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ABSTRACT
For high-redshift submillimetre or millimetre sources detected with single-dish telescopes,
interferometric follow-up has shown that many are multiple submillimetre galaxies blended
together. Confusion-limited Herschel observations of such targets are also available, and
these sample the peak of their spectral energy distribution (SED) in the far-infrared. Many
methods for analysing these data have been adopted, but most follow the traditional approach
of extracting fluxes before model SEDs are fit, which has the potential to erase important
information on degeneracies among fitting parameters and glosses over the intricacies of
confusion noise. Here, we adapt the forward-modelling method that we originally developed
to disentangle a high-redshift strongly lensed galaxy group, in order to tackle this general
problem in a more statistically rigorous way, by combining source deblending and SED fitting
into the same procedure. We call this method ‘SEDeblend’. As an application, we derive
constraints on far-infrared luminosities and dust temperatures for sources within the ALMA
follow-up of the LABOCA Extended Chandra Deep Field South Submillimetre Survey. We
find an average dust temperature for an 870-µm-selected sample of (33.9 ± 2.4) K for the
full survey. When selection effects of the sample are considered, we find no evidence that the
average dust temperature evolves with redshift for sources with redshifts greater than about
1.5, when compared to those with redshifts between 0.1 and 1.5.
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1 IN T RO D U C T I O N

With the advent of single-dish submm instruments such as SCUBA
and SCUBA-2 (Holland et al. 1999, 2013) on the JCMT, the BLAST
balloon-borne experiment (Pascale et al. 2008) and the Herschel
satellite (Pilbratt et al. 2010), we now have a window into the
distant star-forming Universe. However, due to the resolution of
these observatories, instrumental noise is not the limiting factor
when determining the uncertainty in the flux density of individual
sources that are observed for a sufficiently long period of time.
Instead, we are limited by confusion noise (see e.g. Patanchon
et al. 2009), caused by the high density of sources relative to the
relatively modest beam sizes. Higher resolution imaging can help
with extracting the desired information from these confused images,
but the current methods of combining such data are lacking in
statistical rigour.

A common exercise for learning about the physical properties of
galaxies in these wavebands is to characterize the spectral energy
distribution (SED) of a source. When the source is much brighter

� E-mail: dscott@phas.ubc.ca

than the confusion limit, this task is rather straightforward. How-
ever, if the source is near or below the confusion limit for any
particular waveband, then determining the SED becomes problem-
atic. This has been done with varying degrees of success through
‘de-blending’ techniques (e.g. Makovoz & Marleau 2005; Rose-
boom et al. 2010; Elbaz et al. 2011; Swinbank et al. 2014), often
using positional priors from other higher resolution observations to
first extract fluxes, then subsequently fit SED models. This two-step
process does not usually fully account for the statistical properties
of confusion noise (both spatial and between wavebands) and of-
ten neglects useful information regarding degeneracies among SED
model fits with nearby sources, and thus the attribution of uncer-
tainties to fit parameters becomes problematic.

We present here a method of combining high-resolution imag-
ing with confused imaging, which simultaneously fits SEDs and
separates sources, thus deblending SEDs instead of flux densities.
To do this, we adapt the forward-modelling method of MacKenzie
et al. (2014) (henceforth referred to as M14) and generalize it to the
case of point source deblending of model SEDs. This new method
forward-models each source SED to recreate the image plane and
uses a Monte Carlo Markov chain (MCMC) Metropolis–Hastings
algorithm (Metropolis et al. 1953; Hastings 1970) with Gibbs
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sampling (Geman & Geman 1993) to determine the uncertainties of
the model parameters. We apply our method to the Atacama Large
Millimeter/submillimeter Array (ALMA) Survey of Submillimetre
Galaxies (ALESS; Hodge et al. 2013) in the Extended Chandra
Deep Field South (ECDFS) to measure the far-IR properties of the
LABOCA ECDFS Submillimetre Survey selected sources (LESS;
Smail et al. 2009). This task has already been undertaken by Swin-
bank et al. (2014), allowing us to compare our results with those of
a more traditional method. Along with 870-µm ALMA data, this
region of the sky has also been imaged with the Herschel Spectral
and Photometric Imaging Receiver (SPIRE; Griffin et al. 2010) and
Photoconductor Array Camera and Spectrometer (PACS; Poglitsch
et al. 2010), thus making it the ideal arena to test the effectiveness
of our method. Throughout we employ a �CDM cosmology with
�� = 0.692, �m = 0.308, and H0 = 67.8 km s−1 Mpc−1 (Planck
Collaboration XIII 2015).

2 A F R A M E WO R K FO R F I T T I N G S E D s
TO B L E N D E D SO U R C E S

2.1 Model SED and image reconstruction

We adopt a modified blackbody SED with a power-law component
for the shorter wavelengths, as in M14, given as follows:

S(ν, Td, z, C) = C

(
ν(1 + z)

ν0

)β

(ν(1 + z))3

×
[

exp

(
hν(1 + z)

kBTd

)
− 1

]−1

, (1)

where S is the flux density, ν is the observed frequency, ν0 =
1.2 THz = c/(250 μm), β is the dust emissivity index, Td is the dust
temperature, z is the redshift, and C is a normalization factor. We
have virtually no constraining power on the dust emissivity index,
primarily due to the confused nature of the data and small number
of wavelengths observed, and we therefore fix it to a nominal value
of 1.5. The SED is represented at shorter wavelengths by a power
law on the Wien side, i.e.

S(ν, Td, z, C) ∝ ν−α, (2)

where the power-law amplitude and the frequency at which to switch
between the power law and modified blackbody are chosen so that
the transition is smooth (i.e. the two functions and their first deriva-
tives are continuous); such a model has previously been used by
Pascale et al. (2009), for example. For the same reason that we fix
the value of the dust emissivity index, we fix α to a nominal value
of 2.0, as found by Casey et al. (2012).

Because we are not dealing with multiple images here (i.e. not
strongly lensed), the image planes are reconstructed as follows:

Mb(x) =
∑

i

S̄b(Td,i , zi , Ci)Pν(x − r i) + Bb. (3)

Here Mb(x) is the reconstructed image for frequency channel b,
x denotes the position within the image, S̄b is the flux density of
source i averaged over the channel b transmission filter, Td,i is the
dust temperature, zi is the redshift, Ci is a normalization factor
of source i, Pν(x − r i) is the response function (i.e. the telescope
beam), with r i denoting the position of source i, and Bb is the image
background. The beam response functions for the Herschel channels
are approximated as Gaussians with FWHM values of 11.6, 18.1,
24.9 and 36.2 arcsec at 160, 250, 350 and 500 µm, respectively
(Griffin et al. 2010).

