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Testing if a given graph G contains the k-vertex path Pk as a minor or as an induced 
minor is trivial for every fixed integer k ≥ 1. However, the situation changes for the 
problem of checking if a graph can be modified into Pk by using only edge contractions. 
In this case the problem is known to be NP-complete even if k = 4. This led to an 
intensive investigation for testing contractibility on restricted graph classes. We focus on 
bipartite graphs. Heggernes, van ’t Hof, Lévêque and Paul proved that the problem stays
NP-complete for bipartite graphs if k = 6. We strengthen their result from k = 6 to k = 5. 
We also show that the problem of contracting a bipartite graph to the 6-vertex cycle C6
is NP-complete. The cyclicity of a graph is the length of the longest cycle the graph can 
be contracted to. As a consequence of our second result, determining the cyclicity of a 
bipartite graph is NP-hard.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Algorithmic problems for deciding whether the struc-
ture of a graph H appears as a “pattern” within the struc-
ture of another graph G are well studied. Here, the def-
inition of a pattern depends on the set S of graph op-
erations that we are allowed to use. Basic graph oper-
ations include vertex deletion vd, edge deletion ed and 
edge contraction ec. Contracting an edge uv means that 
we delete the vertices u and v and introduce a new ver-
tex with neighbourhood (N(u) ∪ N(v)) \ {u, v} (note that 
no multiple edges or self-loops are created in this way). 
A graph G contains a graph H as a minor if H can be ob-
tained from G using operations from S = {vd, ed, ec}. For 
S = {vd, ec} we say that G contains H as an induced minor, 
and for S = {ec} we say that G contains H as a contraction. 
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For a fixed graph H (that is, H is not part of the input), 
the corresponding three decision problems are denoted by 
H-Minor, H-Induced Minor and H-Contractibility, re-
spectively.

A celebrated result by Robertson and Seymour [16]
states that the H-Minor problem can be solved in cu-
bic time for every fixed pattern graph H . The prob-
lems H-Induced Minor and H-Contractibility are harder. 
Fellows et al. [7] gave an example of a graph H on 68 ver-
tices for which H-Induced Minor is NP-complete, whereas 
Brouwer and Veldman [4] proved that H-Contractibility

is NP-complete even when H = P4 or H = C4 (the 
graphs Ck and Pk denote the cycle and path on k ver-
tices, respectively). Both complexity classifications are still 
not settled, as there are many graphs H for which the 
complexity is unknown (see also [13]).

We observe that Pk-Induced Minor and Ck-Induced 
Minor are polynomial-time solvable for all k; it suffices to 
check if G contains Pk as an induced subgraph, that is, if G
is not Pk-free, or if G contains an induced cycle of length 
at least k. In order to obtain similar results to those for mi-
nors and induced minors, we need to restrict the input of 
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the Pk-Contractibility and Ck-Contractibility problems 
to some special graph class.

Of particular relevance is the closely related problem 
of determining the cyclicity [10] of a graph, that is, the 
length of a longest cycle to which a given graph can be 
contracted. Cyclicity was introduced by Blum [3] under 
the name co-circularity, due to a close relationship with 
a concept in topology called circularity (see also [1]). Later 
Hammack [10] coined the current name for the concept 
and gave both structural results and polynomial-time al-
gorithms for a number of special graph classes. He also 
proved that the problem of determining the cyclicity is
NP-hard for general graphs [11].

Van ’t Hof, Paulusma and Woeginger [14] proved 
that the P4-Contractibility problem is NP-complete for 
P6-free graphs, but polynomial-time solvable for P5-free 
graphs. Their results can be extended in a straightfor-
ward way to obtain a complexity dichotomy for Pk-Con-

tractibility restricted to P�-free graphs except for one 
missing case, namely when k = 5 and � = 6. Fiala, Kamiński 
and Paulusma [6] proved that Pk-Contractibility is NP-
complete on line graphs (and thus for claw-free graphs) 
for k ≥ 7 and polynomial-time solvable on claw-free graphs 
(and thus for line graphs) for k ≤ 4. The problems of de-
termining the computational complexity for the missing 
cases k = 5 and k = 6 were left open. The same authors 
also proved that C6-Contractibility is NP-complete for 
claw-free graphs [11], which implies that determining the 
cyclicity of a claw-free graph is NP-hard.

