9.0 cal ka BP 595 

(estimated for Bjarkarlundur, Lloyd et al., 2009); ca. 10.1 cal. ka BP (Snæfellsnes, Brader et al., 596 

2015); >10.2 cal ka BP (Skagi Peninsula, Rundgren et al., 1997); and ca. >10.5 cal ka BP in 597 

southwest Iceland (Ingólfsson et al., 1995; Pétursson et al., 2015).   598 

The new early Holocene RSL data from Reykjanes-Laugardalur can be compared to 599 

palaeoceanographic studies in Ísafjarðardjúp, which note a termination of glacio-marine conditions 600 

within the fjord by ca. 10.2 cal. ka BP and a lowered RSL between ca. 10.6 and 8.9 cal ka BP 601 

(Quillman et al., 2010).  At Reykjanes-Laugardalur, our new sea-level data indicate glacier retreat 602 

by at least 10.6 cal ka BP (Fig. 6) leading to glacio-isostatic unloading and a subsequent fall in 603 

RSL, which can be compared with the results from Quillman et al. (2010) in inner Ísafjarðardjúp. 604 

The difference in deglacial age is possibly the consequence of later glacier retreat at the innermost 605 

part of the fjord system due to lesser ingress of the warm Irminger Current, which would have 606 

become fully established in NW Iceland by ca. 10.2 cal. ka BP (Ólafsdóttir et al., 2010). 607 

Following the RSL fall below present sea level in the early Holocene (Fig. 6), a transgression must 608 

have occurred in the mid- to early Holocene, with the Reykjanes-Laugardalur RSL curve showing 609 

an associated regression from the proposed mid-Holocene highstand at ca 3.9 cal. ka BP (Fig. 610 

6).  The elevation and timing of this proposed highstand fit well with previous evidence from 611 

Ísafjarðardjúp, such as the raised beach surveyed by Principato (2008) at 5 m a.s.l. and dated to 612 

3.5 cal. ka BP (3612 ± 40 14C a BP, marine shell).  The SLIPs from Reykjanes-Laugardalur provide 613 

a minimum elevation of the proposed highstand which corresponds with both previous isolation 614 

basin records from NW Iceland (Lloyd et al., 2009) and the Nucella transgression (e.g. Símonarson 615 

and Leifsdóttir, 2002). 616 

RSL appears to have fluctuated over the late Holocene in Reykjanes-Laugardalur, with RSL rise 617 

most recently, as shown by the radiocarbon ages from SHV1 (1.25 ± 0.30 m a.s.l.; 2.1 cal ka BP 618 

and 2.3 cal ka BP), the age of the proposed Little Ice Age shoreline in Ísafjarðardjúp (0.3-0.5 m 619 

a.s.l.; 162 [0-267] cal. a BP; Principato, 2008), and the age of the BB1 sample (-0.50 ± 0.25 m 620 

a.s.l.; ‘modern’).  Poor chronological control on the BB1 sample prevents a recent rate of RSL 621 

change being calculated, although RSL must have risen to present from this saltmarsh peat 622 

deposit, situated just below present sea-level. 623 



6.1.3 Hrútafjörður-Heggstaðanes 624 

The isolation basin records from Hrútafjörður-Heggstaðanes constrain the highest elevation 625 

reached by postglacial RSL in the region.  Despite the lack of direct evidence for a raised 626 

shoreline, it is proposed that the marine limit lies between ~47 and 58 m a.s.l., with a minimum 627 

timing for deglaciation of 11.2 cal. ka BP (Fig. 6). 628 

The highest recorded marine influence along Hrútafjörður (~58 m a.s.l.; MY1) is higher than the 629 

previously reported but undated marine limit in innermost Hrútafjörður at about 50 m a.s.l. 630 

(Ingólfsson, 1991).  However, previous research in northern Iceland has noted a southerly 631 

decrease in marine limit elevations due to differences in deglacial timing (Norðdahl and Pétursson, 632 

