Integrable ($2 k$)-Dimensional Hitchin Equations

R. S. Ward*
Department of Mathematical Sciences, Durham University, Durham DH1 3LE.

April 26, 2016

Abstract

This letter describes a completely-integrable system of Yang-MillsHiggs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang-Mills equations in $4 k$ real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg-Witten equations. Some simple solutions in the $k=2$ case are described.

MSC: 81T13, 53C26.
Keywords: gauge theory, Higgs, integrable system.

1 Introduction

This note concerns completely-integrable systems of Yang-Mills-Higgs equations, and in particular those which may be viewed as higher-dimensional generalizations of the two-dimensional Hitchin equations (the self-duality equations on a Riemann surface). Let us begin by briefly setting out the notation.

[^0]We denote local coordinates on \mathbb{R}^{n} by x^{μ} with $\mu=1, \ldots, n$. For simplicity we take the gauge group to be $\mathrm{SU}(2)$ throughout. A gauge potential A_{μ} takes values in the Lie algebra $\mathfrak{s u} u(2)$, so each of A_{1}, \ldots, A_{n} is an anti-hermitian 2×2 matrix. The curvature (gauge field) is $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\left[A_{\mu}, A_{\nu}\right]$. A Higgs field Φ takes values in the Lie algebra, or, if complex, in the complexified Lie algebra $\mathfrak{s l}(2, \mathbb{C})$. Its covariant derivative is $D_{\mu}=\partial_{\mu} \Phi+\left[A_{\mu}, \Phi\right]$, and gauge transformations act by $\Phi \mapsto \Lambda^{-1} \Phi \Lambda$.

The prototype system is the simplest 2-dimensional reduction [14] of the 4-dimensional anti-self-dual Yang-Mills equations

$$
\begin{equation*}
F_{12}+F_{34}=0, \quad F_{13}+F_{42}=0, \quad F_{14}+F_{23}=0 . \tag{1}
\end{equation*}
$$

This reduction can be written as a conformally-invariant system on the complex plane \mathbb{C}, or more generally on a Riemann surface [12], and is effected as follows. If we take all the fields to depend only on the coordinates $\left(x^{1}, x^{2}\right)$, and we define a complex coordinate $z=x^{1}+i x^{2}$ and a complex Higgs field $\Phi=A_{3}+i A_{4}$, then (1) reduces to the Hitchin equations

$$
\begin{equation*}
D_{\bar{z}} \Phi=0, \quad F_{z \bar{z}}+\frac{1}{4}\left[\Phi, \Phi^{*}\right]=0 . \tag{2}
\end{equation*}
$$

Several higher-dimensional generalizations of (2) have been introduced and studied over the years. But most such generalizations lack a notable property of the original system (2), namely its complete integrability. The purpose of this note is to describe some features, and some solutions, of an integrable ($2 k$)-dimensional generalization of (2).

Let us focus specifically on generalizations to $2 k$ real (or k complex) dimensions which involve $2 k$ real (or k complex) Higgs fields. Such systems may naturally be viewed as dimensional reductions of pure-gauge systems in $4 k$ dimensions, satisfying linear relations on curvature such as (1). Of greatest interest are those that have the eigenvalue form [4]

$$
\begin{equation*}
F_{\mu \nu}=\frac{1}{2} T_{\mu \nu \alpha \beta} F_{\alpha \beta}, \tag{3}
\end{equation*}
$$

where $T_{\mu \nu \alpha \beta}$ is totally-skew, because the Bianchi identities then imply that the gauge field satisfies the second-order Yang-Mills equations.

Perhaps the best-known example is the 'octonionic' system of [4], which has $k=2$. This may be written

$$
\begin{align*}
& F_{12}+F_{34}+F_{56}+F_{78}=0, \\
& F_{13}+F_{42}+F_{57}+F_{86}=0, \\
& F_{14}+F_{23}+F_{76}+F_{85}=0, \\
& F_{15}+F_{62}+F_{73}+F_{48}=0, \\
& F_{16}+F_{25}+F_{38}+F_{47}=0, \\
& F_{17}+F_{82}+F_{35}+F_{64}=0, \\
& F_{18}+F_{27}+F_{63}+F_{54}=0 . \tag{4}
\end{align*}
$$