Hammack [10] proved that Ck-Contractibility is poly-
nomial-time solvable on planar graphs for every k ≥ 3. 
Later, Kamiński, Paulusma and Thilikos [15] proved that
H-Contractibility is polynomial-time solvable on pla-
nar graphs for every graph H . Golovach, Kratsch and 
Paulusma [9] proved that the H-Contractibility prob-
lem is polynomial-time solvable on AT-free graphs for ev-
ery triangle-free graph H . Hence, as C3-Contractibility

is readily seen to be polynomial-time solvable for gen-
eral graphs, Ck-Contractibility and Pk-Contractibility

are polynomial-time solvable on AT-free graphs for ev-
ery integer k ≥ 3. Heggernes et al. [12] proved that 
Pk-Contractibility is polynomial-time solvable on chordal 
graphs for every k ≥ 1. Later, Belmonte et al. [2] proved 
that H-Contractibility is polynomial-time solvable on 
chordal graphs for every graph H . Heggernes et al. [12]
also proved that P6-Contractibility is NP-complete even 
for the class of bipartite graphs.

1.1. Research question

We consider the class of bipartite graphs, for which we 
still have a limited understanding of the H-Contractibility

problem. In contrast to a number of other graph classes, 
as discussed above, bipartite graphs are not closed un-
der edge contraction, which means that getting a handle 
on the H-Contractibility problem is more difficult. We 
therefore focus on the H = Pk and H = Ck cases of the fol-
lowing underlying research question for H-Contractibility

restricted to bipartite graphs:

Do the computational complexities of H-Contractibility for 
general graphs and bipartite graphs coincide for every graph H?
This question belongs to a more general framework, 
where we aim to research whether for graph classes not 
closed under edge contraction, one is still able to ob-
tain “tractable” graphs H , for which the H-Contractibility

problem is NP-complete in general. For instance, claw-free 
graphs are not closed under edge contraction. However, 
there does exist a graph H , namely H = P4, such that 
H-Contractibility is polynomial-time solvable on claw-
free graphs and NP-complete for general graphs. Hence, 
being claw-free at the start is a sufficiently strong prop-
erty for P4-Contractibility to be polynomial-time solv-
able, even though applying contractions might take us out 
of the class. It is not known whether being bipartite at the 
start is also sufficiently strong.

1.2. Our contribution

We recall that the H-Contractibility problem is al-
ready NP-hard if H = C4 or H = P4. Hence, with respect 
to our research question we will need to consider small 
graphs H . While we do not manage to give a conclusive 
answer, we do improve upon the aforementioned result 
from Heggernes et al. [12] on bipartite graphs by showing 
in Section 3 that even P5-Contractibility is NP-complete 
for bipartite graphs.

Theorem 1. P5-Contractibility is NP-complete for bipartite 
graphs.

We also have the following result, which we prove in 
Section 4.

Theorem 2. The C6-Contractibility problem is NP-complete 
for bipartite graphs.

We observe that if a graph can be contracted to Ck for 
some integer k ≥ 3, it can also be contracted to C� for any 
integer 3 ≤ � ≤ k. Hence, as an immediate consequence of 
Theorem 2, we obtain the following result.

Corollary 1. The problem of determining whether the cyclicity 
of a bipartite graph is at least 6 is NP-complete.

2. A known lemma

A graph G contains a graph H as a contraction if and 
only if for every vertex h in V H there is a nonempty subset 
W (h) ⊆ V G of vertices in G such that:

• G[W (h)] is connected;
• the set W = {W (h) | h ∈ V H } is a partition of V G ; and
• for every hi, h j ∈ V H , there is at least one edge be-

tween the witness sets W (hi) and W (h j) in G if and 
only if hi and h j are adjacent in H .

