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Abstract This article introduces a new graphical tool to summarize data which pos-
sess a mixture structure. Computation of the required summary statistics makes use
of posterior probabilities of class membership which can be obtained from a fitted
mixture model. Real and simulated data are used to highlight the usefulness of this
tool for the visualization of mixture data in comparison to the traditional boxplot.
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1 Introduction

Visualization tools play an essential role for analysing, investigating, understanding,
and communicating data, and the development of novel graphical tools continues to be
a topic of interest in the statistical literature. For example, Wang and Bellhouse (2014)
have recently introduced a new graphical approach called the shift function plot to
evaluate the goodness-of-fit of a parametric regression model. A boxplot is one of the
most popular graphical techniques used. It was proposed as a unimodal data display
by Tukey (1977) who called it a “schematic plot” or “box-and-whisker plot” but it is
now customarily called boxplot. A boxplot, in its simplest form, aims at summarizing
a univariate data set by displaying five main statistical features which are the median,
first quartile, third quartile, minimum value and maximum value.

The boxplot has become one of the most frequently used graphical techniques for
analysing data because it gives information about the location, spread, skewness, and
longtailedness of a data set at a quick glance. The median in a boxplot serves as a
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measure of location. The dispersion of a data set could be assessed by observing the
length of a box or the distance between the ends of the whiskers. The skewness can
be observed by the deviation of the median line from the center of the box or by
the length of the upper whisker relative to the length of the lower one. In addition,
the distance between the ends of the whiskers compared to the length of the box
displays longtailedness (Benjamini 1988). Alternative specifications of the ends of
the whiskers are being used with a particular view to outlier detection. Specifically,
boundaries Q1 — 1.5/ QR and Q3 + 1.5/ QR can be computed where Q1, O3 and
I QR are the first quartile, third quartile and interquartile range, respectively. Then,
any observations smaller than Q1 —1.51 Q R or greater than Q3+ 1.51 O R are labelled
as “outliers” (for more details, see e.g. Frigge et al. 1989). Finally, whiskers are drawn
from the box to the furthest non outlying observations. Additionally, notches can be
added which approximate a 95 % confidence interval for the median (Krzywinski and
Altman 2014).

Further variants of the boxplot have been developed to analyse special kinds of
data. For example, Abuzaid et al. (2012) have proposed a boxplot for circular data
which is called a circular boxplot. Hubert and Vandervieren (2008) have presented
an adjustment of the boxplot to tackle the outliers in skewed data by modifying the
whiskers. Recently, Bruffaerts et al. (2014) have developed a “generalized” boxplot
which is more appropriate for skewed distributions and distributions with heavy tails.

It was already observed by McGill et al. (1978) that the traditional boxplot is
not able to adequately display data which is divided into certain groups or classes.
Therefore, they developed a version of the boxplot for grouped data which sets the
widths of each group—wise boxplot proportional to the square root of the group sizes.
However, this technique requires that the groups are defined a priori, and that the
group membership of each observation is known. In practice, one will often deal with
data sampled from heterogeneous subpopulations for which the group membership
is a latent variable, and, hence, unknown. To our knowledge, there does not exist
an appropriate plot which represents such mixture data properly. Consequently, we
have developed a new plot tailored to mixture data to which we refer as a k-boxplot,
where k is the number of mixture components. Compared to a boxplot, the k-boxplot
is able to display important additional information regarding the structure of the data
set. Both k-boxplots and boxplots have a similar construction: they contain boxes
and display extreme values. However, the k-boxplot visualizes the kK components of
mixture models by k different boxes, compared to a boxplot which has only one box.
Then, a boxplot is a special case of a k-boxplot with k = 1.

Figure 1 provides a schematic display of (what we will refer to as a ‘full’)
k-boxplot in the special case k = 3, which describes the main features of k-boxplots
in general. The k-boxplot displays k rectangles oriented with the axes of a coordi-
nate system in which one of the axes has the scale of a data set. The key features
which appear in a k-boxplot are the weighted median, the first weighted quartile and
the third weighted quartile in each box, which are found as the respective weighted
quantiles using the posterior probabilities of group membership as weights (as will be
explained in more detail later). Bottom and top of the boxes are drawn at the weighted
first and third quartiles of the data in each group respectively. Weighted medians are
displayed as horizontal lines drawn inside the boxes. Additional information is pro-

@ Springer



k-Boxplots for mixture data

— first component
--- second component
maximum value E— S T third component

Qq(w)

M(w)
Qi(w)

T

minimum value —_—>

posterior probability

Fig.1 Summary of information provided by a 3-boxplotinits ‘full’ form. Here, M (w) denotes the weighted
median, and Q j(w) the j-th weighted quartile, using the notation formally introduced in Sect. 2.2

vided through the widths of the boxes, which depend on the mixing proportions of the
mixture.

