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Abstract 

The complex fluvial sandstones of the Triassic Skagerrak Formation of the Central Graben 

area, North Sea, provide a number of prolific high-pressure high-temperature (HPHT) 

hydrocarbon reservoirs. The reservoir sandstones comprise fine to medium-grained sub-

arkosic to arkosic sandstones that have experienced broadly similar burial and diagenetic 

histories to their present-day maximum burial depth. Despite similar diagenetic histories the 

fluvial reservoirs show major variations in reservoir quality and preserved porosity. Reservoir 

quality varies from excellent with anomalously high porosities of up to 35% at burial depth of 

>3500 metre below sea floor (m bsf) to non-economic with porosities <10% at burial depth of 

4300 m bsf.  

 This study has combined detailed petrographic analyses, core analysis and pressure 

history modeling to assess the impact of differing vertical effective stresses (VES) and high 

pore fluid pressures (up to 80 MPa) on reservoir quality. It has been recognized that fluvial 

channel sandstones of the Skagerrak Formation in the UK sector have experienced 

significantly less mechanical compaction (under-compacted) than their equivalents in the 

Norwegian sector.  This has had a significant impact upon reservoir quality, even though the 

presence of chlorite grain coatings inhibited macroquartz cement overgrowths across all 

Skagerrak Formation reservoirs. The onset of overpressure started once the overlying chalk 

seal was buried deeply enough to form a permeability barrier to fluid escape. It is the accrual 

rate of overpressure and its effect on the VES history that is key to determining the reservoir 

quality of these channelised sandstone units. The results are consistent with a model where 

vertical effective stress affects both the compaction state and subsequent quartz 

cementation of the reservoirs.  
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Introduction 

 

The reservoir quality of deeply buried sandstones is the combined product of depositional 

processes and subsequent diagenesis during progressive burial. Deposition controls the 

composition of the sand, including its grain size distribution which has an over-arching 

influence in determining reservoir properties. Relative differences between sandstone facies 

in terms of porosity and permeability are preserved during burial, so facies is a key factor in 

controlling reservoir performance. Burial-related diagenesis also has an important role to 

play as it in can destroy, preserve, or enhance the reservoir quality, whatever the facies. 

High porosities in deeply buried siliciclastic reservoirs are exceptional and have commonly 

resulted from diagenetic cementation followed by dissolution (e.g. Bloch et al., 2002; Taylor 

et al., 2010). The role played by vertical effective stress (VES) during initial mechanical and 

chemical compaction processes is generally considered to be less significant. Primary 

porosity is reduced by mechanical compaction processes at shallow depths, where grain 

rearrangement (frictional slippage, rotation and sliding), deformation of soft grains (e.g. lithic 

fragments), and fracturing of ridged grains (e.g. quartz and feldspar), can occur. At the 

higher temperatures and pressures of deep burial, chemical compaction takes over and 

includes mineral growth and inter-granular pressure solution (e.g. Houseknecht, 1987; 

Chuhan et al., 2002; Paxton et al., 2002). Mechanical and chemical compaction processes 

are irreversible and eliminate inter-granular volume (IGV) that would otherwise remain fluid-

filled or become occupied by cements that might dissolve during later diagenesis 

(Houseknecht, 1987). Thus inhibition of compaction is vital for porosity maintenance to 

depth.  

 Two processes are known to inhibit sediment compaction:  cement precipitation that 

strengthens the grain framework and the development of pore fluid overpressure. 

Stabilization of the framework and enlargement of the grain contact areas can be achieved 

by the precipitation of small quantities of cement, such as carbonate, halite or quartz, and 

the porosity preservation is strongest if precipitation occurs at shallow depth. Fluid 
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overpressure supports the grain framework and reduces the effective stress acting on the 

framework. Both processes can significantly reduce mechanical and chemical compaction. 

Pore fluid pressures in sedimentary basins remain hydrostatic during burial where the rocks 

can drain freely.  Overpressure occurs where the fluid cannot drain rapidly enough for the 

pore pressure to remain hydrostatic as the bulk rock volume is reduced by compaction 

processes. Low permeability retards fluid flow and so overpressures develop preferentially 

where rocks are sealed by thick successions of fine-grained sediment. Fluid volume 

expansion due to cracking of oil to gas, transformation of smectite to illite, lateral transfer, 

and temperature increase can also lead to the development of excess pore pressure (e.g. 

(Osborne and Swarbrick, 1997; Swarbrick and Osborne, 1998; Swarbrick et al., 2002). The 

overpressure supports the grain framework and decreases the stress acting on the grain 

contacts which leads to lower normal effective stresses (Terzaghi’s effective stress concept).  

The aim of this paper is to investigate the reason for the porosity variations in the 

Skagerrak Formation in the Central North Sea and how anomalously high porosities have 

been preserved even though it is deeply buried and at high temperatures. One-dimensional 

pore pressure and burial history models are combined with detailed petrography to assess 

the role played by overpressure on VES and reservoir quality. Analysis of the key processes 

responsible for this porosity preservation requires depositional effects to be taken into 

account. This has been done by careful focus on reservoir facies with similar grain size and 

sorting. The results can be used to help predict reservoir quality in undrilled structures.  

 

Geological setting 

The Central Graben of the North Sea is approximately 550 km long with a width of 70-130 

km and is part of a NW-SE trending extension of a trilete rift system, with the Viking Graben 

as the northern arm and the Inner and Outer Moray Firth as the western arm. The North Sea 

Central Graben is divided into the East and the West Central Graben by the Forties-

Montrose and the Josephine Ridge medial horst blocks, and separates the Norwegian 

platform in the east from the UK continental shelf in the west (Figure 1). The complex rift 
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system developed in at least two major extensional phases, one in the Permian-Triassic 

(290-210 Ma) and another in the Late Jurassic (155-140 Ma) (Gowers and Sæbøe, 1985; 

Glennie, 1998). The geological history has commonly been divided into pre-rift, syn-rift and 

post-rift phases. The syn-rift sediments are mainly siliciclastic Triassic and Jurassic 

sediments with a cumulative thickness of 1000-4000 m. The post-rift sediments comprise the 

Cretaceous to Holocene successions, of up to 4500 m in total thickness, which are 

dominated by shale, sandstone, silty-sandstone and thick Upper Cretaceous chalk units 

including the Ekofisk, Tor and Hod Formations (Figure 2) (Goldsmith et al., 2003). These 

highly cemented and compacted chalk units provide the main seal for the highly 

overpressured sub-Chalk reservoirs in the Central Graben, North Sea (Mallon and 

Swarbrick, 2002, 2008; Swarbrick et al., 2010). The focus area for this study includes the 

Heron (well 22/29-5RES1) and Skua (well 22/24b-7) fields from the Heron Cluster in UK 

quadrant 22, the Jade (well 30/2c-4) and Judy (wells 30/7a-7, -8, -9, 11Z, -P3 & 30/13-5) 

fields from the Josephine Ridge in UK quadrant 30, and the Cod (well 7/11-7) and Gaupe 

(well 6/3-1) fields in Norwegian quadrants 7 and 6, respectively (Figure 1). This broad areal 

coverage allows a regional perspective on the post-depositional processes that have 

influenced porosity preservation in the Skagerrak Formation. 