2.2 Herschel-SPIRE sky residuals

In M14, additional deep cosmological field imaging was used to
estimate the covariance of the sky in the likelihood calculation. In
this study, we are deblending the ALESS sources with the catalogue
of nearby Multiband Imaging Photometer for Spitzer (MIPS) 24-
µm and Very Large Array (VLA) sources provided in Swinbank
et al. (2014), henceforth referred to as the NMJS catalogue. This
catalogue accounts for the majority of the flux in the Herschel-
SPIRE data (see below for details) and thus, using a cosmological
field without subtracted sources to estimate the covariance for our
likelihood calculations is not appropriate here. Instead, we use the
ECDFS SPIRE residuals, after subtracting our model SED, fit to
every NMJS and ALESS source simultaneously.

To achieve this, a maximum likelihood method is used to fit our
model SEDs using a similar method to that described in Section 2.3,
weighting each pixel equally within the SPIRE data and ignoring
any covariance between pixels. Fig. 1 shows the ECDFS field at
the three Herschel-SPIRE wavelengths before and after the NMJS
catalogue and ALESS sources are subtracted. No PACS or ALMA
data are used in this step. We limit this process to the region where
the 250-µm instrumental noise is less than 1.2 mJy, which includes
4024 sources from both the ALESS and NMJS catalogues. Total
flux densities from all NMJS and ALESS sources combined of
37.2, 28.6 and 16.2 Jy are subtracted from the data at 250 µm,
350 µm and 500 µm, respectively. To test if we are over-subtracting
flux from the maps, we stack the original maps on the positions
of the catalogues, which produces total flux densities of 28.7±0.7,
23.4±0.6 and 14.5±0.5 mJy at 250 µm, 350 µm and 500 µm,
respectively, with the errors estimated by bootstrapping. One might
conclude from this that we are indeed over-subtracting, but stacking
on the model sky (the image subtracted from the data to produce the
residuals) produces total flux densities of 30.5, 24.0 and 14.0 mJy at
250 µm, 350 µm and 500 µm, respectively. Both of these stacking
results are significantly lower than the total flux densities of the
subtracted sources; however, we only expect stacked results to equal
the total flux densities of the sources if they are Poisson distributed
on the sky (Marsden et al. 2009). Because the stacking on the real
and model skies gives consistent results, we conclude that we are
not significantly over-subtracting flux density from our maps. Due
to the effects of having a finite-sized beam when creating the NMJS
catalogue, where no two sources can occupy the same location on
the sky, our resulting catalogue of sources is not Poisson distributed.
By generating two sets of simulated sky maps, one using the NMJS
positions, and the second using random sky positions, where both
use the same source flux densities, we are able to test this hypothesis.
The stacking on the simulated maps using the NMJS positions
generated stacking results that had lower total flux densities than
the sources used to generate the simulated maps, while stacking
on the simulated maps using random source positions generated
stacking results that equalled the total flux densities of the sources
used to generated the simulated maps.

The standard deviations of the residuals are 1.5, 1.6 and 1.4 mJy
at 250 µm, 350 µm and 500 µm, respectively; these values are
significantly reduced from the confusion limits of 5.8, 6.3 and
6.8 mJy, respectively (Nguyen et al. 2010). Hence a 24-µm plus
1.4-GHz catalogue with signal-to-noise ratio > 5 depths of 56 µJy
and 41.5 µJy, respectively, accounts for approximately 80 per cent
of the confusion noise in the maps. These residuals are greater than
the instrumental noise levels of 1.0, 1.1 and 1.2 mJy in these re-
gions; we are thus seeing the residual confusion noise of the sources
that are not bright enough to be included in the ALESS and NMJS
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Figure 1. Left: SPIRE ECDFS field. Right: SPIRE ECDFS field, after source subtraction of 4024 mid-IR, radio and ALMA sources in the region of the sky
where the 250-µm instrumental noise is less than 1.2 mJy. The standard deviations of the residuals in this region after subtraction are 1.5, 1.6 and 1.4 mJy at
250 µm, 350 µm and 500 µm, respectively. These residuals are still larger than the instrumental noise and are presumably dominated by sources too faint to
be included in the catalogue of sources subtracted. We will use these residuals to estimate the covariance of the sky when performing our full SED fitting. The
scale at the bottom of the image is in Jy. The map centres are located at roughly 3h32m30s, −27◦47′00′′.

catalogue of sources we subtracted. These residuals will be used
in Section 2.3 to estimate the covariance of the sky. This method
allows us to greatly reduce the effects of confusion noise; instead,
we are left with degeneracies in SED fitting parameters among the
many nearby sources in our catalogues.

2.3 Model fitting

As in M14, the model is fit to the data using an MCMC Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970) with
Gibbs sampling (Geman & Geman 1993). The log likelihood

MNRAS 463, 10–23 (2016)



SEDEBLEND 13

Figure 2. Results of separating the inverted covariance matrix of the Herschel SPIRE residuals by angular separation and by wavelength. The inverse
auto-covariances for 250 µm to 250 µm, 350 µm to 350 µm, and 500 µm to 500 µm at an angular separation of zero are 1.02× 106 Jy−2, 1.07× 106 Jy−2

and 7.9× 106 Jy−2, respectively, and for clarity are not shown on the graphs above. These inverted covariance lists are used in estimating the likelihood of our
model fits. From these lists/fits, we can see that covariances between neighbouring pixels contribute significantly to the likelihood estimate.

function for the Herschel-SPIRE data is

−log LSPIRE = XSPIRE + 1

2
RTC−1 R, (4)

where R is a one-dimensional list of the residuals, and contains all
three channels of SPIRE data (R = {D250(xk) − M250(xk)/c250,

D350(xk) − M350(xk)/c350,D500(xk) − M500(xk)/c500}), C−1 is the
inverse covariance matrix for the residuals, cb are the calibration
factors of each respective band, and XSPIRE is a constant. For each
step in the MCMC chain, we are only interested in the differences
between log-likelihoods, and thus any constants can be ignored.

In M14 the area of sky used was only a few arcminutes across,
but the method described here must function on much larger areas,
which is a problem, since the above calculation time-scales with
the square of the area used. Fortunately, the covariance between
pixels is only significant for relatively nearby pixels, and so we do
not need the whole matrix. We can estimate the covariance for an
image of 10 × 10 pixels at each of the three SPIRE channels by
selecting randomly chosen cutouts from the residuals described in
Section 2.2. To perform this task, the covariance matrix is inverted
and the result separated into six lists, corresponding to inverse co-
variances between pixels within the same waveband and between
wavebands. Where the angular distances between pixels forms a
regular repeating pattern (due to the relative pixel sizes), we take
the median inverse covariance value for each group of points with
identical angular separations to obtain a better estimate of the inverse
covariance. For inverse covariances between 250 µm and 350 µm,
and 350 µm and 500 µm, a high-order polynomial is fit to the data
(the pixel sizes of 6, 8.3 and 12 arcsec do not form simple repeating
set of angular separation values between the wavelengths). Fig. 2
shows the inverse covariance as a function of angular separation for
the six lists. If we limit the log-likelihood calculation to only pixels
within a fixed radius of the sources of interest and between pixels

within a fixed angular distance, the resulting likelihood calculation
only scales with the area of sky used.

