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Abstract This article introduces a new graphical tool to summarize data
which possess a mixture structure. Computation of the required summary
statistics makes use of posterior probabilities of class membership which can
be obtained from a fitted mixture model. Real and simulated data are used
to highlight the usefulness of this tool for the visualization of mixture data in
comparison to the traditional boxplot.
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1 Introduction

Visualization tools play an essential role for analysing, investigating, under-
standing, and communicating data, and the development of novel graphical
tools continues to be a topic of interest in the statistical literature. For ex-
ample, Wang and Bellhouse (2014) have recently introduced a new graphical
approach called the shift function plot to evaluate the goodness–of–fit of a
parametric regression model. A boxplot is one of the most popular graphical
techniques used. It was proposed as a unimodal data display by Tukey (1977)
who called it a“schematic plot” or “box–and–whisker plot” but it is now cus-
tomarily called boxplot. A boxplot, in its simplest form, aims at summarizing
a univariate data set by displaying five main statistical features which are the
median, first quartile, third quartile, minimum value and maximum value.

The boxplot has become one of the most frequently used graphical tech-
niques for analysing data because it gives information about the location,
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spread, skewness, and longtailedness of a data set at a quick glance. The me-
dian in a boxplot serves as a measure of location. The dispersion of a data set
could be assessed by observing the length of a box or the distance between the
ends of the whiskers. The skewness can be observed by the deviation of the
median line from the center of the box or by the length of the upper whisker
relative to the length of the lower one. In addition, the distance between the
ends of the whiskers compared to the length of the box displays longtailedness
(Benjamini, 1988). Alternative specifications of the ends of the whiskers are
being used with a particular view to outlier detection. Specifically, boundaries
Q1 − 1.5IQR and Q3 + 1.5IQR can be computed where Q1, Q3 and IQR are
the first quartile, third quartile and interquartile range, respectively. Then,
any observations smaller than Q1 − 1.5IQR or greater than Q3 + 1.5IQR are
labelled as “outliers” (for more details, see e.g. Frigge et al (1989)). Finally,
whiskers are drawn from the box to the furthest non outlying observations. Ad-
ditionally, notches can be added which approximate a 95% confidence interval
for the median (Krzywinski and Altman, 2014).

Further variants of the boxplot have been developed to analyse special
kinds of data. For example, Abuzaid et al (2012) have proposed a boxplot
for circular data which is called a circular boxplot. Hubert and Vandervieren
(2008) have presented an adjustment of the boxplot to tackle the outliers
in skewed data by modifying the whiskers. Recently, Bruffaerts et al (2014)
have developed a “generalized” boxplot which is more appropriate for skewed
distributions and distributions with heavy tails.

It was already observed by McGill et al (1978) that the traditional boxplot
is not able to adequately display data which is divided into certain groups or
classes. Therefore, they developed a version of the boxplot for grouped data
which sets the widths of each group–wise boxplot proportional to the square
root of the group sizes. However, this technique requires that the groups are
defined a priori, and that the group membership of each observation is known.
In practice, one will often deal with data sampled from heterogeneous sub-
populations for which the group membership is a latent variable, and, hence,
unknown. To our knowledge, there does not exist an appropriate plot which
represents such mixture data properly. Consequently, we have developed a
new plot tailored to mixture data to which we refer as a k–boxplot, where k
is the number of mixture components. Compared to a boxplot, the k–boxplot
is able to display important additional information regarding the structure of
the data set. Both k–boxplots and boxplots have a similar construction: they
contain boxes and display extreme values. However, the k–boxplot visualizes
the k components of mixture models by k different boxes, compared to a box-
plot which has only one box. Then, a boxplot is a special case of a k–boxplot
with k = 1.

