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Abstract 

To better understand fault zone architecture and fluid flow in mesoscale fault zones, 

we studied normal faults in chalks with displacements up to 20 m, at two representative 

localities in Flamborough Head (UK). At the first locality, chalk contains cm-thick, 

interlayered marl horizons, whereas at the second locality marl horizons were largely absent. 

Cm-scale displacement faults at both localities display ramp-flat geometries. Mesoscale fault 

patterns in the marl-free chalk, including a larger displacement fault (20 m) containing 

multiple fault strands, show widespread evidence of hydraulically-brecciated rocks, whereas 

clays smears along fault planes, and injected into open fractures, and a simpler fault zone 

architecture is observed where marl horizons are present. Hydraulic brecciation and veins 

observed in the marl-free chalk units suggest that mesoscale fault patterns acted as localized 

fault conduit allowing for widespread fluid flow. On the other hand, mesoscale fault patterns 

developed in highly fractured chalk, which contains interlayered marl horizons can act as 

localized barriers to fluid flow, due to the sealing effect of clays smears along fault planes 

and introduced into open fractures in the damage zone.  

To support our field observations, quantitative analyses carried out on the large faults 

suggest a simple fault zone in the chalk with marl units with fracture density/connectivity 
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decreasing towards the protolith. Where marls are absent, density is high throughout the fault 

zone, while connectivity is high only in domains nearest the fault core. 

We suggest that fluid flow in fractured chalk is especially influenced by the presence of 

marls. When present, it can smear onto fault planes, forming localised barriers. Fluid flow 

along relatively large displacement faults is additionally controlled by the complexity of the 

fault zone, especially the size/geometry of weakly and intensely connected damage zone 

domains. 

 

1. Introduction 

According to classical fault zone models (e.g. Chester et al. 1993, Caine et al. 1996) 

natural fault zones are thought to comprise three main domains: 1) a fault core with single or 

multiple strands of fine- to ultra-fine grained fault rocks (e.g. gouges, cataclasites), where 

most of the slip is localised; 2) a damage zone of fractured and brecciated rocks, where the 

intensity of the fracturing progressively decreases as one moves away from the fault core; and 

3) the protolith surrounding the fault core and the damage zone, made of intact host rock, 

where the effects of fault-related deformation are minor or absent. The geometry, thickness, 

type of fault rocks and development of fault/fracture patterns in the fault core and damage 

zone are strongly influenced by the lithology of the host rocks (e.g. Caine et al. 1996; Agosta 

et al. 2007, Antonellini & Aydin 1994, De Paola et al. 2008, Faulkner et al. 2003).  

Previous studies (e.g. Chester et al., 1993, Sagi et al., 2013,) show that fracture density 

and connectivity monotonically decreases in the damage zone of faults developed in a wide 

range of lithologies. However, it has been also suggested that fracture density and 

connectivity vary in a more complex fashion across the damage zone of carbonate-hosted 

fault zones (e.g. Billi et al., 2003). In particular, Micarelli et al. (2003, 2006a, 2006b) 

recognised distinct weakly deformed (WDDZ) and intensely deformed (IDDZ) damage zone 

domains, based on the observed variations of fracture density in fault zones hosted in low-

porosity carbonates. According to their observations, the IDDZ is located closer to the fault 
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core, and it is characterised by higher fracture density values than the WDDZ, which is 

located further away from the fault core, and the boundary between the two domains is sharp. 

The nature and distribution of fault rocks and fracture pattern domains in fault zones are 

lithology-dependent, and control the fault zones transport properties (Antonellini and Aydin, 

1994; Caine et al., 1996; Chester and Chester, 1998; Chester et al., 1993; Collettini et al., 

2009; De Paola et al., 2008; Faulkner et al., 2003; Lockner and Beeler, 1999; Seront et al., 

1998, McQuillan, 1973). Fault zone fluid transmissibility can vary significantly within the 

different fault zone domains (e.g. Caine et al., 1996), and is primarily controlled by the 

distribution of associated fault rocks, facture connectivity (Odling, 1992) and orientation 

distribution (Sleight, 2001) of fractures within the different fault zone domains (e.g. Billi et 

al., 2003).  

Specific sets of faults and associated fractures may strongly influence fluid migration in 

the upper crust (Caine et al., 1996; Sibson, 2000). Fluids may be preferentially transmitted 

along fault-parallel fracture corridors acting as conduits, as well as being retarded across 

faults acting as barriers (Evans et al., 1997). In this latter case, brittle cataclasis, which causes 

grain size reduction and slip localization in the fault core, can reduce the overall porosity and 

permeability (Antonellini et al., 1994; Byerlee, 1993).   

Chalk is a generally fine grained carbonate rock characterised by a range of porosities (5-

20%) and low permeability (< 4*10
-20

 m
2
), and it can act as an effective seal for 

hydrocarbons in the subsurface (Mallon et al., 2005). However, once fractured, chalk can 

develop significant amounts of structural porosity and may become highly permeable, up to 

10
-12

 m
2 

(e.g. Frykman, 2001; Scholle, 1977). The faults and associated fracture patterns 

developed within chalks are known to exhibit a great variability in fault attributes such as 

fracture density and connectivity (e.g. Agosta and Aydin, 2006; Aydin, 2000; Tondi, 2007). 

These variations have important applications for the hydrocarbon industry, as some of the 
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largest oil reservoirs in the North Sea (for example) occur in fractured chalk (e.g. the Ekofisk, 

Dan and Skjold Fields). Heavily fractured chalk is generally considered to be a good 

reservoir rock, based on structural porosity measurements showing values up to 30% (e.g. 

Odling, 1999, Egeberg and Saigal, 1991). Chalk reservoirs also have a strategic role, as they 

are potential target sites for sub-surface CO2 sequestration and storage (Wilson et al., 2007). 

Finally, chalk reservoirs in onshore regions adjacent to the North Sea, form potentially 

important strategic aquifers for water suppliers, for example in East Yorkshire (Price, 1987). 

In this paper, a case study of a reservoir field analogue from coastal exposures of faulted 

and fractured chalk at Flamborough Head, Yorkshire, is presented. The studied outcrops are 

representative of sub-surface chalk reservoirs in the nearby onshore and offshore regions in 

North Sea. The architecture and geometry of small (cm-scale offsets) and relatively large 

displacement faults (offsets up to a few tens of meters) are described, and the fracture, vein 

density and connectivity of the associated fracture/vein networks are characterized. Field and 

microstructural observations on fault patterns developed in different lithological host rocks, at 

a range of scales, are integrated with quantitative analyses of fracture/vein density and 

connectivity, collected across the studied fault zones using 1D transect and 2D image analysis 

methods. On the basis of this study, we propose a conceptual model describing the potential 

influence of lithology-controlled fault and fracture patterns on subsurface fluid flow in 

fractured chalk reservoirs. 