2005).  In Hrútafjörður, it is likely that the marine limit formed during the Younger Dryas, based on 633 

the known extent of the ice sheet during this period (e.g. Pétursson et al., 2015).  As a result, the 634 

marine limit features are assigned a tentative Younger Dryas age, given the lack of dateable 635 

material to confirm the age of this feature.    636 

6.1.4 Breiðavík-Látrar 637 

The new late Holocene data from Breiðavík-Látrar provides a valuable constraint on recent RSL 638 

changes in outermost Breiðafjörður, suggesting a rise in RSL since ca 1.4 cal ka BP.  Investigation 639 

of higher elevation basins in the region provides evidence for marine influence up to 67 m a.s.l.; 640 

however, poor chronological control limits constraint of a regional RSL curve, likely as a 641 

consequence of low productivity immediately following deglaciation, leading to low organic content 642 

within dated bulk sediment samples.  Investigation of the geomorphology of the area provides 643 

support for a marine limit ~85 m a.s.l. (Norðdahl and Pétursson, 2005; Fig. 6), with shorelines at 644 

~38 and 79 m a.s.l. 645 

6.2 Geomorphological evidence vs. hypothesised RSL patterns 646 

 647 

The investigation of postglacial RSL change provides an opportunity to explore patterns of 648 

postglacial uplift across NW Iceland.  As outlined in Fig. 3 and Fig. 6, contrasting patterns of RSL 649 

change would be expected in the four research locations studied under the two uplift scenarios.  In 650 

particular, the elevation of the marine limit is an important factor in establishing the most likely ice 651 

loading/unloading scenario, which can be summarised as:   652 

a) Central uplift scenario: there was a single uplift and therefore ice loading centre, with ice 653 

emanating from central Iceland and so the highest marine limits are expected in Hrútafjörður-654 

Heggstaðanes and lower marine limits are proposed in Hlöðuvík and Rekavík bak Látrum (and 655 

Breiðavik-Látrar), or; 656 

  657 



b) Local uplift scenario: there were multiple uplift centres (with localised glaciation in NW 658 

Iceland) and thus a concurrent, separate and independent ice cap was centred over Vestfirðir.  As 659 

a result, if deglaciation was rapid, the highest marine limit would be found in Reykjanes-660 

Laugardalur due to greater ice thickness resulting from the independent ice cap (Fig. 3) under the 661 

hypothesised scenario.  662 

It is clear from the hypothesised RSL curves that the lowest marine limit elevation along the 663 

research transect is expected in Hlöðuvík and Rekavík bak Látrum (Fig. 3 and 6).  In Reykjanes-664 

Laugardalur, higher marine limit elevations would be anticipated under a local uplift centre due to 665 

the proximity to the proposed centre of secondary (local) ice loading in NW Iceland (Fig. 3 and 666 

6).  However, our new RSL data suggest that this region experienced later glacial retreat than 667 

elsewhere in NW Iceland, meaning that higher shorelines could not have formed due to the 668 

presence of ice cover.  In Hrútafjörður-Heggstaðanes, the greatest contrast in marine limit 669 

elevation is anticipated by the hypothesised RSL scenarios (Fig. 3 and 6).  Under the central 670 

Iceland uplift scenario, the marine limit would be highest due to increased proximity to the central 671 

Iceland ice loading centre (Fig. 3).  In contrast, an intermediate elevation is expected under the 672 

local ice loading centre scenario due to its location between the two proposed ice loading centres 673 

(local and central).   674 

Hlöðuvík and Rekavík bak Látrum are the northwesternmost terrestrial locations in this study and 675 

ice thicknesses were likely to be thinnest as they are furthest from the centres of uplift.  This 676 

hypothesis is supported by the raised shoreline and lake basin evidence from the region estimating 677 

a marine limit of ~25 m, which is slightly lower than in Reykjanes-Laugardalur (~30 m a.s.l.) and 678 

considerably lower than in Hrútafjörður-Heggstaðanes (~58 m a.s.l.) (Fig. 6).   Figure 6 679 

demonstrates an increased marine limit elevation from Hlöðuvík and Rekavík bak Látrum to 680 

Reykjanes-Laugardalur and Hrútafjörður-Heggstaðanes (Fig. 6).  We therefore associate lesser 681 

uplift with thinner ice loading as glacio-isostatic uplift occurred rapidly close to the retreating LGM 682 