Whereas the prototype (1) is essentially based on the quaternions, this system (4) is based on the octonions: the components of $T_{\mu \nu \alpha \beta}$ are constructed from the Cayley numbers. It is invariant under the group $\operatorname{Spin}(7)$, and its 7 -dimensional reduction is invariant under G_{2}. We now reduce to four dimensions by requiring the fields to depend only on the variables $\left(x^{1}, x^{2}, x^{5}, x^{6}\right)$, defining two complex variables and two complex Higgs fields by

$$
\begin{equation*}
z^{1}=x^{1}+i x^{2}, \quad z^{2}=x^{5}+i x^{6}, \quad \Phi_{1}=A_{5}+i A_{6}, \quad \Phi_{2}=A_{7}+i A_{8} . \tag{5}
\end{equation*}
$$

Then the reduction of (4) is

$$
\begin{align*}
F_{1 \overline{1}}+F_{2 \overline{2}}+\frac{1}{4}\left[\Phi_{1}, \Phi_{1}^{*}\right]+\frac{1}{4}\left[\Phi_{2}, \Phi_{2}^{*}\right] & =0, \\
F_{12}-\frac{1}{4}\left[\Phi_{1}, \Phi_{2}\right] & =0, \\
D_{\overline{1}} \Phi_{1}-D_{2} \Phi_{2}^{*}=0, D_{\overline{2}} \Phi_{1}+D_{1} \Phi_{2}^{*} & =0 . \tag{6}
\end{align*}
$$

Here the subscript 1 in $F_{1 \overline{1}}$ and D_{1} refers to z^{1}, whereas $\overline{1}$ refers to the complex conjugate variable \bar{z}^{1}. The equations (6) are more familiar in the \mathbb{R}^{4} (real) form

$$
\begin{equation*}
\left(F-\frac{1}{2}[\Phi \wedge \Phi]\right)^{+}=0, \quad(D \Phi)^{-}=0, \quad D * \Phi=0 \tag{7}
\end{equation*}
$$

where $\Phi=\Phi_{\mu} d x^{\mu}$ is a Lie-algebra-valued 1-form formed from the four real Higgs fields. The 'plus' superscript denotes the self-dual part of a 2 -form, and the 'minus' superscript the anti-self-dual part. This system has appeared in several contexts over the years [6, 2, 13, 11, 8, 3], and has variously been referred to as the non-abelian Seiberg-Witten equations or the

Kapustin-Witten equations. Known solutions include several obtained using a generalized 't Hooft ansatz [7].

A different generalization of (2), defined on any Kähler manifold, is one attributed to Simpson [18]. In k complex dimensions, with complex coordinates $z^{a}, a=1, \ldots, k$, it takes the form

$$
\begin{gather*}
F_{1 \overline{1}}+\ldots+F_{k \bar{k}}+\frac{1}{4}\left[\Phi_{1}, \Phi_{1}^{*}\right]+\ldots+\frac{1}{4}\left[\Phi_{k}, \Phi_{k}^{*}\right]=0, \\
F_{a b}=0,\left[\Phi_{a}, \Phi_{b}\right]=0, D_{\bar{a}} \Phi_{b}=0 . \tag{8}
\end{gather*}
$$

Note that for $k=1$, this system reduces to the prototype (2). For $k=2$, it clearly it implies (6). The converse is not true in general, but it is if one imposes appropriate global conditions: in particular for smooth fields on a compact Kähler surface, it has recently been shown that (8) and (6) are equivalent [19].

2 An integrable version

Another approach to generalizing the basic 4-dimensional system (1) is to look for higher-dimensional versions which are completely-integrable [20]. For simplicity, we begin with the case $k=2$. An integrable 8-dimensional Yang-Mills system is

$$
\begin{align*}
F_{12}+F_{34} & =F_{56}+F_{78}=0, \\
F_{13}+F_{42} & =F_{57}+F_{86}=0, \\
F_{14}+F_{23} & =F_{76}+F_{85}=0, \\
F_{15} & =F_{26}=F_{37}=F_{48}, \\
F_{16} & =F_{52}=F_{83}=F_{47}, \\
F_{17} & =F_{28}=F_{53}=F_{64}, \\
F_{18} & =F_{72}=F_{36}=F_{54}, \tag{9}
\end{align*}
$$

which clearly implies the octonionic equations (4). The system (9) has the symmetry group $[\mathrm{Sp}(1) \times \mathrm{Sp}(2)] / \mathbb{Z}_{2} \subset \mathrm{SO}(8)$, which corresponds to a quaternionic Kähler structure [17]. The ADHM construction of instantons [1] generalizes to this case [17, 5, 15]. Consider now the reduction to four
dimensions, with the same complex variables (5) as before. Then (9) reduces to

$$
\begin{equation*}
D_{\bar{a}} \Phi_{b}=0, F_{a \bar{b}}+\frac{1}{4}\left[\Phi_{a}, \Phi_{b}^{*}\right]=0,\left[\Phi_{a}, \Phi_{b}\right]=0, F_{a b}=0, D_{[a} \Phi_{b]}=0 \tag{10}
\end{equation*}
$$

where $a, b \in\{1,2\}$. This system is even more overdetermined than (8). So we have a string of implications, where (10) implies (8) implies (6) implies the four-dimensional Yang-Mills-Higgs equations (the reduction of pure YangMills from eight dimensions).