2. Geological setting and study areas 

Flamborough Head forms part of the Yorkshire coast in the UK (Fig. 1a), located north of 

Bridlington, at the eastern termination of the E-W trending, extensional Howardian-

Flamborough Fault Belt (Fig. 1b). This fault-belt forms the southern boundary of the partially 

inverted Mesozoic Cleveland Basin and the northern boundary of the Market Weighton Block 

(Hawkins and Aldrick, 1994; Kirby and Swallow, 1987). The Howardian-Flamborough Fault 
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Belt was initially formed as a set of normal faults during the Late Jurassic–Early Cretaceous, 

and was later reactivated as a network of reverse faults/thrusts during the Late Cretaceous and 

Early Cenozoic (Kirby and Swallow, 1987).  

The southern termination of the approximately coast-parallel Peak Trough Fault System is 

also located close to Flamborough Head (Fig. 1b). The Peak Trough is a N–S-trending, 

extensional, Jurassic fault system. Similarly to the Howardian-Flamborough Fault Belt, the 

Peak Trough Fault System was also reactivated during the Cenozoic during the inversion of 

the Cleveland Basin (Milsom and Rawson, 1989).  

Thus the fault patterns in the Flamborough Head area result from of a series of 

deformation events, including both N-S oriented extension (Late Jurassic-Early Cretaceous) 

and E-W oriented (Cenozoic) shortening. At Flamborough Head, fault patterns are complex 

due to its location close to the intersection of the Howardian-Flamborough Belt and the Peak 

Trough fault systems.  

The well-exposed cliff sections at Flamborough Head make it particularly suitable for 

studying faults and associated fracture systems in chalk. First studied geologically by 

Lamplugh (1895), the high (>20 m) cliffs and foreshore are made up entirely of well-

stratified Upper Cretaceous chalk. These fine-grained, low porosity, homogenous beds are 

between 2 mm and 1.5 m thick (Childs et al., 1996) and are locally interlayered with 1-

80 mm thick, clay-rich, marly horizons (Lamplugh, 1895).  

Outcrop-scale, field-based structural observations and microscale diagenetic studies 

suggest that, after burial to a depth of about 0.8-1.5 km during the Early Cenozoic (Hillis, 

1995; Stewart and Bailey, 1996), the chalk experienced several phases of deformation, 

producing a wide range of deformation features (e.g. Childs et al., 1996; Starmer, 1995). 

Based on preferential cross-cutting relationships and fault orientations, Peacock & Sanderson 

(1994) suggested that the small (cm-scale) displacement normal faults, which are  exposed at 
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Flamborough Head developed in an extensional paleostress field, with ơ1 oriented sub-

vertical, and the far-field ơ3 interpreted to have been approximately N-S oriented with a 

magnitude close to the E-W oriented ơ2. As a result, the stress release on the large normal 

faults caused switching between the approximately equal horizontal paleostresses in the areas 

between the large faults, resulting in the development of complex, mutually orthogonal 

mesoscale fault patterns, accommodating approximately 1% extension in all horizontal 

directions (Peacock & Sanderson, 1994). Starmer (1995) also interpreted the small 

displacement normal faults at Flamborough Head as having developed in a stress field 

characterized by isotropic horizontal stresses during the Late Cretaceous–Palaeocene. 

Peacock and Sanderson (1994) observed that the characteristic ramp-flat geometries, 

which were developed in association with the small displacement normal faults, are 

lithologically controlled by the presence of marly horizons that are interlayered within the 

chalk beds in some areas. Additionally, Childs et al. (1996) showed that the vertical 

displacements of the small displacement normal faults, across adjacent chalk beds, can be 

controlled by the presence of marl-rich layers, producing a range of different fault 

geometries, including contractional and extensional jogs, overlaps and bends. 

The present study focuses on two locations, where detailed structural observations have 

been collected and integrated with 1D and 2D quantitative datasets: Selwick Bay and Dykes 

End (Fig. 1c). These localities were selected based on the quality of the exposures that best 

represent the main faulting styles and relationships in the region. At Dykes End, the cliffs can 

be studied over a length of several kilometres, while at Selwick Bay, the cliffs and foreshore 

sections are exposed for several hundred meters and are extensively incised, providing good 

3D exposures of the preserved structures. 

At Selwick Bay, which exposes rocks stratigraphically lower in the sequences compared to 

Dykes End, two large displacement (up to 20 m combined displacement, Lamplough, 1895), 
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ENE-WSW trending normal fault zones can be observed in the vertical cliff section and 

traced in plan view along the wave-cut platform. The two fault segments lie 4 m apart, 

trending sub-parallel to each other. At Dykes End, a NW-SE trending larger displacement 

normal fault zone with approximately 1 m offset was observed. At both locations, we studied 

the widespread brittle deformation manifest by many small displacement (up to a few cm) 

normal faults and associated fracture and vein patterns. 

3. Structural Observations 

3.1. The protolith 

The Upper Cretaceous chalk at Flamborough Head is well-bedded with an average bed 

thickness of approximately 25 cm. At Dykes End, the chalk beds are in places interlayered 

with clay-rich, marl horizons that have a thickness ranging from a few mm up to ~5 cm, and 

their combined thickness makes up approximately 5% of the total outcrop volume (Fig. 2a). 

By contrast, at Selwick Bay, interlayered marl horizons are rare (< 1% by volume) and, when 

present, have a maximum thickness of 2 mm (Fig. 2b). Bedding-parallel stylolites are 

common features at Selwick Bay, but they are rare at Dykes End (Fig. 2a-b). Closer to the 

larger displacement faults, a few sub-vertical to inclined stylolites can also be found at 

Selwick Bay. Clay-rich, mm-thick films of residual material are commonly observed on 

stylolitic surfaces (Fig. 2b).  

Optical microscope observations of thin sections cut from the protolith show that the chalk 

matrix is very fine grained (Fig. 2c); the individual grains cannot be resolved even under 50x 

magnification. Brighter, circular or ellipsoidal zones, with sizes ranging from 10 to 100 µm, 

have been observed (Fig. 2c) and appear to be randomly dispersed in the matrix, although 

they occasionally show a preferential alignment. These brighter spots may represent 

recrystallized regions of chalk. Scanning electron microscope (SEM) images of thin sections 

show that the matrix is very homogenous, comprising grains with an average size of 50 
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microns in diameter (Fig. 2d). The individual grains do not appear to contain any 

intragranular fractures. 