In theory, we could iterate on the process of making residual
maps for use in estimating the residual sky covariance. Where we
treated each pixel with equal weight in Section 2.2, we could instead
use the estimated covariance from the previous iteration. In practice
however, the computational time of the likelihood calculation would
become prohibitively large compared to the simple approach we
implemented. Fortunately, the residuals are likely dominated by
sources too faint to be included in our NMJS catalogue, and not by
a poorly weighted fit, and thus little would be gained by iterating
on the residuals. To test this assumption, we keep track of the
total variance of the pixel values in the residual maps for each
MCMC chain point while performing the full SED fitting (described
below). We find an average minimum total variance of all the fields
corresponding to 1.5, 1.6 and 1.4 mJy standard deviations of the
pixel values at 250, 350 and 500 µm, respectively.

Flux calibration uncertainties, cb, are taken into account during
the fitting procedure by setting priors on cb for each band. SPIRE
waveband calibrations are correlated, with a covariance matrix

Ccal =
∣∣∣∣∣∣

0.001 825 0.0016 0.0016
0.0016 0.001 825 0.0016
0.0016 0.0016 0.001 825

∣∣∣∣∣∣ , (5)

where the calibration is normalized to unity (Bendo et al. 2013).
This corresponds to a 4 per cent correlated uncertainty between
bands plus 1.5 per cent uncorrelated uncertainty between bands.

The log-likelihood for the ALMA fluxes for a given band is given
by

−log Lb = Xb +
∑

i

1

2σ 2
i,b

(Di,b − Mi,b/cb)2, (6)
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Figure 3. Results comparing the expected uncertainty in fitting a source given by our method (black contours), versus Monte Carlo simulated sources injected
into the data. The blue points are the Monte Carlo simulated sources used to verify our method. In the left-hand panel, we show our standard source with a
redshift of 2, a dust temperature of 30 K and a far-IR luminosity of 1012 L�. In the middle panel we show the same standard source with half the luminosity,
and in the right-hand panel, the standard source with a quarter of the original luminosity. The black contours represent 68, 95 and 99.7 per cent credible regions.
The Monte Carlo simulated sources trace out the expected uncertainties given by our method, thus we conclude that our likelihood analysis is validated.

where Di,b is the measured flux density for source i, M̄i,b is the model
flux density for source i, σ i,b is the uncertainty in the measurement
of Di,b, cb is the calibration factor, Xb is a constant, and b denotes
the band of the measurement. Unlike the Herschel-SPIRE bandpass
filters, the ALMA bandpass filter is narrow and M̄i,b is taken to be
the flux density at the specified frequency. The data used in this
study are at 345 GHz in ALMA Band 7, although we also consider
the benefits of using additional 650-GHz Band 9 data for constrain-
ing the far-IR properties of the ALESS sample in Section 3.2 (for
future consideration). Calibration uncertainties are 10 per cent and
20 per cent in Bands 7 and 9, respectively.

Because the 160-µm PACS data are dominated by instrumental
noise, the log-likelihood for these data is given by

− log LPACS = X160 +
∑

k

1

2σ (xk)2
(D160(xk) − M160(xk)/c160)2,

(7)

where D160(xk) are the data, M160(xk) is the sky model, σ (xk) is the
instrumental error, X160 is a constant, c160 is the calibration factor,
and xk is the position of pixel k on the sky. The 160-µm PACS
calibration uncertainty is 5 per cent (Muller et al. 2014).

3 TESTING WITH SIMULATED SOURCES

While we do not require the simulation of artificial sources in order
to calibrate our method, we can use it as a tool to verify the accuracy
of the uncertainties reported. In particular, we can test how redshift,
uncertainty in redshift, dust temperature and far-IR luminosity af-
fect our ability to constrain these same properties. We can also
explore the effects of including nearby sources and the degenera-
cies generated among parameters. In addition, we can quantitatively
assess the benefits of adding further data, such as Band 9 ALMA
measurements.

3.1 Verifying our method

We verify our method by injecting simulated sources into the resid-
ual Herschel-SPIRE images, described in Section 2.2, along with
simulated PACS data, and recording the resulting best fit. The best-
fitting distribution of the injected sources should match the expected

uncertainties for such sources. Simulated ALMA 870-µm flux den-
sities are given 0.5-mJy Gaussian errors and the PACS 160-µm
data are simulated by generating a blank image with Gaussian ran-
dom noise equal to the instrumental noise. SPIRE calibration errors
are randomly generated using the covariance matrix given in Sec-
tion 2.3 and calibration errors for the ALMA and PACS data are
also included. This is, in effect, a Monte Carlo verification of our
method and allows us to check the validity of our treatment of the
Herschel-SPIRE likelihood analysis. We adopt a ‘standard’ source,
using the SED model described in Section 2.3, with a redshift of 2,
a dust temperature of 30 K, and a far-IR luminosity of 1012 L�, for
the purpose of testing our method. This equates to flux densities of
4.5, 6.4, 7.6, 5.6, and 1.8 mJy at 160, 250, 350, 500, and 870 µm,
respectively, with a peak flux density of 7.7 mJy at 323 µm. We
inject a total of 441 fake sources for each case we test below. In-
jecting each source one at a time allows us to test our constraining
power for a single isolated source (although this is a rare occur-
rence, due to the density of sources on the sky). To see the effect of
source confusion, we can inject multiple simulated sources in close
proximity. Both of these cases are discussed below.

Because dust temperature and redshift are entirely degenerate,
one approach to take would be to constrain Td/(1 + z), instead
of fixing the redshift and constraining dust temperature separately,
as is done in most of the examples below. However, because the
ALESS sources already have photometric redshift estimates from
Simpson et al. (2014), it is beneficial to show constraints on dust
temperatures separately. The effect of an uncertainty in redshift is
also explored below (see Fig. 7).

Fig. 3 shows the verification of our method for our standard
source, as well as the cases where we decrease its luminosity by a
factor of 2 and by a factor of 4. Good agreement is found between
our expected uncertainties and the Monte Carlo injected sources. It
is interesting to see the drastic change in temperature uncertainty as
the luminosity of the standard source is reduced. We could clearly
provide constraints on sources to well below the confusion limit of
the SPIRE data, if only we were dealing with isolated sources on the
sky. Of course this is just a tautology, since the sky is unfortunately a
crowded place and our ability to constrain the properties of sources
is largely limited by nearby sources that generate degeneracies in
the fit parameters.