Generalizing (10) to k complex dimensions is straightforward: we simply allow the indices a, b to range from 1 to k. The system (10) has a very large symmetry group, since it involves only the holomorphic structure of the underlying complex manifold. This becomes clearer if we define

$$
\Phi=\sum_{a} \Phi_{a} d z^{a}
$$

as a (1,0)-form with values in the complexified Lie algebra: then (10) can be written

$$
\begin{equation*}
D \Phi=0, F^{1,1}+\frac{1}{4}\left[\Phi \wedge \Phi^{*}\right]=0,[\Phi \wedge \Phi]=0, F^{2,0}=0 \tag{11}
\end{equation*}
$$

where D now denotes the covariant exterior derivative. By contrast, the less-overdetermined systems (8) and (6) depend on an underlying geometric structure, and have less symmetry.

The system (10) is completely-integrable by virtue of being the consistency condition for a 'Lax $(2 k)$-tet', namely

$$
\begin{equation*}
\partial_{a}=D_{a}+\frac{1}{2} \zeta \Phi_{a}, \quad \check{\partial}_{\bar{a}}=D_{\bar{a}}+\frac{1}{2} \zeta^{-1} \Phi_{a}^{*}, \tag{12}
\end{equation*}
$$

where ζ is a complex parameter. The integrability conditions

$$
\left[\partial_{a}, \partial_{b}\right]=0=\left[\partial_{a}, \partial_{\bar{b}}\right]
$$

for all ζ are equivalent to the equations (10).

3 Some solutions

The aim now is to describe some solutions of (10); these will therefore also be solutions of the other systems (8), and (7) in the $k=2$ case. The equations (10) or (11) are defined on any k-dimensional complex manifold, and
in general one may also allow singularities. For example, in the $k=1$ case on a compact Riemann surface of genus g, smooth solutions of (22) exist only when $g \geq 2$; on the 2 -sphere and the 2 -torus, solutions necessarily have singularities [12]. Note that the functions $G_{a b}=\operatorname{tr}\left(\Phi_{a} \Phi_{b}\right)$ are holomorphic, by virtue of the equations (11). In what follows, we look for solutions which are smooth on \mathbb{C}^{2}, and for which $G_{a b}$ is a polynomial in z^{a}. So they may also be viewed as being defined on the projective plane $\mathbb{C P}^{2}$, with a singularity on the line at infinity.

To illustrate, let us first consider the abelian case, with the fields being diagonal, namely $\Phi_{a}=\phi_{a} \sigma_{3}$, where $\sigma_{3}=\operatorname{diag}(1,-1)$. Then the equations (11) are easily solved. The gauge field vanishes, and therefore we may take the gauge potential to vanish as well. The remaining equations give $\Phi=d \theta$, where $\theta\left(z^{a}\right)$ is an arbitrary polynomial on \mathbb{C}^{2}. This is the general abelian solution.

For the non-abelian $\mathrm{SU}(2)$ case, we adopt a simplifying ansatz which is familiar from the lower-dimensional version [10]. Namely let us assume that the gauge potential is diagonal: in other words, $A_{\bar{a}}=h_{\bar{a}} \sigma_{3}$. (It should be emphasized that there are solutions for which this assumption does not hold.) Then the general local solution is determined by a holomorphic function $\theta\left(z^{a}\right)$, plus a solution $u=u(\theta, \theta)$ of the elliptic sinh-Gordon equation

$$
\begin{equation*}
\partial_{\theta} \partial_{\bar{\theta}} \log |u|=\frac{1}{4}\left(|u|^{2}-|u|^{-2}\right) . \tag{13}
\end{equation*}
$$

In terms of these, the Higgs fields are given by

$$
\Phi_{a}=\left(\partial_{a} \theta\right)\left(\begin{array}{cc}
0 & u \\
u^{-1} & 0
\end{array}\right),
$$

and the functions determining the gauge potential are

$$
h_{\bar{a}}=-\frac{1}{2} \partial_{\bar{a}} \log (u) .
$$

Note that one solution of (13) is $u=1$, but this is effectively the abelian case of the previous paragraph. In order to get genuine non-abelian fields, we choose $\theta\left(z^{a}\right)$ to have branch singularities, and then to get smooth fields one needs $u \neq 1$. The simplest such fields are embeddings of solutions of (2) on \mathbb{C} into \mathbb{C}^{2}, depending on z^{a} only via a fixed linear combination $z=\alpha z^{1}+\beta z^{2}$.