Fig. 1 provides a schematic display of (what we will refer to as a ‘full’)
k–boxplot in the special case k = 3, which describes the main features of k–
boxplots in general. The k–boxplot displays k rectangles oriented with the axes
of a coordinate system in which one of the axes has the scale of a data set. The
key features which appear in a k–boxplot are the weighted median, the first
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weighted quartile and the third weighted quartile in each box, which are found
as the respective weighted quantiles using the posterior probabilities of group
membership as weights (as will be explained in more detail later). Bottom and
top of the boxes are drawn at the weighted first and third quartiles of the
data in each group respectively. Weighted medians are displayed as horizontal
lines drawn inside the boxes. Additional information is provided through the
widths of the boxes, which depend on the mixing proportions of the mixture.

Q1(w)
M(w)

Q3(w)

minimum value

maximum value

π1

π2

π3

posterior probability

first component
second component
third component

Fig. 1 Summary of information provided by a 3–boxplot in its ‘full’ form. Here, M(w)
denotes the weighted median, and Qj(w) the j–th weighted quartile, using the notation
formally introduced in Section 2.2.

Just as for usual boxplots, data points falling out of the boxes can be dis-
played in several ways. Here, any points fully outside the boxes are displayed
individually through horizontal lines and can so be used to identify outliers.
The length of these lines corresponds to posterior probabilities of group mem-
bership which will be explained in more detail by real data examples later.
Some variants of the k–boxplot which display points outside the boxes in dif-
ferent ways will be implicitly introduced in Section 3.1.

By using k–boxplots for mixture data, the location, spread and skewness
for each component in a mixture will be displayed transparently to the viewers.
Each of the component–wise boxplots can be interpreted in the same way as
traditional boxplots with respect to these measures, allowing for a detailed
appraisal of the data. The required information in order to draw a k–boxplot
can be estimated by different methods, for example by the EM–algorithm. It
is emphasized that we do not consider k–boxplots to be an inferential tool.
That is, k–boxplots will not make any automated decision on the choice of
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the mixture distributions or the number of components but they visualize the
result of these inferential decisions made by the data analyst. Since the data
analyst will be able to identify the impact of their model choices at a glance,
k–boxplots will support them in making such choices in an informed manner.

The structure of the remainder of the paper is as follows. In Section 2 we
describe the computational elements of a k–boxplot, which are the posterior
probabilities derived from mixture models, as well as weighted quartiles. In
Section 3, we discuss three real data examples. Finally, we provide conclusions
in Section 4. Code to execute k–boxplots is provided in the statistical pro-
gramming language R (R Core Team, 2015) in form of function kboxplot in
package UEM.

2 Computational elements of k–boxplots

2.1 Posterior probabilities

Mixture models play a vital role in the statistical analysis of data thanks to
their flexibility to model a wide variety of random phenomena. They have
been successfully employed for a wide range of applications in the biological,
physical, and social sciences, including astronomy, medicine, psychiatry, genet-
ics, economics, engineering, and marketing. In addition, mixture models have
direct relevance for cluster and latent class analyses, discriminant analysis,
image analysis and survival analysis (McLachlan and Peel, 2004).

Assume a random variable Y with density f(y) is described as a finite
mixture of k probability density functions fj(y), j = 1, . . . , k, such that

f(y) =

k
∑

j=1

πjfj(y) (1)

with masses (or mixing proportions) π1, . . . , πk with 0 < πj < 1 and
∑k

j=1 πj =
1. We refer to fj(·), which may depend on a parameter vector θj , as the j–
th component of the mixture of probability density functions. Just to clarify
terms, when speaking of ‘mixture data’ in this manuscript, we mean data yi,
i = 1, . . . , n for which it is plausible to assume that they have been inde-
pendently generated from, or at least can be represented by, a model of type
(1).