Fig. 4 shows the verification of our method for the case of two
standard sources separated by 5 arcsec. This example demonstrates a
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Figure 4. Comparison of the expected uncertainties for two standard sources separated by 5 arcsec with the Monte Carlo simulated results (blue points).
The black contours represent 68, 95 and 99.7 per cent credible regions. The Monte Carlo simulated sources trace out the expected uncertainties given by our
method, providing an important validation of our likelihood analysis. Also seen here are the degeneracies in fit parameters between the two neighbouring
sources. First, we can see that the far-IR luminosities of the two neighbouring sources are almost entirely degenerate, with the ALMA 870-µm data providing
most of the degeneracy-breaking power. Secondly, we see that their dust temperatures are also anti-correlated, although the shape of the degeneracy here is
more complicated. Also seen here are degeneracies between the far-IR luminosity of one galaxy and the dust temperature of the second galaxy, and vice versa.
It is these degeneracies that would be erased if we employed a traditional two-step SED fitting composed of first deblending flux densities, and subsequent
SED model fitting.

typical case of submm multiplicity, as seen for many of the ALESS
sources (Hodge et al. 2013). Here, it is clear that the constraints
on the properties of a source are limited by the degeneracies with
its neighbour and not the residual unresolved far-IR background.
A linear anti-correlation between the two far-IR luminosities is
expected, with the one-to-one degeneracy seen here the result of
the two sources having the same far-IR luminosity and redshift.
The degeneracies seen between the other SED model parameters,
typically ‘banana-shaped’, depend on the values of the parameters
themselves. It is these degeneracies that two-step SED fitting erases.
Again, our Monte Carlo simulated sources accurately reflect the
expected uncertainties and correlations.

Fitting large numbers of Monte Carlo simulated sources is a com-
putationally expensive exercise and thus we stop the verification of
our method here. We have shown that the constraints produced
by our method accurately reflect the results of Monte Carlo simu-
lations, and thus our treatment of the SPIRE likelihood analysis is
validated. For a standard source, Fig. 5 shows the difference between
our approach and an identical method where we only consider the
instrumental noise of the SPIRE data and ignore the correlations be-
tween neighbouring pixels in angular separation as well as between
wavelengths. Without proper treatment of the SPIRE likelihoods, it
is clear that we would be over-constraining the properties of sources
within our model.

Assigning an accurate dust temperature uncertainty is an issue
that has been neglected in much of the literature. Constraints on dust

Figure 5. Comparison of the expected uncertainties for a standard source
using our method (black contours show 68, 95 and 99.7 per cent credible
regions) and an identical method with a naive approach to the Herschel-
SPIRE likelihood that considers only the instrumental noise in each pixel
and ignores the covariance with neighbouring pixels (red contours).
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Figure 6. Constraining power of our model as a function of redshift for our
standard source, while keeping peak flux density constant. We show 68, 95
and 99.7 per cent credible regions for redshifts of 1, 2, 3, 4, 5 and 6 in black,
red, blue, green, yellow and purple, respectively.

temperature are affected by several factors, such as the redshift of the
source, the width of the telescope bandpass filters, the wavelength
coverage of the telescope filters, and the signal-to-noise ratio of the
source within the images. However, the dust temperature uncertainty
naturally falls out of the method employed here, and thus we perform
a few tests as examples.

Fig. 6 shows how our constraints change as we vary the redshift
of our standard source while keeping the peak flux density constant
and letting the far-IR luminosity change. An interesting effect is
seen at z � 6, where a colder fit to the dust temperature starts to
increase the far-IR luminosity. This is because the peak of the SED
shifts beyond the ALMA 870-µm waveband. A similar effect is seen
at low redshifts, when the peak of the SED shifts to wavelengths
shorter than 160 µm and the upper dust temperature bound starts to
rise. For a dust temperature of 30 K, these effects do not become
significant unless the redshift is lower than about 1 or greater than
about 6; thus the wavelength coverage of the available data is ideally
suited for the sample of ALESS sources we are fitting in Section 4.

Up to this point, we have assumed that the redshift of our stan-
dard source was already well constrained. To investigate dropping
this assumption, Fig. 7 shows our model constraints for redshift
uncertainties of 0, ±0.5, and ±1. How well we can constrain dust
temperature and far-IR luminosity, along with degeneracies among
nearby sources, strongly depends on the uncertainty in source red-
shift.

3.2 The addition of a second ALMA frequency

ALMA follow-up observations of 870-µm sources selected from
ALESS (Smail et al. 2009; Hodge et al. 2013) have shown that a
significant fraction of single-dish detected sources are in fact com-
prised of multiple galaxies. Since degeneracies with nearby sources
are a dominating factor in determining our ability to constrain their
far-IR properties (see Fig. 4), such sources will have particularly
poor constraints on their far-IR properties. In Fig. 8 we explore the
benefits of adding ALMA Band 9 observations at 460 µm, with an
rms of 1 mJy, for the case of two standard sources separated by
5 arcsec on the sky. Since the peak of the SED for our standard
source is at 323 µm, which is shorter than both the ALMA bands
considered, only moderate improvement in constraining power is
expected, and this is what is seen in the simulations. Specifically,
the lower bound on the temperature is improved, which in turn
strengthens the constraint on far-IR luminosity. Much greater im-
provements in constraining power are realized when the peak of the

Figure 7. Constraining power of our model for the case of varying redshift
uncertainty. Here, 68, 95 and 99.7 per cent credible regions are shown for
redshift uncertainties of 0, ±0.5 and ±1, in black, red and blue contours,
respectively. A large uncertainty in redshift is one of the main limitations
for constraining dust temperature, as well as far-IR luminosity.

SED is straddled by the two ALMA wavelengths, as would be the
case if our standard source were at a higher redshift or had a lower
dust temperature. Fig. 9 shows the improvement for the case of two
standard sources separated by 5 arcsec, where the standard sources
are moved to a redshift of 4 and their peak flux densities remain
unchanged. In this case, degeneracies between the two sources are
nearly eliminated when adding a second ALMA band.

4 T H E P RO P E RT I E S O F S U B M M G A L A X I E S
W I T H I N T H E A L E S S SU RV E Y

When fitting our model to the data, we use the ALMA 870-µm flux
densities and positions from Hodge et al. (2013) and the photomet-
ric redshift estimates of Simpson et al. (2014), which were used
by Swinbank et al. (2014). The photometric redshift constraints
are considered to be ±1σ Gaussian priors in our model. It should
be noted that 18 of these sources have photometric redshifts using
fewer than four detections in the optical and near-IR, and should be
considered less robust than the rest of the sample. As in Swinbank
et al. (2014), we treat any source in the NMJS catalogue as a dupli-
cate if it is within 1.5 arcsec of an ALESS source or another NMJS
source.