IIS (Norðdahl and Ingólfsson, 2015). 683 

Similar to Hlöðuvík and Rekavík bak Látrum, Breiðavík-Látrar, the westernmost location studied, is 684 

also situated at a location far from the proposed centre of uplift in central Iceland and thus the 685 

hypothesised RSL patterns are for an extreme terrestrial location from the uplift centre (Fig. 6). 686 

However, geomorphological evidence from Breiðavík-Látrar suggests greater uplift than in 687 

Hlöðuvík and Rekavík bak Látrum, with raised shorelines recorded at 85 m, 79 m, 64 m and 38 m 688 

a.s.l., exceeding those elevations recorded at Hlöðuvík and Rekavík bak Látrum (~ 25 m a.s.l.), 689 

Reykjanes-Laugardalur (~ 30 m a.s.l.), and Hrútafjörður-Heggstaðanes (~ 58 m a.s.l.) except for 690 

the 38 m a.s.l. shoreline.  There are two possible explanations for this difference in marine limit 691 

elevation between Breiðavík-Látrar and Hlöðuvík and Rekavík bak Látrum: 692 



a) Breiðavík-Látrar experienced early deglaciation and records uplift from multiple ice loading 693 

centres (localised glaciation and regional (central) glaciation), or; 694 

b) Breiðavík-Látrar experienced earlier deglaciation and underwent greater uplift due to rapid 695 

retreat (of thicker ice) from Breiðafjörður, the site of a proposed major ice stream. 696 

Breiðavík-Látrar and Hlöðuvík and Rekavík bak Látrum are not directly comparable due to the 697 

differences in potential ice accumulation within major fjord and smaller valley systems.  The limited 698 

chronological control on the geomorphological features present in Breiðavík-Látrar means that it is 699 

not possible to differentiate between these two hypothesised explanations.  Our preferred scenario 700 

is that of central uplift, as evidenced by the increased elevation of the marine limit with proximity to 701 

the ice loading centre in central Iceland.  However, the geomorphological evidence in Breiðavík-702 

Látrar may record uplift from multiple sources (i.e. a combination of central uplift and local uplift 703 

from Vestfirðir) and thus the local uplift scenario cannot be unequivocally rejected. Future glacio-704 

isostatic adjustment modelling may be able to assist in differentiating between these two possible 705 

interpretations. 706 

The RSL curves from Hrútafjörður-Heggstaðanes and Reykjanes-Laugardalur provide insights into 707 

rates of initial RSL changes following Lateglacial to early Holocene deglaciation, particularly when 708 

compared to previous records of RSL change in the region (Lloyd et al., 2009; Brader et al., 709 

2015).  In Hrútafjörður-Heggstaðanes, initial RSL fall occurred rapidly shown by the cluster of 710 

similar ages in basins of different elevation (Fig. 6).  This rapid RSL fall corresponds with the 711 

results from Lloyd et al. (2009) and Brader et al. (2015), despite differences in deglacial timing, 712 

which both demonstrate rapid RSL fall in southern Vestfirðir and northern Snæfellsnes following 713 

deglaciation.  It should however be noted that very high rates of RSL fall close to the margin of a 714 

glacier and at an earlier date have been recorded in western Iceland (Norðdahl and Ingólfsson, 715 

2015).  It is clear that proximity to the glacier edge of individual data points is therefore an 716 

important consideration when assessing regional signals. 717 

In contrast, Reykjanes-Laugardalur demonstrates a lower rate of initial RSL fall, likely as a product 718 

of proximity to the local centre of uplift and the configuration of individual fjord systems.  The 719 

complex geomorphology of Ísafjarðardjúp may have promoted a slower rate of ice retreat than 720 

seen in wider fjord systems and thus led to a reduction in the rate of initial RSL fall due to lower 721 

rates of uplift. Alternatively, rapid deglaciation of the fjord system and thus high rates of uplift may 722 

have led to equilibrium between eustatic sea-level rise and isostatic uplift within the region, leading 723 

to the slower rates of RSL fall (e.g. Norðdahl and Ingólfsson, 2015). 724 

Late Holocene RSL records from NW Iceland suggest high spatial variability in recent RSL 725 

changes.  In southern Snæfellsnes (Gehrels et al., 2006; Saher et al., 2015) and Reykjanes-726 

