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I. INTRODUCTION

In the first half of the 20th century the complex variable method was developed for the

solution of biharmonic problems in plane linear elasticity, which nowadays is considered a

classical1,2 approach. By combining the two Cartesian coordinates x and y to form the

complex expression ξ = x + iy, all solutions of the biharmonic equation ∆2ψ = 0 take the

form:

ψ = <
[
g0(ξ) + ξ̄g1(ξ)

]
, (1)

with arbitrary holomorphic functions g0 and g1, the so-called Goursat functions ; < denotes

the real part of the subsequent complex expression and ξ̄ = x− iy the complex conjugate of

ξ. The problem is thus effectively reduced to one of finding two holomorphic functions in a

domain Ω, boundary ∂Ω, satisfying conditions which are typically of the form1:

g1(ξ) + ξg′1(ξ) + g′0(ξ) = f(ξ) , ξ ∈ ∂Ω . (2)

One such approach is to represent g0 and g1 as Cauchy-type integrals of an unknown den-

sity function on the boundary, thus leading to the famous Sherman-Lauricella equation3,

a Fredholm integral equation for the density which can be solved efficiently via a Nyström

discretization in combination with fast multipole methods4. Other approaches are based

on a direct expansion of the holomorphic functions as a Fourier series or in meromorphic

functions with singularities outside of the domain, in which (2) is approximated via bound-

ary element or collocation methods5–8. Although the biharmonic equation is not preserved

under conformal transformation, diverse examples exist where a mapping of the Goursat

representation to computationally more convenient regions has proved useful1,9.

Beyond linear elasticity, complex variable methods have emerged as a wide-ranging and

powerful tool in fluid mechanics8,10, where a variety of analytical solutions and computational

methods have materialised, particularly for Stokes flow problems with free boundaries11–15.

The benefits thereof stem from the mathematically important notion of the analyticity of the

underlying holomorphic functions g0 and g1 which can be exploited for certain problems6,8;

free surface boundary conditions, a notorious complicating feature, can be handled in the

framework of the Goursat representation naturally, due in the main to the complementary

character of the streamfunction and Airy stressfunction16,17. Unfortunately, the method in

its classical form is restricted to zero Reynolds number scenarios, i.e. to Stokes flow, in
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which the streamfunction remains biharmonic.

Of late, a first integral of Navier-Stokes equations has been constructed for two-dimensional

steady flow18,19: by combining the ux and uy velocities in the form u = ux+iuy and by subse-

quent introduction of an auxiliary potential field Φ fulfilling p+%ūu/2+U = 4∂2Φ/∂ξ∂ξ, an

integrable equation of motion is obtained, ultimately leading to the following relationship:

%
u2

4
− η∂u

∂ξ
+ 2

∂2Φ

∂ξ
2 = 0 . (3)

By taking the derivative of Eq. (3) with respect to ξ, the Navier-Stokes equations are

obtained in complex form. In a recent paper16 the close relationship between the first integral

and the complex variable method has been shown: if a streamfunction Ψ is introduced

according to:

u = −2i
∂Ψ

∂ξ
, (4)

it can be beneficially combined with the potential Φ to form the complex potential, χ =

Φ + iηΨ, in terms of which the first integral (3) reads:

∂2χ

∂ξ
2 = −%u

2

8
. (5)

In the case of Stokes flow the above equation reduces to:

∂2χ

∂ξ
2 = 0 , (6)

which is a simple bianalytic equation; the solution of which is given by the combination

χ = g0(ξ) + ξ̄g1(ξ) of two holomorphic functions, as in (1). It is therefore justifiable to

construe the first integral (5) to be a generalisation of the complex variable representation

(6) towards viscous flows with inertia, with the difference that (5) no longer allows for a

direct integration to the Goursat representation (1).

In what follows, a first integral is constructed for the more general case of unsteady

flows: the derivation begins with a reformulation of the full two-dimensional Navier-Stokes

equations in terms of complex variables prior to utilising the complex potential χ in order to

achieve an integrable equation (Sec. II). It is shown how commonly encountered boundary

conditions can be formulated in an elegant and useful form, where special attention is paid

to prescribing those occurring at a free surface (Sec. III). In Section IV the new formulation

is applied to the practically relevant problem of unsteady Couette flow confined in a channel
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formed by two, horizontally aligned, corrugated surfaces, separated by a small distance.

The upper surface is driven with a constant speed, while the lower one remains stationary.

Attention is focussed on the effect of mass exchange between vortices residing in the valleys

of the lower corrugated surface and the bulk flow. Finally, in Section V, perspectives as

to the enhancement and future development of analytical and numerical methods for the

investigation of viscous fluid flow problems, together with the issue of predicting the stability

of film flows in particular, are provided.

II. FORMULATION OF THE FIELD EQUATIONS

A. Complex form of the Navier-Stokes equations for unsteady 2D flow

In two-dimensions, the Navier-Stokes equations and continuity equation governing an

unsteady incompressible flow, assuming that the external force on the fluid is conservative

with a given potential energy density U(x, y), are:

%

[
∂~u

∂t
+ ~u · ∇~u

]
= −∇p+ η∆~u−∇U , (7)

∇ · ~u = 0 , (8)

where ~u denotes the velocity field, p the pressure field, % the mass density and η the viscosity.

Employing the complex variables ξ, ξ and the complex velocity field u, together with the

streamfunction via (4), the Navier-Stokes equations (7) can be transformed into the following

scalar complex PDE:

∂

∂ξ

[
−i%

∂Ψ

∂t
+ p+ %

ūu

2
+ U

]
+ %

∂

∂ξ

(
u2

2

)
= 2η

∂2u

∂ξ∂ξ
, (9)

while the continuity equation (8) is identically fulfilled by (4).