We found that our data have almost no constraining power on the
dust emissivity index, β, when it is allowed to range over 1.0–2.5,
and thus we simply fix it to a nominal value of 1.5 so that we may
easily compare the ALESS sample with the sample of Symeonidis
et al. (2013). We set a hard prior on the dust temperature such that it
must be above 10 K, since no colder galaxies have been found in any
similar surveys (e.g. Chapin et al. 2009; Amblard et al. 2010; Dale
et al. 2012; Symeonidis et al. 2013), besides which the microwave
background temperature sets a similar limit at a redshift ∼3. This
hard prior is useful for when the peak of the SED is shifted close to,
or beyond, the ALMA 870-µm wavelength, which occurs at high
redshifts when the source is cold (see Fig. 6); thus this prior keeps
the model from entering an unphysical region of parameter space.
We also use a hard prior to keep the dust temperature from going
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Figure 8. Constraining power of our model for the case of two standard sources separated by 5 arcsec. The black contours denote 68, 95 and 99.7 per cent
credible regions using 0.5-mJy rms 870-µm ALMA Band 7 observations, while the red contours are when 1-mJy rms 460-µm ALMA Band 9 observations are
added along with 870-µm ALMA Band 7 observations.

Figure 9. Constraining power of our model for the case of two standard sources, moved to a redshift of 4, while keeping the same peak flux density, and a
separation of 5 arcsec. The black contours denote 68, 95 and 99.7 per cent credible regions using 0.5-mJy rms 870-µm ALMA Band 7 observations, while the
red contours are when 1-mJy rms 460-µm ALMA Band 9 observations are added along with 870-µm ALMA Band 7 observations.
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beyond 100 K, since no source in the ALESS sample was found to
be this hot in Swinbank et al. (2014).

We provide the median values of our MCMC chains and report
68 per cent credible intervals throughout. Far-IR luminosities are
calculated by integrating the model SED from 8 to 1000 µm. When
either the dust temperature or far-IR luminosity lower credible in-
terval is consistent with either zero far-IR luminosity or 10 K for
dust temperature, we report the 84 per cent credible interval as an
upper limit. Note that because of our prior on dust temperature,
upper limits for dust temperature are somewhat subjective in that
the upper limit would move if we changed the dust temperature
prior. While we may only have upper limits in one of these pa-
rameters, this does not necessarily translate into an upper limit on
the other. In fact, in only one case do we have an upper limit on
both far-IR luminosity and dust temperature. The resulting far-IR
luminosity and dust temperature constraints are given in Table 1
and shown in Fig. 10. Note that we do not report any constraints
for ALESS083.4, since the redshift of the source puts the peak of
the SED at shorter wavelengths than the available data and thus no
constraint on temperature is possible.

Table 1. The model fit parameters and credible intervals for the ALESS
sample. The ALMA flux density estimates are those of Hodge et al. (2013)
and the photometeric redshift estimates are those of Simpson et al. (2014).
We report the median values from our MCMC chains for the far-IR lumi-
nosities and dust temperatures. We report 68 per cent credible intervals for
both dust temperatures and far-IR luminosities. In the case where the lower
credible interval is either zero for the far-IR luminosity or 10 K for the dust
temperature, we report the 84 per cent upper credible interval as an upper
limit.

Gal ID ALMA 870 µm zphot Far-IR Dust temp.
(mJy) luminosity (L�) (K)

ALESS001.1 6.75 ± 0.49 4.34+2.66
−1.43 9.0+5.6

−8.1 × 1012 37+12
−14

ALESS001.2 3.48 ± 0.43 4.65+2.34
−1.02 8.1+4.0

−6.8 × 1012 46+14
−14

ALESS001.3 1.89 ± 0.42 2.85+0.20
−0.30 1.2+0.5

−0.6 × 1012 29+4
−3

ALESS002.1 3.81 ± 0.42 1.96+0.27
−0.20 2.1+0.8

−2.0 × 1012 30+7
−11

ALESS002.2 4.23 ± 0.67 a3.92+0.48
−1.42 2.1+2.3

−2.0 × 1012 <39

ALESS003.1 8.28 ± 0.40 3.90+0.50
−0.59 1.1+0.3

−0.4 × 1013 38+5
−4

ALESS005.1 7.78 ± 0.68 2.86+0.05
−0.04 5.3+0.6

−0.6 × 1012 30+1
−1

ALESS006.1 5.98 ± 0.41 0.45+0.06
−0.04 4.3+1.1

−1.6 × 1010 11+1
−1

ALESS007.1 6.10 ± 0.32 2.50+0.12
−0.16 8.8+1.1

−1.1 × 1012 34+1
−1

ALESS009.1 8.75 ± 0.47 4.50+0.54
−2.33 <1.8 × 1013 36+13

−10

ALESS010.1 5.25 ± 0.50 2.02+0.09
−0.09 3.6+0.2

−0.2 × 1012 31+1
−1

ALESS011.1 7.29 ± 0.41 2.83+1.88
−0.50 1.6+0.8

−1.3 × 1013 43+8
−15

ALESS013.1 8.01 ± 0.59 3.25+0.64
−0.46 5.2+1.6

−2.1 × 1012 30+3
−4

ALESS014.1 7.47 ± 0.52 4.47+2.54
−0.88 3.5+1.6

−2.4 × 1013 54+11
−15

ALESS015.1 9.01 ± 0.37 1.93+0.62
−0.33 3.1+1.3

−1.9 × 1012 25+4
−4

ALESS015.3 1.95 ± 0.52 a3.15+0.65
−0.65 7.8+3.6

−5.6 × 1011 26+8
−7

ALESS017.1 8.44 ± 0.46 1.51+0.10
−0.07 2.2+0.2

−0.3 × 1012 24+1
−1

ALESS018.1 4.38 ± 0.54 2.04+0.10
−0.06 4.3+1.2

−1.0 × 1012 35+3
−2

ALESS019.1 4.98 ± 0.42 2.41+0.17
−0.11 3.7+0.5

−0.5 × 1012 32+1
−1

ALESS019.2 1.98 ± 0.47 2.17+0.09
−0.10 1.4+0.3

−0.3 × 1012 29+2
−2

ALESS022.1 4.48 ± 0.54 1.88+0.18
−0.23 3.4+0.8

−0.9 × 1012 30+2
−2

ALESS023.1 6.74 ± 0.37 4.99+2.01
−2.55 <2.7 × 1013 50+17

−19

ALESS023.7 1.76 ± 0.49 a2.90+1.20
−0.40 1.4+0.8

−1.3 × 1012 33+13
−11

ALESS025.1 6.21 ± 0.47 2.24+0.07
−0.17 5.4+0.7

−0.6 × 1012 33+1
−1

Table 1 – continued

Gal ID ALMA 870 µm zphot Far-IR Dust temp.
(mJy) luminosity (L�) (K)

