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Abstract

This letter describes a completely-integrable system of Yang-Mills-

Higgs equations which generalizes the Hitchin equations on a Riemann

surface to arbitrary k-dimensional complex manifolds. The system

arises as a dimensional reduction of a set of integrable Yang-Mills

equations in 4k real dimensions. Our integrable system implies other

generalizations such as the Simpson equations and the non-abelian

Seiberg-Witten equations. Some simple solutions in the k = 2 case

are described.
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1 Introduction

This note concerns completely-integrable systems of Yang-Mills-Higgs equa-

tions, and in particular those which may be viewed as higher-dimensional gen-

eralizations of the two-dimensional Hitchin equations (the self-duality equa-

tions on a Riemann surface). Let us begin by briefly setting out the notation.
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We denote local coordinates on Rn by xµ with µ = 1, . . . , n. For simplicity

we take the gauge group to be SU(2) throughout. A gauge potential Aµ takes

values in the Lie algebra su(2), so each of A1, . . . , An is an anti-hermitian

2 × 2 matrix. The curvature (gauge field) is Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

A Higgs field Φ takes values in the Lie algebra, or, if complex, in the com-

plexified Lie algebra sl(2,C). Its covariant derivative is Dµ = ∂µΦ+ [Aµ,Φ],

and gauge transformations act by Φ 7→ Λ−1ΦΛ.

The prototype system is the simplest 2-dimensional reduction [14] of the

4-dimensional anti-self-dual Yang-Mills equations

F12 + F34 = 0, F13 + F42 = 0, F14 + F23 = 0. (1)

This reduction can be written as a conformally-invariant system on the com-

plex plane C, or more generally on a Riemann surface [12], and is effected as

follows. If we take all the fields to depend only on the coordinates (x1, x2),

and we define a complex coordinate z = x1 + ix2 and a complex Higgs field

Φ = A3 + iA4, then (1) reduces to the Hitchin equations

Dz̄Φ = 0, Fzz̄ +
1
4
[Φ,Φ∗] = 0. (2)

Several higher-dimensional generalizations of (2) have been introduced and

studied over the years. But most such generalizations lack a notable property

of the original system (2), namely its complete integrability. The purpose of

this note is to describe some features, and some solutions, of an integrable

(2k)-dimensional generalization of (2).

Let us focus specifically on generalizations to 2k real (or k complex)

dimensions which involve 2k real (or k complex) Higgs fields. Such systems

may naturally be viewed as dimensional reductions of pure-gauge systems

in 4k dimensions, satisfying linear relations on curvature such as (1). Of

greatest interest are those that have the eigenvalue form [4]

Fµν =
1
2
TµναβFαβ , (3)

where Tµναβ is totally-skew, because the Bianchi identities then imply that

the gauge field satisfies the second-order Yang-Mills equations.
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Perhaps the best-known example is the ‘octonionic’ system of [4], which

has k = 2. This may be written

F12 + F34 + F56 + F78 = 0,

F13 + F42 + F57 + F86 = 0,

F14 + F23 + F76 + F85 = 0,

F15 + F62 + F73 + F48 = 0,

F16 + F25 + F38 + F47 = 0,

F17 + F82 + F35 + F64 = 0,

F18 + F27 + F63 + F54 = 0. (4)

Whereas the prototype (1) is essentially based on the quaternions, this sys-

tem (4) is based on the octonions: the components of Tµναβ are constructed

from the Cayley numbers. It is invariant under the group Spin(7), and its

7-dimensional reduction is invariant under G2. We now reduce to four dimen-

sions by requiring the fields to depend only on the variables (x1, x2, x5, x6),

defining two complex variables and two complex Higgs fields by

z1 = x1 + ix2, z2 = x5 + ix6, Φ1 = A5 + iA6, Φ2 = A7 + iA8. (5)

Then the reduction of (4) is

F11̄ + F22̄ +
1
4
[Φ1,Φ

∗

1] +
1
4
[Φ2,Φ

∗

2] = 0,

F12 −
1
4
[Φ1,Φ2] = 0,

D1̄Φ1 −D2Φ
∗

2 = 0, D2̄Φ1 +D1Φ
∗

2 = 0. (6)

Here the subscript 1 in F11̄ and D1 refers to z1, whereas 1̄ refers to the

complex conjugate variable z̄1. The equations (6) are more familiar in the

R
4 (real) form

(

F − 1
2
[Φ ∧ Φ]

)+
= 0, (DΦ)− = 0, D ∗ Φ = 0, (7)

where Φ = Φµdx
µ is a Lie-algebra-valued 1-form formed from the four real

Higgs fields. The ‘plus’ superscript denotes the self-dual part of a 2-form,

and the ‘minus’ superscript the anti-self-dual part. This system has ap-

peared in several contexts over the years [6, 2, 13, 11, 8, 3], and has var-

iously been referred to as the non-abelian Seiberg-Witten equations or the
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Kapustin-Witten equations. Known solutions include several obtained using

a generalized ’t Hooft ansatz [7].