 

Triassic Skagerrak Stratigraphy 

The Triassic strata of the Central North Sea area are dominated by thick alluvial successions 

deposited in a closed or internally draining basin with no apparent connection to a marine 

realm (Goldsmith et al., 2003). The general Triassic succession is subdivided into the Early 

Triassic Smith Bank Formation (shales, evaporites and thin sands) and the Middle to Late 

Triassic Skagerrak Formation (a thick sequence of interbedded sands and shales) (Figure 

2). The Middle to Late Triassic Skagerrak Formation comprises 500-1000 m of 

predominantly continental braided and meandering fluvial deposits, terminal fluvial fans and 

lacustrine shale (McKie and Audretsch, 2005; De Jong et al., 2006; Kape et al., 2010). The 

stratigraphic nomenclature of the Triassic for the Central Graben was defined by Goldsmith 
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et al. (1995, 2003), based on detailed biostratigraphic and lithostratigraphic correlation of 

wells from the Josephine Ridge. This nomenclature has been extended and correlated 

towards the Forties-Montrose High area by Mckie and Audretsch (2005). The Skagerrak 

Formation can locally be subdivided into two sand-dominated members (Judy and Joanne) 

and two mud-dominated members (Julius and Jonathan) for UK quadrants 22 and 30, but is 

not subdivided in Norwegian quadrants 6 and 7 (Goldsmith et al., 2003). The sand-

dominated units include sheetflood deposits and multi-storey stacked channel sandbodies 

(Goldsmith et al., 1995; McKie and Audretsch, 2005), whereas the mud-dominated units 

include basin-wide floodplain, lacustrine shale, loess and playa deposits.  The thick and 

laterally extensive mud-dominated units provide the main correlative units for the Skagerrak 

Formation in the Central Graben (McKie and Audretsch, 2005). The Triassic stratigraphy is 

incompletely preserved due to deep erosion during the Middle and Late Jurassic (Figure 2) 

(Erratt et al., 1999).  

The Triassic Smith Bank and Skagerrak sediments accumulated directly on top of the 

thick Late Permian Zechstein salt in a series of salt-controlled and fault-controlled mini-

basins or pods. The Late Permian Zechstein salt strongly controlled the deposition by 

forming withdrawal basins due to a combination of localised loading and structural extension 

(Smith et al., 1993; Bishop, 1996; Matthews et al., 2007) within an overall rift setting. The 

predominantly fine grained Smith Bank Formation represents the basal part of the pod infill, 

and was deposited in lacustrine and playa settings within confined minibasins. These 

enlarged and amalgamated during deposition of the overlaying Skagerrak Formation as salt 

budgets waned and diapirism became localised rather than the salt continued to form 

extensive salt walls. Pod development was active throughout the Triassic and is mainly 

responsible for the preservation of Middle to Late Triassic Skagerrak Formation in the study 

area. Where the Late Permian salt was thickly developed, it prevented grounding of the pods 

on the underlying Rotliegend basement Salt withdrawal has allowed considerable 

thicknesses of Skagerrak sediment to accumulate within pods as well as being responsible 

for great variation in thickness both within and between pods. The consequent facies 
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variability has influenced sandstone reservoir thickness and subsequent diagenetic 

cementation (Nguyen et al., 2013).  

 

Methodology 

Sampling 

Core samples and the thin sections examined in this study are from Triassic Skagerrak 

sandstones in the four fields in the UK sector: Heron (well 22/29-5RES1; 136 samples), 

Skua (well 22/24b-7; 32 samples), Jade (well 30/2c-4; 20 samples), and Judy (wells 30/7a-7, 

-8, -9, -11Z, -P3 & 30/13-5; 85 samples in total) and from two fields in the Norwegian sector: 

Cod (7/11-7; 39 samples) and Gaupe (6/3-1; 90 samples). The samples were selected from 

channel sands, the sedimentary facies in the available core material that is expected to have 

the best reservoir properties because of good sorting and an absence of matrix. 

 

Petrography 

Thin sections of core samples were used to measure optical porosity, grain size, 

composition and inter-granular volume. Optical porosity was measured by the digital image 

analysis technique jPOR (Grove and Jerram, 2011) on blue epoxy-impregnated thin 

sections. Uncorrected helium porosity measurements, making use of Boyle’s law on core 

samples, were taken from core analysis reports. Grain size distribution was determined from 

analysis of thin section micrographs with the Leica QWin (V. 3.5.0) software. Sandstone 

composition was measured by point counting, with 300 counts per thin section using a 

standard petrographic microscope. Further petrographic analysis, such as intergranular-

volume (IGV), total cement volume (C) and grain contact analysis, were exclusively 

performed on fine-grained samples with similar sorting. Inter-granular volume and total 

cement volume were measured by point counting with 300 counts per thin section using a 

standard petrographic microscope. Grain-to-grain contacts were counted and classified by 

counting a line of 50 grain contacts per thin section.  
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One-dimensional basin modelling 

Pore pressure in the Skagerrak sandstones for all six fields was modelled in one dimension 

using Schlumberger’s PetroMod (V. 2012.2) software. This one-dimensional modelling 

provides a good insight into overpressure build-up by disequilibrium compaction and pore 

fluid expansion due to increasing temperature. However, the models do not include other 

mechanisms for generating excess pore pressure such as fluid flow or hydrocarbon 

cracking, and are only able to take vertical stress into account. Any influence of clay mineral 

diagenesis on fluid pressure development is ignored. PetroMod is based on a forward 

modelling approach to calculate the geological evolution of a basin from the burial history. 

The burial history and lithology are inferred from the present-day well stratigraphy, well log 

lithology and lithological description of the modelled units (Tables 1 & 2). We used the 

thermal upwelling basement palaeo-heat flow model of (Allen and Allen, 1990) with 63‒110 

mW/m2 (average of 80 mW/m2) during syn-rift phases and 37‒66 mW/m2 (average 50 

mW/m2) during post-rift phases combined with the palaeo-surface temperature history 

published by Swarbrick et al., 2000. The burial history models are calibrated against present-

day RFT temperature measurements, corrected after Andrews-Speed et al. (1984), 

measured Triassic sandstone porosities (Boyle’s law) and carefully adjusted towards 

present-day formation pressure measurements by considering late stage, high temperature 

overpressure mechanisms (Osborne and Swarbrick, 1997; Isaksen, 2004). The lithological 

unit types used in these models are mainly PetroMod (V. 2012.2) default lithology types, 

based on well log descriptions and core analysis reports for the investigated wells. 

Exceptions are the Hod lithology type present in the UK models and the lithology type of the 

Skagerrak sandstone members. The Hod chalk unit is modified to represent the North Sea 

non-reservoir chalk (Table 3) and match the compaction trend and permeability trend given 

by (Mallon and Swarbrick, 2002, 2008). The North Sea non-reservoir chalk is a laterally 

extensive low-permeability rock unit that represents the major vertical fluid flow barrier in the 

Central North Sea (Mallon and Swarbrick, 2008). The Triassic Skagerrak sandstone of the 

Joanne and Judy Sandstone Members is simulated by a mixture of PetroMod (V. 2012.2) 
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default lithologies (80% sand, 10% silt, 10% shale) combined with a regional compaction 

trend for shaly sandstone given by (Sclater and Christie, 1980).  