B. First integral using a complex potential of first order

By the introduction of a new complex potential M according to:

−i%
∂Ψ

∂t
+ p+ %

ūu

2
+ U = 2

∂M

∂ξ
, (10)

an integrable form of Eq. (9),

∂

∂ξ

[
2
∂M

∂ξ
+ %

u2

2
− 2η

∂u

∂ξ

]
= 0 , (11)
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is obtained which, following integration with respect to ξ, gives:

2
∂M

∂ξ
+ %

u2

2
− 2η

∂u

∂ξ
= f(ξ) . (12)

The function f(ξ) on the right-hand side of the above equation can conveniently be set to

zero by re-gauging the potential M according to:

M −→M +
1

2
F (ξ), F ′(ξ) = f(ξ) , (13)

since the definition (10) allows M to be augmented by an arbitrary ξ-dependent complex

function. Utilising the streamfunction (4), Eq. (12) simplifies to:

2
∂

∂ξ

[
M + 2iη

∂Ψ

∂ξ

]
+ %

u2

2
= 0 . (14)

C. Representation by a potential of second order

From a purely technical viewpoint, a first integral has been constructed successfully in the

form (14), since by differentiation of the same with respect to ξ the Navier-Stokes equations

are recovered. That said, comparison with the first integral (5) for the case of steady flow

does not reveal an obvious relationship between the two. However, this can formally be

shown to be the case by introducing another complex potential χ fulfilling:

M + 2iη
∂Ψ

∂ξ
= 2

∂χ

∂ξ
, (15)

and leading directly to the compact form of the first Integral Eq. (14):

4
∂2χ

∂ξ
2 + %

u2

2
= 0 , (16)

which matches the first Integral (5) for steady flow perfectly. Surprisingly, there is no dif-

ference between the complex field equations whether the flow is steady or unsteady. Indeed,

the unsteady character of the flow is apparent in the PDE (10) for the potential M , which

after making use of (15) reads:

−i

[
%
∂Ψ

∂t
− 4η

∂2Ψ

∂ξ∂ξ

]
+ p+ %

ūu

2
+ U = 4

∂2χ

∂ξ∂ξ
. (17)

Accordingly, two complex equations for one complex potential χ, the real-valued stream-

function Ψ and the pressure p, are given via (16, 17).
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III. FORMULATION OF BOUNDARY CONDITIONS

Consider a simply connected domain with a boundary xi = fi(s, t), parametrized with

respect to the arc length s of the boundary. Furthermore, normal and tangential unit vectors

along the boundary appear as:

ti(s, t) = f ′i(s, t) , (18)

ni(s, t) = εjitj(s, t) , (19)

where εij denotes the Levi-Civita symbol. In complex notation, the tangential vector is given

as f ′(s, t) with f(s, t) = f1(s, t) + if2(s, t) and n = if ′(s, t); note that n̄n = t̄t = f̄ ′f ′ = 1.

A. No-slip and no-penetration condition at solid walls

In terms of the streamfunction Ψ, the no-slip and no-penetration condition along a solid

wall ξ = f(s) at rest take the usual form:

Im

(
f ′
∂Ψ

∂ξ

)
= 0 , (20)

Ψ = const , (21)

of Dirichlet/Neumann boundary conditions.

B. Kinematic and dynamic boundary conditions at a free surface

In the case of a free surface ξ = f(s, t) movement of the surface, given by ḟ , has to

be considered. In general, the movement ḟ and the flow velocity u at the surface are

not identical, but their normal components are. Hence, their difference is strictly directed

tangential to the surface, i.e. u− ḟ = u1f
′ with u1 ∈ R, implying after multiplication with

f̄ ′ and taking the imaginary part that:

uf̄ ′ − ūf ′ = ḟ f̄ ′ − ḟf ′ . (22)

Equation (22) constitutes a kinematic boundary condition taking into account the coupling

between the movement of the free surface and the flow velocity in the normal direction.

Considering (4), this results in the following relationship:

∂Ψ

∂s
=

i

2

[
ḟ f̄ ′ − ḟf ′

]
=:

i

2

{
f, f̄
}
, (23)
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where {·, ·} denotes the Poisson bracket of two functions20.

The dynamic boundary condition in its original form reads:[
(p0 − p)δij + η

(
∂ui
∂xj

+
∂uj
∂xi

)]
xk=fk(s)

nj = σ
∂ti
∂s

, (24)

with σ on the right-hand side denoting the surface tension and p0 the ambient pressure.

Transformation of (24) into complex representation provides the condition:

(p0 − p)n− 2ηi
∂u

∂ξ
f̄ ′ = σf ′′ , (25)

at ξ = f(s, t). Next, by multiplying Eq. (10) with n, Eq. (14) with n̄ and evaluating them

at ξ = f(s, t), the sum of the two equations together with (25), after some manipulation,

gives:

%
∂Ψ

∂t
f ′ − %u∂Ψ

∂s
+ Un =

∂

∂s
[σf ′ + 2iM − ip0f ] , (26)

as the boundary condition for the complex potential M . The term ip0f can be eliminated

by re-gauging the potential energy according to U → U − p0. By considering the kinematic

boundary condition (23), the first two terms in Eq. (26) can be re-arranged as follows:

∂Ψ

∂t
f ′ − u∂Ψ

∂s
=
∂Ψ

∂t
f ′ − ∂Ψ

∂ξ̄

{
f, f̄
}

=

[
∂Ψ

∂t
+
∂Ψ

∂ξ
f ′ +

∂Ψ

∂ξ̄
ḟ

]
f ′ − ∂Ψ

∂s
ḟ

=
∂

∂t
Ψ
(
f, f̄ , t

) ∂f
∂s
− ∂

∂s
Ψ
(
f, f̄ , t

) ∂f
∂t

=
{

Ψ(f, f̄ , t), f
}
.