A different generalization of (2), defined on any Kähler manifold, is one

attributed to Simpson [18]. In k complex dimensions, with complex coordi-

nates za, a = 1, . . . , k, it takes the form

F11̄ + . . .+ Fkk̄ +
1
4
[Φ1,Φ

∗

1] + . . .+ 1
4
[Φk,Φ

∗

k] = 0,

Fab = 0, [Φa,Φb] = 0, DāΦb = 0. (8)

Note that for k = 1, this system reduces to the prototype (2). For k = 2,

it clearly it implies (6). The converse is not true in general, but it is if one

imposes appropriate global conditions: in particular for smooth fields on a

compact Kähler surface, it has recently been shown that (8) and (6) are

equivalent [19].

2 An integrable version

Another approach to generalizing the basic 4-dimensional system (1) is to

look for higher-dimensional versions which are completely-integrable [20].

For simplicity, we begin with the case k = 2. An integrable 8-dimensional

Yang-Mills system is

F12 + F34 = F56 + F78 = 0,

F13 + F42 = F57 + F86 = 0,

F14 + F23 = F76 + F85 = 0,

F15 = F26 = F37 = F48,

F16 = F52 = F83 = F47,

F17 = F28 = F53 = F64,

F18 = F72 = F36 = F54, (9)

which clearly implies the octonionic equations (4). The system (9) has

the symmetry group [Sp(1)× Sp(2)] /Z2 ⊂ SO(8), which corresponds to a

quaternionic Kähler structure [17]. The ADHM construction of instantons

[1] generalizes to this case [17, 5, 15]. Consider now the reduction to four
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dimensions, with the same complex variables (5) as before. Then (9) reduces

to

DāΦb = 0, Fab̄ +
1
4
[Φa,Φ

∗

b ] = 0, [Φa,Φb] = 0, Fab = 0, D[aΦb] = 0, (10)

where a, b ∈ {1, 2}. This system is even more overdetermined than (8). So we

have a string of implications, where (10) implies (8) implies (6) implies the

four-dimensional Yang-Mills-Higgs equations (the reduction of pure Yang-

Mills from eight dimensions).

Generalizing (10) to k complex dimensions is straightforward: we simply

allow the indices a, b to range from 1 to k. The system (10) has a very

large symmetry group, since it involves only the holomorphic structure of

the underlying complex manifold. This becomes clearer if we define

Φ =
∑

a

Φa dz
a

as a (1, 0)-form with values in the complexified Lie algebra: then (10) can be

written

DΦ = 0, F 1,1 + 1
4
[Φ ∧ Φ∗] = 0, [Φ ∧ Φ] = 0, F 2,0 = 0, (11)

where D now denotes the covariant exterior derivative. By contrast, the

less-overdetermined systems (8) and (6) depend on an underlying geometric

structure, and have less symmetry.

The system (10) is completely-integrable by virtue of being the consis-

tency condition for a ‘Lax (2k)-tet’, namely

ða = Da +
1
2
ζΦa, ðā = Dā +

1
2
ζ−1Φ∗

a, (12)

where ζ is a complex parameter. The integrability conditions

[ða, ðb] = 0 = [ða, ðb̄]

for all ζ are equivalent to the equations (10).

3 Some solutions

The aim now is to describe some solutions of (10); these will therefore also

be solutions of the other systems (8), and (7) in the k = 2 case. The equa-

tions (10) or (11) are defined on any k-dimensional complex manifold, and
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in general one may also allow singularities. For example, in the k = 1 case

on a compact Riemann surface of genus g, smooth solutions of (2) exist only

when g ≥ 2; on the 2-sphere and the 2-torus, solutions necessarily have sin-

gularities [12]. Note that the functions Gab = tr(ΦaΦb) are holomorphic, by

virtue of the equations (11). In what follows, we look for solutions which are

smooth on C2, and for which Gab is a polynomial in za. So they may also be

viewed as being defined on the projective plane CP
2, with a singularity on

the line at infinity.

To illustrate, let us first consider the abelian case, with the fields being

diagonal, namely Φa = φaσ3, where σ3 = diag(1, −1). Then the equations

(11) are easily solved. The gauge field vanishes, and therefore we may take

the gauge potential to vanish as well. The remaining equations give Φ = dθ,

where θ(za) is an arbitrary polynomial on C2. This is the general abelian

solution.

