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The morphological properties of the large scale structure of the Universe can be fully described by four
Minkowski functionals (MFs), which provide important complementary information to other statistical
observables such as the widely used 2-point statistics in configuration and Fourier spaces. In this work, for
the first time, we present the differences in the morphology of the large scale structure caused by
modifications to general relativity (to address the cosmic acceleration problem), by measuring the MFs
from N-body simulations of modified gravity and general relativity. We find strong statistical power when
using the MFs to constrain modified theories of gravity: with a galaxy survey that has survey volume
∼0.125ðh−1 GpcÞ3 and galaxy number density ∼1=ðh−1 MpcÞ3, the two normal-branch Dvali-Gabadadze-
Porrati models and the F5 fðRÞ model that we simulated can be discriminated from the ΛCDM model at a
significance level ≳5σ with an individual MF measurement. Therefore, the MF of the large scale structure
is potentially a powerful probe of gravity, and its application to real data deserves active exploration.
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Introduction.—Gravity is one of the most fundamental
forces that shape our world, and its effect is felt from very
small scales—in our everyday life—to very large scales—
in the evolution of our Universe. The year of 2015
celebrated the centenary of our standard theory of
gravity—Einstein’s general relativity (GR)—which has
withstood various rigorous tests. Less attention, however,
has been paid to the unsettling fact that these tests were
primarily carried out in small systems such as our Solar
System, and the application to cosmology is an extrapo-
lation dramatically outside the regime where the theory is
confirmed experimentally. The discovery of the accelerat-
ing Hubble expansion in the late Universe [1,2], indeed,
lends support to the suspicion that gravity may not be
strictly Einsteinian on cosmic scales. Studies of cosmo-
logical tests of gravity, therefore, can address these two
fundamental questions simultaneously.
There has been a growing body of recent research on

testing gravity in cosmology. Most of these studies employ
traditional measurements of the geometry and structure
formation of the Universe, such as the type Ia supernovae,
baryonic acoustic oscillations, gravitational lensing, galaxy
clustering, and clusters of galaxies. These observables have
their advantages and disadvantages, and are usually com-
plementary to each other. The bottom line, however, is that
the real Universe has a very complicated structure, which
can rarely be fully described by a single observable.
Therefore, it is critical that other statistical properties of
the same observations, which encode additional information,

are also exploited to improve the constraining power on
theoretical models.
In this work, we propose a new probe of gravity using the

morphology of the cosmic large-scale structure (LSS) as
specified by its four Minkowski functionals (MFs).
According to Hadwiger’s theorem [3], for a spatial pattern
in 3D, its morphological properties defined as satisfying
motion invariance (i.e., invariant under rotation and trans-
lation), Minkowski additivity (i.e., the property of a union of
domains is the sum of those of the individual domains minus
that of the overlapping domain), etc., are completely speci-
fied by four MFs. In studying the MFs of the LSS, the
patterns aremost commonly taken to be the excursion sets of
a smoothed density field (such as galaxy number density,
matter density) [4–6], i.e., regions of space with field value
above some specified threshold, which is what we adopt in
this work, see Refs. [7,8] for other choices of patterns.
Geometrically, up to a constant multiplicative factor, the four
MFs from the zeroth to the third order represent, respectively,
the pattern’s volume, its surface’s area, integrated mean
curvature, and Euler characteristic (or genus [9,10]).
The MFs are complementary to other statistical observ-

ables in probing the LSS. While the N-point correlation
functions in real space or the corresponding polyspectra in
Fourier space probe the statistics of the LSS at specific
orders, the MFs comprehensively probe all orders of
statistics. Compared to the higher order (n > 2) statistics
whose measurements are usually cumbersome to obtain,
the MFs can be easily measured. Moreover, the MFs have
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the advantage of being more robust to systematic effects
such as nonlinear gravitational evolution and biases of the
LSS tracers [6,10], compared to the N-point statistics. For
example, on linear scales, the MFs measured with different
tracers of the LSS are all the same, i.e., independent on
tracer biases, which is an advantageous feature that N-point
statistics measurements do not have.
The MFs were introduced into cosmology by Ref. [7] in