Finally, by choosing the representation (15) in terms of the complex potential χ, the dynamic

boundary condition (26) can be re-written elegantly as:

%
{

Ψ(f, f̄ , t), f
}

+ Un =
∂

∂s

[
σf ′ + 4i

∂

∂ξ
(χ− iηΨ)

]
. (27)

For special flow conditions, for which the Poisson bracket in (27) vanishes (e.g. in the case

of a steady flow) and the external force is time-independent, (27) becomes integrable; the

associated first integral reads:

σf ′ + 4i
∂

∂ξ
(χ− iηΨ) =

∫
Unds . (28)

It is possible to reduce the above condition to a standard Dirichlet-Neumann form, which

allows for an elegant numerical treatment; for details see16.

Derivation of the field equations (16), (17) in combination with boundary conditions of the

form described in Sec. III, represents a coherent extension of prior work on the integration
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of the incompressible Navier-stokes equations16,18. In order to demonstrate the capabilities

of this new approach and to focus on the distinguishing key feature, namely its ability to

handle challenging transient flows, the non-trivial problem of Couette flow generated within

an irregular flow geometry is considered below.

IV. UNSTEADY COUETTE FLOW CONFINED BETWEEN TWO

CORRUGATED RIGID SURFACES

The case of Couette flow for a Newtonian, incompressible fluid confined between two

horizontally aligned rigid surfaces, both corrugated sinusoidally and driven by the movement

of the upper surface with uniform velocity U0, the lower one remaining stationary, is explored.

The flow configuration is illustrated schematically in Fig. 1; the unsteady character of the

flow being due to the geometry of the domain varying with time. The geometry is defined

in terms of the mean film thickness H0, the amplitudes A and H1 of the lower and upper

surfaces, respectively, and the wavelength λ for both surfaces. External forces are not

considered subsequently.

Exploration of the above unsteady Couette problem ties in well with an existing series of

experimental and numerical investigations on thin film and channel flows over periodically

occurring topography15,21–23, which is a topic of considerable interest in diverse technical

and industrial processes; for example, in coating24 or lubrication5,22,25 applications, heat ex-

changers and evaporators26. The existence of isolated or periodically occurring topographical

features as exemplified by the sinusoidal lower surface contour in Fig. 1, can give rise to the

formation of closed eddy structures27–30 leading to particle trapping and stagnant flow in

separated flow regions. In the subsequent investigation the reader’s attention is directed in

particular to the inner flow structure present within the valleys of the lower surface topog-

raphy and to the mechanism of mass exchange from the fluid in such valleys to the overlying

flow and vice versa, as the channel thickness varies with time.

The effect of mass exchange together with the prospects of process enhancement have

been studied by several authors: for instance, Wierschem and Aksel 27 observed experimen-

tally the transport of inert tracers from fluid in the valleys of sinusoidal topography in the

presence of surface waves, enabled via a turnstile lobe mechanism; Horner et al. 31 pro-

vides a comprehensive overview of this mechanism for modulated flow over a square cavity,
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x
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U0

A

H0

H1

λ

FIG. 1. Schematic of the unsteady Couette flow configuration, showing the relevant defining

geometrical parameters.

while Wilson et al. 32 investigated, both experimentally and theoretically, the enhancement

of transport and stirring between two rollers via lobe dynamics. Although these research

topics are in the main associated with flows involving a free surface, the turnstile lobe effect

is purely driven by temporal changes of the geometry of the flow domain, which can con-

veniently and more easily be studied in the model framework of Couette flow, in which the

geometry variance is artificially induced by specifying a non-uniform moving upper surface;

that is, one with a well defined topography profile as shown in Fig. 1.

The boundary value problem as defined is formulated in (Sec. IV A) and the effect of

mass exchange within the channel explored by means of two different self-contained methods,

highlighting in addition different ways in which the new reformulation of the Navier-Stokes

equations might be beneficially utilised. The first (Sec. IV B) is based on a generalised form

of the Goursat representation (1), combined with a spectral Fourier discretisation of the

holomorphic functions involved; the second (Sec. IV C) is a Finite Element procedure based

on a weak integral form of the field equations. The corresponding results are presented in

Sec. IV D.

A. Equations of motion

All relevant quantities are scaled in terms of λ/(2π), U0, λ/(2πU0) and 2πηU0/λ for

lengths, velocities, the time and for the pressure, respectively. Consequently, the set of
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relevant parameters is reduced to two non-dimensional amplitudes a, h1, a non-dimensional

film thickness h0 and the Reynolds number Re given by:

Re :=
%U0λ

2πη
, a :=

2πA

λ
, h0 :=

2πH0

λ
, h1 :=

2πH1

λ
; (29)

accordingly, the scaled governing field equations (16, 17) read:

−Re
u2

2
= 4

∂2χ

∂ξ
2 , (30)

−i

[
Re
∂Ψ

∂t
− 4

∂2Ψ

∂ξ∂ξ

]
+ p+ Re

ūu

2
= 4

∂2χ

∂ξ∂ξ
. (31)

The two boundaries formed by the lower ξ = β(x) and upper ξ = ϕ(x, t) corrugated surfaces

are given by the functions:

β(x) := x− ia cosx , (32)

ϕ(x, t) := x+ ih0 − ih1 cos(x− t) , (33)

along which the following no-slip/no-penetration conditions have to be fulfilled:

u
(
β(x), β̄(x), t

)
= 0 , (34)

u (ϕ(x, t), ϕ̄(x, t), t) = 1 . (35)

As an initial condition the fluid is assumed to be at rest, that is:

Ψ
(
ξ, ξ̄, t0

)
= χ

(
ξ, ξ̄, t0

)
= 0 . (36)

With reference to the work of Scholle et al. 25 and Esquivelzeta-Rabell et al. 33 , who have

shown for steady Couette flow generated with a flat upper driving surface that inertial effects

play a minor role only up to Reynolds numbers with a value of about 10, by restricting the

current investigation to Reynolds number Re ≤10 the nonlinear terms in the governing field

equations (30, 31) can be effectively omitted while retaining the Reynolds number in the

term involving the time derivative, leading to:

p− i

[
Re
∂Ψ

∂t
− 4

∂2Ψ

∂ξ∂ξ

]
= 4

∂2χ

∂ξ∂ξ
, (37)

∂2χ

∂ξ
2 = 0 . (38)

Below, variants of time-dependent Couette flow, involving aspect ratios of a < h0 < 2π

and h1 � a, are considered.
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B. Asymptotic model and method of solution

1. Generalised Goursat form

According to earlier studies5,34, the streamfunction for the case of steady Stokes flow with

h1 = 0 can conveniently be written as:

Ψs = By2 + 2< [R(ξ) + yQ(ξ)] , (39)

where the constantB and the two 2π-periodic holomorphic functionsR andQ are determined

by the boundary conditions. By identifying g0(ξ) = 2R(ξ) − iξQ(ξ) − Bξ2/2 and g1(ξ) =

iQ(ξ) + Bξ/2, it becomes obvious that (39) is a variant of the Goursat form (1), by which

it is guaranteed that Ψs fulfils the biharmonic equation, ∆2Ψs = 0.