Just as for usual boxplots, data points falling out of the boxes can be displayed
in several ways. Here, any points fully outside the boxes are displayed individually
through horizontal lines and can so be used to identify outliers. The length of these lines
corresponds to posterior probabilities of group membership which will be explained in
more detail by real data examples later. Some variants of the k-boxplot which display
points outside the boxes in different ways will be implicitly introduced in Sect. 3.1.

By using k-boxplots for mixture data, the location, spread and skewness for each
component in a mixture will be displayed transparently to the viewers. Each of the
component—wise boxplots can be interpreted in the same way as traditional box-
plots with respect to these measures, allowing for a detailed appraisal of the data.
The required information in order to draw a k-boxplot can be estimated by different
methods, for example by the EM-algorithm. It is emphasized that we do not consider
k-boxplots to be an inferential tool. That is, k-boxplots will not make any automated
decision on the choice of the mixture distributions or the number of components but
they visualize the result of these inferential decisions made by the data analyst. Since
the data analyst will be able to identify the impact of their model choices at a glance,
k-boxplots will support them in making such choices in an informed manner.

The structure of the remainder of the paper is as follows. In Sect. 2 we describe the
computational elements of a k-boxplot, which are the posterior probabilities derived
from mixture models, as well as weighted quartiles. In Sect. 3, we discuss three real data
examples and present the results of a small simulation. Finally, we provide conclusions
in Sect. 4. Code to execute k-boxplots is provided in the statistical programming
language R (R Core Team 2015) in form of function kboxplot in package UEM.
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2 Computational elements of k-boxplots
2.1 Posterior probabilities

Mixture models play a vital role in the statistical analysis of data thanks to their flex-
ibility to model a wide variety of random phenomena. They have been successfully
employed for a wide range of applications in the biological, physical, and social sci-
ences, including astronomy, medicine, psychiatry, genetics, economics, engineering,
and marketing. In addition, mixture models have direct relevance for cluster and latent
class analyses, discriminant analysis, image analysis and survival analysis (McLachlan
and Peel 2004).

Assume a random variable Y with density f(y) is described as a finite mixture of
k probability density functions f;(y), j =1, ..., k, such that

k
FO) =D 7 fi(y) ()
j=1

with masses (or mixing proportions) 7y, ..., mx withO < 7; < 1 and Z];:I wp=1.
We refer to f;(-), which may depend on a parameter vector 6, as the j—th component
of the mixture of probability density functions. Just to clarify terms, when speaking
of ‘mixture data’ in this manuscript, we mean data y;, i = 1, ..., n for which it is
plausible to assume that they have been independently generated from, or at least can
be represented by, a model of type (1).

Interpreting the 7; as ‘prior’ probability of class membership, then posterior prob-
abilities of class membership are produced via Bayes theorem, that is, for the i—th
observation y;,i = 1, ..., n one has

i fi (i)

— S )
Sk e fi (i)

rij = P(observation i belongs to comp. j) =

These posterior probabilities, which we combine into a weight matrix R =
the co;nl_nongnt_—wise medians and quartiles, and furthermore they enable immediately
computation of the estimate
L1
A= ;m, 3)
1=

which will be used to determine the width of the j—th k-boxplot. Note also, by assigning
each data point y; to the component j which maximizes r;; for fixed i, posterior
probabilities can be used as a classification tool. This is known as the maximum a
posteriori (MAP) rule.

The estimates of 6; are not needed for the construction of the k-boxplot in itself.
However, computation of (2) involves the densities f; and hence 6. So, the §; need to
be computed along the way as well. Most commonly, mixture models will be estimated
through the EM algorithm. In this case, the values 6; will get updated in the M-step,
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and (2) corresponds exactly to the E-step, using the current estimates of r; and 6;.
That is, in practice, the r;; can be conveniently extracted from the output of the last
EM iteration.