1994. Since then, most studies on its application have been
focused on examining the (non-)Gaussianity of primordial
perturbations, from observations of not only the LSS [11]
but also the cosmic microwave background [12], though
several other interesting applications have also been pro-
posed [13]. In particular, its potential in probing gravity
was only addressed for the 2D weak lensing convergence
field in Ref. [14]. In this Letter, motivated by the strong
statistical power from ongoing and future LSS surveys, we
investigate the potential of these morphological descriptors
of the LSS in discriminating different theories of gravity.
We will base our results on N-body simulations with
modified gravity and GR. We notice relevant previous
theoretical work by Ref. [15] that used the scaling of the
genus statistic of the LSS with smoothing scale as a probe
of gravity, and relevant discussions by Codis et al.
in Ref. [11].
Gravity models and simulations.—As an illustration, we

consider two classes of modified gravity models: the Hu-
Sawicki fðRÞ gravity model [16] and the normal-branch
Dvali-Gabadadze-Porrati (hereafter NDGP) model [17,18]
(the self-accelerating branch is known to suffer from both
observational and theoretical difficulties [19]). In each class,
we study two models with different parameter values: for
fðRÞ gravity, these are obtained by setting the fðRÞ param-
eter fR0 to −10−6 (F6) and −10−5 (F5) respectively, with
larger values of jfR0j implying stronger deviations from
standard gravity; we tune the NDGP parameter rc so that the
value of σ8, the rms linear density perturbation in spherical
regions of radius 8h−1 Mpc at z ¼ 0, is equal to that in the
models of F6 and F5 (specifically, rc ¼ 5.7H−1

0 and 1.2H−1
0 ,

respectively, with H0 the Hubble parameter)—these are
dubbed NDGP_F6 and NDGP_F5, respectively. Current
constraints on fR0 and rc using other cosmological probes
are jfR0j≲ 10−5 [20] and rc ≳H−1

0 [21] at the 95%C.L., and
we expect the MFs of the LSS can further tighten these
results. Finally, note these models are designed to have the
same background expansion as the ΛCDM model.
Our analysis is based on simulations of the above models

using the ECOSMOG code [22,23]. All simulations started
at z ¼ 49 with the same (best-fit WMAP 9 yr [24])
cosmological parameters and initial conditions. These
are specifically designed to separate effects of the modified
gravitational law from those of cosmic variance, back-
ground expansion history, and other variations in param-
eters. In all simulations, we evolve 10243 dark matter
particles in a cubic box with length 1024h−1 Mpc a side,
which is covered by a regular mesh with 10243 cells.

The cells are refined if they contain more than eight
particles, and such an adaptive refinement scheme [25]
ensures high force resolution in dense regions, where
modified gravity effects are hard to calculate.
We point out that we have made the hypothesis,

following the standard paradigm, that Newtonian simula-
tions for first-order GR perturbations that average out on a
Friedmann-Lemaitre-Robertson-Walker background cos-
mology faithfully represent structure formation. We call
this case “GR” to distinguish this scenario from corre-
sponding realizations of modified gravity models, the
quasistatic approximation used in which is well checked
[26]. We emphasize, however, that the standard paradigm is
not based on full GR simulations. It may well be that
deviations in the form of cosmological backreaction to
account for this difference [27] could display similar
signatures as those of modified gravity models. Our work
may imply that backreaction effects could also be quanti-
fied by measurement of the MFs.
Measurement of Minkowski functionals.—We measure

the MFs for the excursion sets of dark matter density field.
The procedures are as follows. We obtain dark matter
density from positions of particles in our simulations using
the cloud-in-cell technique. The density field is sub-
sequently smoothed by a Gaussian window function with
size RG. The MFs are then measured for the smoothed field
as a function of ρ, the density threshold used to define the
excursion set. Based on either differential geometry or
integral geometry, two standard methods to measure the
MFs are developed in [4], i.e., the one using the Koenderink
invariant and the one using the Crofton’s formula. In our
calculations, we find the two methods give consistent
results. Therefore, we will simply quote our results using
the method based on the Crofton’s formula.
We denote the four MFs as Vi, with i ¼ 0; 1; 2; 3

specifying their order. Therefore, V0 is the volume fraction
of the excursion set, while V1; V2; V3 are its surface’s area,
integrated mean curvature, and Euler characteristic per unit
volume respectively (see e.g., [4] for exact prefactors in the
definitions). The geometrical meaning of V3 may deserve
more explanation: it is equal to the genus statistic
(g ≡ number of holes minus number of disjoint regions)
[9,10] except for a minus sign; therefore, it describes the
connectedness of the isodensity contours. V3 > 0 means
more disconnected contours, otherwise, more connected.
Results.—To highlight the differences in the MFs caused