The streamfunction Ψ for unsteady flow with h1 > 0 is expected to differs from (39).

However, neglecting inertia and assuming small Reynolds numbers, Re < 1, it is proven, see

Appendix A, that ∆3Ψ = O
(
Re2
)
, motivating the following analytical ’triharmonic’ form

for Ψ:

Ψ = By2 + 2<
[
R(ξ, t) + yQ(ξ, t) + Re

y2

2
P (ξ, t)

]
, (40)

which is obviously a generalisation of (39) containing a third 2π-periodic holomorphic func-

tion P and considering time-dependence for the three functions P,Q,R and the parameter

B. The analytical form ∂χ/∂ξ̄ = f(ξ, t) is obtained directly from (38). Inserting this and

(40) into the field equation (37) and neglecting terms of order O
(
Re2
)
, the following identity

is implied for the pressure field:

p = 4f ′ − 2iB − i=
{
−4Q′ − Re

[
2i
(
Ṙ− P

)
+ 2y

(
iQ̇+ 2P ′

)]}
, (41)

where the prime denotes a derivative with respect to ξ. Since the pressure has to be real-

valued, the first three terms 4f ′ − 2iB − iḂy2 have to equate to the complex expression

inside the curly parentheses, leading to:

4f ′ = 2iB − 4Q′ − Re
[
2i
(
Ṙ− P

)
+ 2y

(
iQ̇+ 2P ′

)]
+ p0(t) . (42)

By taking the derivative of the above equation with respect to ξ̄ and considering ∂y/∂ξ̄ = i/2,

the identity:

iQ̇+ 2P ′ = 0 , (43)

is obtained, revealing that the two complex functions P and Q take the form of a PDE.
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2. Boundary conditions

a. Perturbation approach According to the aforementioned restriction h1 � 1, the

decomposition:

Q(ξ, t) = Qs(ξ) + h1Qu(ξ, t) , (44)

R(ξ, t) = Rs(ξ) + h1Ru(ξ, t) , (45)

P (ξ, t) = h1Pu(ξ, t) , (46)

of the three complex functions P,Q,R is applied, where the subscript ’s’ denotes the corre-

sponding steady flow (h1 = 0) and ’u’ the small perturbation invoked by the moving, slightly

corrugated, upper surface. As a consequence, the complex conjugate of the complex velocity

field is likewise decomposed as ū = 2i∂Ψ/∂ξ = ūs + h1ūu with:

ūs := 2By + 2i [Rs
′ + yQs

′] + 2<Qs , (47)

ūu := 2i [Ru
′ + yQu

′] + Re
y2

2
Q̇u + 2< [Qu + Re yPu] . (48)

Considering the above, the complex conjugate of the no-slip/no-penetration condition (34)

at the lower surface can be decomposed into the two boundary conditions:

ūs

(
β(x), β̄(x)

)
= 0 , (49)

ūu

(
β(x), β̄(x), t

)
= 0 ; (50)

while at the upper surface a domain perturbation is given by (33) due to h1 appearing

explicitly. Via a Taylor expansion of the no-slip/no-penetration condition (35) with respect

to h1 and sorting terms by powers of h1, one ends up with the two conditions:

ūs (x+ ih0, x− ih0) = 1 , (51)

ūu (x+ ih0, x− ih0, t) = i

[
∂ūs

∂ξ
− ∂ūs

∂ξ

]
cos(x− t) . (52)

With reference to Appendix B, these two equations reveal a hierarchy: the inhomogeneity

in equation (52) for the first order perturbation depends on the base solution. Apart from

this, the inhomogeneity is purely harmonic with respect to time. Due to the linearity of

the problem, the perturbation must be harmonic with respect to time too, implying the
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following analytical form:

Pu(ξ, t) = p+(ξ) exp(it) + p−(ξ) exp(−it) , (53)

Qu(ξ, t) = q+(ξ) exp(it) + q−(ξ) exp(−it) , (54)

Ru(ξ, t) = r+(ξ) exp(it) + r−(ξ) exp(−it) , (55)

for the three holomorphic functions. By inserting the above forms into Eq. (43), it follows

that:

2p±
′
(ξ) = ±q±(ξ) . (56)

b. Discretization by Fourier decomposition In line with the work of others5,22, the pe-

riodic holomorphic functions are represented by a truncated Fourier series as follows:

Qs(ξ) =
N∑

k=−N

Qk exp(ikξ) , q±(ξ) =
N∑

k=−N

q±k exp(ikξ) , (57)

Rs(ξ) =
N∑

k=−N

Rk exp(ikξ) , r±(ξ) =
N∑

k=−N

r±k exp(ikξ) , (58)

up to order N ∈ N, reducing the problem to a finite set of complex coefficients and the yet

unknown constant B. For the two remaining functions p±(ξ), equations (56) are fulfilled

identically by:

p±(ξ) = p0 ∓ i
N∑

k=−N
k 6=0

q±k
2k

exp(ikξ) , (59)

with integration constant p0. On inserting the above series representation (57, 58) and (59)

into boundary conditions (49, 50) and (51, 52), a linear set of algebraic equations for the

coefficients Qk, Rk, q
±
k , r

±
k , p0 and B is obtained. Full details regarding the formulation of

this algebraic set of equations is provided in Appendix B.