The application of k-boxplots is not restricted to a certain choice of component
densities. In principle, k-boxplots can be used to visualize the results of fitting a
mixture of any (combination of) densities f;, provided that one is able to compute the
parameters 0; in the M-step. The choice of the f; is down to the data analyst. In the
absence of strong motives to use a different distribution, the normal distribution will
often be a convenient choice for the component densities. In this case,

fiy =

1 ( (y—uj)z)
P\ T
/Znajz 2‘71'

where p; are the component means and o; the component standard deviations. Max-
imizing the complete log-likelihood in the M-step then gives the estimates

A= it TijVi,

j - £
21T

i i — )*

D17

The EM-algorithm consists of iterating Eqgs. (2) and (4) until convergence (Dempster
et al. 1977). Initial values 9](.0), n}o), Jj=1,...,k, are required for the first E-step.

It is well known that different starting points can lead to different solutions, cor-
responding to different local maxima of the log-likelihood. See McLachlan and Peel
(2004) for a detailed discussion of this problem. Possible strategies for choosing start-
ing points include random initialization, quantile—based initialization, scaled Gaussian
Quadrature points, or short EM runs (Biernacki et al. 2003). The matter continues to
be the content of current discussion and research; with a recent contribution on the
topic provided by Baudry and Celeux (2015).

“

52
J

2.2 Weighted quartiles

Suppose y; < ... <y, indicate the ordered observations and w = {wy, ..., w,} are
a set of corresponding non-negative weights. Then

n n
1
m(w):max[ﬂ: E wizi E wi],
i=t i=1

gives the maximal index ¢ so that the total weight of observations larger or equal than
ye is at least 50 %. Hence, the weighted median of yy, ..., y, is defined to be

Mw) = Ym(w)
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Table 1 Tllustration of

computation of weighted e 1 2 3 4 5
quantiles. e 1 3 4 7 9
wy 0.2 0.25 0.3 0.05 0.2
t o wj 1 0.80 0.55 0.25 0.2

(Fried et al. 2007). There is no unique definition for quartiles, but in analogy to the
above, one can define the first weighted quartile of yi, ..., y, as Q1(w) = Y4, (w)»
where

n n
3
q1(w) =maX[€: -Ez wi z o 21 wi},
1= 1=

and the third weighted quartile of y1, ..., y, as Q3(w) = yg3(w), Where

n 1 n
q3(w) =max[£ : %wi > Zz;wi .
i= i=

For example, the weighted median of 1, 3, 4, 7 and 9 with weights 0.2, 0.25, 0.3,
0.05, and 0.2 is y3 = 4, because 0.2 4+ 0.05 + 0.3 > 0.5. In addition, the first
and third weighted quartile of the data are y = 3 and y4 = 7 respectively because
0.2 4+ 0.05 4+ 0.3 + 0.25 > 0.75 and 0.2 + 0.05=0.25. An illustration of this process
is provided in Table 1.

In the case of a k-boxplot, the box corresponding to the j—th component is fully
determined by the observations y; and the weights w; = r;;,i =1, ..., n. Note that
these weights, for fixed j, generally do not sum to 1.

3 Examples

In this section three real data examples are presented to illustrate the usefulness of the
k-boxplots for mixture data, especially compared to boxplots.

3.1 Example 1: energy use data

The data discussed in this example come from the International Energy Agency (IEA)!.
They give the annual energy use (in kg oil equivalent per capita) for 134 countries
around the world between 1971 and 2012. Due to the nature of the data, which are
restricted to the positive range and feature several countries with extremely large
energy use, a log-transformation will be applied in all further analyses.

! International Energy Agency, available at: http://www.iea.org/.
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Fig. 2 Four variants of 2-Boxplots of log energy use data in 2011

We consider only the year 2011 initially, for which Fig. 2 presents four different
types of 2-boxplots for the log energy use (The bimodal character of country-wise
log-energy data has already been reported in Einbeck and Taylor 2013). The boxplots
are labelled in the title area by the corresponding option which needs to be specified
as type argument in R function kboxplot. All four versions carry the main feature
of a 2-boxplot—the two boxes which indicate the location, spread and size of the two
components. We see that lower box represents the group of low energy use countries
and the upper box visualises high energy use countries. One can observe from these
figures that the number of high energy use countries is higher than the number of low
energy use countries according to the widths of the boxes which are determined by the
fitted mixing proportions 7; (we use the convention that the 7; correspond exactly
to the half-width). Further, one gets information on the spread and location of groups
by observing the bottom, top and cut lines of the boxes which represent the weighted
first and third quartiles and the weighted median respectively.