The set W (h) is an H-witness set of G for h, and W is 
said to be an H-witness structure of G . If for every h ∈ V H

we contract the vertices in W (h) to a single vertex, then 
we obtain the graph H . Witness sets W (h) may not be 
uniquely defined, as there could be different sequences of 
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Fig. 1. Two P4-witness structures of a graph; the grey vertices form a P4-suitable pair [14].

Fig. 2. The graph G corresponding to the instance of Hypergraph 2-Colourability with Q = {q1,q2,q3} and S = {{q2,q3}, {q1,q2}, {q1,q2,q3}}.
edge contractions that modify G into H . A pair of vertices 
(u, v) of a graph G is P�-suitable for some integer � ≥ 3 if 
and only if G has a P�-witness structure W with W (p1) =
{u} and W (p�) = {v}, where P� = p1 . . . p� . See Fig. 1 for 
an example.

Lemma 1 ([14]). For � ≥ 3, a graph G is P�-contractible if and 
only if G has a P�-suitable pair.

3. The proof of Theorem 1

In this section we prove that P5-Contractibility is
NP-complete for bipartite graphs. The P5-Contractibility

problem restricted to bipartite graphs is readily seen to be 
in NP. Hence what remains is to prove NP-hardness.

Let (Q , S) be a hypergraph, where Q is some set of 
elements and S is a set of hyperedges, which are sub-
sets of Q . A 2-colouring of (Q , S) is a partition (Q 1, Q 2)

of Q with Q 1 ∩ S 	= ∅ and Q 2 ∩ S 	= ∅ for every S ∈ S . 
The corresponding decision problem is called Hypergraph 
2-Colourability and is well known to be NP-complete 
(see [8]). Just as in the proof of [4] for NP-hardness 
of P4-Contractibility for general graphs, we will re-
duce from Hypergraph 2-Colourability. In fact, just as 
the construction in the proof [12] for P6-Contractibility

for bipartite graphs, our construction borrows elements 
from [4], but is more advanced.

Let (Q , S) be a hypergraph with Q = {q1, . . . , qm} and 
S = {S1, . . . , Sn}. We may assume without loss of general-
ity that n ≥ 2, Si 	= ∅ for each Si and Sn = Q . Given the 
pair (Q , S), we will construct a graph G = (V , E) in the 
following way; see Fig. 2 for an example.
– Construct the incidence graph of (Q , S). This is a bipar-
tite graph with partition classes Q and S , and an edge 
between two vertices qi and S j if and only if qi ∈ S j .

– Add a set S ′ = {S ′
1, . . . , S

′
n} of n new vertices. Add an 

edge between qi and S ′
j if and only if qi ∈ S j . We say 

that S ′
j is a copy of S j and say that it represents a 

hyperedge that contains the same elements as S j .
– Add an edge between every S j and S ′

k , that is, the sub-
graph induced by S ∪ S ′ is complete bipartite.

– Subdivide each edge qi S j , that is, remove the edge qi S j

and replace it by a new vertex qi
j with edges qi

jqi

and qi
j S j . Let Q ′ consist of all the vertices qi

j .
– Add three new vertices q∗ , u1 and u2 and edges q∗u1, 

q∗u2.
– Add an edge between q∗ and every qi

j .
– Add an edge between u1 and every S j , and an edge 

between u2 and every S j .
– Add two new vertices v and w . Add the edges u1 v

and u2 v , and also an edge between w and every S ′
j .

The distance between two vertices in a graph is the 
number of edges of a shortest path between them. The di-
ameter of a graph is the maximum distance over all pairs 
of vertices in it. We note that the graph G may have ar-
bitrarily large induced paths (alternating between vertices 
in Q and S). However, as we will check in the proof of 
Lemma 3, G has diameter 4, and this property will be cru-
cial. We first prove the following lemma.