C. Numerical model and method of solution

The starting point for a weak integral formulation is again the linear field equations (37),

(38). As the pressure is not of relevance for the problem under investigation, the imaginary

part only of (37) is taken into account, namely:

Re

4

∂Ψ

∂t
− ∂2Ψ

∂ξ∂ξ
= − Im

(
∂2χ

∂ξ∂ξ

)
=: −Φ(ξ, ξ, t) , (60)

13
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and from (38) it follows directly that:

Im

(
∂4χ

∂ξ
2
∂ξ2

)
=

∂2Φ

∂ξ∂ξ
= 0 , (61)

in which the more convenient real-valued field Φ has been introduced, thus replacing the

complex-valued χ.

In order to solve for the modified field equations (60, 61), complemented by the conditions

(34)-(36), the implicit Crank-Nicolson time discretization scheme is combined with a weak

Galerkin finite element formulation, resulting in a second order accurate method in both

space and time. Consequently, iteration in time, starting with Ψ0 = Φ0 = 0, is accomplished

according to:

Re

2∆t
Ψt+1 −

∂2Ψt+1

∂ξ∂ξ
+ Φt+1 =

Re

2∆t
Ψt +

∂2Ψt

∂ξ∂ξ
− Φt , (62)

∂2Φt+1

∂ξ∂ξ
= 0 , (63)

and at each time step a spatial FEM problem is solved based on the weak variational

formulation:

Find Ψ ∈
{

Ψ ∈ H1(Ω)
∣∣Ψ = g1,

∂Ψ
∂n

= g2 on ∂Ω
}

and Φ ∈ H1(Ω),

such that for all v ∈ H1(Ω) and w ∈ H1
0 (Ω):

Re

2∆t
〈Ψt+1, v〉L2,Ω − 〈∇Ψt+1,∇v〉L2,Ω + 〈Φt+1, v〉L2,Ω = 〈g2, v〉L2,∂Ω + bt+1(v,Ψt) , (64)

b0 = 0 , bt+1(v,Ψt) =
Re

∆t
〈Ψt, v〉L2,Ω − bt , (65)

〈∇Φt+1,∇w〉L2,Ω = 0 , (66)

in which the standard L2-inner product is used and the standard Sobolev space:

H1(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω) ∀|α| ≤ 1} , (67)

consisting of square-integrable functions with weak first order derivatives again in L2; H1
0

comprises H1-functions with zero boundary conditions. Ω and ∂Ω denote the computational

domain and its boundary, respectively; the functions g1 and g2 define the space and time-

dependent velocity boundary conditions for the streamfunction.

In order to provide a complete description of the solution procedure it is necessary to

take a closer look at the boundary conditions. First of all, the no-slip and no-penetration

14
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conditions at the lower, stationary surface lead to g1(x, β(x), t) = g2(x, β(x), t) = 0, in

which the arbitrary constant offset of the streamfunction is fixed. The periodicity of the

domain is incorporated simply by identifying the related nodes on the left and right-hand

side of the finite element grid; therefore a separate periodic boundary treatment can be

omitted. In order to avoid complications with the upper moving bounding surface and any

time-dependent re-meshing issues, condition (33, 35) is approximated as a flat surface with

a constant hight of h0 − h1, that is directly beneath the surface waviness. In this sense the

impact of the lower surface corrugations on the flow near the upper surface is neglected

so that for the approximation of Ψ close to the height h0 − h1, a geometry with h̃0 = h0,

h̃1 = h1 and ã = 0 is assumed.

An analytical approximation of the above reference problem can be derived under the

assumptions of lubrication theory and for moderate aspect ratios5, giving:

Ψ(x, h0 − h1, t) ≈ U0y −Ψ0(x− t, h0 − h1) + c0 , (68)

Ψ0(x, y) =
h0(h2

0 − h2
1)

2h2
0 + h2

1

Y 2(3− 2Y )− h0Y
2(1− Y )

(
1 +

h1

h0

cos(x)

)
, (69)

Y (x, y) :=
y + h1 cos(x)

h0 + h1 cos(x)
. (70)

The boundary functions g1 and g2 can than be derived from (68) and its normal derivative.

In order to fix the remaining constant c0, note that an additional constraint for the vorticity

ω is assigned to the upper plate as is similarly the case for all multiply connected domains35.

Denoting the upper boundary as Γu and the tangential and normal velocity components

with subscripts τ and n, respectively, then by integrating the equation:

Re

[
∂uτ
∂t

+ uτ
∂uτ
∂τ

]
= −∂p

∂τ
+
∂ω

∂n
, (71)

over Γu, the condition:

− 1

Re

∫
Γu

∂ω

∂n
dΓu =

∂uτ
∂t

∫
Γu

dΓu +

∫
Γu

∂

∂τ

[
1

2
u2
τ + p

]
dΓu = 0 , (72)

is established, which in the present context translates as the following condition on the

potential Φ:

0 =

∫
Γu

∂ω

∂n
dΓu =

∫
Γu

∂

∂n

[
Re

4

∂Ψ

∂t
+ Φ

]
dΓu =

∫
Γu

∂Φ

∂n
dΓu . (73)
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D. Results and discussion

1. Asymptotic Results

a. Steady Stokes flow According to Appendix B 1 the original set of 4N + 3 algebraic

equations is reduced to the set (B6) of 2N+1 equations for the coefficients Qn, Rn;n > 0 and

Q0. This set of equations was solved for a = π/8 and h0 = π/4 using Maple at a truncation

order of N = 24. The remaining coefficients are determined according to (B3, B4) and (B2).