by modified gravity, we measure and compare the MFs for
different models at z ¼ 0, since the effects of modifications
to gravity are generally larger at a lower redshift [22,23].
We choose the smoothing scale RG to be 5h−1 Mpc, which
is large enough to suppress the shot noise without smearing
out the important differences in the MFs.
Our results are presented in Fig. 1. In the left panel, we

show the MFs themselves, while the differences in the MFs
between modified gravity models and ΛCDM, the ΔVis,
are displayed in the right panel. We show the results for
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ρ=ρ̄, the ratio of the density threshold to the mean density,
in the range of [0, 4], over which we find the signal-to-noise
(S/N) ratio for the MF is most significant. We estimate
the error bars by subdividing our original simulation box
into eight equal-sized sub-boxes, each with a volume
5123h−3 Mpc3 (for small error bars and for convenience
of the calculation), and taking the standard deviations of the
MFs measured for each sub-box. These are displayed in the
right panel of Fig. 1. We note here that the idealistic way to
estimate the error bars is by running a large ensemble of
simulations (a highly computationally expensive task
which we postpone for future work), and subdividing
the simulation box is only indicative for the idealistic error
estimation. In the following, we focus on understanding the

ΔVis. The curves of the MFs themselves share similar
trends as a Gaussian random field, which have been well
studied in the literature, see, e.g., Ref. [6]. Therefore, in the
following, they are mentioned only for the purpose of
helping us to understand the ΔVis.
Overall, we find the differences in the MFs caused by the

two fðRÞ models have the same trend. However, as the
modification to gravity is stronger in F5, ΔVi in this model
has a higher amplitude. The same results hold true for the
two NDGP models. While compared with the fðRÞ model,
ΔVi in the corresponding NDGP model that has the same
σ8 as fðRÞ also has a higher amplitude and more features,
though shares a similar trend. This is because the σ8 values
for fðRÞ gravity and NDGP are calculated using linear

FIG. 1. Left panel: The MFs of the LSS computed from N-body simulations for different models of gravity at z ¼ 0 and with
RG ¼ 5h−1 Mpc. The two fðRÞmodels (F5, F6) and two NDGP models (NDGP_F5, NDGP_F6) have the same background expansion
as the GR case, i.e., the ΛCDM model, see text for more details. Right panel: The differences in the MFs between modified gravity
models and GR, first column for fðRÞ, and second column for NDGP. ρ=ρ̄ is the density threshold used for the MF calculations in ratio
of the mean density.
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perturbation theory; in fðRÞ gravity, this overestimates the
modified gravity effect by neglecting the chameleon
screening, so that the effect in a realistic universe, fully
captured by the nonlinear simulations, is actually smaller
than suggested by the value of σ8; while for NDGP, the
screening is weak on linear scales, so that the σ8 value is a
reasonably accurate description of the realistic case.
Specifically, for V0, the volume fraction occupied by

regions whose densities are above a given threshold, we
find the modified gravity in both fðRÞ and NDGP makes it
larger when the threshold ρ=ρ̄≳ 1 and smaller when
ρ=ρ̄≲ 1. That is, the volume fraction with density above
an overdensity threshold gets larger, while above an
underdensity threshold gets smaller. The latter is equivalent
to that the volume fraction with density below an under-
density threshold gets larger. These findings are consistent
with the picture that both haloes and voids are more
abundant and/or bigger in the two models [28]. One can
also infer that this trend is stronger in NDGP than in the
corresponding fðRÞ model for the same reason as men-
tioned above, as one finds in Fig. 1.
For the excursion sets’ surface area V1, its difference

caused by the two kinds of modification to gravity roughly
follows that of their volume fraction V0, except at the very
low density threshold region (ρ=ρ̄≲ 1 for fðRÞ and ≲0.8
for NDGP) where the changes are in opposite directions.
This can be understood as follows: if the excursion sets are
all isolated regions, as is the case for a high enough density
threshold, it is reasonable to expect that the change in their
surface area follows that in the volume fraction they
occupy. However, for very low density threshold, though
the isodensity contours are still isolated, their enclosed
regions are no longer the excursion sets, but under-dense
regions with density below the threshold, whose volume
fraction is therefore (1 − V0). Thus, at the very low density
threshold region, V1 changes in the opposite direction as
V0, and becomes larger in both fðRÞ and NDGP.
For V2, the integration of the mean curvature of the