 

Results 

Grain size, composition and porosity distribution 

The 347 investigated samples from the Heron Cluster fields (Heron ‒ 136 and Skua ‒ 32), 

the J-Ridge fields (Jade ‒ 20 and Judy ‒ 85), and the Norwegian fields (Cod ‒ 30) and 

Gaupe ‒ 90) vary compositionally within a narrow range of arkosic and lithic-arkosic 

sandstones. The grain size of the samples varies between silt and coarse-grained sand, with 

small regional differences (Figure 3). The sample sets show a wide range of optical 

porosities from below 1% up to 35% (Figures 3 & 4) with higher maximum porosities 

occurring at coarser grain sizes (Figure 3 & Table 4). The optical porosity data sets have 

been complemented by additional helium core plug porosity data, measured using Boyle’s 

law (uncorrected for possible decompaction effects). The helium core plug porosities 

measure the total porosity and are mostly greater than the optical measured porosity values 

(Figure 4 & Table 4), indicating the presence of significant microporosity within the 

sandstones. This is likely to reside with the clay cements and matrix, within partially 

dissolved grains and as small voids along grain boundaries. 

 

Intergranular volume and porosity loss 

Intergranular volume (IGV), or minus-cement porosity, is the sum of intergranular pore 

space, intergranular cement and depositional matrix (Houseknecht, 1987, 1988; Paxton et 

al., 2002). IGV is an excellent indicator for the degree of mechanical compaction of clastic 

sediments due to its dependence on vertical effective stress (VES) and its diminishing trend 

with ongoing compaction. Nevertheless, IGV can also be influenced by factors such as early 

cementation (grain framework strengthening or locally pore filling) or early pore fluid 

overpressure. 
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The IGV values of the six sample sets show both wide internal variations and 

variations between the different sample sets (Table 5). IGV averages of the shallower buried 

sample sets (e.g., from the Judy and Skua fields) are generally higher than those of the 

deeper sample sets (e.g., Cod and Jade). This difference points to variations in compaction 

state between fields. Mechanical compaction of a fine-medium grained, well sorted sand, 

typical of the Skagerrak channel facies, should be able to reduce IGV from a starting point 

around 45% at deposition (e.g. Bears and Weyl, 1973) to around 26% when tightly packed 

grain framework established (e.g. Paxton et al., 2002). The grain composition will influence 

the amount of compaction with feldspars more likely to fracture and deform than quartz 

grains. Early framework stabilising cements or overpressure development help retard 

compaction during burial. 

The total cement volume has been measured and can be used in combination with 

the IGV to calculate the porosity loss by compaction (COPL) and by cementation (CEPL) 

using the following equations by (Lundegard, 1992): 
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where Pi is the initial or depositional porosity and Pmc is the intergranular volume or minus-

cement porosity calculated from by subtracting the total cement volume, C, from the total 

optical primary porosity, Po. The calculated COPL and CEPL are accurate if three conditions 

are met. First, the assumed initial porosity Pi is correct. Second, the amount of cement 

derived by local grain dissolution is negligible or known. And third, the amount of framework 

mass exported by grain dissolution is negligible or known (Lundegard, 1992).The initial or 

depositional porosity for the Triassic Skagerrak sandstones samples is assumed to have 

been 45% (Bears and Weyl, 1973; Houseknecht, 1987; Lundegard, 1992; Chuhan et al., 
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2002; Paxton et al., 2002). The COPL-CEPL results (Figure 5) indicate mechanical and 

chemical compaction as the main drives for porosity loss of the Heron, Skua, Jade, Judy and 

Cod sample sets, whereas the COPL-CEPL results of the Gaupe sample set indicate a more 

mixed porosity loss, albeit with a stronger tendency towards compaction. 

 

Compaction indicators 

Evidence for both mechanical and chemical compaction can be observed in the investigated 

fine grained sandstone samples. Mechanical compaction is recorded by features such as 

grain rearrangement, grain deformation, denser grain packing, and the frequency of 

distinctive grain contacts, such as point and long/tangential grain contacts for low 

mechanical compaction or concavo-convex and sutured grain contacts for high mechanical 

compaction (Table 6). Chemical compaction of quartz-rich sandstones occurs by pressure 

solution at grain contacts and is indicated by the presence of concavo-convex and/or sutured 

grain contacts.  

The Judy sample set displays a low grain-packing density, often with apparently 

‘floating’ grains, i.e., grains surrounded by pores in two-dimensional space (Figure 6A), and 

a high number of point contacts between the grains (Table 6). These features are 

characteristic of a relatively low compaction state or under-compaction in relation to similar 

hydrostatically pressured sandstones at equivalent burial depth (porosity-depth relationship 

for hydrostatically pressured shaly sandstone by Sclater and Christie (1980)). ‘Floating’ 

grains are not observed in the Heron Field sample set which has a slightly denser grain 

packing, a lower number of point contacts and slight bending of mica grains, but still has a 

low compaction state. The Jade and Skua sample sets generally show more mechanical 

compaction with denser grain arrangements and bent mica grains, and more features 

characteristic of chemical compaction, such as a higher frequency of concavo-convex 

contacts than the Heron and Judy field samples (Table 6 & Figure 6B). The Gaupe and Cod 

samples have a high grain-packing density and a high number of grain to grain contacts per 

grain (Figure 6C). These characteristics indicate a high degree of mechanical compaction, 
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also recorded by the high frequency of soft grain deformation, such as bent micas (Figure 

6D) and deformed lithic fragments. Chemical compaction is very common in the Norwegian 

data sets with petrographic evidence such as concavo-convex and sutured grain contacts in 

both the Gaupe and, especially, the Cod samples (Figure 6E & F). The grain framework of 

the Cod samples is dominated by concavo-convex grain contacts and shows the highest 

frequency of sutured grain contacts. Evidence of strong chemical compaction, i.e., sutured 

grain contacts, is rarely observed in the Jade and Skua samples, and are completely absent 

in the Judy and Heron field samples (Table 6). 

 

One-dimensional basin modelling 

The one-dimensional models show the evolution of burial depth, pore fluid overpressure and 

VES throughout the geological history for the top of the Triassic Skagerrak reservoir 

formation in the investigated fields/wells. Each model was set up from the present-day well 

stratigraphy, well log lithology and lithological description (Tables 1 & 2) and carefully 

calibrated against measured Skagerrak sandstone porosities (Figure 4). This was achieved 

by using observed and published rock properties for key horizons, as described above. 

Furthermore, each model was calibrated against corrected RFT temperatures and carefully 

adjusted towards measured present-day formation pressures by considering late stage, high 

temperature overpressure mechanisms (Osborne and Swarbrick, 1997; Swarbrick and 

Osborne, 1998; Isaksen, 2004). The burial history of the Skagerrak Formation can generally 

be subdivided into two main burial phases. The first episode of burial occurred at a relatively 

slow rate from the time of deposition (220 Ma) to 100-70 Ma. Because all the hydrocarbon 

fields studied are located on structural highs, the impact of Late Jurassic rift-related 

subsidence is largely absent from the burial history plots, or is obscured by erosion 

associated with the Base Cretaceous (end-rift) unconformity.  The second phase of burial is 

related to post-rift subsidence and infilling of accommodation space within the Central 

Graben from 90 Ma until the present-day. The fields now all reside at maximum burial depth. 
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The burial histories of the Heron Cluster fields, the J-Ridge fields and the Norwegian fields 

show similar burial histories due to their proximity to each other (Figure 1). 