A plot of the resulting streamline pattern is shown in Fig. 2: note that the presence of a

π
8

π
8

FIG. 2. Steady Couette flow (h1 = 0) for a = π/8 and h0 = π/4, Re = 0: streamlines revealing

the associated flow structure. Stationary points are indicated by a bold dot.

closed eddy in the valley formed by the lower surface topography is in complete accordance

with prior results reported in literature5,22,25,34.

b. Unsteady non-Stokes flow The coefficients q±k and r±k , by which the complex func-

tions for the first perturbation order are determined, result from solving the set of equations

(B7) and (B9) given in AppendixB 2. Again, Maple is used to solve the associated alge-

braic equation set. Since the perturbation provides a small contribution only to the entire

solution, a truncation order of N = 12 proves sufficiently accurate.

As for the steady Stokes flow case, the same geometric parameters are chosen for a = π/8

and h0 = π/4; the additional parameter for unsteady flow, being the choice Re = 0.5 and

thus h1 = 0.02. The resulting instantaneous streamline patterns at four different times,

t ∈ {−π,−π/2, 0, π/2}, are shown in Fig. 3: the time-dependence of the flow invoked by

the corrugated upper surface is considerable, especially regarding the shape and skewness

of the eddy, regardless of the small amplitude h1. Since during each time period the eddy

occupies slightly different regions of the flow domain, it is only to be expected that some

fluid particles which are located in the vicinity of the border between the eddy and main
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t = −π t = −π/2

t = 0 t = π/2

FIG. 3. Unsteady Couette flow with a = π/8, h0 = π/4, Re = 0.5 and h1 =0.02; instantaneous

streamline patterns, at four different times, revealing the associated flow structure.

flow, while trapped inside (outside) of the eddy at some point in time will be located outside

(inside) the eddy at some different point in time, due to an associated shift of the separating

streamline, or separatrix. Accordingly, the mechanism for material exchange between an

eddy and the main flow is captured qualitatively. In order to study this feature in more

detail, the movement of material particles has to be visualised by path lines or sweep lines.

This is conveniently performed numerically as described below.

2. Numerical results

FEM calculations based on the weak formulation (64)-(66) were performed within a

Matlab framework, with a triangular mesh structure containing of the order of 40 thousand

elements and employing quadratic Lagrange elements for all test and solution spaces; one

time period, T = λ/U0, is discretised over 150 time steps.

First a representative example geometric configuration with λ = 2π, a = π/4, h0 = π

and h1 = a/20, for a Reynolds number of Re = 10, is considered. Figure 4a shows that

a time periodic flow field is established after just two time periods and that in this time-

periodic regime the size and shape of the eddy lies either side the equivalent steady state

configuration which exists when h1 = 0, see Fig. 4b. In this context the question arises

whether particles entrapped within the steady-state eddy can be made to escape by being

flushed away by the bulk flow. The subsequent investigations indicate that in general a mass

exchange, at least in both directions, cannot be expected for arbitrarily small amplitudes
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h1 of the upper plate. To visualise material transport the time evolution of sweep lines was

computed, i.e. material lines consisting of the same fluid particles at all times, their initial

shape being conveniently defined by corresponding streamlines at a particular time.

Figure 5 shows results for the above geometry in more detail, in the form of a sequence of

snap-shots. At the time t = 0 the corrugated upper surface is considered to instantaneously

accelerate to a velocity of U0 and then the flow is subsequently solved for over 20 time

periods; the direction of flow is always from left to right. At t = 3.44T , representing a state

with a maximum eddy size, the instantaneous streamline pattern is captured in terms of

the ’initial’ sweep lines present, the material movement of which is tracked in the following

sequence scheme; each sweep line the advection equation dx
dt

= u(x, t) for the trajectories x(t)

via a fourth-order Runge-Kutta scheme. Each sweep line is represented by between 500 and

1000 fluid particles. Moreover, the shaded area represents the material time evolution of the

fluid region which at time t = 3.44T is initially defined by the shape of the original closed

steady-state eddy. From the deformation of the sweep lines it can be seen that material from

the maximum eddy is flushed away with the bulk flow and fluid in the region of its bounding

(a) (b)

FIG. 4. Couette flow between corrugated surfaces for the case of λ = 2π, a = π/4, h0 = π and

h1 = a/20 with a Reynolds number Re = 10. (a) Euclidean norm of the FEM solution vector of

Ψ evolving with time; a time-periodic flow is established after a 2T time period. (b) Separatrices

confining the eddy region from the bulk flow for three different states; these being minimum and

maximum eddy shape in terms of surface area occurring in the time-periodic regime as well as the

steady-state eddy shape corresponding to the case of h1 = 0.
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FIG. 5. Sweep lines at different times for the case: a = π/4, h0 = π, h1 = a/20 and Re = 10;

six snap-shot solutions obtained over 20 time periods. The initial shape of the sweep lines at a

state with maximum eddy size (t = 3.44T ) correspond to the instantaneous streamline pattern;

the shaded area represents the material time evolution of the area defined at t = 3.44T from the

eddy shape of the corresponding steady-state flow.

separatrix plunges lower down the right hand side of the valley to displace the separatrix

bounding the shaded former steady-state area. Part of the fluid originally in the maximum

eddy is entrained into the shaded region; however, over the course of solution the material

within the steady state eddy region is not expelled and remains trapped. These observations
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clearly indicate that small perturbations of the steady-state flow, interpreted as being due

to the corrugations in the upper plate, leave the material movement of the steady-state flow

qualitatively invariant: a certain amount of fluid particles covering an area smaller than the

maximum eddy size but larger than the minimum eddy size, as expected fairly close to the

shape of the steady-state eddy, remain trapped; whereas fluid particles above this region are

flushed away.

FIG. 6. Sweep lines at different times for the case: h0 = π/4, a = π/8, h1 = 0.01, Re = 1;

the shaded area represents the particle distribution at successive times, that was initially confined

within the steady-state closed eddy (upper, top left-hand image) at the onset of the unsteady

behaviour. Mass transfer takes place between the eddy region and the bulk flow and vice versa.