Interpreting the πj as ‘prior’ probability of class membership, then poste-
rior probabilities of class membership are produced via Bayes theorem, that
is, for the i–th observation yi, i = 1, . . . , n one has

rij = P ( observation i belongs to comp. j) =
πjfj(yi)

∑k

ℓ=1 πℓfℓ(yi)
. (2)

These posterior probabilities, which we combine into a weight matrix R =
(rij)1≤i≤n,1≤j≤k, form the key ingredient of k–boxplots. They will be used
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to compute the component–wise medians and quartiles, and furthermore they
enable immediately computation of the estimate

π̂j =
1

n

n
∑

i=1

rij (3)

which will be used to determine the width of the j–th k–boxplot. Note also, by
assigning each data point yi to the component j which maximizes rij for fixed
i, posterior probabilities can be used as a classification tool. This is known as
the maximum a posteriori (MAP ) rule.

The estimates of θj are not needed for the construction of the k–boxplot in
itself. However, computation of (2) involves the densities fj and hence θj . So,
the θj need to be computed along the way as well. Most commonly, mixture
models will be estimated through the EM algorithm. In this case, the values
θj will get updated in the M–step, and (2) corresponds exactly to the E–step,
using the current estimates of πj and θj . That is, in practice, the rij can be
conveniently extracted from the output of the last EM iteration.

The application of k–boxplots is not restricted to a certain choice of com-
ponent densities. In principle, k–boxplots can be used to visualize the results
of fitting a mixture of any (combination of) densities fj , provided that one
is able to compute the parameters θj in the M–step. The choice of the fj is
down to the data analyst. In the absence of strong motives to use a different
distribution, the normal distribution will often be a convenient choice for the
component densities. In this case,

fj(y) =
1

√

2πσ2
j

exp

(

−
(y − µj)

2

2σ2
j

)

where µj are the component means and σj the component standard deviations.
Maximizing the complete log–likelihood in the M–step then gives the estimates

µ̂j =

∑n

i=1 rijyi
∑n

i=1 rij
;

σ̂2
j =

∑n

i=1 rij(yi − µ̂j)
2

∑n

i=1 rij
.

(4)

The EM–algorithm consists of iterating equations (2) and (3,4) until conver-

gence (Dempster et al, 1977). Initial values θ
(0)
j , π

(0)
j , j = 1, . . . , k, are required

for the first E–step.
It is well known that different starting points can lead to different solutions,

corresponding to different local maxima of the log–likelihood. See McLachlan
and Peel (2004) for a detailed discussion of this problem. Possible strategies
for choosing starting points include random initialization, quantile–based ini-
tialization, scaled Gaussian Quadrature points, or short EM runs (Biernacki
et al, 2003). The matter continues to be the content of current discussion
and research; with a recent contribution on the topic provided by Baudry and
Celeux (2015).
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2.2 Weighted quartiles

Suppose y1 ≤ . . . ≤ yn indicate the ordered observations and w = {w1, . . . , wn}
are a set of corresponding non–negative weights. Then

m(w) = max{ℓ :

n
∑

i=ℓ

wi ≥
1

2

n
∑

i=1

wi},

gives the maximal index ℓ so that the total weight of observations larger or
equal than yℓ is at least 50%. Hence, the weighted median of y1, . . . , yn is
defined to be

M(w) ≡ ym(w)

(Fried et al, 2007). There is no unique definition for quartiles, but in analogy to
the above, one can define the first weighted quartile of y1, . . . , yn as Q1(w) =
yq1(w), where

q1(w) = max{ℓ :

n
∑

i=ℓ

wi ≥
3

4

n
∑

i=1

wi},

and the third weighted quartile of y1, . . . , yn as Q3(w) = yq3(w), where

q3(w) = max{ℓ :

n
∑

i=ℓ

wi ≥
1

4

n
∑

i=1

wi}.

For example, the weighted median of 1, 3, 4, 7 and 9 with weights 0.2, 0.25,
0.3, 0.05, and 0.2 is y3 = 4, because 0.2+0.05+0.3 ≥ 0.5. In addition, the first
and third weighted quartile of the data are y2 = 3 and y4 = 7 respectively
because 0.2+0.05+0.3+0.25≥ 0.75 and 0.2+0.05=0.25. An illustration of this
process is provided in Table 1.

Table 1 Illustration of computation of weighted quantiles.