3.2. Small displacement normal faults  

Selwick Bay 

Small normal fault displacements range from 1 mm to 20 cm, and their orientation is 

scattered (Fig. 3a) with one major set of NW-SE striking fractures dipping at an angle greater 

than 70° (Fig. 3a). Kinematic indicators on the fault planes are rarely observed, and the few 

slickenlines observed show dip-slip to slightly oblique slip kinematics (Fig. 3a). At Selwick 

Bay, small displacement faults are often organized into conjugate sets, where individual 

segments mutually crosscut (Fig. 3b-c). The faults are often characterized by ramp-flat 

geometries (Fig. 3c-d) resulting in the development of dilational and compressional jogs, 

related to the ramp and flat sections, respectively. 

Flat sections of the small displacement normal faults are often located on bedding planes. 

These bedding surfaces are also reactivated as stylolitic surfaces due to pressure solution 

(Fig. 3c-d). Dilational jog structures along the faults are almost always (>90%) filled with 

crystalline calcite (Fig. 3d). The widths of the jogs are up to 30 cm, and the individual calcite 

crystals within the jogs can grow up to 5 cm in length. Angular chalk clasts are in places 

found within calcite veins, and are up to 2-3 cm long. Compressional jogs are usually 

characterized by pressure solution features (Fig 3d), with thin films of residual, clay-rich 

material present on the stylolite surfaces.  

The small displacement normal faults can also be observed in plan view, on the wave-cut 

platform in front of the cliffs. They are made of a braided, up to 0.5 m wide zones of veining, 

terminating by a series of en-echelon, calcite filled fractures (Fig. 3e). These geometries are 

very similar to those seen in the “zebra rocks” described by Holland and Urai (2010) in low 

porosity limestones in Oman. Most individual veins have an average thickness of 1-2 mm, 
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but the thickest can (locally) reach widths of up to 30 cm, and show clear evidence for 

hydraulic brecciation processes, with white angular wall-rock clasts dispersed in a crystalline 

calcite matrix (Fig. 3f). These textures are thought to form due to the hydraulic brecciation of 

the host rock, followed by a rapid drop in fluid pressure, which causes instantaneous calcite 

precipitation (Sibson, 2000). In most of the thin veins, the individual calcite crystals cannot 

be seen with the naked eye, but in the thickest veins they can grow up to 6 cm in length. The 

orientations of the crystals within the veins cannot be clearly observed in the field, due to 

weathering, to discriminate whether the veins formed as hybrid shear/extensional or pure 

tensile features.  

Dykes End 

The orientation of small displacement normal faults at Dykes End is scattered (Fig. 4a), 

with one major fault set striking NW-SE. The displacements range from 1 mm to 20 cm. 

Many of the fractures show smearing of marls layers onto the fault plane (Fig. 4b-c, see text 

below), and lack kinematic indicators. The few faults with observable slickenlines suggest 

dip-slip to slightly oblique slip, normal kinematics (Fig. 4a). 

Most of the small displacement normal faults are characterised by ramp-flat geometries 

(Fig. 4b). The ramp sections are mostly located in the chalk beds, while the flat sections 

follow the interlayered marl horizons (Fig. 4b) that represent mechanically weak layers. 

Dilational jogs, developed along the ramp sections, are either open features, or (partially) 

filled with clay-rich materials, due to injection and smearing of material from the interlayered 

marl horizons (Fig. 4c). Compressional jogs, related to the flat sections of the faults, are 

characterized by intense, local fracturing of the chalk in the hanging wall, with the fractures 

generally organized in a radial pattern (Fig. 4d-e). There were no veins or other deformation 

features found at Dykes End that would suggest fluid assisted faulting and fracturing 

processes. 
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3.3. Large displacement normal faults 

Selwick Bay 

Two large displacement normal faults have been observed at Selwick Bay, both striking 

ENE-WSW, and dipping steeply (>70°) to the NNW (Fig. 5). The fault zones together form a 

promontory on the cliffs (Fig. 5a). The faults are located about 4 meters apart, diverging from 

each other slightly across the foreshore, towards the NE. The north facing fault has a well-

defined fault core (hereafter referred to as the FC) characterized by a slip surface, located 

within a narrow (up to 10 cm) domain of fault gouge (Fig. 5a-b), whilst the south facing fault, 

instead of a fault core, is characterized by an intensely brecciated zone in its centre (hereafter 

referred as the IBZ), without a well-defined slip surface (Fig. 5a, c). The two faults are 

surrounded by damage zones that are 4-5 m wide in the footwall, but less than 1 m wide in 

the hanging wall. The damage zones are characterized by a higher density of calcite veins 

compared to the surrounding wall rocks.  

In the hanging wall of the FC, the beds are almost vertical, possibly due to the along the 

fault (Fig. 5a-b). Calcite veins are less common in this region compared to the nearby cliff 

sections. The sub-vertical beds in the hanging wall are in direct contact with the FC which 

comprises two distinct domains: a) a sharp, narrow (10-15 cm) slip zone made of fault gouge 

with dispersed, small (cm-scale) clasts of the original host rock, bounded by a straight slip 

surface with slickenlines indicating dip-slip kinematics (Fig. 5b); b) an approximately 0.5-1 

m wide zone of highly brecciated chalk, which exhibits a transitional boundary with the 

damage zone that separates the FC and IBZ. The IBZ is more than 1 m thick, and lacks a 

well-defined slip surface (Fig. 5c). The intensity of veining and calcite precipitation in the 

IBZ is higher than in the surrounding damage zone.  

The damage zone between the FC and IBZ is characterized by tensile veining in the chalk, 

organized in a pervasive braided veining system. Widespread evidence for hydraulic 
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brecciation is shown by 2-3 cm large chalk angular clasts embedded within a calcite cement 

(Fig. 5c). Open fractures are rare, forming less than 5% of all fractures. The geometry and 

calcite fill within the veins are similar to those observed along the small displacement faults 

at Selwick Bay (Fig. 3c-d, Fig. 5d). Thicker veins have coarse grained crystals that can grow 

up to 5 cm, and are sometimes characterized by either a well-defined median line in the 

centre, or by the development of vuggy textures and cavities. Most of these large veins and 

vuggy fills locally crosscut the typically braided, smaller veins, perhaps suggesting a later 

origin when the fault was at shallow depths within the vadose zone. The damage zone in the 

footwall of the IBZ is also characterized by intense veining and fracturing, which gradually 

decreases when moving towards the protolith. 