For the non-abelian SU(2) case, we adopt a simplifying ansatz which is

familiar from the lower-dimensional version [10]. Namely let us assume that

the gauge potential is diagonal: in other words, Aā = hāσ3. (It should be

emphasized that there are solutions for which this assumption does not hold.)

Then the general local solution is determined by a holomorphic function

θ(za), plus a solution u = u(θ, θ̄) of the elliptic sinh-Gordon equation

∂θ∂θ̄ log |u| =
1
4

(

|u|2 − |u|−2
)

. (13)

In terms of these, the Higgs fields are given by

Φa = (∂aθ)

(

0 u

u−1 0

)

,

and the functions determining the gauge potential are

hā = −1
2
∂ā log(u).

Note that one solution of (13) is u = 1, but this is effectively the abelian case

of the previous paragraph. In order to get genuine non-abelian fields, we

choose θ(za) to have branch singularities, and then to get smooth fields one

needs u 6= 1. The simplest such fields are embeddings of solutions of (2) on C

into C2, depending on za only via a fixed linear combination z = αz1 + βz2.
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For example, θ(z) = z3/2 gives an embedding of the ‘one-lump’ solution on C

[21]. Some simple solutions that are not of this embedded type are as follows.

Let P (za) be a polynomial of degree at least two, and take θ = 2
3
P 3/2.

This gives Higgs fields of the form

Φa = (∂aP )

(

0 P eψ/2

e−ψ/2 0

)

, (14)

where ψ(P, P̄ ) satisfies

∂P∂P̄ψ = 1
2

(

|P |2eψ − e−ψ
)

. (15)

We now need a smooth solution of (15) satisfying the boundary condition

ψ ∼ − log |P | as |P | → ∞. There exists a unique such solution, which

is essentially a Painlevé-III function [9, 21]. In fact, if we define h(t) =

t−1/3e−ψ/2, where t = |P |3/2, then (15) becomes an equation of Painlevé-III

type, namely

h′′ −
(h′)2

h
+
h′

t
+

4

9h
−

4h3

9
= 0. (16)

This has a unique solution with the required asymptotics.

The upshot is that any polynomial P (za) gives a solution of (11) which

is smooth on C2 and has

Gab = tr (ΦaΦb) = 2P (∂aP )(∂bP ).

It appears (see for example the figure below) that the gauge field Fµν is

concentrated around the zero-set of P . In the general k-complex-dimensional

case, one expects the gauge field to be concentrated around a submanifold

of complex codimension 1, and for the field to be approximately abelian

elsewhere.

The simplest case has P quadratic, so that P (za) = 0 is a conic. Figure 1

is a plot of the norm |F | of the gauge field, on the real slice (z1, z2) ∈ R2, for

the solutions corresponding to the choices P (za) = 2(z1)2+ (z2)2− 4 (on the

left), and P (za) = z1(z1 + 2z2) (on the right). Here |F | is computed using

the metric ds2 = dz1 dz̄1 + dz2 dz̄2 on C2, which leads to the formula

|F | =
∣

∣e−ψ − |P |2eψ
∣

∣

(

|∂1P |
2 + |∂2P |

2
)

. (17)
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Figure 1: Contour plots of the gauge field |F (za)| for za ∈ R2, with P (za) =

2(z1)2 + (z2)2 − 4 and P (za) = z1(z1 + 2z2) respectively.

The figures were generated by solving (16) numerically to get ψ, and then

using this formula (17). Clearly |F | is concentrated around the conic P (za) =

0. The right-hand case corresponds to a degenerate conic, and is the reduced

version of what was called ‘instantons at angles’ [16] for solutions of (9).

4 Remarks

There are some compact complex manifolds X on which smooth solutions of

(11) exist. As a trivial example, one could take X to be a product S ×X ′,

where S is a Riemann surface of genus at least two, and X ′ is any other

manifold: then a solution of (2) on S is also a solution of (11) on S × X ′.

The moduli space of solutions on any compact manifold, if it is non-empty,

has a natural L2 metric, which on general grounds one expects to be hy-

perkähler. Even more generally, one could allow singularities of a specified

type, or equivalently for the ambient space to be non-compact. In this latter

case, some of the parameters in the solution space may have L2 variation,

giving rise to a moduli space with a well-defined metric. Analysing the pos-

sible moduli space geometries which arise in this way would be worthwhile,

although a considerable task.

In this note, we have focused on a particular type of reduction of the

integrable system (9), and of its (4k)-dimensional generalization. There are
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several other dimensional reductions of the octonionic system (4) which are

of interest: see, for example, reference [3]. In each case, the appropriate re-

duction of (9) gives an integrable sub-system, and hence a source of solutions.
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