The Judy Sandstone Member in the Heron and Skua fields experienced a phase of 

burial with maximum depths of around 1200 m followed by a phase of uplift during the early 

burial history (deposition to 165 Ma). Burial depth remained shallow, with maximum depths 

of around 500 m from 165 Ma until 90 Ma. From 90 Ma onwards, burial was rapid and the 

Triassic sandstone members are at their maximum burial depths at the present day (Figure 

7). The calculated overpressure started to build up in the Judy Sandstone Member at the 

Heron and Skua fields at around 60 Ma and 45 Ma, respectively, with onset burial depths of 

around 1550 m and 1250 m for the reservoir formation tops, respectively. The development 

of this overpressure reflects disequilibrium compaction beneath the overlying Chalk. 

Overpressure increased continuously with ongoing burial and reached 1 MPa at burial 

depths of 1650 m and 1750 m in the Heron and Skua fields. Pore pressures are at their 

maxima at the present day, around 41 MPa for the Heron field and 28 MPa for the Skua 

field. The continuous overpressure increase from its onset around 60 Ma has reduced the 

rate of VES accrual. The maximum modelled VES is reached around 10 Ma, with a value of 

approximately 21.5 MPa in the Heron Field and 23 MPa in the Skua Field. This was followed 

by a trend of decreasing VES until the present day due to significant overpressure build-up 

in the last 10 Myr. The present-day VES values for the two fields are around 6 MPa for 

Heron and 12 MPa for Skua (Figure 7). 

The Joanne Sandstone Member of the J-Ridge Jade and Judy fields was also 

shallowly buried until 90 Ma. This early history commenced with a short phase of shallow 

burial followed by uplift during the latest Triassic and early Jurassic. Rapid burial 

commenced around 90 Ma and continued almost without interruption again towards the 

present-day maximum burial depth (Figure 7). The 1D models suggest pore fluid 

overpressure started to build up from around 65 Ma and 50 Ma when burial was around 

1250 m and 1350 m for the Jade and Judy fields, respectively. The modelled overpressure in 

both Triassic formations increased with ongoing burial and reached 1 MPa in Jade and Judy 
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at burial depths of around 1400 m and 1500 m, respectively. Pore fluid overpressures are at 

their maxima at the present day with values around 38 MPa and 25 MPa in the Jade and 

Judy fields respectively. As before, the continuous increase of overpressure reduced the rate 

of VES accrual in both reservoirs (Figure 7). Prior to production, the estimated VES was 11 

MPa in the Jade Field and 8 MPa in the Judy Field when buoyancy of the trapped 

hydrocarbon columns is included. Without these columns, the VES related to aquifer 

overpressure (modelled by 1D PetroMod) was around 17 MPa and 16 MPa, respectively. 

Maximum VES of the J-Ridge fields was again reached at around 10 Ma followed by VES 

reductions until the present day by additional overpressure mechanisms. Maximum VES in 

the Jade and Judy fields is modelled as 22 MPa and 19.5 MPa, respectively, at 

approximately 10 Ma (Figure 7).  

The Triassic sandstones of the Norwegian Cod and Gaupe fields also experienced a 

shallow burial phase from deposition to around 140 Ma and 60 Ma, followed by a phase of 

continuous burial towards present-day maximum depths (Figure 7). Modelled overpressure 

in the reservoir sandstones started to build up during the continuous burial at depths of 

around 1350 m and 1150 m. The overpressure increased during ongoing burial and reached 

1 MPa at 50 Ma (~2200 m) and 20 Ma (~2300 m) in the Cod and the Gaupe fields, 

respectively. Overpressure in the Cod field increased significantly from the Late Miocene to 

the present-day overpressure of 34 MPa. Overpressuring of the Triassic reservoir 

sandstones led to a VES reduction from around a maximum modelled value of 36 MPa to 19 

MPa at the present day (Figure 7). The VES history of the Gaupe field is less affected by 

overpressure due to its late onset and low magnitude. Present-day overpressure in the 

Gaupe Field is modelled as 6.5 MPa, with a VES of around 27 MPa for the Gaupe 

sandstones (Figure 7). 

 

Discussion 

Implications of overpressure on vertical effectives stress  
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VES is long recognised as the main driver of early porosity loss by mechanical compaction 

processes during shallow burial (0–2500 m) (Houseknecht, 1987, 1988; Paxton et al., 2002). 

Limiting the accrual rate or reducing the VES during burial by pore fluid overpressure can 

slow down or arrest mechanical compaction and reduce its effect on porosity loss, leading to 

the maintenance of primary porosity to depth (Bloch et al., 2002; Nguyen et al., 2013; 

Stricker and Jones, 2016). Even though this effect has been well known since Terzaghi’s 

introduction of the effective stress concept, the impact of low VES due to overpressure has 

often been overlooked or underestimated in reservoir quality studies (e.g. Taylor et al., 

2015). However, to preserve enhanced reservoir quality by overpressure, the magnitude of 

overpressure, its continued maintenance during progressive burial, and the depth where the 

overpressures first started to develop must all be considered. Late development of 

overpressure at greater depth (for example by fluid transfer or expansion) will not be 

associated with a reduced compaction state and enhanced porosity.  

 

IGV as a proxy for maximum VES and shallow overpressure development 

As discussed by (Houseknecht, 1987, 1988; Lundegard, 1992; Ehrenberg, 1995; Paxton et 

al., 2002), IGV, or minus-cement porosity, with its diminishing trend with ongoing burial 

depth or increased VES reflects the degree of mechanical compaction (e.g. grain 

rearrangement) and chemical compaction at greater depths (i.e. pressure solution). 

The quantification of the IGV development with depth has been the subject of various 

studies (e.g. Houseknecht, 1987, 1988; Lundegard, 1992) which highlighted significant IGV 

loss by mechanical compaction during shallow burial, with a physical lower limit of 26-30% 

established at burial depth of 2000-2500 m, depending on the grain size, sorting and rock 

composition. A global study by (Paxton et al., 2002) resulted in an intergranular volume 

compaction curve with depth, which identified major IGV loss (10-12%) during shallow burial 

(<1500 m) in uncemented, rigid-grained sandstones and established a physical lower limit of 

around 26% at 2500 m burial depth. Therefore IGV values of less than 26% reflect 
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significant chemical compaction (i.e. pressure solution) within the rigid grain frame work 

(Paxton et al., 2002).  

The application of the physical lower limit by Paxton et al. (2002) on the average IGV 

of the six Triassic Skagerrak data sets indicates under-compaction in three Central Graben 

samples sets (Judy, Heron and Skua) and significant chemical compaction in the Cod 

sample set (Table 5 & Figure 8). The low mechanical compaction state (under-compaction) 

of the Judy, Heron and Skua fields is further supported by petrographic evidence, such as 

floating grains and the frequency of low mechanical compaction grain contacts. The under-

compaction in overpressured sandstones is likely result due to retardation of early 

mechanical compaction by overpressure development during shallow burial (<2500 m) 

(Bloch et al., 2002; Paxton et al., 2002). Overpressure, developed at shallow depth and 

continuously increased with ongoing burial, reduces the VES accrual and often leads to 

under-compaction, in relation to hydrostatically pressured sandstones at equivalent burial 

depth (e.g. Sclater and Christie, 1980), due to lower maximum VES acting on the grain 

framework. This can be observed in the Judy field, where IGV values are higher than 

expected (>26%, Table 5), due to shallow overpressure development and a constantly 

reduced VES accrual rate (Figure 7), resulting in the experience of lower maximum VES and 

a low mechanical compaction state for the present-day burial depth (e.g. Nguyen et al., 