Lemma 2. The graph G is bipartite.
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Table 1
The (maximum) distances between two different (types of) vertices in G .

u1 u2 v w S S ′ Q Q ′ q∗
u1 0 2 1 3 1 2 3 2 1
u2 0 1 3 1 2 3 2 1
v 0 4 2 3 4 3 2
w 0 2 1 2 3 4
S 2 1 2 3 2
S ′ 2 3 2 3
Q 2 3 2
Q ′ 2 1
q∗ 0

Proof. We partition V into A = {q∗, v, w} ∪ S ∪ Q and 
B = {u1, u2} ∪ S ′ ∪ Q ′ , and note that G contains no edge 
between any two vertices in A and no edge between any 
two vertices in B . �
Lemma 3. The hypergraph (Q , S) has a 2-colouring if and only 
if the graph G contains P5 as a contraction.

Proof. Let P be on a path on five vertices p1, . . . , p5 in 
that order. First suppose that (Q , S) has a 2-colouring 
(Q 1, Q 2). We define W (p1) = {v}, W (p2) = {q∗, u1, u2}, 
W (p3) = S ∪ Q 1 ∪ Q ′ , W (p4) = S ′ ∪ Q 2 and W (p5) = {w}. 
We note that the sets W (p1), . . . , W (p5) are pairwise dis-
joint. Moreover, not only W (p1), W (p2) and W (p5), but 
also W (p3) and W (p4) induce connected subgraphs of G , 
as Sn and S ′

n are connected to every vertex in Q by def-
inition (either via a path of length 2 containing a ver-
tex of Q ′ or directly via an edge). We also observe that 
there are no edges between vertices from W (p1) and ver-
tices from W (p3) ∪ W (p4) ∪ W (p5), no edges between 
vertices from W (p2) and vertices from W (p4) ∪ W (p5)

and no edges between vertices from W (p3) and vertices 
from W (p5). We combine these observations with the ex-
istence of edges (for instance, vu1, u1 S1, S1 S ′

1 and S ′
1 w) 

between the two consecutive sets W (pi) and W (pi+1) for 
i = 1, . . . , 4 to conclude that the sets W (p1), . . . , W (p5)

form a P5-witness structure of G .
Now suppose that G contains P5 as a contraction. Then, 

by Lemma 1, we find that G has a P5-witness structure W , 
where W (p1) = {x} and W (p5) = {y} for some vertices x
and y. We refer to Table 1 for the distances between ver-
tices of different types. In this table, entries for a vertex 
and a set or for two sets display the maximum possi-
ble distance between them. For instance, the entry for S
and Q is 2, as the maximum distance between a vertex 
in S and a vertex in Q is 2. We also note, for instance, 
that the distance between any two vertices in Q is 2, be-
cause S ′

n is adjacent to every vertex of Q .
From Table 1 we can see that there are three possible 

choices for the pair {x, y}, which must be of distance at 
least 4 from each other in G , namely {x, y} = {v, qi} for 
any qi , {x, y} = {q∗, w} or {x, y} = {v, w}. We discuss each 
of these cases below.

Case 1. {x, y} = {v, qi}.
Let x = v and y = qi . From Table 1 we find that {u1, u2} ⊆
W (p2). Moreover, S ⊆ W (p3), as every vertex in S is of 
distance 2 from both v and qi . As W (p2) induces a con-
nected subgraph by definition and u1 is not adjacent to u2, 
this means that q∗ must be in W (p2). However, this is not 
possible as q∗ is of distance 2 from qi , which is in W (p5). 
Hence Case 1 is not possible.

Case 2. {x, y} = {q∗, w}.
Let x = q∗ and y = w . From Table 1 we find that Q ′ ∪
{u1, u2} ⊆ W (p2) and that S ′ ⊆ W (p4). The latter, com-
bined with the fact that every vertex of S is adjacent to 
every vertex of S ′ , implies that S ∩ W (p2) = ∅. Any path 
from a vertex in Q ′ to a vertex in {u1, u2} must contain 
at least one vertex of S ∪ {q∗}. As (S ∪ {q∗}) ∩ W (p2) = ∅, 
this means that W (p2) does not induce a connected sub-
graph. This violates the definition of a witness structure, 
so Case 2 is not possible either.

Case 3. {x, y} = {v, w}.
Let x = v and y = w . From Table 1 we find that {u1, u2} ⊆
W (p2). Moreover, S ⊆ W (p3), as every vertex in S is of 
distance 2 from both v and w . As W (p2) must induce 
a connected subgraph of G by definition, this means that 
q∗ ∈ W (p2). From Table 1 we also find that S ′ ⊆ W (p4).