In contrast to the above, the following example considers the effect of varying the am-

plitude of the upper plate h1. Figures 6-8 show sweep lines for the configuration λ = 2π,
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FIG. 7. Sweep lines at different times for the case: h0 = π/4, a = π/8, h1 = 0.03, Re = 1; the

shaded area represents the particle distribution at the times shown that were initially contained

within the steady-state closed eddy at the onset of unsteady behaviour - see, uppermost top left

hand flow pattern. Mass transfer takes place between the eddy region and the bulk flow and vice

versa.

a = π/8, h0 = π/4, Re = 1 with different amplitudes h1 = 0.01, h1 = 0.03 and h1 = 0.09.

As before, several time periods are allowed to pass before the flow can be considered to lie in

the time-periodic regime; in this case the streamlines are captured at times when the eddy

shape is closest to the steady state case h1 = 0, this being the reason for the slightly different

starting times for the three computations shown. The time-dependent variation of channel

thickness leads to periodically increasing and decreasing eddy formation in the valley of the

corrugated lower surface. As the solution proceeds, material from within the initially closed
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FIG. 8. Sweep lines at different times for the case: h0 = π/4, a = π/8, h1 = 0.09, Re = 1; the

shaded area represents the particle distribution at the times shown that were initially contained

within the steady-state closed eddy at the onset of unsteady behaviour - see, uppermost top left

hand flow pattern. Mass transfer takes place between the eddy region and the bulk flow and vice

versa.
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eddy region is exchanged with the bulk flow, as the separatrix detaches from the right-hand

side of the valley and fluid is entrained into the valley; at the same time fluid is ejected

from the eddy into the bulk flow. In all three cases material exchange takes place in both

directions, from the bulk flow to the eddy region and vice versa. For the case h1 = 0.01 the

effect appears marginal, while for increasing amplitude h1 the amount of material exchange

grows significantly. The above results exhibit a variant of the ’turnstile lobe effect’, as ob-

served for instance by Wierschem and Aksel 27 and Horner et al. 31 , and therefore represent

a qualitative difference to the case of Fig. 5. This leads to the assumption that the amount

of mass exchange between the steady-state eddy and the bulk flow depends proportionally,

involving a geometry-dependent constant, on the energy induced by the perturbation signal,

e.g. by the corrugation of the upper surface; while a certain minimum energy is necessary

to initiate the process at all. Revealing in this context would certainly be that of a study

of different upper corrugated surface wavelengths in relation to the lower surface contour.

Furthermore, for the small Reynolds numbers considered in this example, i.e. Re ≤ 10,

the influence of the nonlinear terms that have been effectively neglected are anticipated to

increase slightly any effects due to a more pronounced asymmetry of the eddy.

V. CONCLUSIONS AND OUTLOOK

A principal element of the complex variable method, namely the reduction of the respec-

tive flow to two analytic functions g0(ξ), g1(ξ), cannot be maintained as soon as inertia

becomes relevant, as clearly indicated by equation (5). Accordingly, the first integral of

the Navier-Stokes equations, as developed in the present work, does not represent a gener-

alisation of the complex variable method itself, but rather provides an extended nonlinear

and unsteady equation set for the complex potential χ which reduces to a simple bianalytic

equation and therefore to the Goursat representation in the case of inertial effects being

absent. Although much of the analysis based on the holomorphic character of g0(ξ) and

g1(ξ) is not applicable for the present extension, the first integral features at least a set of

field equations the order of which is reduced by one in comparison to the original Navier-

Stokes equations. The first integral is a set of second order PDEs, whereas the original

Navier-Stokes equations are of third order when expressed in terms of the streamfunction;

a fact which is beneficial from both an analytical and numerical viewpoint. Accordingly,
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based on the field equations derived, the subsequent development of new semi-analytical

and numerical solution methods, suited to complex flow geometries, appears to a worth-

while pursuit. In particular, these could prove very informative with regard to the internal

structure of flows, for example in relation to eddy genesis and the dynamics of the same,

by enabling quick identification of relevant areas in parameter space which would benefit

from complementary high-fidelity numerical solutions of the full Navier-Stokes equations

themselves. A three-dimensional generalisation of the methodology can be found in Scholle,

Gaskell, and Marner 36 and an alternative approach for a first integral based on the Clebsch

transformation is provided by Scholle and Marner 37,38 .

The capabilities of the method has been demonstrated for the case unsteady Couette

flow in a channel bounded by two sinusoidally corrugated surfaces, via both analytical and

numerical means. For the analytical approach a generalised Goursat form with a third

holomorphic function has been established for the streamfunction, which more generally can

be written in the form: ψ = <
[
g0 (ξ) + ξ̄g1 (ξ) + Re ξ̄2g2 (ξ)

]
. We note that although this

elegant extension of the classical complex variable method is not generally applicable, it

can at least be applied to flow problems with negligible nonlinear inertial effects and small

Reynolds numbers taking into account the remaining unsteady effects. The asymptotic

analysis reveals a time-dependent eddy structure invoking a material exchange, a topical

subject of research in relation to coating and film flows. Via numerical studies, based on

implicit Crank-Nicolson time discretization in combination with a weak Galerkin Finite

Element formulation, this material exchange has been revealed in detail by visualisation

of sweep lines, showing the associated flow structure via a sequence of snap-shots of the

ensuing motion. Future studies are planned that will include the nonlinear inertial terms

in the field equations and utilise the approach to explore free surface film flows making use

of the elegant reformulation (23, 27) of the kinematic and dynamic boundary conditions in

order to find solutions for solitary surface waves and, finally, to investigate the ’turnstile

lobe’ effect in more detail.