Thin sections have been obtained from rock samples collected along a fault-orthogonal 

transect from the different fault zone domains (Fig. 5f and 6a) to study the main 

microstructural features of the vein system (Fig. 6). Sample S3, from the brecciated part of 

the FC close to the slip surface, contains several interconnected anastomosing veins with 

thicknesses ranging from 0.5 mm to 7 mm (Fig. 6b-c). Sample S4, collected from the IBZ, 

contains fewer, thinner veins than S3 (Fig. 6a, d-e). The average width of the veins here is 

around 1 mm, and the average crystal size of the calcite cement is around 0.5 mm. In this 

sample, two major vein zones are seen to mutually cross-cut each other (Fig. 6d-e). Finally, 

sample S6 collected 4 m away from the fault core, in the hanging wall, shows only a few 

veins oriented sub-parallel to each other which do not intersect (Fig. 6a, f-g). In this case the 

connectivity is low compared to both previous samples described. 

Overall, the samples from the FC (sample S3) and the IBZ (sample S4) contain veins that 

branch out with an anastomosing, braided geometry, forming fan shapes, which are similar to 

the veins observed associated with the small displacement normal faults in other parts of 
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Selwick Bay (e.g. Fig. 3c-f), and to the zebra rocks described by Holland and Urai (2009) in 

limestones, in Oman. 

Dykes End 

At Dykes End, a thoroughgoing fault with about 1 m displacement was observed (Fig. 7). 

The fault has an orientation of 169/50 NE, does not display a ramp-flat geometry, and is 

characterized by a well-developed fault core, where most of the displacement was 

accommodated (Fig. 7a). The fault core is continuous, and varies from 5 to 20 cm in 

thickness (Fig. 7b-c). It is mostly made of a clay-rich gouge, which developed from the 

smearing of the original marl horizons along the fault plane, and it contains cm-scale clasts of 

the original host rock (Fig. 7b-c). A localized slip surface displays well-developed dip-slip 

slickenlines (Fig. 7c). 

Adjacent to the fault gouge, both in the hanging wall and the footwall, a 2-3 m wide zone 

of damage occurs, characterized by intense fracturing (Fig. 7a-b). Most of the fractures in the 

damage zone are open and a large proportion are sub-vertical (Fig. 7a-b). Some, particularly 

those closer to the fault core and/or to the interlayered marl horizons, are partially filled with 

clay, which appears to have been introduced into the fracture planes both by smearing and 

gravitational infilling. There was no field evidence found for veining or other fluid-assisted 

fracturing processes within the fault core and damage zone. 

Microstructural observations from the different fault zone domains show that the fault 

gouge from within the fault core contains chalk clasts up to 4 mm in diameter (Fig. 8), 

dispersed in a very fine-grained matrix made of clay minerals and fine-grained chalk (sample 

F2, Fig. 8b-c; for sample location see Fig. 7d and 8a). The chalk clasts are slightly elongate, 

with rounded edges and are homogenously distributed in the matrix showing no preferred 

orientation (Fig. 8b-c). Thin sections cut from samples taken from the heavily fractured 

damage zone, 10 cm away from the core (sample D1 in Fig. 8a), show the presence of open 
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fractures (Fig. 8d-e). Some of these fractures formed due to the reactivation of stylolitic 

planes, which can be observed from the 2-3 mm long stylolite teeth (Fig. 8d-e). Optical 

microscope images from samples collected 20 cm away from the slip zone (sample D9 in 

Fig. 8a) show lower fracture densities (Fig. 8f-g). 

4. Quantitative analysis of fracture density and connectivity in the fault zones of large 

displacement faults 

Quantitative fault attribute data were collected across the large displacement normal 

faults at Selwick Bay and Dykes End along 1D line transects oriented at a high angle to the 

main fault trend, and from high resolution (6 Megapixel) outcrop scale and microscale photos 

by 2D image analysis. 

4.1. 1D structural transect methods 

Quantitative data were collected along sub-parallel transects, oriented at a high angle to 

the strike of the faults, located near to the cliffs and on the adjacent wave-cut platform (N1-

N3 at Selwick Bay and N4-N5 at Dykes End, Fig. 5f, 7d). The transects ranged in length 

between 10 and 20 m, depending on the thickness of the damage zones. For each structural 

feature (e.g. fractures and veins) the distance along the transect, the strike, dip, dip direction, 

width and nature of the filling material were recorded. Where observed, the fault offset and 

the rakes were also recorded.  

The N1 transect along the cliff face at Selwick Bay was irregular, with some sections 

oblique to the fault strike. In this case the fracture density data were corrected to account for 

the obliquity between the transect trend and the fault strike. The original transect was divided 

into three sections, each characterised by a specific acute angle oriented with respect to the 

fault strike (Fig. 5f). Fracture and vein density in 1D were defined as the number of features 

(n) per meter (n/m), and their values along each transect have been plotted in fracture density 

vs. distance along the transect graphs. 
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4.2. 2D image analysis methods 

2D quantitative image analyses were performed on: a) high resolution digital photos, taken 

from the exposures of the large displacement normal faults with a constant camera-outcrop 

distance of 5 m, oriented parallel to the outcrop sections (Fig. 5f, 7d), and b) from thin 

sections obtained from samples collected from different fault zone domains along the N1 and 

N5 transects at Selwick Bay and Dykes End, respectively (Fig. 5f, 7d). 

Mesoscale fractures, veins and bedding surfaces were digitized from outcrop photos (e.g. 

Figs. 11b and 13b.). Using a 5 m outcrop-camera distance and a 6 Megapixel camera the 

narrowest features that could be resolved were approximately 5 mm wide. For both outcrops 

each photo was divided into 3 different panels (“P”), each panel representing an 

approximately 1 m wide cliff section (Fig. 5f, 7d). The fracture and vein density was 

measured using the total length of fractures/veins within the sampling area (m/m
2
). 

Connectivity was calculated using two different methods: a) intersection point density (IPD) 

as described by Odling (1992, 1997), expressed as n/m
2
 (the number of intersection points 

within a unit area) and b) the fractional connected area (FCA) as described by Ghosh and 

Mitra (2009), expressed as a percentage (the summed area of all the clusters of 

interconnected fractures, divided by the total sample area). Our results show that the 

correlation between the two methods is high (R
2
=0.90) and using an equation of 

IPD=0.95FCA-0.34 they can be used interchangeably for this specific dataset. 