ALESS029.1 5.90 ± 0.43 2.66+2.94
−0.76 <2.2 × 1013 44+14

−20

ALESS031.1 8.12 ± 0.37 2.89+1.80
−0.41 1.1+0.6

−0.8 × 1013 40+8
−12

ALESS037.1 2.92 ± 0.41 3.53+0.56
−0.31 6.7+1.9

−2.5 × 1012 44+5
−5

ALESS037.2 1.65 ± 0.44 4.87+0.21
−0.40 1.2+0.4

−0.4 × 1013 64+6
−6

ALESS039.1 4.33 ± 0.34 2.44+0.17
−0.23 2.9+0.6

−0.6 × 1012 30+2
−2

ALESS041.1 4.88 ± 0.61 2.75+4.25
−0.72 <4.6 × 1013 62+18

−28

ALESS041.3 2.68 ± 0.75 a3.10+1.30
−0.60 1.5+0.7

−1.1 × 1012 28+9
−8

ALESS043.1 2.30 ± 0.42 1.71+0.20
−0.12 1.0+0.2

−0.3 × 1012 28+2
−2

ALESS045.1 6.03 ± 0.54 2.34+0.26
−0.67 3.0+1.5

−1.5 × 1012 28+4
−4

ALESS049.1 6.00 ± 0.68 2.76+0.11
−0.14 7.2+0.9

−1.0 × 1012 37+2
−2

ALESS049.2 1.80 ± 0.46 1.47+0.07
−0.10 1.3+0.2

−0.3 × 1012 31+2
−2

ALESS051.1 4.70 ± 0.39 1.22+0.03
−0.06 5.5+0.8

−0.8 × 1011 20+1
−1

ALESS055.1 3.99 ± 0.36 2.05+0.15
−0.13 3.1+1.6

−1.5 × 1011 <18

ALESS055.2 2.35 ± 0.60 a4.20+0.50
−0.90 7.3+3.0

−4.2 × 1011 <21

ALESS055.5 1.37 ± 0.37 2.35+0.11
−0.13 4.4+1.7

−3.9 × 1011 26+7
−7

ALESS057.1 3.56 ± 0.61 2.95+0.05
−0.10 5.9+0.6

−0.7 × 1012 40+2
−2

ALESS059.2 1.94 ± 0.44 2.09+0.78
−0.29 1.2+0.6

−0.8 × 1012 31+6
−6

ALESS061.1 4.29 ± 0.51 6.52+0.36
−0.34 2.2+0.3

−0.3 × 1013 60+3
−3

ALESS063.1 5.59 ± 0.35 1.87+0.10
−0.33 1.1+0.3

−0.3 × 1012 22+2
−2

ALESS065.1 4.16 ± 0.43 2.82+0.95
−0.36 5.0+1.8

−2.6 × 1012 35+5
−6

ALESS066.1 2.50 ± 0.48 2.33+0.05
−0.04 6.0+0.4

−0.4 × 1012 42+1
−1

ALESS067.1 4.50 ± 0.38 2.14+0.05
−0.09 1.1+0.6

−0.9 × 1012 23+4
−13

ALESS067.2 1.73 ± 0.41 2.05+0.06
−0.16 3.3+1.8

−2.7 × 1011 22+7
−7

ALESS068.1 3.70 ± 0.56 a3.60+1.10
−1.10 5.8+1.0

−1.0 × 1012 42+2
−2

ALESS069.1 4.85 ± 0.63 2.34+0.27
−0.44 2.3+0.8

−0.8 × 1012 29+3
−3

ALESS069.2 2.36 ± 0.56 a4.75+0.35
−1.05 9.4+3.4

−5.2 × 1011 <19

ALESS069.3 2.05 ± 0.56 a4.80+0.30
−1.10 8.7+3.7

−5.5 × 1011 <23

ALESS070.1 5.23 ± 0.45 2.28+0.05
−0.06 7.6+0.5

−0.5 × 1012 36+1
−1

ALESS071.1 2.85 ± 0.60 2.48+0.21
−0.11 1.7+0.2

−0.3 × 1013 49+2
−2

ALESS071.3 1.36 ± 0.38 2.73+0.22
−0.25 1.1+0.5

−0.5 × 1012 35+4
−5

ALESS072.1 4.91 ± 0.50 a4.15+0.55
−1.65 5.4+2.5

−4.9 × 1012 37+10
−8

ALESS073.1 6.09 ± 0.47 5.18+0.43
−0.45 7.6+1.6

−1.7 × 1012 38+4
−3

ALESS074.1 4.64 ± 0.69 1.80+0.13
−0.13 2.4+0.2

−0.2 × 1012 30+1
−1

ALESS075.1 3.17 ± 0.45 2.39+0.08
−0.06 5.8+0.4

−0.5 × 1012 36+1
−1

ALESS075.4 1.30 ± 0.37 2.10+0.29
−0.34 5.7+1.9

−2.4 × 1011 23+3
−3

ALESS076.1 6.42 ± 0.58 a4.50+0.20
−2.00 <6.1 × 1012 33+10

−7

ALESS079.1 4.12 ± 0.37 2.04+0.63
−0.31 2.1+1.0

−1.3 × 1012 29+5
−5

ALESS079.2 1.98 ± 0.40 1.55+0.11
−0.18 1.5+0.6

−0.6 × 1012 33+4
−4

ALESS079.4 1.81 ± 0.51 a4.60+1.20
−0.60 1.2+0.6

−0.9 × 1012 <31

ALESS080.1 4.03 ± 0.86 1.96+0.16
−0.14 1.1+0.3

−0.4 × 1012 23+2
−2

ALESS080.2 3.54 ± 0.90 1.37+0.17
−0.08 4.6+1.6

−1.8 × 1011 19+2
−2

ALESS082.1 1.93 ± 0.47 2.10+3.27
−0.44 8.0+6.1

−7.7 × 1012 56+16
−26

ALESS084.1 3.17 ± 0.63 1.92+0.09
−0.07 1.6+0.7

−1.4 × 1012 28+9
−6

ALESS084.2 3.25 ± 0.77 1.75+0.08
−0.19 1.0+0.3

−0.3 × 1012 26+3
−3

ALESS087.1 1.34 ± 0.35 3.20+0.08
−0.47 1.0+0.2

−0.2 × 1013 58+5
−5

ALESS087.3 2.44 ± 0.59 a4.00+1.10
−0.30 2.5+0.9

−1.3 × 1012 33+6
−6

ALESS088.1 4.62 ± 0.58 1.84+0.12
−0.11 1.1+0.5

−0.5 × 1012 22+4
−3

ALESS088.2 2.14 ± 0.50 a5.20+0.60
−1.20 1.5+0.7

−1.0 × 1012 <32

ALESS088.5 2.86 ± 0.72 2.30+0.11
−0.50 3.7+1.2

−1.1 × 1012 37+5
−3

ALESS088.11 2.51 ± 0.71 2.57+0.04
−0.12 7.2+4.0

−6.0 × 1011 24+8
−8
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Table 1 – continued

Gal ID ALMA 870 µm zphot Far-IR Dust temp.
(mJy) luminosity (L�) (K)

