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Abstract 8 

Soil erosion has been identified as a potential global carbon sink since eroded organic matter 9 

is replaced at source and eroded material is readily buried. However, this argument has relied 10 

on poor estimates of the total fate of in-transit particulates and could erroneously imply soil 11 

erosion could be encouraged to generate carbon stores. These previous estimates have not 12 

considered that organic matter can also be released to the atmosphere as a range of 13 

greenhouse gases, not only CO2, but also the more powerful greenhouse gases CH4 and N2O. 14 

As soil carbon lost by erosion is only replaced by uptake of CO2, this could represent a 15 

considerable imbalance in greenhouse gas warming potential, even if it is not significant in 16 

terms of overall carbon flux. This work therefore considers the flux of particulate organic 17 

matter through UK rivers with respect to both carbon fluxes and greenhouse gas emissions. 18 

The results show that, although emissions to the atmosphere are dominated by CO2, there are 19 

also considerable fluxes of CH4 and N2O. The results suggest that soil erosion is a net source 20 

of greenhouse gases with median emission factors of 5.5, 4.4 and 0.3 tonnes CO2eq/yr for 1 21 

tonne of fluvial carbon, gross carbon erosion and gross soil erosion, respectively. This study 22 

concludes that gross soil erosion would therefore only be a net sink of both carbon and 23 
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greenhouse gases if all the following criteria are met: the gross soil erosion rate were very 24 

low (< 91 tonnes/km
2
/yr); the eroded carbon were completely replaced by new soil organic 25 

matter; and if less than half of the gross erosion made it into the stream network. By 26 

establishing the emission factor for soil erosion, it becomes possible to properly account for 27 

the benefits of good soil management in minimising losses of greenhouse gases to the 28 

atmosphere as a by-product of soil erosion. 29 

 30 

Keywords: particulate organic carbon, particulate organic nitrogen, soil erosion, greenhouse 31 

gas emissions. 32 

 33 

1. Introduction 34 

It has been argued that the erosion of particulate organic carbon (POC) from soils constitutes 35 

a global carbon sink because the eroded soil organic carbon lost to POC is replaced whilst the 36 

eroded POC is stored by downstream burial (Stallard, 1998; Harden et al., 1999; Smith et al., 37 

2005). On this premise, Van Oost et al. (2007) suggested global agricultural land was a net 38 

carbon sink of 120 Mtonnes C/yr, based on a soil erosion rate of between 470 and 610 39 

Mtonnes C/yr. However, Van Oost et al. (2007) explicitly stated that their method made no 40 

allowance for in-stream loss of the POC to atmosphere once out of the immediate catchment 41 

area, or for the burial efficiency in marine waters; in effect, they assumed that, once outside 42 

of the immediate source area, the POC would be buried into a long-term store (e.g. alluvium). 43 

Van Oost et al. (2007) reported between 470 and 610 Mtonnes C/yr were lost globally due to 44 

soil erosion of which between 240 and 570 Mtonnes C/yr was retained in the immediate 45 

catchment, which meant between 30 and 220 Mtonnes C/yr were exported to streams and 46 

assumed to be buried. For the UK, Quinton et al. (2006) suggested that the amount of carbon 47 

stored due to soil erosion from agricultural land was up to 0.75 Mtonnes C/yr (3.1 tonnes 48 
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C/km
2
/yr) based on a POC flux to the fluvial network equivalent to between 0.8 and 2.9 49 

tonnes C/km
2
/yr. Whether just soil erosion from agricultural land is considered or erosion of 50 

organic particles as a whole, the basic argument remains the same: while eroded carbon 51 

particles are transported to permanent burial, the lost carbon is replaced at source from the 52 

atmosphere.  53 

The potential for soil erosion to be a net carbon sink arises from the balance between 54 

replacement of the eroded soil and the burial of the eroded material. Soil erosion can expose 55 

fresh mineral surfaces that have a greater capacity to stabilise accumulated organic carbon 56 

than the original uneroded soil surface (Quinton et al., 2010). Deposition of the eroded 57 

particles can rapidly bury organic matter and so protect it from decomposition (Berhe et al., 58 

2007). Eroded mineral particles can adsorb and protect dissolved organic matter upon 59 

entering rivers (Aufdenkampe et al., 2011). However, these processes are countered by 60 

enhanced decomposition of organic matter as aggregates are broken up in the erosion process 61 