In addition to mesoscale structures, microfractures, stylolites and veins were digitised 

from accurate greyscale images obtained from digital scans of thin sections. These images 

were used to calculate 2D microscale fracture and vein density and connectivity using the 

same methods as described above. 

4.3.1D transect results 

Selwick Bay 
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The fractures associated with the large displacement normal faults at Selwick Bay are 

almost all calcite filled, i.e. veins (>90%). Vein density was calculated along three transects 

orthogonal to the fault zones (Fig. 9a, for transect locations see also Fig. 5f). Veins in the 

damage zone have a dominant trend, oriented parallel to the large faults, and they dip 

between 50° and sub-vertical (Fig. 9b). The few shear planes observed display slickenlines 

with dip-slip to oblique slip kinematics (Fig. 9b). 

Based on measurements further away from the fault zone, the background density of veins 

was found to be approximately 2/m (Fig. 9c-e). The footwall damage zone of the IBZ is up to 

3 m wide, beyond which the intensity of damage gradually decreases towards the background 

vein values (Fig. 9c-e). The vein density and damage zone width in the hanging wall to the 

FC are variable along the profiles (Fig. 9c-e), with up to 4 m wide damage zone (Fig. 9e). In 

between the FC and the IBZ, vein density is higher closer to both fault zones and decreases to 

background values within 2-3 m (Fig. 9c-e). The highest vein density values are measured 

where the distance between the IBZ and FC is smaller than their damage zones widths (Fig. 

9c). The average vein width was also measured for each meter of the three transects, but these 

values do not show a clear systematic variation across the fault zones (Fig. 9f-h), although 

vein width seems to show a weak negative correlation with vein density (Fig. 9f-g).   

Dykes End 

The orientation of fractures in the damage zone of the large displacement normal fault at 

Dykes End is similar to that of the main fault itself (Fig. 10a). The fault and most of the 

fractures in the damage zone are oriented NW-SE, with dips greater than 60° (Fig. 10a). The 

few kinematic indicators, observable on the fracture planes within the damage zone of the 

large displacement normal fault suggest dip-slip to slightly oblique slip, normal kinematics 

(Fig. 10a). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

16 
 

Based on measurements further away from the fault zone, the background fracture density 

was estimated to be approximately 5/m. The damage zone is up to 3 m wide, with the 

intensity of damage decreasing away from the fault core. It displays an asymmetric 

distribution with higher fracture density values in the fault hanging wall (approximately 

20/m) compared to the footwall (approximately 10/m, Fig. 10b-c).  

Some fractures in the damage zone are filled with marls that have been introduced into the 

fracture planes from the interlayered horizons during/after fracture opening. The number of 

open fractures diminishes slightly closer to the fault core, where values, which are 

comparable to the background fracturing, are observed (except for the second meter on the 

N5 transect). Conversely, the density of clay-filled fractures is significantly higher in the near 

vicinity of the fault core, compared to the outer parts of the damage zone and the protolith 

(Fig. 10b-c).  

4.4.2D Image analysis 

Selwick Bay – outcrop scale analysis 

In the case of Selwick Bay, five photos were taken to cover the entire exposure of the 

large displacement normal fault (Fig. 11a; Fig. 5f). Each image was divided into 3 panels, 

each representing an approximately 1 m long section of cliff. Vein density and connectivity 

were calculated within each panel (see Fig. 11b). Within each panels the veins and the 

bedding surfaces were marked with black lines and the FCA as a dark grey area. 

The variation of vein density in 2D across the IBZ and FC at Selwick Bay is plotted on 

Fig. 11c. High vein density values define damage zones in the IBZ footwall (up to 4 wide), in 

the FC hanging wall (up to 3 m wide) and in between the FC and the IBZ (Fig. 11c). Vein 

density values in these domains are up to 4 times higher (4 m/m
2
) than in the wall rocks 

where background values are approximately 1 m/m
2
. In other sections of the damage zone 

(e.g. P1-3, P13-P15) density values are up 2 times higher (2 m/m
2
) than the background 
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values. Vein connectivity results suggest that the damage zone can be divided into weakly 

deformed damage zones (WDDZ) and intensively deformed damage zones (IDDZ) sub-

domains, following the convention introduced in Micarelli et al. (2005) for carbonate fault 

zones.  

Vein connectivity values, measured as both FCA and IPD, vary across the fault zone in a 

similar fashion to vein density (Fig. 11d-e). However, their relative increase, when compared 

to background values, can be as high as one order of a magnitude (Fig. 11d-e). Panels, 

located in the footwall, close to the IBZ (P4-6), and between the FC and IBZ (P8-9) are 

characterized by FCA and IPD connectivity values between 50% and 80% and 70 n/m
2 

and 

120 n/m
2
, respectively. Panels in the footwall (P1-3), and in the hanging wall of the FC (P13-

15) are typically characterized by low FCA and IPD vein connectivity values, less than 10% 

and 20 n/m
2
, respectively. Based on the variation of fracture connectivity, hereafter damage 

zone domains characterized by high (>40%) connectivity values will be referred to as 

intensively connected damage zones (ICDZ), and damage zone domains, characterized by 

low (<20%) connectivity values will be referred to as weakly connected damage zones 

(WCDZ). 

The crossplot between vein density and connectivity data, calculated as FCA, shows that 

the datapoints group into two distinct clusters, fitted by a linear trend, defining the distinct 

domains with different connectivity (Fig. 11f). The weakly connected damage zone is 

characterised by moderate to high vein density and relatively low vein connectivity values, 

while the intensely connected damage zone has high vein density and high vein connectivity 

values. The latter domains are located in the region between the FC and the IBZ (P8-9) and in 

the footwall damage zone adjacent to the IBZ (P4-6); while the weakly connected domains 

(P1-3, P13-15) are located further away from the FC and IBZ. 
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Vein connectivity, as depicted on the IPD versus vein density cross-plot, shows somewhat  

different characteristics, compared to the FCA equivalent (Fig. 11g). The data are best fitted 

by a power-law trend, and show a more continuous distribution where the transition from the 

weakly to intensely connected domains is gradual (Fig. 11g). 

Selwick Bay – microscale analysis 

Vein density values have also been obtained by digital quantitative analysis performed on 

thin sections, collected from the different fault zone domains (for sample location see 

Fig. 5f). Vein density and connectivity were also measured at this scale in the IBZ and FC. 