For example, $\theta(z)=z^{3 / 2}$ gives an embedding of the 'one-lump' solution on \mathbb{C} [21]. Some simple solutions that are not of this embedded type are as follows.

Let $P\left(z^{a}\right)$ be a polynomial of degree at least two, and take $\theta=\frac{2}{3} P^{3 / 2}$. This gives Higgs fields of the form

$$
\Phi_{a}=\left(\partial_{a} P\right)\left(\begin{array}{cc}
0 & P \mathrm{e}^{\psi / 2} \tag{14}\\
\mathrm{e}^{-\psi / 2} & 0
\end{array}\right)
$$

where $\psi(P, \bar{P})$ satisfies

$$
\begin{equation*}
\partial_{P} \partial_{\bar{P}} \psi=\frac{1}{2}\left(|P|^{2} \mathrm{e}^{\psi}-\mathrm{e}^{-\psi}\right) . \tag{15}
\end{equation*}
$$

We now need a smooth solution of (15) satisfying the boundary condition $\psi \sim-\log |P|$ as $|P| \rightarrow \infty$. There exists a unique such solution, which is essentially a Painlevé-III function [9, 21]. In fact, if we define $h(t)=$ $t^{-1 / 3} \mathrm{e}^{-\psi / 2}$, where $t=|P|^{3 / 2}$, then (15) becomes an equation of Painlevé-III type, namely

$$
\begin{equation*}
h^{\prime \prime}-\frac{\left(h^{\prime}\right)^{2}}{h}+\frac{h^{\prime}}{t}+\frac{4}{9 h}-\frac{4 h^{3}}{9}=0 . \tag{16}
\end{equation*}
$$

This has a unique solution with the required asymptotics.
The upshot is that any polynomial $P\left(z^{a}\right)$ gives a solution of (11) which is smooth on \mathbb{C}^{2} and has

$$
G_{a b}=\operatorname{tr}\left(\Phi_{a} \Phi_{b}\right)=2 P\left(\partial_{a} P\right)\left(\partial_{b} P\right) .
$$

It appears (see for example the figure below) that the gauge field $F_{\mu \nu}$ is concentrated around the zero-set of P. In the general k-complex-dimensional case, one expects the gauge field to be concentrated around a submanifold of complex codimension 1 , and for the field to be approximately abelian elsewhere.

The simplest case has P quadratic, so that $P\left(z^{a}\right)=0$ is a conic. Figure 1 is a plot of the norm $|F|$ of the gauge field, on the real slice $\left(z^{1}, z^{2}\right) \in \mathbb{R}^{2}$, for the solutions corresponding to the choices $P\left(z^{a}\right)=2\left(z^{1}\right)^{2}+\left(z^{2}\right)^{2}-4$ (on the left), and $P\left(z^{a}\right)=z^{1}\left(z^{1}+2 z^{2}\right)$ (on the right). Here $|F|$ is computed using the metric $d s^{2}=d z^{1} d \bar{z}^{1}+d z^{2} d \bar{z}^{2}$ on \mathbb{C}^{2}, which leads to the formula

$$
\begin{equation*}
|F|=\left|\mathrm{e}^{-\psi}-|P|^{2} \mathrm{e}^{\psi}\right|\left(\left|\partial_{1} P\right|^{2}+\left|\partial_{2} P\right|^{2}\right) . \tag{17}
\end{equation*}
$$

Figure 1: Contour plots of the gauge field $\left|F\left(z^{a}\right)\right|$ for $z^{a} \in \mathbb{R}^{2}$, with $P\left(z^{a}\right)=$ $2\left(z^{1}\right)^{2}+\left(z^{2}\right)^{2}-4$ and $P\left(z^{a}\right)=z^{1}\left(z^{1}+2 z^{2}\right)$ respectively.

The figures were generated by solving (16) numerically to get ψ, and then using this formula (17). Clearly $|F|$ is concentrated around the conic $P\left(z^{a}\right)=$ 0 . The right-hand case corresponds to a degenerate conic, and is the reduced version of what was called 'instantons at angles' [16] for solutions of (99).