ALESS092.2 2.42 ± 0.68 1.90+0.28
−0.75 1.3+0.6

−1.0 × 1011 <17

ALESS094.1 3.18 ± 0.52 2.87+0.37
−0.64 3.5+1.3

−1.5 × 1012 35+5
−4

ALESS098.1 4.78 ± 0.60 1.63+0.17
−0.09 7.2+1.1

−1.5 × 1012 33+1
−2

ALESS099.1 2.05 ± 0.43 a5.00+1.20
−0.60 1.5+0.6

−0.9 × 1012 <25

ALESS102.1 3.08 ± 0.50 1.76+0.16
−0.18 1.3+0.3

−0.3 × 1012 26+2
−1

ALESS103.3 1.43 ± 0.41 a4.40+0.70
−0.70 1.5+1.0

−1.3 × 1012 38+11
−22

ALESS107.1 1.91 ± 0.39 3.75+0.09
−0.08 4.9+2.1

−1.8 × 1012 47+7
−5

ALESS107.3 1.46 ± 0.40 2.12+1.54
−0.81 <17.6 × 1011 31+11

−16

ALESS110.1 4.11 ± 0.47 2.55+0.70
−0.50 5.5+2.2

−3.2 × 1012 41+6
−7

ALESS110.5 2.39 ± 0.60 a3.70+0.40
−1.20 4.4+1.6

−2.6 × 1011 <16

ALESS112.1 7.62 ± 0.49 1.95+0.15
−0.26 2.8+0.7

−0.7 × 1012 27+2
−2

ALESS114.1 2.99 ± 0.78 a3.00+1.40
−0.50 1.1+0.5

−0.8 × 1013 46+8
−12

ALESS114.2 1.98 ± 0.50 1.56+0.07
−0.07 4.2+0.3

−0.3 × 1012 36+1
−1

ALESS116.1 3.08 ± 0.47 3.54+1.47
−0.87 3.3+2.0

−3.0 × 1012 36+13
−14

ALESS116.2 3.42 ± 0.57 4.02+1.19
−2.19 <8.5 × 1012 40+16

−14

ALESS118.1 3.20 ± 0.54 2.26+0.50
−0.23 2.5+0.9

−1.2 × 1012 33+5
−5

ALESS119.1 8.27 ± 0.54 3.50+0.95
−0.35 1.1+0.3

−0.5 × 1013 39+5
−6

ALESS122.1 3.69 ± 0.42 2.06+0.05
−0.06 8.5+0.6

−0.6 × 1012 38+1
−1

ALESS124.1 3.64 ± 0.57 6.07+0.94
−1.16 5.3+3.0

−4.0 × 1012 <47

ALESS124.4 2.24 ± 0.58 a5.60+0.60
−1.20 5.2+2.2

−3.1 × 1012 45+9
−9

ALESS126.1 2.23 ± 0.55 1.82+0.28
−0.08 8.4+1.9

−2.3 × 1011 30+3
−3

Notes. aThese photometric redshifts used fewer than four detections in the
optical and near-IR and thus should be considered less robust than the rest
of the sample (Simpson et al. 2014).

4.1 Comparison with Swinbank et al. (2014)

The benefit of applying our method to this sample of ALESS sources
is that we can compare our results with those of Swinbank et al.
(2014), who employed a simpler method of deblending and SED
fitting. To facilitate the comparison, we have used much of the same
data, although there are also key differences that make a detailed
comparison less straightforward. We have used the same ALESS
catalogue of positions and flux densities (Hodge et al. 2013), the
same NMJS catalogue, the same Herschel-SPIRE and PACS 160-
µm data, and the same redshift estimates (Simpson et al. 2014).
Aside from the method used to deblend the Herschel data, important
differences in Swinbank et al. (2014) include the use of an SED
library and the inclusion of both shorter and longer wavelength data
when fitting SEDs.

Fig. 11 compares the results of our two methods to assess their
level of agreement. The black dashed line in both plots shows the
locus representing complete agreement, while the Swinbank et al.
(2014) dust temperatures used in the comparison are those that
were derived from fitting a modified blackbody to the Herschel
photometry. We use a fixed dust emissivity index of 1.5, primarily
so that we may also compare our results with those of Symeonidis
et al. (2013). An apparent systematic shift towards warmer dust
temperatures is seen for our results, with an amplitude around 4 K;
however, comparing dust temperatures requires knowledge of the
SED model used to fit the data and any priors on the dust emissivity
index, β. We found that using a dust emissivity index of around
1.9 would eliminate this systematic shift; however, Swinbank et al.
(2014) allowed the dust emissivity index to vary between 1.5 and
2.2 and found an average best-fitting value of 1.8, which means

that this dust temperature discrepancy is easily explained. When we
allow the dust emissivity index to vary freely between 1 and 2.5, we
find that the data have almost no constraining power on the value
of β.

When comparing the far-IR luminosities, a clear correlation can
be seen between the two methods, with a slight tendency for our new
approach to fit higher far-IR luminosities for more luminous objects
and lower far-IR luminosities for less luminous objects. Again, the
choice of specific SED model will affect results here, primarily the
lack of a shorter wavelength hot component to our SED model, as
well as the use of shorter and longer wavelength data in Swinbank
et al. (2014). Such a comparison would require us to develop a more
complicated SED model, which would allow us to incorporate these
other wavelengths.

Overall, we believe our method to be an improvement over what
has been used in previous studies of submm galaxies and its effec-
tiveness has been shown in Section 3.1. In particular, it forgoes the
need to deblend confused imaging prior to fitting SEDs. Our method
fits SEDs and deblends the images simultaneously and can easily
incorporate prior knowledge of the expected source SED shape.

4.2 Dust temperatures and selection effects for ALESS sources

The top panel of Fig. 10 plots the dust temperature versus far-IR lu-
minosity for the ALESS sample. Many previous studies have shown
a correlation between dust temperature and far-IR luminosity, the
L–Td relation (e.g. Chapman et al. 2005; Casey et al. 2012; Magnelli
et al. 2012; Symeonidis et al. 2013), typically indicating that higher
redshift submm-selected galaxies are cooler; most of these authors
have appreciated the fact that the longer wavelength data have a
bias against including warmer sources, and other studies have tried
to quantify these selection biases (e.g. Chapin, Hughes & Aretxaga
2009; Chapin et al. 2011; Swinbank et al. 2014). Over-plotted on
the top panel of Fig. 10, using a solid black line, is the L–Td rela-
tion as found by Symeonidis et al. (2013). The sample of sources
used to find this relation was specifically chosen with the aim of
minimizing selection effects and are likely to be the most accurate
representation of the low redshift L–Td relation in the literature. A
major result of Symeonidis et al. (2013) is that sources at z < 0.1 are
on average a few kelvin warmer than those with redshifts ranging
from 0.1 to 2. For our study, we have specifically chosen a value
of the dust emissivity index that allows us to compare our results
directly to those of Symeonidis et al. (2013), to test if dust tem-
perature evolves further at higher redshifts. Upon first inspection, it
would appear that the ALESS sources are indeed cooler; however,
we must consider the selection effects of our sample. In the top
panel of Fig. 10, the red and purple, dotted and dashed lines, denote
representative ALMA 3.5σ detection limits for redshifts of 1, 3, 5
and 7. In the region where our two samples overlap, it is clear that
these detection limits bias our sample to cooler temperatures.