The results show that the background fracture density in the protolith is approximately 200 

m/m
2
 (Fig 12a, data from S1 and S6 samples in Fig. 5f). This value is significantly lower than 

the values gained from thin sections collected from the damage zones, in the IBZ and in the 

FC. Vein densities in the fault zone range between 700-1000 m/m
2
. The highest values are 

measured in the brecciated parts of the FC (S3 sample, 1000 m/m
2
), and decreases gradually 

in the intensely connected part of the damage zone (S2 sample, 900 m/m
2
), in the IBZ (S4 

sample, 800 m/m
2
) and, finally, the lowest values are measured in the weakly connected 

damage zone (S5 sample 700 m/m
2
). The differences between the values measured from 

samples within the fault zone are not significant when compared to the increase observed 

with respect to the background values calculated for the protolith. Vein connectivity in the 

protolith was found to be low (<10%), compared to the damage zones and fault cores, where 

vein connectivity values range between 20% and 60% (Fig. 12b). In the FC and IBZ vein 

connectivity values are 50% and 40%, respectively; while in the damage zone vary from 60% 

and 20%, respectively.  

The vein connectivity versus vein density cross-plots for the microscale results show a 

similar trend to that observed for the outcrop scale results (Fig. 12c). The protolith is 

characterized by low vein density, and low vein connectivity, the weakly connected damage 
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zone is characterized by high vein density, but relatively low vein connectivity and the IBZ, 

the brecciated parts of the FC and the intensely connected damage zone are all characterized 

by high vein density and vein connectivity values (Fig. 12c). A best fit, power-law trendline 

fitted to the data (y=0.1101x
5157

, where y is vein density and x is vein connectivity, measured 

as FCA) is characterized by a relatively high R
2
 value (0.77). The datapoints do not cluster as 

much as was the case for the outcrop scale results (Fig 11f). .  

Dykes End  

2D fracture density and connectivity data at the Dykes End large displacement normal 

fault was collected from 6 fault zone parallel panels, each approximately 1 m wide (Fig. 13a-

b). In the damage zone to the large displacement normal fault, fracture density increases 

towards the fault core (Fig. 13c). In the footwall, fracture density values close to the fault 

core (3.5 m/m
2
) are approximately 4 times higher than those measured outside the damage 

zone (< 1 m/m
2
). Fracture density values in the footwall, close to the fault core (P3) are twice 

as high as in the hanging wall (2 m/m
2
, P5).  

Fracture connectivity across the damage zone, measured as FCA, also shows significantly 

higher values in the footwall damage zone (up to 60%) than in the hanging wall damage zone 

(up to 20%, Fig. 13d). Finally, fracture connectivity values, measured as IPD (Fig. 13e) also 

show higher values in the footwall (up to 90 n/m
2
), than in the hanging wall (up to 40 n/m

2
). 

The latter monotonically increases towards the fault core in contrast to those measured by 

FCA (Fig. 13d), where this effect was not observed. 

Fracture density versus connectivity cross-plots, based on the data from Dykes End, show 

that fracture connectivity scales with fracture density (Fig. 13f-g), regardless of the method 

used to quantify connectivity. A linear best fit trendline is obtained when fracture 

connectivity is calculated by FCA (Fig. 13f), as opposed to a power-law best-fit obtained 

when connectivity is calculated as IPD (Fig. 13g). 
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5. Discussion 

5.1.Lithological control on fault patterns and implications for fluid flow in fractured 

reservoirs 

Based on the field observations and the qualitative data collected and analysed, a simple 

conceptual model of fluid flow is proposed, which can be applied to reservoirs hosted in 

fractured chalk similar to those seen at Flamborough Head.  

Small displacement normal faults 

The protolith at Dykes End is characterised by thick (cm-scale), interlayered marl 

horizons, whilst at Selwick Bay interlayered marl horizons are largely absent (Fig. 2a-b, 14a). 

Widespread, brittle deformation in both study areas is accommodated by patterns of small 

displacement normal faults with ramp-flat geometries (Fig. 3-4, 14b). At Dykes End, the 

interlayered, thick marl horizons are smeared out along the small displacement faults and are 

locally introduced into the associated fracture planes (Fig. 4b-c). Flat sections of the small 

displacement normal faults are associated with the presence of radial fractures and dilational 

step-overs. Small fractures further away from the small faults are open cracks with no filling 

material (Fig. 4d-e). No evidence for veining or other fluid assisted fracturing processes have 

been observed. Conversely, at Selwick Bay, most of the fractures associated with the small 

displacement normal faults are filled with crystalline calcite (Fig. 3c-f), suggesting fluid 

assisted fracturing processes (hydrofracturing) during deformation. 

Thick (cm-scale) marl horizons, like the ones present at Dykes End, may act as effective 

barriers for fluids. The horizontal marl horizons can act as barriers to vertical fluid flow, 

while the marls smeared along faults and in steeply dipping fracture voids potentially act as 

good barriers for fluids migrating in other directions. Since the orientation distribution of the 

small displacement normal faults at Dykes End is very scattered (Fig. 4a), they may behave 

as distributed barriers, limiting horizontal fluid migration in all directions (Fig. 14b). 
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Conversely, at Selwick Bay, where small displacement normal faults are also characterized 

by scattered orientation (Fig. 3a), the fractures likely behave as distributed conduits, 

favouring the migration of fluids in all directions due to the absence of the interlayered marl 

horizons in the host rock (Fig. 14b). 

Highly fractured chalk is usually considered to be a good reservoir rock, but our 

observations suggest that lithology plays a key role in controlling fluid flow, as the presence 

of thin marl layers can result in a highly compartmentalized, poor reservoir. Conversely marl-

poor regions potentially provide a good reservoir, with distributed small displacement normal 

faults providing high structural porosity and permeability, enhancing reservoir fluid 

transmissibility (Fig. 14b). 

Large displacement normal faults 

In both study areas, deformation is localized along larger displacement normal faults (Fig. 

5-8, Fig. 14c). At Dykes End, the large displacement normal fault comprises a narrow fault 

core with gouge, and an over 2 m wide damage zone surrounding the core, characterized by 

high fracture densities (Fig. 7). Many of the fractures in the damage zone are filled with marl 

introduced from the adjacent interlayered marl horizons (Fig. 7b-c). In the fault zone, no fluid 

assisted fracturing processes have been observed. Based on these observations, we suggest 

that large displacement normal faults of this kind are likely to behave as localised barriers to 

fluids (Fig. 14c).  