ℓ 1 2 3 4 5
yℓ 1 3 4 7 9
wℓ 0.2 0.25 0.3 0.05 0.2∑n
i=ℓ wi 1 0.80 0.55 0.25 0.2

In the case of a k–boxplot, the box corresponding to the j–th component is
fully determined by the observations yi and the weights wi ≡ rij , i = 1, . . . , n.
Note that these weights, for fixed j, generally do not sum to 1.

3 Examples

In this section three real data examples are presented to illustrate the useful-
ness of the k–boxplots for mixture data, especially compared to boxplots.
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3.1 Example 1: Energy use data

The data discussed in this example come from the International Energy Agency
(IEA)1. They give the annual energy use (in kg oil equivalent per capita) for
134 countries around the world between 1971 and 2012. Due to the nature
of the data, which are restricted to the positive range and feature several
countries with extremely large energy use, a log–transformation will be applied
in all further analyses.
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Fig. 2 Four variants of 2–Boxplots of log energy use data in 2011

We consider only the year 2011 initially, for which Fig. 2 presents four
different types of 2–boxplots for the log energy use (The bimodal character of
country–wise log–energy data has already been reported in Einbeck and Taylor
(2013)). The boxplots are labelled in the title area by the corresponding option
which needs to be specified as type argument in R function kboxplot. All four
versions carry the main feature of a 2–boxplot — the two boxes which indicate
the location, spread and size of the two components. We see that lower box
represents the group of low energy use countries and the upper box visualises
high energy use countries. One can observe from these figures that the number
of high energy use countries is higher than the number of low energy use
countries according to the widths of the boxes which are determined by the

1 International Energy Agency, available at:http://www.iea.org/
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fitted mixing proportions π̂j (we use the convention that the πj correspond
exactly to the half–width). Further, one gets information on the spread and
location of groups by observing the bottom, top and cut lines of the boxes
which represent the weighted first and third quartiles and the weighted median
respectively.

The four types of k–boxplots differ in how the individual observations are
presented. The ‘plain’ version of the 2–boxplot in the top left corner is most
closely resembling a traditional boxplot in its simplest form: there are two
boxes representing the mixture components, with whiskers drawn up to the
overall maximum and minimum. For k–boxplots, we do not consider it a sen-
sible option to draw the whiskers up to a certain multiple of the interquartile
range. The reason is that this range would have to be calculated with re-
spect to the corresponding maximum or minimum box, which would be little
informative especially if the range of this box is small.

The ‘default’ option (top right) provides slightly more information. Here
data points falling outside the boxes are plotted explicitly, hence making this
representation particularly suitable to identify outlying cases. Furthermore,
the points are coloured according to the MAP classification rule; that is, for
country i one identifies the component j for which the posterior probability
rij is maximal and then colours the point in the same colour as the box
for that component. The ‘full’ version in the bottom left — corresponding
to the representation from Figure 1 — provides another layer of detail, by
giving explicitly the posterior probabilities of belonging to ‘their’ component
(to which they were assigned according to the MAP rule). The lines have
maximum length 1 in which case a country is classified with 100% posterior
probability to one of the two groups. Finally, in the bottom right panel, yet
another variant is offered which gives a full picture of all posterior probabilities,
represented by lines of length 1 which are split-coloured around the ordinate
axis according to the values of rij , j = 1, 2. This variant is only supported for
k = 2 as there are presentational difficulties otherwise.

Fig. 3 [top] presents boxplots of log energy use data of the countries in
selected years between 1971 to 2012. The five main features of a boxplot are
obvious in each year. The median of log energy use data increased till the
early 90’s. It should be noted at this occasion that until 1989 only data for
112 countries were available, and that the sharp increase in 1991, and the
subsequent decrease, can be explained by the inclusion of many new countries
in 1991 after the fall of the iron curtain, and the subsequent political and
economical developments in those countries.