Laugardalur (this study), low elevation coastal lowland and isolation basin sites provide evidence 727 



for recent RSL rise.  In contrast, records from Hrútafjörður-Heggstaðanes (this study) suggest 728 

recent RSL fall, with assumed RSL fall to present also noted in southern Vestfirðir (Lloyd et al., 729 

2009) and northern Snæfellsnes (Brader et al., 2015).  Additional low elevation sites are required 730 

for locations throughout NW Iceland to further explore this variability. 731 

The four new RSL records from NW Iceland allow the testing of two uplift (ice loading) scenarios.  732 

There is evidence to support the central uplift scenario along the research transect, based on the 733 

increased marine limit with proximity to the proposed ice loading centre (Fig. 6).  There is however 734 

complexity within the uplift patterns presented, with the results from Breiðavík-Látrar suggesting 735 

that uplift from multiple ice loading centres cannot be excluded.  Despite this complexity, our 736 

preferred scenario is that of central uplift with ice emanating from central Iceland. 737 

6.3 Implications for Icelandic uplift (ice loading) scenarios 738 

Offshore and onshore evidence suggests that substantial sectors of the LGM IIS were marine-739 

based, extending to the shelf edge in a number of locations (Ólafsdóttir, 1975; Ingólfsson and 740 

Norðdahl, 2001; Norðdahl and Pétursson, 2005; Hubbard et al., 2006; Norðdahl and Ingólfsson, 741 

2015).  Marine-based sectors of ice sheets are particularly sensitive to changes in sea level 742 

(Hubbard, 2006) and ocean temperature (Schmidtko et al., 2014).  Consequently, increases in the 743 

rate of eustatic sea-level rise associated with deglaciation of the major Northern Hemisphere ice 744 

sheets and correspondingly warmer surface waters would have had significant impacts on the IIS 745 

(Norðdahl and Ingólfsson, 2015).  This would have led to a retreat of the grounding line, thinning of 746 

the ice sheet and increased rates of calving eventually leading to flotation and collapse of marine 747 

based sectors of the ice sheet, as posited elsewhere in western Iceland (Norðdahl and Ingólfsson, 748 

2015).  Some of the highest but as yet undated marine limits may originate from this period, such 749 

as those recorded in Breiðavík-Látrar (Norðdahl and Pétursson, 2005).  750 

The new RSL curves from NW Iceland demonstrate an initial period of rapid early Holocene RSL 751 

fall, particularly in Hrútafjörður-Heggstaðanes (11.1-11.3 cal. ka BP) and in Reykjanes-Laugardalur 752 

(ca 10.2-10.6 cal. ka BP), indicating rapid glacio-isostatic uplift following deglaciation.  Rapid rates 753 

of uplift support a moreorless instantaneous response of the Icelandic lithosphere to the removal of 754 

ice loading, likely as a consequence of rapid ice retreat (Norðdahl and Ingólfsson, 2015).  755 

The new RSL data provide an insight into possible uplift scenarios in Iceland, with the preferred 756 

central uplift scenario being supported by evidence from the research transect.  GIA modelling will 757 

allow the contrasting uplift scenarios to be further tested.  The new RSL data generated will act as 758 

a valuable constraint for such models through the establishment of deglacial timing, age of marine 759 

limit formation, marine limit elevation, and subsequent Lateglacial to Holocene RSL changes.  At 760 

present, there are few Lateglacial to Holocene RSL records for Iceland (Rundgren et al., 1997; 761 

Lloyd et al., 2009; Brader et al., 2015) and as such, these new data provide an opportunity to 762 



better constrain GIA model outputs than previously possible.  As a result, the complexity of uplift in 763 

NW Iceland can also be tested to further explore the implications of the Breiðavík-Látrar record on 764 