At Selwick Bay, the large displacement normal faults are characterized by a more complex 

internal architecture, with heavily fractured damage zones (Fig. 5). The widespread 

mineralization provides extensive evidence for fluid assisted fracturing processes. The 

narrow layer of fault gouge observed on the slip surface in the FC (Fig. 5b), may have acted 

as a local barrier for fluids migrating across the fault core and could explain the absence of 

veins observed in the hanging wall damage zone of this fault. We suggest that overall, 
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however, the large displacement normal faults at Selwick Bay behaved as conduits, favouring 

the migration of fluids that were channelized into the fault zone. The vein connectivity data 

(Fig. 11d-e) suggests that fluid flow was mainly localized in into the footwall damage zone, 

the IBZ, the damage zone between the FC and IBZ and the most brecciated parts of the FC 

close to the fault core-hanging wall damage zone boundary. 

5.2.The internal architecture of fault zones from 1D and 2D quantitative analysis: 

implications for fluid flow 

At Dykes End, both 1D and 2D outcrop-scale quantitative analyses reveal a rather simple 

distribution of fracturing across the fault zone, with a gradual decrease in fracture density and 

connectivity within the damage zone, when moving from the fault core (Fig. 10, 13). 

According to the 1D results, the damage zone is asymmetric, being wider in the footwall (> 2 

m) than in the hanging wall (< 1-2 m, Fig. 10). The relative increase in fracture density from 

the protolith to the damage zone near to the fault core is approximately 3-4 times. The 

increase is larger in the outer parts of the damage zone (up to 5/m) and smaller in the inner 

parts (1-2/m, Fig. 10b-c, 13c). Along the same sections, fracture connectivity only increases 

to double its background values (Fig. 13d-e). Similarly to the changes in fracture density, the 

increase is larger in the outer parts of the damage zone (up to 20%) and smaller in the inner 

parts (0-5%). 

At Selwick Bay, a more complex picture emerges, with identification range of across-fault 

domains and sub-domains, characterized by a heterogeneous distribution of fracturing (Figs. 

9, 11-12). 1D vein density data, collected along 3 sub-parallel structural transects, N1, N2 

and N3 (Fig. 5f), were used to create a map of the distribution of vein density around the 

fault. Based on corresponding vein density and connectivity values along N1 transect and 2D 

image analysis, values less than 2/m were classified as protolith, rising to values larger than 
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4/m in the most intensely connected parts of the damage zone close to the fault core. Vein 

density values are higher in the zones where the two fault zone damage zones overlap.  

Vein connectivity values rapidly increase, by over an order of magnitude, towards the 

inner parts of the damage zone. Following Micarelli et al. (2006b), the heterogeneous 

distribution of connectivity in the damage zone has been described in terms of intensely- and 

weakly connected damage zone sub-domains (Fig. 11f). 

A conceptual model for the fault zone at Dykes End shows that the width of the damage 

zone and the amount of damage is similar in the footwall and in the hanging wall (Fig. 15a), 

however the damage zone width is somewhat larger in the hanging wall side, whereas 

fracture density and connectivity values are somewhat larger on the footwall side. Both 

fracture density and connectivity increases towards the fault core in a non-linear fashion, 

although not enough data was collected to determine the exact nature of this increase (i.e., 

exponential, power law, or an alternative model).  

A conceptual model for the fault zone at Selwick Bay shows a much more complex fault 

zone architecture (Fig. 15b). Here, the development of the damage zone sub-domains may be 

explained by the partial overlap between the damage zones of two closely spaced, large 

displacement normal faults. In this situation, within the overlapping areas, the vein 

connectivity is high and this may also help to channelize fluids along the fault zone. 

Both conceptual fault zone models show similar levels of damage near to the fault cores 

(Fig. 15a-b), with similar density and connectivity values even though the background 

fracturing values were different. This may be due to the fractures reaching a threshold of full 

connectivity. 

Fracture/vein density and connectivity values can be normalised against the background 

values measured in the protolith in order to see the relative increase in damage in the different 

damage zone domains compared to the background fracturing (Fig 15c-d). Our results show 
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that in case of the Selwick Bay large displacement normal fault the weakly connected part of 

the damage zone is characterized by a 2-5 times increase in vein density, whereas the 

intensely connected part is characterized by an increase of 3.5-8 times depending on the 

method used (Fig. 15c). Vein connectivity values increase to approximately 2 times the 

protolith value in the weakly connected region rising to 7-14 times in the intensely connected 

part of the damage zone (Fig 15d). 

6. Conclusions 

Qualitative field observations and quantitative analyses of faults and fracture patterns in 

low porosity chalk at Flamborough Head show that: 

(a) The fault rocks and fracture fills of small displacement normal faults is controlled by 

the protolith, in particular, by the presence of interlayered marl horizons. When thick (cm-

scale) interlayered marl/clay-rich horizons are present in the protolith rocks, no fluid related 

mineralization features have been observed. Conversely, in protolith rocks lacking the 

interlayered marls/clay-rich horizons, abundant evidence of fluid assisted deformation 

(hydraulic fracturing) is widely preserved. These observations suggest that small 

displacement normal faults, developed in highly fractured chalk, which contains interlayered 

marl horizons can act as barriers to fluid flow, due to the sealing effect of clays smears along 

fault planes and introduced into open fractures in the damage zone. Conversely, small 

displacement normal faults developed in chalk lacking interlayered marl horizons can behave 

as conduits for fluid flow, especially within intensely fractured damage zones and within 

dilatant portions of the fault planes themselves (e.g. dilational jogs). 

(b) In a predictable way, fracture density increases gradually from the protolith towards 

the fault core in the fault zone of the large displacement normal fault at Selwick Bay. 

However, vein connectivity has been observed to be much higher in the most inner parts of 

the damage zone, close to the fault core. As a result, the damage zone can be divided into two 
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distinct domains, an intensively connected damage zone, close to the fault core, and a weakly 

connected damage zone further away from it, towards the protolith rocks.  