2013; Stricker and Jones, 2016). A similar correlation can be made for the present-day IGV 

values and the experienced maximum VES of the Heron and Skua fields, where IGV values 

are slightly higher than the expected 26% (Table 5 & Figure 8). The Cod sample set, 

demonstrated evidence for a high compaction state due to pressure solution at grain-to-grain 

contacts and a lower average IGV of around 21% (Table 6). This is most likely caused by the 

normal VES development prior to the deep overpressure onset (>2200 m), with a slow 

increase rate, which results a higher VES accrual rate and higher experienced maximum 

VES (36 MPa) during the burial history. The relationship between IGV and maximum VES in 

the Skagerrak samples sets demonstrate mechanical compaction is the main reservoir 

quality controlling factor, where measured IGV represents a good proxy (Figure 8).  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

 

VES development and influence on reservoir quality 

Mechanical compaction, driven by VES, is recognised as an important porosity reducing 

process during shallow burial (0–2500 m) of siliciclastic sediments (Houseknecht, 1987, 

1988; Paxton et al., 2002). Limiting the accrual rate or reducing the VES by overpressure 

during burial can slow down or arrest mechanical compaction and reduce its effect on 

porosity loss, leading to the maintenance of primary porosity to depth. This has been the 

subject of several empirical studies (e.g. Ramm and Bjørlykke, 1994; Gluyas and Cade, 

1997) where the present-day porosities been related to present-day pore fluid 

overpressures. Hence the effect of overpressure development (i.e. timing, increase rate and 

maintenance) was not considered. However, the interaction of overpressure and the VES 

throughout the burial history must be considered to predict porosity preservation based on 

low mechanical compaction. Late development of overpressure at greater depth (for 

example by fluid transfer or expansion) will not be associated with a reduced compaction 

state. We infer that compaction has taken place by stress-sensitive porosity loss, both as 

mechanical compaction (i.e., grain rearrangement) and chemical compaction (i.e., pressure 

solution and cementation). The present-day compaction state of the sandstones has been 

determined by IGV measurements and the frequency measurements of distinctive 

petrographic features (i.e., grain contact types) in the fine-grained sandstones (Figure 9 & 

Table 6).  

 The importance of the VES development for the porosity preservation is highlighted 

by the comparison of two endmembers of this study; Judy and Cod. Even though both 

selected sample sets show the same primary attributes controlled by deposition (fine 

grained, well sorted, similar composition), they exhibit different present-day compaction 

states, reflecting different VES histories. The development of VES in the Joanne Sandstone 

Member of the Judy Field occurred from 90 Ma onwards. The rate of VES increase was 

arrested with early onset of overpressure at depth of 1350 m (Figure 7). The shallow 

overpressure development in the Joanne Sandstone Member reduced the VES accrual from 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

an early stage onwards, which led to a reduced maximum VES acting on the grain 

framework. This VES evolution is reflected by anomalously high present-day porosities 

(Figure 4), high average IGV values (Figure 8) and a high frequency of point contacts (Table 

6 & Figure 9) in the Judy sample set. The higher present-day compaction state of the Cod 

sandstone samples on the other hand, reflects a more normal VES development of the 

Skagerrak Formation in the Cod field (Figure 7). VES in the sands started to increase slowly 

at around 150 Ma, with a significant increase of the VES accrual at 100 Ma, which was 

coupled to increased burial rate. VES increased to around 20 MPa prior to the main phase of 

overpressure development at a burial depth of ~2200 m (Figure 7). The development of VES 

to a burial depth of ~2200m led to the significant mechanical compaction and porosity loss of 

the Skagerrak Formation channel sands in the Cod field. The Cod field sample data set 

supports the burial and pressure modelling where low porosities (Figure 4), low average IGV 

(Table 5) and high frequencies of concavo-convex and sutured grain contact types, indicate 

a higher degree of compaction and pressure solution (Figure 9).   

 The comparison of the Judy and Cod sample sets shows that the compaction state 

and reservoir quality in the Skagerrak Formation sandstones in the North Sea are highly 

dependent on the experienced maximum VES, which has been controlled by the interplay of 

burial depth (i.e., stress induced by the overburden) and the pore fluid overpressure (Figure 

9). The positive effect of overpressure or low VES towards retardation of mechanical 

compaction has been previously observed by modelling studies of (Lander and Walderhaug, 

1999; Paxton et al., 2002), .Furthermore, high primary porosities, maintained by shallow 

overpressure have been documented for the Skagerrak Formation  sands of the Judy Field 

(Nguyen et al., 2013; Stricker and Jones 2016). 

 However, a recent study by Taylor et al. (2015) partly focusing on the Skagerrak 

Formation (Egret, Heron, Seagull & Skua) deny the contribution of shallow overpressure 

development and reduced VES towards the excellent reservoir quality in the UK Quadrant 

22 and attribute the enhanced porosity to chlorite grain coatings. The role played by chlorite 

coatings in these reservoirs are significant in reducing quartz cementation and correlates 
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with quantities of quartz cement, but does not reflect the present-day compaction state, the 

high IGV values and low frequency of concavo-convex and sutured grain contacts in this 

region. We propose a mixed approach of low maximum VES and high fraction of chlorite 

coated grains for the porosity preservation in the Heron and Skua fields. 

The petrographically observed results of this study complement the empirical porosity 

and VES trends discussed by (Grant et al., 2014). They looked at trends in total porosity 

within the Skagerrak Formation derived from petrophysical log analysis using Vshale and 

thickness filters to remove facies and bed-scale variability. These trends strongly suggested 

that compaction is the dominant factor controlling average reservoir porosity. The modelling 

done here, in conjunction with the petrographic observations help substantiate this model 

and provide petrographic evidence for the processes involved. Even at the grain scale the 

compaction state shows a correlation to the modelled estimated maximum VES during 

burial. Maximum VES typically occurred around 10 Ma before late burial and fluid pressure 

inflation. 

When looked at carefully it is clear that other influences, beside VES can a role in 

determining reservoir quality. Chlorite coatings and the presence of microquartz rims (e.g. 

Taylor et al., 2015) dictate the ability of authigenic quartz cements to form at detrital grain 

surfaces and potentially occlude porosity. Low VES due to overpressure development helps 

retard pressure solution and thus restrict the amount of locally sourced silica available to 

enter into solution. In the absence of significant cementation, compaction is left to play its 

over-arching role. 
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Conclusion 

1) Excellent reservoir quality with anomalously high porosity is preserved in many HPHT 

reservoirs of the Skagerrak Formation in the Central Graben, North Sea. However, 

despite similar diagenetic histories, reservoir quality and preserved porosity can vary 

from excellent to non-economic in HPHT reservoirs of the Central Graben area.  

2) Excellent reservoir quality with anomalously high porosities of up to 35% at burial depth 

of >3500 m bsf is preserved in the UK sectors of the Central Graben. Shallow onset 

and continuous increase of overpressure reduced the VES in the Heron, Jade, Judy 

and Skua fields and resulted in under-compaction of the fluvial channel reservoirs for 

their present-day depth of burial. 

3) Continuous compaction in the Norwegian HPHT reservoir sandstones (Cod & Gaupe) 

of the Central Graben reduced the reservoir quality with porosities <10% due to deeper 

overpressure onset and late VES reduction.  

4) This research has demonstrated the importance of identifying the timing of 

overpressure generation and its maintenance for arresting mechanical compaction 

during progressive burial. The results are consistent with a model where VES affects 

both the compaction state and subsequent cementation of the reservoir. It has clearly 

identified the importance of VES in reservoir quality studies especially for HPHT basins.  
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Figures 

 

Figure 1 - Regional base Cretaceous unconformity two-way time (TWT) map of the Central 

Graben, North Sea, highlighting the location of the six investigated Skagerrak Formation 

fields.   