The four types of k-boxplots differ in how the individual observations are presented.
The ‘plain’ version of the 2-boxplot in the top left corner is most closely resembling a
traditional boxplot in its simplest form: there are two boxes representing the mixture
components, with whiskers drawn up to the overall maximum and minimum. For
k-boxplots, we do not consider it a sensible option to draw the whiskers up to a
certain multiple of the interquartile range. The reason is that this range would have
to be calculated with respect to the corresponding maximum or minimum box, which
would be little informative especially if the range of this box is small.

The ‘default’ option (top right) provides slightly more information. Here data points
falling outside the boxes are plotted explicitly, hence making this representation par-
ticularly suitable to identify outlying cases. Furthermore, the points are coloured
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according to the MAP classification rule; that is, for country i one identifies the com-
ponent j for which the posterior probability 7;; is maximal and then colours the point
in the same colour as the box for that component. The ‘full’ version in the bottom left—
corresponding to the representation from Fig. 1—provides another layer of detail, by
giving explicitly the posterior probabilities of belonging to ‘their’ component (to which
they were assigned according to the MAP rule). The lines have maximum length 1 in
which case a country is classified with 100 % posterior probability to one of the two
groups. Finally, in the bottom right panel, yet another variant is offered which gives
a full picture of all posterior probabilities, represented by lines of length 1 which are
split-coloured around the ordinate axis according to the values of r;;, j = 1, 2. This
variant is only supported for k = 2 as there are presentational difficulties otherwise.
Figure 3 [top] presents boxplots of log energy use data of the countries in selected
years between 1971 and 2012. The five main features of a boxplot are obvious in each
year. The median of log energy use data increased till the early 90’s. It should be noted
at this occasion that until 1989 only data for 112 countries were available, and that the
sharp increase in 1991, and the subsequent decrease, can be explained by the inclusion
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of many new countries in 1991 after the fall of the iron curtain, and the subsequent
political and economical developments in those countries.

Overall, the boxplots convey the impression that, taking the 1990 effect aside, there
has been a relatively steady increase of energy use throughout all countries over time.
The sequence of 2-boxplots of log energy use data shown in Fig. 3 [bottom] shows
that this interpretation is actually not accurate. We see that the data form two groups,
where one group corresponds to high energy use (supposedly so-called ‘developed’)
countries, and one group corresponding to low energy use countries. The median as a
measure of location almost does not change at all in either of the two groups, which
appears to be in conflict with the information transmitted by the boxplots. However,
what did change over time is that the low-energy-use group got smaller, and the high-
energy-use group got larger, represented by the boxes getting slimmer and wider,
respectively. This can be interpreted as that, over the years, more and more countries
have managed to make the transition from a low to a high energy use country. This
example demonstrates how misinterpretations based on traditional boxplots can be
avoided when using the proposed graphical representation which takes the mixture
character of the data into account. It is noted for completeness that, due to the non-
linearity of the logarithm, the preceding analysis is not equivalent to fitting a mixture
of log-normal distributions to the original data.

3.2 Example 2: internet users data

In this example, we consider a data set of size n = 100 which was originally given in
the form of a time series of the numbers of users connected to the internet through a
server every minute. The data are available in the R package datasets under the name
WwiWusage and visualized by a boxplot and a histogram in Fig. 4.

The histogram suggests that distributions with either k = 3 or k = 4 may be ade-
quate. Considering firstly & = 3, we have produced 3-boxplots of the log(WWiwusage)
data using a mixture of three normal distributions, where two different cases have
been considered. In the first case, we have allowed the components of the normal

mixture to have unequal variances ajz. In the second case, we assumed equal vari-

ances crjz = o2, in which case the second of the estimators in (4) has to be adapted to

become

1 n k
6% = - erij()’i -t

i=1 j=1

In Fig. 5a, the 3-boxplot of log(WwiWusage) for the unequal variance case is pre-
sented. There are three boxes which represent three categories in terms of the number
of the internet users in different periods. It can be observed that the majority of the
data fall into the central box, representing the large majority of time points for which
a medium number of internet users was observed. There are additionally two smaller
clusters corresponding to low and high internet usage, respectively. The 3-boxplots in
the equal variance case are presented in Fig. Sb. We see that there is not much differ-
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Fig.5 3-Boxplots of log of the numbers of internet users, a with unequal variances, b with equal variances

ence between the plots at this instance, though, expectedly, the spread of the smaller
boxes in the equal variance case is a bit larger than for the unequal variance case. All
this information on size and structure of clusters cannot be observed by a traditional
boxplot.