excursion sets’ surface over the surface area, we find it to be
negative (positive) when ρ=ρ̄≲ 0.8ð≳0.8Þ in all the models
we study. This is understandable considering that the
positive direction of the surface points toward lower density
regions. Specifically, when the density threshold is high
enough, the excursion sets will be isolated high density
regions with closed surfaces whose positive directions
point outward, and therefore, the mean curvature is
positive; while when the density threshold is low enough,
the excursion sets will be the complement of isolated low
density regions with closed surfaces whose positive direc-
tions now point inward, and therefore, the mean curvature
is negative. The transition from positive to negative of
the integrated mean curvature happens at ρ=ρ̄≃ 0.8 in
the models we study. Suppose the change in the mean
curvature is negligible, one can expect that V2 changes in
the opposite (same) direction as V1 when ρ=ρ̄≲ 0.8ð≳0.8Þ,
since the surface area is always positive (note, V2 is roughly

the mean curvature times the area). This is roughly the case
for ΔV2 when ρ=ρ̄ is far enough from 0.8 in both the fðRÞ
and NDGP models. While, when ρ=ρ̄ approaches 0.8 and
where this phenomenon does not hold, the change in the
mean curvature plays a more important role, and we find V2

gets larger in both models. Combined with the specific
changes in V1, one can infer that the mean curvature gets
larger for the isodensity contours specified with these
density thresholds.
As for the connectedness evaluated by comparing the

number of holes through the structure of the excursion sets
and the number of disjoint parts in it, we find the isodensity
contours are more connected with V3 < 0 (i.e., more holes)
when 0.5≲ ρ=ρ̄≲ 1.5, but more isolated with V3 > 0 (i.e.,
more disjoint parts) elsewhere. For fðRÞ, we find the
modification to gravity makes this behavior more evident;
i.e., V3 is larger (smaller) where it is positive (negative).
This is also roughly the case for NDGP, except that V3 gets
larger around ρ=ρ̄≃ 0.8where it was most negative, that is,
the contours are less connected where they were most
connected. This difference highlights the different mod-
ifications to gravity in the two models, and together with
other differences in the ΔVis, can be used to discriminate
one from the other.
With our estimation for the error bars, we find that the

MFs can easily discriminate the modified gravity models of
NDGP_F5, NDGP_F6, and F5 from GR: with an individ-
ual MF measurement, these models can be discriminated
from GR with a significance level up to ∼30, 10, and 5σ.
Though for F6, individual MF measurement can only tell it
from GR at the level of 1σ at most, combining the different
orders of MFs at different thresholds can probably boost the
level to be significant enough. We also note that the error
bars we obtained from simulations are appropriate for a
galaxy survey with survey volume of 0.125h−3 Gpc3

(corresponding to observing the full sky from z ¼ 0 to
z≃ 0.1) and with galaxy number density of 1h3 Mpc−3,
which are more optimistic compared to the galaxy surveys
nowadays. However, considering the strong statistical
power we have found and considering the gains from
combining the MFs of different orders, at different thresh-
olds, with different smoothing scales and at different
redshifts, we expect the MFs can provide a powerful probe
of gravity, especially for those ambitious galaxy surveys
with large survey volumes and high galaxy densities such
as DESI [29]. We leave such a comprehensive study with
real surveys for future work [30].
Conclusions.—The morphological properties of the LSS

described by the four MFs provide important complemen-
tary information to other statistics. In this Letter, we
investigate their potential as a new probe of gravity. By
using N-body simulations of modified gravity and GR, we
disclose the morphological differences in the LSS caused
by modified gravity, and provide insights to understand the
differences in the MFs. With the estimated errors for a
galaxy survey with volume of 0.125h−3 Gpc3 and galaxy
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number density of 1h3 Mpc−3, we find the modified gravity
models of NDGP_F5, NDGP_F6, and F5 can be discrimi-
nated from GR with a significance level up to ∼30, 10, and
5σ with just an individual MF measurement. This strong
statistical power of the MFs as a probe of gravity can
probably survive in ambitious real galaxy surveys with
smaller survey areas and lower galaxy densities, providing
the MFs of different orders, at different thresholds, with
different smoothing scales and at different redshifts are
combined together. We pursue such a comprehensive study
in an ongoing work [30].
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