 

Figure 2 - Regional stratigraphy of the Central Graben, North Sea 

 

Figure 3 - Grain size distribution and porosity for the Heron (136 samples), Skua (32), Jade 

(20), Judy (85), Cod (39) and Gaupe (90) sample sets, with the average (point), maximum 

and minimum porosity per grain size 

 

Figure 4 – Helium (grey) and optical porosity (black) distribution with depth (in true vertical 

depth below mean sealevel) for the Heron, Skua, Jade, Judy (diamonds: 30/7a-9; points: 

30/7a-7, -8, -11Z, -P3 & 30/13-5), Cod and Gaupe sample sets, with optical porosity of fine 

grained samples  in solid black, a regional Central North Sea porosity-depth relationship for 

hydrostatically pressured shaly sandstone (Sclater and Christie, 1980). Large black circles 

represent PetroMod calibration porosity of the respective Skagerrak Formation sandstone. 

 

Figure 5 - Compactional (COPL) and cementational (CEPL) porosity loss for the Heron, 

Skua, Jade, Judy, Cod and Gaupe fine grained data sets with remaining sample porosity 

(dashed lines). COPL and CEPL calculated after Lundegard (1992). 

 

Figure 6 - Micrographs of thin sections highlighting different compaction stages, A) Judy 

(30/7a-8; 3502 m bsf): grain framework with 24% optical porosity and ‘floating’ grains; B) 

Jade (30/2c-4; 4605 m bsf): sample with 14.5% optical porosity; C) Gaupe (6/3-1; 2886 m 

bsf): densely packed grain framework with 7.5% optical porosity; D) Gaupe (6/3-1; 2885 m 
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bsf): bended and compressed mica grain; E) Cod (7/11-7; 4284 m bsf): concavo-convex 

grain contact; F) Cod (7/11-7; 4289 m bsf): sutured grain contact 

 

Figure 7 - Evolution of burial depth (grey), pore fluid overpressure (OP) and vertical effective 

stress (VES) for the top of the Heron (22/29-5RES1), Skua (22/24b-7), Jade (30/2c-4), Judy 

(30/7a-9), Cod (7/11-7) and Gaupe (6/3-1) Skagerrak sandstone reservoirs  

 

Figure 8 – Measured intergranular volumes, with average values, of Heron, Skua, Jade, 

Judy, Cod and Gaupe fine grained samples plotted against formational maximum vertical 

effective stress (VES) with a best fit trend lines for average IGV 

 

Figure 9 - Fraction of point and concavo-convex grain contacts of Heron, Skua, Jade, Judy, 

Cod and Gaupe fine grained samples plotted against formational maximum vertical effective 

stress (VES)  with best fit trend lines for average fraction point and concavo-convex contacts 
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Tables 

 

Table 1 - Lithology type and respective thickness of the modelled layers for the Heron, Skua, 

Jade and Judy PetroMod models (the modelled key Skagerrak Formation reservoir unit in 

bold), with Sh: Shale, Sst: Sandstone, Non-Res.: Non-Reservoir Chalk and Res. Sst.: 

Reservoir Sandstone (80% Sand, 10% Silt and 10% Clay) 

 

Table 2 - Lithology type and respective thickness of the modelled layers for the Cod and 

Gaupe models (the modelled key Skagerrak Formation reservoir unit in bold), with Sh: Shale 

and Res. Sst.: Reservoir Sandstone (80% Sand, 10% Silt and 10% Clay) 

 

Table 3 - Non-reservoir North Sea Hod chalk model parameters, after Mallon and Swarbrick 

(2002, 2008) 

 

Table 4 – Optical porosities categorised by grain size, helium porosities and average grain 

size per sample set. 

 

Table 5 - Measured intergranular volume (IGV) of the Heron, Skua, Jade, Judy, Cod and 

Gaupe fine grained samples 

 

Table 6 - Distribution of distinctive grain contacts (point contact, long or tangential contact, 

concavo-convex (C&C) contact, sutured contact) for selected fine grained samples of the 

Heron, Skua, Jade, Judy, Cod and Gaupe sample sets 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

Literature 

Allen, P.A., Allen, J.R., 1990. Basin analysis: principles and applications. Blackwell, Oxford. 

Andrews-Speed, C., Oxburgh, E.R., Cooper, B., 1984. Temperatures and depth-dependent 
heat flow in western North Sea. AAPG Bulletin, 68, 1764-1781. 

Beard, D., Weyl, P., 1973. Influence of Texture on Porosity and Permeability of 
unconsolidated Sand. AAPG Bulletin, 57, 349-369. 
 
Bishop, D.J., 1996. Regional distribution and geometry of salt diapirs and supra-Zechstein 
Group faults in the western and central North Sea. Marine and petroleum geology 13, 355-
364. 

Bloch, S., Lander, R.H., Bonnell, L., 2002. Anomalously high porosity and permeability in 
deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin 86, 301-328. 

Chuhan, F.A., Kjeldstad, A., Bjørlykke, K., Høeg, K., 2002. Porosity loss in sand by grain 
crushing—Experimental evidence and relevance to reservoir quality. Marine and Petroleum 
Geology, 19, 39-53. 

De Jong, M., Smith, D., Nio, S., Hardy, N., 2006. Subsurface correlation of the Triassic of the 
UK southern Central Graben: new look at an old problem. First Break, 24, 103-109. 

Ehrenberg, S., 1995. Measuring sandstone compaction from modal analysis of thin sections: 
how to do it and what the results mean. Journal of Sedimentary Research, 65, 369-379 

Erratt, D., Thomas, G., Wall, G., 1999. The evolution of the central North Sea Rift, Petroleum 
Geology of Northwest Europe: Proceedings of the 5th Conference. Geological Society, 
London, pp. 63-82. 

Glennie, K.W., 1998. Petroleum geology of the North Sea: basic concepts and recent 
advances. Blackwell, Oxford.. 

Gluyas, J., Cade, C.A., 1997. Prediction of porosity in compacted sands. AAPG Memoir 69, 
19-28. 

Goldsmith, P., Hudson, G., Van Veen, P., 2003. Triassic. The Millenium Atlas: Petroleum 
geology of the central and northern North Sea: Geological Society (London), 105-127 

Goldsmith, P., Rich, B., Standring, J., 1995. Triassic correlation and stratigraphy in the south 
Central Graben, UK North Sea. Geological Society, London, Special Publications 91, 123-
143. 

Gowers, M.B., Sæbøe, A., 1985. On the structural evolution of the Central Trough in the 
Norwegian and Danish sectors of the North Sea. Marine and Petroleum Geology 2, 298-318. 

Grant, N.T., Middleton, A.J., Archer, S., 2014. Porosity trends in the Skagerrak Formation, 
Central Graben, United Kingdom Continental Shelf: The role of compaction and pore 
pressure history. AAPG Bulletin 98, 1111-1143. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 
 

Grove, C., Jerram, D.A., 2011. jPOR: An ImageJ macro to quantify total optical porosity from 
blue-stained thin sections. Computers & Geosciences 37, 1850-1859. 

Houseknecht, D.W., 1984. Influence of grain size and temperature on intergranular pressure 
solution, quartz cementation, and porosity in a quartzose sandstone. Journal of Sedimentary 
Research 54, 348-361 

Houseknecht, D.W., 1987. Assessing the Relative Importance of Compaction Processes and 
Cementation to Reduction of Porosity in Sandstones. AAPG Bulletin 71, 633-642. 