Overall, the boxplots convey the impression that, taking the 1990 effect
aside, there has been a relatively steady increase of energy use throughout all
countries over time. The sequence of 2–boxplots of log energy use data shown
in Fig. 3 [bottom] shows that this interpretation is actually not accurate. We
see that the data form two groups, where one group corresponds to high energy
use (supposedly so–called ‘developed’) countries, and one group corresponding
to low energy use countries. The median as a measure of location almost
does not change at all in either of the two groups, which appears to be in
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Fig. 3 Boxplots [top] and 2–Boxplots [bottom] of log energy use data between 1971 to 2012
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conflict with the information transmitted by the boxplots. However, what did
change over time is that the low–energy–use group got smaller, and the high–
energy–use group got larger, represented by the boxes getting slimmer and
wider, respectively. This can be interpreted as that, over the years, more and
more countries have managed to make the transition from a low to a high
energy use country. This example demonstrates how misinterpretations based
on traditional boxplots can be avoided when using the proposed graphical
representation which takes the mixture character of the data into account.
It is noted for completeness that, due to the non–linearity of the logarithm,
the preceding analysis is not equivalent to fitting a mixture of log–normal
distributions to the original data.

3.2 Example 2: Internet users data

In this example, we consider a data set of size n = 100 which was originally
given in the form of a time series of the numbers of users connected to the
internet through a server every minute. The data are available in the R pack-
age datasets under the name WWWusage and visualized by a boxplot and a
histogram in Fig. 4.
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Fig. 4 Boxplot and histogram of log of the numbers of internet users

The histogram suggests that distributions with either k = 3 or k = 4
may be adequate. Considering firstly k = 3, we have produced 3–boxplots of
the log(WWWusage) data using a mixture of three normal distributions, where
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two different cases have been considered. In the first case, we have allowed
the components of the normal mixture to have unequal variances σ2

j . In the

second case, we assumed equal variances σ2
j ≡ σ2, in which case the second of

the estimators in (4) has to be adapted to become

σ̂2 =
1

n

n
∑

i=1

k
∑

j=1

rij(yi − µ̂j)
2.

In Fig. 5(a), the 3–boxplot of log(WWWusage) for the unequal variance case
is presented. There are three boxes which represent three categories in terms
of the number of the internet users in different periods. It can be observed
that the majority of the data fall into the central box, representing the large
majority of time points for which a medium number of internet users was
observed. There are additionally two smaller clusters corresponding to low and
high internet usage, respectively. The 3–boxplots in the equal variance case are
presented in Fig. 5(b). We see that there is not much difference between the
plots at this instance, though, expectedly, the spread of the smaller boxes in
the equal variance case is a bit larger than for the unequal variance case. All
this information on size and structure of clusters cannot be observed by a
traditional boxplot.

−1.0 −0.5 0.0 0.5 1.0

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

(a)

 

 

 

 

 

 

 

 

 

 

 

−1.0 −0.5 0.0 0.5 1.0

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

(b)

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 3–Boxplots of log of the numbers of internet users; (a) with unequal variances, (b)
with equal variances

Proceeding now to the case k = 4, Fig. 6 (a) and (b) provide 4–boxplots
of log(WWWusage) in the unequal and equal variance case, respectively. We see
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Fig. 6 4–Boxplots of log of the numbers of internet users; (a) with unequal variances, (b)
with equal variances

that, as compared to the 3–boxplots, the boxes have been split differently: In
the unequal variance case (a), the low–usage box has been split, while in the
equal variance case (b) the medium box has been split. Furthermore, we have
provided these 4–boxplots in their ‘full’ form, which allows insights into the
MAP classification of data points to clusters, as well as the posterior proba-
bility of belonging to that cluster (symbolized by the length of the horizontal
line drawn to the right). We see that an appreciable number of observations
is allocated to each cluster. If classification is the main purpose of the study,
then this graphical information may be very useful.