By definition, W (p3) must induce a connected sub-
graph. Recall that S is an independent set. Hence, for 
each S j , we find that W (p3) contains at least one vertex 
not in S that connects S j to the other vertices of S (re-
call that by assumption, n ≥ 2, so there is at least one other 
vertex in S not equal to S j). As {u1, u2} ⊆ W (p2) and S ′ ⊆
W (p4), such a vertex can only be in Q ′ and we denote 
it by q′(S j). As every vertex in Q ′ has only three neigh-
bours and one of them is q∗ , which is in W (p2), we find 
that q′(S j) must be adjacent to a vertex q(S j) ∈ Q ∩W (p2)

in order to connect S j to the other vertices of S . Note that 
q(S j) = q(Sk) is possible for two vertices S j and Sk with 
k 	= j.

The set W (p3) also induces a connected subgraph 
and S ′ is an independent set of size at least 2. Hence, 
for each S ′

j , we find that W (p4) contains at least one ver-
tex not in S ′ that connects S ′

j to the other vertices of S ′ . 
As S ⊆ W (p3) and w ∈ W (p5), such a vertex can only be 
in Q and we denote it by q(S ′

j). Note that q(S ′
j) = q(S ′

k) is 
possible for two vertices S ′

j and S ′
k with k 	= j.

Let Q 1 be the subset of Q that contains all ver-
tices q(S j), so Q 1 is contained in W (p3). Similarly, let Q 2
be the subset of Q that contains all vertices q(S ′

j), so Q 2

is contained in W (p4). Each hyperedge S j contains q(S j)

due to the edges S jq′(S j) and q′(S j)q(S j). Moreover, each 
hyperedge S j contains q(S ′

j) due to the edge S ′
jq(S ′

j) and 
because S ′

j is a copy of S j . Hence S j contains both an el-
ement from Q 1 and an element from Q 2. Moreover, Q 1
and Q 2 are disjoint. Hence, (Q 1, Q 2) is a 2-colouring of 
(Q , S) (note that there may be elements of Q not in Q 1 ∪
Q 2; we can add such elements to either Q 1 or Q 2 in an 
arbitrary way). This completes the proof of Lemma 3. �

Combining Lemmas 2 and 3 with the aforementioned 
observation on membership in NP implies Theorem 1.

Theorem 1 (restated). P5-Contractibility is NP-complete 
for bipartite graphs.
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4. The proof of Theorem 2

In this section we prove Theorem 2. We do this as fol-
lows. Consider the graph G constructed in Section 3 for 
a given instance (Q , S) of Hypergraph 2-Colouring. We 
remove the vertices q∗ and u2, and instead add a new ver-
tex x that we make adjacent to both v and w . This yields 
the graph G ′ = (V ′, E ′).

Removing the edge vx from G ′ results in the graph 
G ′ − vx, which is used in the hardness construction of Heg-
gernes et al. [12] for proving that P6-Contractibility is
NP-complete.

Lemma 4 ([12]). The hypergraph (Q , S) has a 2-colouring if 
and only if G ′ − vx contains P6 as a contraction.

We continue by proving two lemmas for G ′ that are 
similar to the two lemmas of Section 3.

Lemma 5. The graph G ′ is bipartite.

Proof. We partition V ′ into A′ = {v, w} ∪ S ∪ Q and B ′ =
{u1, x} ∪ S ′ ∪ Q ′ , and note that G ′ contains no edge be-
tween any two vertices in A′ and no edge between any 
two vertices in B ′ . �
Lemma 6. The hypergraph (Q , S) has a 2-colouring if and only 
if the graph G ′ contains C6 as a contraction.