@ Springer



k-Boxplots for mixture data

(a) (b)

54
5.4

5.2
5.2

5.0

4.8
48

46
46

[ I | et
< | _— < | _—
< <

T T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Fig. 6 4-Boxplots of log of the numbers of internet users, a with unequal variances, b with equal variances

Proceeding now to the case k = 4, Fig. 6a, b provide 4-boxplots of log(WWwiWwusage)
in the unequal and equal variance case, respectively. We see that, as compared to the
3-boxplots, the boxes have been split differently: In the unequal variance case (a), the
low-usage box has been split, while in the equal variance case (b) the medium box
has been split. Furthermore, we have provided these 4-boxplots in their ‘full’ form,
which allows insights into the MAP classification of data points to clusters, as well as
the posterior probability of belonging to that cluster (symbolized by the length of the
horizontal line drawn to the right). We see that an appreciable number of observations
is allocated to each cluster. If classification is the main purpose of the study, then this
graphical information may be very useful.

Summarizing, while the most suitable working assumption (in terms of the choice
of k and the choice of equal or unequal component variances) will depend on the
particular application, the point that we want to make here is that the impact of this
choice on the fitted model may be quite large, and that the k-boxplots allow the data
analyst to visualize the consequence of their choice at a glance, which will be helpful
to support their decision process on which model to choose. A k-boxplot is a tool to
be used to visualize the different clusters in mixture data however it is not an inference
method in itself. Consequently, as like any other graphical tool, the data analyst should
not solely rely on a k-boxplot to determine the distribution of data.

3.3 Example 3: rainfall data

This final example will illustrate that the k-boxplot can be applied to a variety of
statistical models as long as the output provides access to the matrix of posterior
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Fig. 7 Left Rainfall data. Right 3-boxplot of fitted probabilities p; using model (5)

probabilities, R = (r;;). We use for this illustration a data set giving the number
of subjects y; out of n; testing positively for toxoplasmosis ini = 1, ..., 34 cities
in El Salvador. The data set is available in the R package npmlreg under the name
rainfall. It had previously been suggested in the literature that the annual rainfall,
x; (in 1000mm) impacts on the occurrence of toxoplasmosis via a quadratic logistic
regression model, such as log p = Bo + B1xi + ,3le , where p; = E(y;)/n;
is the probability for an 1nd1v1dua1 of contracting toxoplasmosis in city i. The data
are displayed in Fig. 7 (left). However, Aitkin and Francis (1995) demonstrated that
the dependence on rainfall becomes insignificant when a random effect term, z;, is
introduced which accounts for overdispersion, that is

Di
1_p1

log =z, (5)

or, equivalently, p; = €% /(1 + ¢%). Under this model, the mixture probability p; is
assumed to be driven only by randomness.

In the nonparametric maximum likelihood approach, the distribution of the random
effect z; can be left unspecified and is represented through a finite (discrete) mixture,
the parameters of which are estimated via the EM-algorithm. Following the analysis
by Aitkin and Francis (1995), we use k = 3, yielding a weight matrix R € R3**3
which can be used to produce a 3-boxplot of fitted values p; of model (5). The result
is provided in Fig. 7 (right)—one clearly sees here the ‘unobserved heterogeneity’ in
form of three subpopulations which is responsible for the overdispersion. It is clear
from the k-boxplot that one observation has captured a component by its own, which
may suggest to consider this observation as an outlier, and to reduce the number of
components by one. Following up this route more thoroughly, we refit the model
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Fig. 8 3-boxplots simulated from scenarios a, b, ¢ [from left to right] and fitted through Gaussian, lognor-
mal, and Gamma component densities [from fop to bottom]

using k = 2, yielding a decrease in disparity (i.e., —2log L, with L being the model
likelihood) of 1.74. This number corresponds just to the test statistic of the likelihood
ratio test for Hy : k = 2 versus Hj : k = 3. A bootstrapped null distribution can be
obtained by resampling data from the fitted model for k = 2, refitting both models
for k = 2 and k = 3, and computing the corresponding likelihood ratio in each
case (Polymenis and Titterington 1998). Carrying out this procedure for 999 bootstrap
replicates, we find that the value 1.74 would be ranked in 909th position among the
bootstrapped likelihood ratios. The resulting p-value of 0.091 gives borderline strong
evidence for the existence of the third component. It is finally worth noting that, if
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a component is captured by a single outlier, this increases the robustness of other
components to this outlier.