Summarizing, while the most suitable working assumption (in terms of
the choice of k and the choice of equal or unequal component variances) will
depend on the particular application, the point that we want to make here
is that the impact of this choice on the fitted model may be quite large, and
that the k–boxplots allow the data analyst to visualize the consequence of
their choice at a glance, which will be helpful to support their decision process
on which model to choose. A k–boxplot is a tool to be used to visualize the
different clusters in mixture data however it is not an inference method in
itself. Consequently, as like any other graphical tool, the data analyst should
not solely rely on a k–boxplot to determine the distribution of data.
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3.3 Example 3: Rainfall data

This final example will illustrate that the k–boxplot can be applied to a variety
of statistical models as long as the output provides access to the matrix of
posterior probabilities, R = (rij). We use for this illustration a data set giving
the number of subjects yi out of ni testing positively for toxoplasmosis in
i = 1, . . . , 34 cities in El Salvador. The data set is available in the R package
npmlreg under the name rainfall. It had previously been suggested in the
literature that the annual rainfall, xi (in 1000mm) impacts on the occurrence
of toxoplasmosis via a quadratic logistic regression model, such as log pi

1−pi

=

β0 + β1xi + β2x
2
i , where pi = E(yi)/ni is the probability for an individual

of contracting toxoplasmosis in city i. The data are displayed in Fig. 7 (left).
However, Aitkin and Francis (1995) demonstrated that the dependence on
rainfall becomes insignificant when a random effect term, zi, is introduced
which accounts for overdispersion, that is

log
pi

1− pi
= zi, (5)

or, equivalently, pi = ezi/(1 + ezi). Under this model, the mixture probability
pi is assumed to be driven only by randomness. In the nonparametric maxi-
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Fig. 7 Left: Rainfall data. Right: 3–boxplot of fitted probabilities p̂i using model (5)

mum likelihood approach, the distribution of the random effect zi can be left
unspecified and is represented through a finite (discrete) mixture, the param-
eters of which are estimated via the EM–algorithm. Following the analysis by



14 Najla M. Qarmalah et al.

Aitkin and Francis (1995), we use k = 3, yielding a weight matrix R ∈ R
34×3

which can be used to produce a 3–boxplot of fitted values p̂i of model (5). The
result is provided in Fig. 7 (right) — one clearly sees here the ‘unobserved
heterogeneity’ in form of three subpopulations which is responsible for the
overdispersion. It is clear from the k–boxplot that one observation has cap-
tured a component by its own, which may suggest to consider this observation
as an outlier, and to reduce the number of components by one. Following up
this route more thoroughly, we refit the model using k = 2, yielding a de-
crease in disparity (i.e., −2 logL, with L being the model likelihood) of 1.74.
This number corresponds just to the test statistic of the likelihood ratio test
for H0 : k = 2 versus H1 : k = 3. A bootstrapped null distribution can be
obtained by resampling data from the fitted model for k = 2, refitting both
models for k = 2 and k = 3, and computing the corresponding likelihood ratio
in each case (Polymenis and Titterington, 1998). Carrying out this procedure
for 999 bootstrap replicates, we find that the value 1.74 would be ranked in
909th position among the bootstrapped likelihood ratios. The resulting p–
value of 0.091 gives borderline strong evidence for the existence of the third
component. It is finally worth noting that, if a component is captured by a
single outlier, this increases the robustness of other components to this outlier.

3.4 Simulation

In order to get some insight into the behaviour of the k–boxplots under the
use of component distributions other than Gaussian, and in particular under
component misspecification, we have carried out a small–scale simulation in
which data sets are simulated from three scenarios. Under all three simulated
scenarios we use k = 3, π1 = 0.3 and π2 = 0.4, but the component densities
differ as follows:

(a) a mixture of three Gaussian component densities with µj = j, σ1 = σ3 =
0.2 and σ2 = 0.5;

(b) a mixture of three log–normal densities with µj = j/2, and σj , j = 1, 2, 3
as in (a);

(c) a mixture of three Gamma densities with shape parameters 2, 7.5, 9 and
scale parameters 2, 1, 0.5, respectively.