Proof. Let C be a cycle on six vertices c1, . . . , c6 in 
that order. First suppose that (Q , S) has a 2-colouring 
(Q 1, Q 2). We define the following witness sets: W (c1) =
{v}, W (c2) = {u1}, W (c3) = S ∪ Q 1 ∪ Q ′ , W (c4) = S ′ ∪ Q 2, 
W (c5) = {w} and W (c6) = {x}. The sets W (c1), . . . , W (c6)

are readily seen to form a C6-witness structure of G ′ .
Now suppose that G ′ contains C6 as a contraction. The 

only vertex of distance at least 3 from S ′
n in G ′ is v

(in particular recall that S ′
n is adjacent to every vertex 

of Q ). Hence we may assume without loss of generality 
that W (c1) = {v} and S ′

n ∈ W (c4). Then, as the only two 
neighbours of v are u1 and x, we may also assume without 
loss of generality that u1 ∈ W (c2) and x ∈ W (c6). Since v
and w are the only two neighbours of x, and w is a neigh-
bour of S ′

n ∈ W (c4), this means that w ∈ W (c5) and thus 
W (c6) = {x}. The fact that W (c1) = {v} and W (c6) = {x}
implies that G ′ − vx contains P6 as a contraction and we 
may apply Lemma 4. �

Combining Lemmas 5 and 6 with the observation that 
C6-Contractibility belongs to NP implies Theorem 2.

Theorem 2 (restated). The C6-Contractibility problem is
NP-complete for bipartite graphs.

5. Future work

We have proved that the P5-Contractibility prob-
lem is NP-complete for the class of bipartite graphs, 
which strengthens a result in [12], where NP-completeness 
was shown for P6-Contractibility restricted to bipar-
tite graphs. As P3-Contractibility is readily seen to be 
polynomial-time solvable for general graphs, this leaves us 
with one stubborn open case, namely P4-Contractibility.

Open Problem 1. Determine the complexity of P4-Contract-

ibility for bipartite graphs.

One approach for settling Open Problem 1 would be to 
first consider chordal bipartite graphs, which are bipartite 
graphs in which every induced cycle has length 4. We be-
lieve that this is an interesting question on its own.

Open Problem 2. Determine the complexity of P4-Contract-

ibility for chordal bipartite graphs.

We also proved that the C6-Contractibility problem 
is NP-complete for bipartite graphs, which implied that 
determining the cyclicity of a bipartite graph is NP-hard. 
As mentioned, C3-Contractibility is polynomial-time solv-
able for general graphs. This leaves us with the following 
two open cases.

Open Problem 3. Determine the complexity of Ck-Contract-

ibility for bipartite graphs when 4 ≤ k ≤ 5.

The 2-Disjoint Connected Subgraphs problem takes as 
input a graph G and two disjoint subsets Z1 and Z2
of V (G). It asks whether V (G) can be partitioned into 
sets A1 and A2, such that Z1 ⊆ A1, Z2 ⊆ A2 and both A1
and A2 induce connected subgraphs of G . Telle and Vil-
langer [17] gave an O ∗(1.7804n)-time algorithm for solv-
ing this problem, which is known to be NP-complete even 
if |Z1| = 2 [14]. Here, the O ∗ notation suppresses factors 
of polynomial order.

By using the algorithm of [17] as a subroutine and 
Lemma 1 we immediately obtain an O ∗(1.7804n)-time al-
gorithm for solving P4-Contractibility on general n-vertex 
graphs. That is, we guess two non-adjacent vertices u
and v with non-intersecting neighbourhoods N(u) and 
N(v) to be candidates for a P4-suitable pair and then 
solve the 2-Disjoint Connected Subgraphs problem for the 
graph G − {u, v} with Z1 = N(u) and Z2 = N(v) (note that 
we need to consider at most 

(n
2

)
choices of pairs u, v).

Proposition 1. P4-Contractibility can be solved in
O ∗(1.7804n) time for (general) graphs on n vertices.

The proof of the aforementioned NP-completeness re-
sult for 2-Disjoint Connected Subgraphs in [14] can be 
modified to hold for bipartite graphs by subdividing each 
edge in the hardness construction. This brings us to our 
final open problem.

Open Problem 4. Does there exist an exact algorithm for 
P4-Contractibility for bipartite graphs on n vertices that is 
faster than O ∗(1.7804n) time?
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