Houseknecht, D.W., 1988. Intergranular pressure solution in four quartzose sandstones. 
Journal of Sedimentary Research 58, 228-246. 

Isaksen, G.H., 2004. Central North Sea hydrocarbon systems: Generation, migration, 
entrapment, and thermal degradation of oil and gas. AAPG Bulletin 88, 1545-1572. 

Kape, S., De Souza, O.D., Bushnaq, I., Hayes, M., Turner, I., 2010. Predicting production 
behaviour from deep HPHT Triassic reservoirs and the impact of sedimentary architecture 
on recovery, Geological Society, London, Petroleum Geology Conference series. Geological 
Society of London, pp. 405-417. 

Lander, R.H., Walderhaug, O., 1999. Predicting porosity through simulating sandstone 
compaction and quartz cementation. AAPG Bulletin 83, 433-449. 

Lundegard, P.D., 1992. Sandstone porosity loss; a" big picture" view of the importance of 
compaction. Journal of Sedimentary Petrology 62, 250-260. 

Mallon, A., Swarbrick, R., 2002. A compaction trend for non-reservoir North Sea Chalk. 
Marine and Petroleum Geology 19, 527-539. 

Mallon, A., Swarbrick, R., 2008. Diagenetic characteristics of low permeability, non-reservoir 
chalks from the Central North Sea. Marine and Petroleum Geology 25, 1097-1108. 

Matthews, W.J., Hampson, G.J., Trudgill, B.D., Underhill, J.R., 2007. Controls on 
fluviolacustrine reservoir distribution and architecture in passive salt-diapir provinces: 
Insights from outcrop analogs. AAPG Bulletin 91, 1367-1403. 

McBride, E.F., 1989. Quartz cement in sandstones: a review. Earth-Science Reviews 26, 69-
112. 

McKie, T., Audretsch, P., 2005. Depositional and structural controls on Triassic reservoir 
performance in the Heron Cluster, ETAP, Central North Sea, Geological Society, London, 
Petroleum Geology Conference series. Geological Society of London, pp. 285-297. 

Nguyen, B.T.T., Jones, S.J., Goulty, N.R., Middleton, A.J., Grant, N., Ferguson, A., Bowen, 
L., 2013. The role of fluid pressure and diagenetic cements for porosity preservation in 
Triassic fluvial reservoirs of the Central Graben, North Sea. AAPG Bulletin 97, 1273-1302. 

Osborne, M.J., Swarbrick, R.E., 1997. Mechanisms for generating overpressure in 
sedimentary basins: A reevaluation. AAPG Bulletin 81, 1023-1041. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 
 

Osborne, M.J., Swarbrick, R.E., 1999. Diagenesis in North Sea HPHT clastic reservoirs—
Consequences for porosity and overpressure prediction. Marine and Petroleum Geology 16, 
337-353. 

Paxton, S., Szabo, J., Ajdukiewicz, J., Klimentidis, R., 2002. Construction of an intergranular 
volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-
grain sandstone reservoirs. AAPG Bulletin 86, 2047-2067. 

Ramm, M., Bjørlykke, K., 1994. Porosity/depth trends in reservoir sandstones: Assessing the 
quantitative effects of varying pore-pressure, temperature history and mineralogy, 
Norwegian Shelf data. Clay Minerals 29, 475-490. 

Sclater, J.G., Christie, P.A.F., 1980. Continental stretching: An explanation of the 
post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical 
Research: Solid Earth (1978–2012) 85, 3711-3739. 

Smith, R., Hodgson, N., Fulton, M., 1993. Salt control on Triassic reservoir distribution, 
UKCS central North Sea, Geological Society, London, Petroleum Geology Conference 
series. Geological Society of London, pp. 547-557. 

Stricker, S., Jones, S J., 2016. Enhanced porosity preservation by pore fluid overpressure 
and chlorite grain coatings in the Triassic Skagerrak, Central Graben, North Sea, UK. 
Geological Society, London, Special Publications, 435, doi:10.1144/SP435.4 
 
Swarbrick, R., Osborne, M., Grunberger, D., Yardley, G., Macleod, G., Aplin, A., Larter, S., 
Knight, I., Auld, H., 2000. Integrated study of the Judy field (Block 30/7a)—An overpressured 
central North Sea oil/gas field. Marine and Petroleum Geology 17, 993-1010. 

Swarbrick, R.E., Lahann, R.W., O'Connor, S.A., Mallon, A.J., 2010. Role of the Chalk in 
development of deep overpressure in the Central North Sea, Geological Society, London, 
Petroleum Geology Conference series. Geological Society of London, pp. 493-507. 

Swarbrick, R.E., Osborne, M.J., 1998. Mechanisms that Generate Abnormal Pressures: an 
Overview. AAPG Memoir 70, 13-34 

Swarbrick, R.E., Osborne, M.J., Yardley, G.S., 2002. Comparison of overpressure 
magnitude resulting from the main generating mechanisms. AAPG Memoir 76, 1-12. 

Taylor, T.R., Giles, M.R., Hathon, L.A., Diggs, T.N., Braunsdorf, N.R., Birbiglia, G.V., 
Kittridge, M.G., Macaulay, C.I., Espejo, I.S., 2010. Sandstone diagenesis and reservoir 
quality prediction: Models, myths, and reality. AAPG Bulletin 94, 1093-1132. 

Taylor, T.R., Kittridge, M.G., Winefield, P., Bryndzia, L.T., Bonnell, L.M., 2015. Reservoir 
quality and rock properties modeling–Triassic and Jurassic sandstones, greater Shearwater 
area, UK Central North Sea. Marine and Petroleum Geology 65, 1-21. 

Vagle, G.B., Hurst, A., Dypvik, H., 1994. Origin of quartz cements in some sandstones from 
the Jurassic of the Inner Moray Firth (UK). Sedimentology 41, 363-377. 

Walderhaug, O., 1990. A Fluid Inclusion Study of Quartz-Cemented Sandstones from 
Offshore Mid-Norway--Possible Evidence for Continued Quartz Cementation During Oil 
Emplacement. Journal of Sedimentary Research 60, 203-210. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 
 

Walderhaug, O., 1994. Precipitation rates for quartz cement in sandstones determined by 
fluid-inclusion microthermometry and temperature-history modeling. Journal of Sedimentary 
Research 64, 311-323. 

Worden, R., Morad, S., 2000. Quartz cementation in oilfield sandstones: a review of the key 
controversies. Special Publication, International Association of Sedimentologists, 1-20. 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Group/ 
Formation 

Heron (22/29-5RE) Skua (22/24b-7) Jade (30/2c-4) Judy (30/7a-9) 

Thick. Lithology Thick. Lithology Thick. Lithology Thick. Lithology 

[m] [-] [m] [-] [m] [-] [m] [-] 

Nordland 1407 Shale 1762 Shale 1624 Shale 1424 Shale 

Lark/Horda 1396 Shale 957 Shale 1364 Shale 1357 Shale 

Tay 15 Sandy Sh. 
      

Balder 18 Shale 12 Shale 22 Silty Sh. 17 Silty Sh. 

Sele 31 Sandy Sh. 21 Shale 39 Silty Sh. 54 Silty Sh. 