Analysis of the stability of steady-state base flows, subjected to a small disturbance away

from equilibrium, is a second attractive research area for application of the field equations

(16) and (17). Since they are in complex form they represent a suitable mathematical

framework from which to calculate the time evolution of small wave-like perturbations; in

combination with the complex form (27) of the dynamic boundary condition, the onset of
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surface waves in film flows21 may be explored.
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Appendix A: General considerations for small Reynolds numbers

Note that in two dimensions the vorticity ω is given by 2ω = ∆Ψ, and the corresponding

evolution equation for ω, the vortex transport equation, is obtained from the imaginary part

of (17), by applying the Laplacian ∆ = 4∂2/∂ξ∂ξ̄, as:

Re
∂ω

∂t
−∆ω = −1

2
∆2=χ ; (A1)

while taking the derivative of (16) with respect to ξ twice, leads to:

∆2χ = −Re

2

∂2u2

∂ξ2
. (A2)

The Reynolds number appears in both of the above equations but with a different physical

meaning: in Eq. (A2) inertia is present by accounting for quadratic terms, whereas in Eq.

(A1) it is related to the unsteady character of the flow.

By assuming that inertia can be neglected due to physical reasoning while retaining the

unsteady character of the flow, leads to the following simplified vortex transport equation:

Re
∂ω

∂t
−∆ω = 0 . (A3)

By taking the time derivative of (A3), multiplying the result with Re and utilising (A3)

again, gives:

0 = Re2∂
2ω

∂t2
−∆

[
Re
∂ω

∂t

]
= Re2∂

2ω

∂t2
−∆2ω . (A4)

Finally, noting that ∆2ω = O
(
Re2
)

for small Reynolds numbers, and remembering that

2ω = ∆Ψ, leads to:

∆3Ψ = O
(
Re2
)
. (A5)
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Appendix B: Fourier discretization

1. Base flow: steady Stokes flow (h1 = 0)

By inserting the series representation (57, 58) into condition (51) at the upper corrugated

surface, it follows that:

2h0Bδ0n + exp(−nh0) [(1− 2nh0)Qn − 2nRn] + exp(−nh0)Q̄−n = δ0n . (B1)

For n = 0 the constant B can be expressed in terms of Q0 via:

B =
1

2h0

[1− 2<Q0] ; (B2)

while for n > 0, the negative-indexed Q-coefficients can be expressed in terms of their

positive-indexed counterparts.:

Q̄−n = exp(−2nh0) [2nRn − (1− 2nh0)Qn] . (B3)

For the case n < 0 use is made of the complex conjugate of the equations and the substitution

n→ −n, leading finally to:

R̄−n = − exp(−2nh0)
[
(1 + 2nh0)Rn + 2nh2

0Qn

]
, (B4)

enabling, as above, the negative-indexed R-coefficients to be expressed in terms of their

positive-indexed counterparts.

Next, the series representation (57, 58) is applied to boundary condition (49) related to

the lower corrugated surface and considering equations (B2, B3) and (B4). Furthermore the

gauging condition =Q0 = 0 is added to the set of equations and the Fourier decomposition39:

exp (ka cosx) =
+∞∑

n=−∞

In(ka) exp(inx) , (B5)

is used with In being the modified Bessel functions of order n. Finally, a set of linear

algebraic equations follow:

∞∑
k=0

{
4k2 I

(1)
n−k − h0I

(0)
n−k

exp(2kh0)
R̄k − 2k

[
I
(0)
nk −

I
(0)
−n−k

exp(2kh0)

]
Rk +

[
I
(0)
nk − 2kI

(1)
nk −

1− 2kh0

exp(2kh0)
I
(0)
−n−k

]
Qk

+

[
I
(0)
−nk −

1− 2kh0 + 4k2h2
0

exp(2kh0)
I
(0)
n−k +

2k(1− 2kh0)

exp(2kh0)
I
(0)
n−k

]
Q̄k

}
=

a

2h0

[δ1n + δ−1n] , (B6)

where I
(0)
nk := In−k(ka) and I

(p+1)
nk := −a

[
I
(p)
n−1 k + I

(p)
n+1 k

]
/2 are used as abbreviations (p =

0, 1). Note that in (B6) the index n goes from −N to N .
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2. Perturbation

By inserting (53-55) in (48), the complex conjugate of the velocity reads:

ūu =

{
2i

[
r+′ + yq+′ + Re

y2

2
p+′
]

+ q+ + q− + Re y
[
p+ + p−

]}
exp(+it)

+

{
2i

[
r−
′
+ yq−

′
+ Re

y2

2
p−
′
]

+ q− + q+ + Re y
[
p− + p+

]}
exp(−it) .

Next, by applying the series representation (57, 58) and (59), the following linear algebraic

set of equations is obtained (n 6= 0) from the boundary condition (50):

N∑
k=−N
k 6=0

{[
I
(0)
nk − 2kI

(1)
nk ±

iRe

2k

(
kI

(2)
nk − I

(1)
nk

)]
q±k +

[
I
(0)
−nk ∓

iRe

2k
I
(1)
−nk

]
q̄∓k − 2kI

(0)
nk r
±
k

}

− aRe (δ1n + δ−1n) p0 = 0 , (B7)

for the coefficients q±k , r
±
k and p0. For convenience we take the derivative of (51) with

respect to x, implying the identity ∂ūs/∂ξ = −∂ūs/∂ξ̄ at ξ = x + ih0, in order to simplify

the boundary condition (52) together with (47) as follows:

ūu (x+ ih0, x− ih0, t) = −2i
∂ūs

∂ξ
cos(x− t) = 2 [B − 2=Q′s] cos(x− t) . (B8)

Applying the series representation (57, 58) and (59) again, the boundary condition (52)

implies the following linear algebraic set of equations (n 6= 0) :[
1− 2nh0 ± ih0Re

2n
(nh0 − 1)

]
q±n − 2nr±n

exp(nh0)
+ exp(nh0)

[
1± ih0Re

2n

]
q̄∓−n = b±n , (B9)

2h0 Re p0 = b+
0 , (B10)

for the coefficients q±k , r
±
k and p0, where the inhomogeneity b±n is calculated according to:

b±n := Bδ∓1n −
1

π

+π∫
−π

=Q′s (x+ ih0) exp (−i[n± 1]x) dx ,

from the coefficient B and the function Qs of the base solution.
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