To test whether or not our sample is intrinsically cooler, we devise
a method of applying the ALESS selection effects to the Symeonidis
et al. (2013) sample. We obtained the catalogue of sources used to
create the estimate of the L–Td relation of Symeonidis et al. (2013),
the solid black line in Fig. 10, including far-IR luminosities and
dust temperatures for sources. We randomly draw N objects from
this source list, where N is the number of sources in the list, with
replacement. We randomly assign redshifts to these sources from
the ALESS source catalogue, such that they will have the same
redshift distribution (ALESS source redshifts can be found in Ta-
ble 1). We retain those sources that have a predicted flux density
greater than the 3.5σ ALMA flux limit at 870 µm and calculate the
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Figure 10. Top: dust temperature versus far-IR luminosity for the ALESS sample. Black points are ALESS sources with constraints on both the far-IR
luminosity and dust temperature. Red points are ALESS sources with 1σ upper limits on far-IR luminosity. Green points are ALESS sources with 1σ upper
limits on dust temperature. Dot and dashed lines are representative 3.5σ detection limits of the ALMA data for redshifts between 1 and 7. The solid black
line is the far-IR luminosity to dust temperature relation found by Symeonidis et al. (2013). It is clear from the detection limits that our sample is biased
towards colder dust temperatures. Bottom: far-IR luminosity versus redshift for the ALESS sample. The colours of the points is the same as in the upper panel.
Representative 1σ detection limits are drawn for a Td = 33 K source at 250, 350, 500 and 870 µm in black, red, green and blue, respectively. ALESS sources
with upper limits on dust temperature can be found in the region between the ALMA and Herschel-SPIRE detection limits, implying a detection by ALMA,
but little or no flux seen by SPIRE.

mean dust temperature of this sample of sources. We perform this
procedure many times, thus bootstrapping the sample, and restrict
our test to sources with luminosities between 1012 and 1013 L�
(where the two samples overlap). We find a mean dust temperature
of (35.6±0.8) K. Using a similar bootstrapping procedure, we find
a mean dust temperature of (33.7±4.2) K for the ALESS sample.
Since these values are consistent, we cannot conclude that we de-
tect any evolution in dust temperature with redshift in the ALESS
sources when compared to those of Symeonidis et al. (2013), de-
spite the apparent difference in Fig. 10. The selection effects of the

ALESS sample unfortunately preclude any attempt at performing
this same test for those sources with z < 0.1. For the full sample,
we find an average dust temperature of (33.9±2.4) K.

4.3 Contribution to the comoving star formation rate density
of the Universe

Fig. 12 shows the comoving star formation rate (SFR) density for
the ALESS sources with flux densities greater than 4.2 mJy, using a
conversion factor of 1.08 × 10−10 M� yr−1 L−1� for a Chabrier IMF,
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Figure 11. Comparison of our results with those found by Swinbank et al. (2014). Top: comparison of dust temperatures between the two methods. Bottom:
comparison of far-IR luminosities. Black points are ALESS sources with constraints on both the far-IR luminosity and dust temperature. Red points are ALESS
sources with 84 per cent upper limits on far-IR luminosity. Green points are ALESS sources with 84 per cent upper limits on dust temperature. The dashed
black line shows the expected relation if the two methods were in agreement. While our results show a clear correlation with those found by Swinbank et al.
(2014), there is disagreement for many of the individual ALESS sources. One prominent feature appears to be roughly a 4 K offset in temperature between the
two methods. This discrepancy is easily explained by the choice of dust emissivity index; we have used a fixed value of β = 1.5, while Swinbank et al. (2014)
used a value of β that varied, with an average of 1.8. This difference in dust emissivity index accounts for most of the apparent dust temperature shift.

as in Swinbank et al. (2014). The vertical error bars on our results
are 68 per cent confidence intervals for the comoving SFR density
after bootstrapping the MCMC chains and the horizontal error bars
are the 16th and 84th percentile of the redshift distribution used
to generate each data point, with the data point being plotted at
the 50th percentile of the redshift distribution used within that bin.
For comparison, the points plotted from Swinbank et al. (2014) are
divided by a factor of 2, which they use to correct their estimate to
compensate for the fact that the region is though to be underdense
(Casey et al. 2009). Although our competing methods may produce
significantly different far-IR luminosities for many of the ALESS

sources, our new comoving SFR density estimates agree rather well
with those of Swinbank et al. (2014); this shows that our results
are in general statistical agreement for the population of sources.
We refer the reader to Swinbank et al. (2014) for interpretations of
what this means for the role that submm galaxies play in overall
star formation at high redshift.

5 C O N C L U S I O N S

After generalizing our method from M14 for the case of deblending
SEDs of confused point sources, we have been able to show that
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Figure 12. Contribution of the ALESS sources with flux densities greater
than 4.2 mJy to the comoving star formation history of the Universe. The
vertical error bars on our results are 68 per cent confidence intervals for
the comoving SFR density after bootstrapping the MCMC chains, while
the horizontal error bars are the 16th and 84th percentiles of the redshift
distribution used to generate each data point, with the data point being
plotted at the 50th percentile of the redshift distribution used within that
bin. For comparison, we include the estimates from Swinbank et al. (2014),
divided by a factor of 2, since this region is considered to be underdense
(Casey et al. 2009). Also included is the comoving star formation history of
the Universe as compiled by Madau & Dickinson (2014).

our method gives realistic estimates of far-IR properties and their
uncertainties, and accurately captures the degeneracies among SED
parameters of nearby sources caused by confusion. When applied
to the ALESS catalogue, we have been able to derive constraints
on dust temperatures and far-IR luminosities and to show that our
results correlate with those of Swinbank et al. (2014), although our
derived far-IR properties differ significantly when comparing indi-
vidual sources. Herschel-SPIRE currently provides the best view of
the 250, 350 and 500-µm extragalactic sky in terms of depth and
sky coverage. Using the sample of Symeonidis et al. (2013) and
applying the same selection function as for the ALESS sample, we
show that any apparent evolution of the L–Td relation to cooler dust
temperatures at redshifts greater than about 1.5, may be driven by
selection effects.

With the large quantities of confusion-limited imaging now avail-
able, such as that from Herschel, applications of our method are
many. One possibility is obvious: the comoving SFR density of
the Universe as seen within well-studied regions, such as the Hub-
ble Ultra Deep Field (HUDF). Confusion-limited Herschel-SPIRE
imaging for this field is already available, and we showed how
ALMA observations at more than one frequency can greatly aid in
deblending SEDs. Combining these observations with the spectro-
scopic and photometric catalogues that currently exist would yield
valuable constraints on the rest-frame far-IR properties, which ef-
ficiently and systematically use all the available information in the
submm images.
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