3.4 Simulation

In order to get some insight into the behaviour of the k-boxplots under the use of
component distributions other than Gaussian, and in particular under component mis-
specification, we have carried out a small-scale simulation in which data sets are
simulated from three scenarios. Under all three simulated scenarios we use k = 3,
w1 = 0.3 and m, = 0.4, but the component densities differ as follows:

(a) a mixture of three Gaussian component densities with u; = j, o1 = 03 = 0.2
and o = 0.5;

(b) a mixture of three log-normal densities with u; = j/2,and oj, j = 1,2,3 asin
(2);

(c) a mixture of three Gamma densities with shape parameters 2, 7.5, 9 and scale
parameters 2, 1, 0.5, respectively.

The true underlying densities are provided in the top row of Fig. 8 along with his-
tograms of the simulated data sets. The panels below show 3-boxplots fitted to the
simulated data using a mixture of three Gaussian distributions, log-normal distribu-
tions and Gamma distributions, respectively. That is, the component distributions are
correctly specified along the diagonal of the 3 x 3 panel of 3-boxplots but misspecified
off the diagonal.

The main conclusions from Fig. 8 are (i) the mixture proportions are in the most
cases approximately correctly captured; (ii) if the data are simulated from Gaussian
components (first column), then the 3-boxplots are quite robust to component mis-
specification; (iii) in the bottom right 2 x 2 panel, we see that the skewness of the
original distribution is correctly represented by the fitted distribution; (iv) if a Gaussian
mixture is fitted to ‘true’ lognormal or Gamma components, then the tail component
tends to carry too much weight.

4 Conclusions

We have presented a new powerful graphical tool to visualize and analyse data stem-
ming from a mixture of k distributions which we named a k-boxplot. This plot can be
used to visualize the different k groups of mixture data which a boxplot is not able to
achieve. It is a useful extension of the traditional boxplot especially for finding addi-
tional information regarding the location and spread of individual groups in mixture
data which are ignored by a boxplot. Similar to a boxplot, a k-boxplot can visualize
outliers in the data. The k-boxplot cannot be considered as an inference method which
would be able to make automated decisions about the distribution or the number of
components in mixture data. However, it is a useful tool to support the data analyst
in this respect. For instance, overlapping or very small boxes may be a sign that the
number of components should be reduced, or long one-sided tails outside the boxes
may be a sign that the Gaussian component densities are not adequate.

@ Springer
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k-boxplots are implemented in the function kboxplot which is made available as
part of the R package UEM. The implemented R subroutine provides several graphical
options for the data analyst, including a black-and white option. There are two ways in
which this function can be used. The first option is to apply kboxplot directly onto
the data itself, in which case the model will be fitted implicitly. The alternative option,
which we would consider as the recommended option as it gives better control over the
process, is to apply kboxplot onto a previously fitted model, for which subroutines
provided within R package UEM could be used; but also functions from alternative R
packages, or even alternative software, may be considered for this purpose, as long as
they provide access to the weight matrix R. For instance, the computations in Example
3 in this paper have been carried out using the function alldist from R package
npmlreg.

Given the matrix R, the computational complexity of producing a k-boxplot is
of order O(nk) as compared to O(n) for a traditional boxplot. For all data sets,
choices of k, and graphical variants considered in this paper, the computational time to
produce a k-boxplot, given R, has been less than 0.02 seconds on an Intel® Core(TM)
17-3770 CPU @ 3.40GHz machine. The computations required for the underlying
inferential mechanism will usually contribute the larger computational burden. For
instance, for Example 2, which has been computed using the EM routines built into
R package UEM, this computation required 0.11 seconds for the (unequal variance)
3-component model (28 EM iterations), and 0.26 seconds for the 4-component model
(52 EM iterations), using Gaussian Quadrature points as starting points in each case.
It is noted at this occasion that R code to reproduce the examples presented in this
paper is provided in the R Documentation files of R package UEM.

One issue which we have given rather marginal attention is the selection of the
number of components, k. This problem is inherent to the mixture fitting technique,
and while there does exist a rich literature on suggested methods how to select this
number k, this question is eventually still down to the subjective judgement of the data
analyst. In order to arrive at this judgement, the data analyst will undoubtedly benefit
from a simple graphical tool, as the proposed one, which visualizes the structure of
the mixture model which is obtained under the hypothesized number & at a glance. In
this sense, a k-boxplot could contribute to the question of selecting the number k, in
conjunction with existing quantitative techniques such as the parametric bootstrap, as
illustrated in the Example in Sect. 3.3.
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