The true underlying densities are provided in the top row of Figure 8 along
with histograms of the simulated data sets. The panels below show 3–boxplots
fitted to the simulated data using a mixture of three Gaussian distributions,
log–normal distributions and Gamma distributions, respectively. That is, the
component distributions are correctly specified along the diagonal of the 3× 3
panel of 3–boxplots but misspecified off the diagonal.

The main conclusions from Figure 8 are (i) the mixture proportions are in
the most cases approximately correctly captured; (ii) if the data are simulated
from Gaussian components (first column), then the 3–boxplots are quite robust
to component misspecification; (iii) in the bottom right 2 × 2 panel, we see
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Fig. 8 3–Boxplots simulated from scenarios (a), (b), (c) [from left to right] and fitted
through Gaussian, lognormal, and Gamma component densities [from top to bottom].

that the skewness of the original distribution is correctly represented by the
fitted distribution; (iv) if a Gaussian mixture is fitted to ‘true’ lognormal or
Gamma components, then the tail component tends to carry too much weight.
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4 Conclusions

We have presented a new powerful graphical tool to visualize and analyse data
stemming from a mixture of k distributions which we named a k–boxplot. This
plot can be used to visualize the different k groups of mixture data which a
boxplot is not able to achieve. It is a useful extension of the traditional boxplot
especially for finding additional information regarding the location and spread
of individual groups in mixture data which are ignored by a boxplot. Similar
to a boxplot, a k–boxplot can visualize outliers in the data. The k–boxplot
cannot be considered as an inference method which would be able to make
automated decisions about the distribution or the number of components in
mixture data. However, it is a useful tool to support the data analyst in this
respect. For instance, overlapping or very small boxes may be a sign that the
number of components should be reduced, or long one–sided tails outside the
boxes may be a sign that the Gaussian component densities are not adequate.

k–boxplots are implemented in the function kboxplot which is made avail-
able as part of the R package UEM. The implemented R subroutine provides
several graphical options for the data analyst, including a black–and white op-
tion. There are two ways in which this function can be used. The first option
is to apply kboxplot directly onto the data itself, in which case the model
will be fitted implicitly. The alternative option, which we would consider as
the recommended option as it gives better control over the process, is to ap-
ply kboxplot onto a previously fitted model, for which subroutines provided
within R package UEM could be used; but also functions from alternative R

packages, or even alternative software, may be considered for this purpose, as
long as they provide access to the weight matrix R. For instance, the compu-
tations in Example 3 in this paper have been carried out using the function
alldist from R package npmlreg.

Given the matrix R, the computational complexity of producing a k–
boxplot is of order O(nk) as compared to O(n) for a traditional boxplot. For
all data sets, choices of k, and graphical variants considered in this paper, the
computational time to produce a k–boxplot, given R, has been less than 0.02
seconds on an Intel R© Core(TM) i7-3770 CPU @ 3.40GHz machine. The com-
putations required for the underlying inferential mechanism will usually con-
tribute the larger computational burden. For instance, for Example 2, which
has been computed using the EM routines built into R package UEM, this
computation required 0.11 seconds for the (unequal variance) 3–component
model (28 EM iterations), and 0.26 seconds for the 4–component model (52
EM iterations), using Gaussian Quadrature points as starting points in each
case. It is noted at this occasion that R code to reproduce the examples pre-
sented in this paper is provided in the R Documentation files of R package
UEM.

One issue which we have given rather marginal attention is the selection
of the number of components, k. This problem is inherent to the mixture
fitting technique, and while there does exist a rich literature on suggested
methods how to select this number k, this question is eventually still down
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to the subjective judgement of the data analyst. In order to arrive at this
judgement, the data analyst will undoubtedly benefit from a simple graphi-
cal tool, as the proposed one, which visualizes the structure of the mixture
model which is obtained under the hypothesized number k at a glance. In this
sense, a k–boxplot could contribute to the question of selecting the number
k, in conjunction with existing quantitative techniques such as the parametric
bootstrap, as illustrated in the Example in Section 3.3.
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