(c) High fracture density and connectivity domains are localized close to the fault cores, 

and where the damage zones of the large displacement normal faults overlap each other, 

These intensively connected damage zones are the domains where most fluids are 

channelized and can represent critical sites of interest during reservoir analyses. 
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Figure 1: Location map a) outline of the UK with the Flamborough Head area highlighted, 

b) Location map and geological setting of Flamborough Head, c) study areas (modified after 

Peacock and Sanderson, 1994)  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

32 
 

 
Figure 2: The protolith at a) Dykes End and b) at Selwick Bay: the thickness of the chalk 

beds varies from a few mm up to 50 cm. Some sub-horizontal, bedding parallel stylolites are 

present. Bedding surfaces at Dykes End (a) usually contain interlayered marl horizons with a 

thickness up to 2-3 cm. At Selwick Bay (b) no interlayered marl horizons are present but 

those bedding planes that are stylolitic surfaces as well contain residual clay material from 

pressure solution processes, c) Optical microscope photo showing the protolith with examples 

of recrystallized chalk, d) SEM photo of the fine grained, homogenous chalk 
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Figure 3: Small displacement normal faults at Selwick Bay a) stereonet of the small 

displacement normal faults at Selwick Bay with scattered orientation, and one minor NW-SE 

striking trend, and the slickenline data indicating dip-slip kinematics, b) outcrop view with 

the most prominent small displacement faults (northern cliff), c) flat-ramp-flat geometry, d) 

ramp section dilational jogs are healed with calcite veins, while flat section compressional 

jogs show evidence for pressure solution with some residual material, e) anastomosing 

veining zone on the wave cut platform indicating crack-seal mechanism, f) vein with 
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hydraulic brecciation, (notice he increase of damage from the bottom towards the top of the 

photo) 

 
Figure 4: Small displacement normal faults at Dykes End a) stereonet of the small 

displacement normal faults at Dykes End with scattered orientation, and one minor NW-SE 

striking trend, and the slickenline data indicating dip-slip kinematics, b) forming flat-ramp-

flat geometry while cutting through chalk and interlayered marl horizons, c) smearing of the 

interlayered marl horizons into the fracture plane, d, e) open fractures organised in a radial 

pattern around the flat section  
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Figure 5: Large displacement normal faults at Selwick Bay – outcrop scale a) the 

headland forming the fault zone with the FC and IBZ, b) The FC, with a slip surface and 

sharp contact with the dragged beds of the hanging wall, c) fault breccias in the IBZ, d) thick 

(> 5 cm) veins with coarse grain crystals cross-cutting braided, narrow veins, e) thick (10 cm) 

vein with clear median line, f) the 1D and 2D quantitative dataset (transects, photo panels, 

thin sections) with respect to the location of the large displacement normal faults  
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Figure 6: Large displacement normal faults at Selwick Bay – microscale a) original 

location of the thin sections on the outcrop, b, c) S3 sample from the brecciated part of the 

FC, showing very high vein density, d, e) S4 sample from the IBZ with intense veining, f, g) 

S6 sample from the hanging wall protolith with only minor veining  
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Figure 7: Large displacement normal faults at Dykes End – outcrop scale a) Fault zone 

with narrow (<20 cm) fault core and surrounding 3-4 m wide damage zone, b) sharp fault 

core-damage zone boundary, c) slickenlines on the slip surface showing dip slip kinematics, 

d) the 1D and 2D quantitative dataset (transects, photo panels, thin sections) with respect to 

the location of the large displacement normal faults  
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Figure 8: Large displacement normal faults at Dykes End – microscale a) original 

location of the thin sections on the outcrop: b, c) F2 sample from the fault core, containing 

fault gouge and some mm-scale clasts of the host rock, d, e) D1 sample, collected 10 cm 

away from the fault core, containing some fractures that are clay filled due to the injection on 

the fault plane, and some stylolites, f, g) D9 sample collected 20 cm away from the fault core, 

showing one clay filled fracture  
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Figure 9: 1D transects at Selwick Bay a) location of transects in respect to the FC and IBZ, 

b) orientation of veins in the damage zone, and the kinematic indicators on their surfaces, 

c, d, e) vein density across the fault zone along the three transects, N1-N3, respectively, 
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f, g, h) average vein widths across the fault zone along the three transects N1-N3, 

respectively  
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Figure 10: 1D transects at Dykes End a) orientation of the fractures in the damage zone, 

and the kinematic indicators on their surfaces, b) fracture density across the fault zone and 

variation in the density of open and clay filled fractures across the fault zone (N4 transect), c) 

fracture density across the fault zone and variation in the density of open and clay filled 

fractures across the fault zone (N5 transect); (Note that the fault cores in Fig. 11b-e are 

represented by a wider zone than its real width, therefore those sections of the graphs are 

strictly not to scale.)  
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Figure 11: 2D outcrop scale results – Selwick Bay a) Location of photos used for analysis 

across the headland, b) Example photo showing the panels (P4-P6) used for the analysis with 

the picked veins, FCA and vein intersection points, c) Changes in vein density along the 

Selwick Bay large displacement normal faults along all the panels, d) Changes in vein 

connectivity along the Selwick Bay large displacement normal faults along all the panels 

(calculated as FCA), e) Changes in vein connectivity along the Selwick Bay large 

displacement normal faults along all the panels (calculated as IPD), f) Vein density vs. 
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connectivity crossplot (calculated as FCA), g) Vein density vs. connectivity crossplot 

(calculated as IPD)  
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Figure 12: 2D microscale image analysis – Selwick Bay a) Vein density in the different 

fault zone domains at Selwick Bay, b) Vein connectivity in the different fault zone domains 

at Selwick Bay, c) Vein density vs. connectivity crossplot of the different fault zone domains 

at Selwick Bay  
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Figure 13: 2D outcrop scale results – Dykes End a) Outcrop photo with the region of 

interest and panels highlighted, b) Picked fractures with the FCA and intersection points 

highlighted, c) Fracture density across the fault zone, d) Fracture connectivity across the fault 

zone (FCA), e) Fracture connectivity across the fault zone (IPD), f) Fracture density vs. 

connectivity (FCA) crossplot, g) Fracture density vs. connectivity (IPD) crossplot  
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Figure 14: Conceptual model of fault development at Flamborough Head a) initially 

thick marl horizons deposited within the chalk at Dykes End, and thin to absent marl horizons 

at Selwick bay, b) distributed deformation developed the small displacement, flat-ramp-flat 

geometry faults; at Selwick Bay the fractures were healed by calcite as a result of fluid flow, 

while at Dykes End clay from the interlayered marl horizons were smeared out and injected 

into the fault planes forming barriers, c) localized deformation developed the large 

displacement normal faults; at Dykes End the development of the large faults resulted in an 

even stronger barrier for fluids while at Selwick Bay large faults channelized fluid flow  
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Figure 15: Conceptual model of fault zone architecture model a) at Dykes End, b) at 

Selwick Bay, c) normalised vein density values at Selwick Bay, d) normalised vein 

connectivity values at Selwick Bay 