Forties 187 Sandstone 79 Sandstone 58 Sandstone   
Lista 49 Silty Sh.   16 Shale 16 Shale 

Mey 
    24 Shale   

Andrew 51 Siltstone 81 Siltstone 
  

89 Silty Sh. 

Maureen 82 Marl 54 Marl 135 Sandstone 92 Sst/Marl 

Ekofisk 94 Chalk 76 Marl 83 Marl 28 Chalk 

Tor 459 Chalk 300 Chalk 506 Marl 226 Chalk 

Hod 335 Non-Res. 98 Non-Res. 529 Non-Res. 154 Non-Res. 

Herring 9 Marl       
Valhall 63 Marl 19 Marl 87 Shale 22 Sandy Sh. 

Humber 0 Shale 0 Shale 0 Shale 0 Shale 

Lias 
      3 Shale 

Fladen 0 Sandstone 0 Sandstone 0 Sandstone 0 Sandstone 

Joshua 0 Silty Shale 0 Silty Sh. 0 Silty Sh. 0 Silty Sh. 

Josephine 0 Res. Sst 0 Res. Sst 0 Res. Sst 0 Res. Sst 

Jonathan 0 Silty Sh. 0 Silty Sh. 0 Silty Sh. 38 Silty Sh. 

Joanne 23 Res. Sst 0 Res. Sst 384 Res. Sst 469 Res. Sst 

Julius 41 Silty Sh. 0 Silty Sh. 54 Silty Sh. 140 Silty Sh. 

Judy 339 Res. Sst 468 Res. Sst 400 Res. Sst 385 Res. Sst 

Smith Bank 200 Silty Sh. 118 Silty Sh. 600 Silty Sh. 200 Silty Sh. 

Zechstein 208 Salt 207 Salt 500 Salt 208 Salt 
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Group/ 
Formation 

Cod (7/11-7) Gaupe (6/3-1) 

Thick. Lithology Thick. Lithology 

[m] [-] [m] [-] 

Nordland 1503 Shale 1211 Shale 

Hordaland 1317 Shale 1115 Shale 

Balder 13 Shale 14 Shale 

Sele 39 Shale 87 Shale 

Lista 190 Sandy Sh. 1 Shale 

Maureen 13 Sandy Sh. 136 Chalk 

Ekofisk 79 Chalk 6 Chalk 

Tor 405 Chalk 165 Chalk 

Hod 324 Chalk 78 Chalk 

Blodoks 8 Shale   
Hidra 109 Chalk   
Rodby 41 Marl   
Asgard 42 Marl 41 Shale 

Mandal 42 Shale   
Farsund 78 Shale 2 Shale 

Ula 38 Sandstone   
Gassum 

  13 Sandstone 

Skagerrak 287 Res. Sst 545 Res. Sst 

Smith Bank 200 Silty Sh. 200 Silty Sh. 

Zechstein 200 Salt 200 Salt 
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Model Parameter (Hod Formation) 

Mechanical compaction Permeability 

Porosity Depth Porosity Permeability 

[%] [m] [%] [log(mD)] 

70.00 0 70.00 1.00 

18.00 1300 30.00 -1.00 

12.50 2100 25.00 -3.00 

8.00 3100 20.00 -5.50 

5.00 4500 12.50 -7.20 

 
9.00 -7.20 

5.00 -7.20 
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Field Porosity 

Optical porosity by grain size 
Helium 
porosity 

Average 
grain 
size 

Silt Sand 
Silt very fine fine medium coarse 

[mm] [mm] [mm] [mm] [mm] [%] [mm] 

Heron 
Maximum 3.9 12.9 24.5 30.9  29 

0.136 Average 1.8 3.2 7.6 18  19.5 
Minimum 0.4 1 0.9 5.4  2.1 

Skua 
Maximum  14.4 32.2   27.8 

0.169 Average  10.4 11   17.4 
Minimum  6.5 3.1   2.2 

Jade 
Maximum  12.3 17.5   26.2 

0.146 Average  2.2 11 16.8  15.8 
Minimum  0.3 0.7   3.7 

Judy 
Maximum 2 18.3 28.1   35.6 

0.145 Average 0.9 6.4 16.1 25.7  23.3 
Minimum 0.3 0.2 0.3   2.3 

Cod 
Maximum  5.9 10.3 6.5  20.4 

0.204 Average 0.6 3.1 3.9 3.9  9.8 
Minimum  0.6 0.3 0.1  1.8 

Gaupe 
Maximum  6.1 17.8 25.1 20.4 24.9 

0.323 Average  5.4 4.9 10.4 11.1 14.3 
Minimum  4.9 0.2 1.5 0.6 1.9 
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Field 
IGV 

Minimum Average Maximum 
Heron 20 27.3 36 
Skua 19 27.1 34.3 
Jade 15 22.2 28 
Judy 19.33 28.2 36.3 
Cod 15 21.1 34 

Gaupe 9.3 25.7 35 
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Sample data Grain contacts [%] 

Field Well Sample Point Long C&C Sutured 

Heron 22 29-5RE 

15614'9 16.00 52.00 32.00 0.00 

15675'10 12.00 48.00 40.00 0.00 

15691'6 18.00 46.00 36.00 0.00 

15724'11 16.00 46.00 38.00 0.00 

15749'1 22.00 36.00 42.00 0.00 

15760'11 14.00 46.00 40.00 0.00 

Average 16.33 45.67 38.00 0.00 

Skua 22 24b-7 

11909'4 8.00 42.00 44.00 6.00 

11932' 4.00 50.00 42.00 4.00 

11882'2 12.00 42.00 46.00 0.00 

12086'3 18.00 44.00 38.00 0.00 

11971'1 16.00 40.00 42.00 2.00 

11908'3 10.00 44.00 44.00 2.00 

Average 11.33 43.67 42.67 2.33 

Jade 30 2c-4 

s8 - 15615.94 10.00 52.00 34.00 4.00 

15645 22.00 46.00 32.00 0.00 

15660 14.00 44.00 36.00 6.00 

s11 - 15660.33 8.00 46.00 46.00 0.00 

15678 20.00 36.00 40.00 4.00 

15748 16.00 32.00 50.00 2.00 

Average 15.00 42.67 39.67 2.67 

Judy 

30 7a-7 11496 24.00 46.00 30.00 0.00 

30 7a-8 

11688 32.00 46.00 22.00 0.00 

11731 32.00 46.00 22.00 0.00 

11820 44.00 34.00 22.00 0.00 

30 7a-9 
12077 34.00 42.00 24.00 0.00 

12167 30.00 46.00 24.00 0.00 

30 7a-11Z 
s12 - 11438.98 36.00 44.00 20.00 0.00 

s42 - 11660.53 32.00 42.00 26.00 0.00 

 
Average 33.00 43.25 23.75 0.00 

Cod 7 11-7 

4614.06 0.00 20.00 70.00 10.00 

4606.44 6.00 32.00 60.00 2.00 

4594.86 6.00 24.00 60.00 10.00 

4609.19 2.00 32.00 56.00 10.00 

4616.2 0.00 24.00 60.00 16.00 

Average 2.80 26.40 61.20 9.60 

Gaupe 6 3-1 

3063 8.00 48.00 42.00 2.00 

3102.03 10.00 34.00 52.00 4.00 

3107.77 12.00 42.00 44.00 2.00 

3108.75 4.00 42.00 46.00 8.00 

3061.1 6.00 48.00 44.00 2.00 

Average 8.00 42.80 45.60 3.60 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 