4 Remarks

There are some compact complex manifolds X on which smooth solutions of (11) exist. As a trivial example, one could take X to be a product $S \times X^{\prime}$, where S is a Riemann surface of genus at least two, and X^{\prime} is any other manifold: then a solution of (2) on S is also a solution of (11) on $S \times X^{\prime}$. The moduli space of solutions on any compact manifold, if it is non-empty, has a natural L^{2} metric, which on general grounds one expects to be hyperkähler. Even more generally, one could allow singularities of a specified type, or equivalently for the ambient space to be non-compact. In this latter case, some of the parameters in the solution space may have L^{2} variation, giving rise to a moduli space with a well-defined metric. Analysing the possible moduli space geometries which arise in this way would be worthwhile, although a considerable task.

In this note, we have focused on a particular type of reduction of the integrable system (9), and of its (4k)-dimensional generalization. There are
several other dimensional reductions of the octonionic system (4) which are of interest: see, for example, reference [3]. In each case, the appropriate reduction of (9) gives an integrable sub-system, and hence a source of solutions.

Acknowledgments. This work was prompted by a communication from Sergey Cherkis. The author acknowledges support from the UK Particle Science and Technology Facilities Council, through the Consolidated Grant ST/L000407/1.

References

[1] Atiyah, M. F., Drinfeld, V. G., Hitchin, N. J. and Manin, Y. I.: Construction of instantons. Phys. Lett. A 65, 185-187 (1978).
[2] Baulieu, L., Kanno, H. and Singer, I. M.: Special quantum field theories in eight and other dimensions. Commun. Math. Phys. 194, 149-175 (1998).
[3] Cherkis, S. A.: Octonions, monopoles, and knots. Lett. MathṖhys. 105, 641-659 (2015).
[4] Corrigan, E., Devchand, C., Fairlie, D. B. and Nuyts, J.: First-order equations for gauge fields in spaces of dimension greater than four. Nuclear Physics B 214, 452-464 (1983).
[5] Corrigan, E., Goddard, P. and Kent, A.: Some comments on the ADHM construction in $4 k$ dimensions. Commun. Math. Phys. 100, 1-13 (1985).
[6] Donaldson, S. K. and Thomas, R. P.: Gauge theory in higher dimensions. In: Huggett, S. A. et al (eds), The Geometric Universe, pp. 31-47. Oxford University Press, Oxford (1998).
[7] Dunajski, M. and Hoegner, M.: $\mathrm{SU}(2)$ solutions to self-duality equations in eight dimensions. J. Geom. Phys. 62 1747-1759 (2012).
[8] Gagliardo, M. and Uhlenbeck, K.: Geometric aspects of the Kapustin Witten equations. J. Fixed Point Theory Appl. 11, 185-198 (2012).
[9] Gaiotto, D., Moore, G. W. and Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239-403 (2013).
[10] Harland, D. and Ward, R. S.: Dynamics of periodic monopoles. Physics Letters B 675, 262-266 (2009).
[11] Haydys, A.: Gauge theory, calibrated geometry and harmonic spinors. J. London Math. Soc. 86, 482-498 (2012).
[12] Hitchin, N. J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59-126 (1987).
[13] Kapustin, A. and Witten, E.: Electromagnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1-236 (2007).
[14] Lohe, M. A.: Two- and three-dimensional instantons. Phys. Lett. B 70, 325-328 (1977).
[15] Mamone Capria, M. and Salamon, S. M.: Yang-Mills fields on quaternionic spaces. Nonlinearity 1, 517-530 (1988).
[16] Papadopoulos, G. and Teschendorff, A.: Instantons at angles. Physics Letters B 419, 115-122 (1998).
[17] Salamon, S. M.: Quaternionic structures and twistor spaces. In: Willmore, T. J. and Hitchin, N. (eds), Global Riemannian Geometry, pp. 65-74. Ellis Horwood, Chichester (1984).
[18] Simpson, C. T.: Constructing variations of Hodge structure using YangMills theory and applications to uniformization. J. Amer. Math. Soc. 1, 867-918 (1988).
[19] Tanaka, Y.: On the singular sets of solutions to the KapustinWitten equations on compact Kähler surfaces. (2015, ArXiv e-prints). arXiv:1510.07739
[20] Ward, R. S.: Completely-solvable gauge-field equations in dimension greater than four. Nuclear Physics B 236, 381-396 (1984).
[21] Ward, R. S.: Geometry of solutions of Hitchin equations on \mathbb{R}^{2}. Nonlinearity 29, 756-765 (2016).

[^0]: *email address: richard.ward@durham.ac.uk