GIA models. 765 

6.4 Implications for thermohaline circulation 766 

It is clear that the rapid deglaciation evident from the RSL records generated from NW Iceland 767 

suggest significant freshwater input to a sensitive region of the North Atlantic which would 768 

influence oceanic circulation in the region.  Modelling studies have demonstrated the weakening of 769 

AMOC and cooling of the North Atlantic following freshwater input from non-Icelandic sources (Le 770 

Grande et al., 2006; Clarke et al., 2009), which has also been supported by proxy datasets 771 

(McManus et al., 2004; Thornalley et al., 2010).  However, the influence of meltwater from the LGM 772 

IIS is less well explored.  It is therefore important to better understand the LGM ice extent in 773 

Iceland and patterns of deglaciation, to provide constraints on models of the interactions between 774 

the IIS and surrounding ocean (Ingólfsson et al., 2010).   775 

The new RSL data provide constraint on glacio-isostatic uplift in NW Iceland and whilst there is 776 

evidence to support the central uplift scenario, there is also evidence for regional complexity in 777 

deglaciation (and therefore uplift).  The differences in rates of RSL change between study locations 778 

point towards a non-uniform pattern of deglaciation and thus suggest that freshwater input from 779 

different fjord systems may not have occurred at the same rate throughout NW Iceland.  This has 780 

important implications for the timing and location of freshwater input into the North Atlantic and the 781 

new RSL data will therefore provide important constraint on models of ice sheet-ocean interaction.     782 

7. Conclusions 783 

Isolation basin and coastal lowland evidence from NW Iceland demonstrates spatial variability in 784 

RSL changes recorded in the region.  These differences are shown through the elevation of the 785 

local marine limit in Hlöðuvík and Rekavík bak Látrum (NW), Reykjanes-Laugardalur (central) and 786 

Hrútafjörður-Heggstaðanes (SE), as well as the rates of subsequent RSL changes.  There is also 787 

evidence for RSL fall below present sea level during the early Holocene.  Currently, the minimum 788 

RSL position during this period is poorly constrained, but RSL likely fell no lower than 40 m below 789 

present in the early Holocene (Ingólfsson et al., 1995) but may have fallen about 85 m below 790 

present sea level in late Bølling and early Allerød times (Norðdahl and Ingólfsson, 2015).  It is clear 791 

from the RSL histories generated in Reykjanes-Laugardalur (central) and Hrútafjörður-792 

Heggstaðanes (SE) that RSL must have risen to a mid-Holocene highstand, which correlates well 793 

with geomorphological evidence from the region, as well as one previous isolation basin study 794 

(Lloyd et al., 2009). 795 



Evidence from the research transect has allowed the testing of the different uplift scenarios. The 796 

increased elevation of the marine limit with proximity to the proposed uplift (and therefore ice 797 

loading) centre in central Iceland provides support for the central uplift hypothesis.  This is further 798 

compounded by higher concurrent RSL throughout the Holocene in Hrútafjörður-Heggstaðanes 799 

(SE) compared to Reykjanes-Laugardalur (central) or Hlöðuvík and Rekavík bak Látrum (NW, see 800 

Fig. 3 and 6).   The high elevation of the local marine limit in Breiðavik-Látrar (SW) highlights the 801 

complexity of uplift and deglaciation patterns in NW Iceland.   802 

Future GIA modelling may help to further differentiate between the potential uplift scenarios 803 

through integration of the new RSL data on timing of deglaciation, marine limit age and elevation, 804 

and RSL changes.  In addition, the new data are important constraints on ice sheet-ocean 805 

interaction models.  In particular, the constraint of deglacial pattern and timing will assist in the 806 

modelling of freshwater input into sensitive areas of the North Atlantic. 807 
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Table 1: New SLIPs and limiting ages from Hlöðuvík and Rekavík bak Látrum, Reykjanes-Laugardalur, Hrútafjörður and Heggstaðanes, and 

Site 

Code 
Lab Code 

14
C age 

(1σ) BP 
cal. age 
(2σ) BP 

Uncorr. sill/ 

core elev. (m 

MHWST-sill) 

Corr. 

sill/core 
elv. (m a.s.l.) 

Core 
depth (cm) 

Reference 
wtr. level 

Indicative 
Meaning (m) 

Relative  
sea level (m) 

REK1 SUERC-54842 8275 ± 39 9130 – 9412 17.5 ± 0.15 18.63 ± 0.3 330 MHWST 1.1 ± 0.3 17.7 ± 0.6 

HD3 Saksunarvatn - 10175 – 10245 16.91 ± 0.15 18.01 ± 0.3 134 >HAT N/A Limiting 

BB1 SUERC-47973 MODERN N/A -0.5 ± 0.15 -0.5 ± 0.25 16 N/A N/A N/A 

SHV1 SUERC-47963 2123 ± 35 1996 – 2299 0.2 ± 0.15 1.25 ± 0.3 218 MHWST 1.05 ± 0.3 0.2 ± 0.6 

SHV1 SUERC-47964 2269 ± 35 2158 – 2349 0.2 ± 0.15 1.25 ± 0.3 228 MHWST-MTL 0.65 ± 0.55 0.6 ± 0.85 

VHF1 SUERC-47967 4886 ± 36 5584 - 5711 3.45 ± 0.15 4.5 ± 0.3 69 MHWST 1.05 ± 0.3 3.45 ± 0.6 

RK3 SUERC-47965 3602 ± 37 3829 - 4071 5.15 ± 0.15 6.2 ± 0.3 147 MHWST 1.05 ± 0.3 5.15 ± 0.6 

RK6 SUERC-47966 8299 ± 38 9139 - 9432 1.25 ± 0.15 2.3 ± 0.3 100 MHWST 1.05 ± 0.3 1.45 ± 0.6 

RK10 SUERC-47970 8894 ± 41 9798 - 10190 15.45 ± 0.15 16.5 ± 0.3 238 MHWST 1.05 ± 0.3 15.45 ± 0.6 

VAT1 SUERC-47971 8947 ± 39 9918 - 10216 21.15 ± 0.15 22.2 ± 0.3 204 MHWST 1.05 ± 0.3 21.15 ± 0.6 

VAT2 SUERC-47972 10188 ± 42 11712 - 12067 28.45 ± 0.15 29.6 ± 0.3 428 >HAT N/A Limiting 

GR1 SUERC-48877 9377 ± 47 10444 - 10724 27.45 ± 0.15 28.5 ± 0.3 212 MHWST 1.05 ± 0.3 27.55 ± 0.6 

KB1 SUERC-54844 2332 ± 37 2185 - 2465 2.75 ± 0.15 3.45 ± 0.3 65 MHWST 0.7 ± 0.25 2.75 ± 0.55 

KB2 SUERC-54845 338 ± 37 308 - 484  0.4 ± 0.15 1.09 ± 0.3 30 HAT 1.2 ± 0.25 -0.1 ± 0.55 

KB4 SUERC-54846 2024 ± 37 1890 - 2107 1.55 ± 0.15 2.24 ± 0.3 100 MHWST 0.7 ± 0.25 1.55 ± 0.55 

MY1 SUERC-54839 9831 ± 42 11191 - 11311 57.2 ± 0.15 57.9 ± 0.3 612 HAT 1.2 ± 0.25 56.7 ± 0.55 

SN1 SUERC-47986 9689 ± 40 10814 - 11216 50.3 ± 0.15 51.02 ± 0.3 610 MHWST 0.7 ± 0.25 50.3 ± 0.55 

SN2 SUERC-47987 9850 ± 41 11198 - 11327 45.8 ± 0.15 46.51 ± 0.3 610 MHWST 0.7 ± 0.25 45.8 ± 0.55 

AH2 SUERC-47974 9751 ± 41 11109 - 11242 67.5 ± 0.15 68.22 ± 0.3 632 HAT N/A Limiting 

AH1 SUERC-47985 9625 ± 40 10781 - 11174 69.9 ± 0.15 70.62 ± 0.3 613 >HAT N/A Limiting 

BR10 SUERC-54849 1465 ± 35 1301 - 1407 2.9 ± 0.15 4.4 ± 0.3 218 MHWST 1.5 ± 0.3 2.9 ± 0.6 



Breiðavík-Látrar, NW Iceland. 