(Alewell et al., 2009) and by reduced fertility and primary production at the erosion site (Lal 62 

et al., 2003). Discussion has tended to focus on in-field processes (e.g. Ni et al., 2012) and 63 

not the fate of organic matter once it has entered the fluvial system. It must always be 64 

remembered that not all particular organic matter entering the fluvial network will come from 65 

soil erosion from agricultural land and may come, for example, from bank erosion or 66 

landslides. Hilton et al. (2015) estimated 15% weathering of particulate fossil carbon, not 67 

derived from soil particles, across catchments in Taiwan. Hoffmann et al. (2013a) cited the 68 

loss rates reported by Tranvik et al. (2009) in their discussion of whether soil erosion is a 69 

carbon sink but did not then use those values to conclude whether soil erosion was a C sink or 70 

not. Equally, Aufdenkampe et al. (2011) discussed the outgassing of CO2 and the potential 71 

for soil erosion to sequester carbon but did not explicitly consider the turnover of POM to 72 

CO2. If there is loss of the carbon to the atmosphere while the particles, whatever their 73 
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source, are in transit from source to burial, then this limits the carbon store that soil erosion 74 

could represent. A knowledge of in-stream particulate organic matter (POM) turnover is thus 75 

vital to determine whether soil erosion is a net source or a net sink of carbon. 76 

The existing approach used to consider atmospheric impacts of soil erosion is 77 

potentially misleading: it is common to consider the POC and the carbon component of 78 

eroded particles as they are transported through the catchment to shelf seas, but the 79 

transported organic carbon is only one component of the total organic matter. Naturally-80 

occurring organic matter is generally only 50% carbon, so an assessment of only POC can 81 

underestimate the importance of organic matter because it ignores organic oxygen and 82 

nitrogen. The oxygen content of the organic matter controls its oxidation state which, in turn, 83 

controls its impact on atmospheric CO2 (Worrall et al., 2013). The N content represents an 84 

important nutrient source to river biota and so can drive organic matter turnover and, perhaps 85 

of more consequence, the N could be released as the powerful greenhouse gas (GHG) N2O.  86 

Not only does the organic matter consist of elements other than C that play a role in its 87 

turnover, but also the form of release, or species, can vary: nitrogen could be released as N2 88 

or N2O, and the carbon can be released as either CO2 or CH4, the latter, like N2O, being the 89 

more powerful greenhouse gas than CO2 (Houghton et al. 1995).  90 

In many studies there is a tacit assumption that a discussion of carbon sinks and 91 

sources is equivalent to discussion of the overall impact upon atmosphere (e.g. Hoffmann et 92 

al., 2013a), but the real impact on the atmosphere comes only from understanding the 93 

greenhouse gas fluxes; the carbon budget and the greenhouse gas budget are not the same 94 

thing. To understand the greenhouse gas budget, the form of release is important, not just a 95 

consideration of carbon but to understand the greenhouse gas warming potential from eroded 96 

organic matter; we must therefore distinguish between CO2, CH4 and N2O. Unless the whole 97 

greenhouse gas budget is considered, it is possible to reach the potentially misleading 98 
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conclusion that, if erosion of organic matter can represent a carbon sink, then soil erosion 99 

should be encouraged. 100 

An alternative approach would be to consider the flux of carbon from rivers to 101 

estuaries and shelf seas rather than starting from fluxes of suspended sediment. Meybeck 102 

(1993) estimated that the carbon flux (dissolved organic carbon, particulate organic carbon 103 

and dissolved inorganic carbon) from the world’s rivers to the oceans was around 542 104 

Mtonnes C/yr in proportions DOC:POC:DIC as 37:18:45, respectively, i.e. global river flux 105 

of POC is about 98 Mtonnes C/yr. Ludwig et al. (1996) used a spatially-explicit model of 106 

global fluvial carbon fluxes to suggest fluxes of 800 Mtonnes C/yr with a split of 107 

approximately 50:25:25 for DOC:POC:DIC, i.e. a global POC flux of 200 Mtonnes C/yr. 108 

These figures provided useful estimates of fluvial POC losses from the land to the oceans at 109 

the tidal limit, but they did not account for in-stream losses along the length of the river, 110 

between the carbon sources (e.g. soils) and the ocean. Battin et al. (2008) used a value of 180 111 

Mtonnes C/yr for the global flux of POC from rivers to oceans based on values from Cauwet 112 

(2002). Bauer et al. (2013) suggested that the flux of DOC+POC from rivers to shelf seas 113 

(including estuaries) was 450 Mtonnes C/yr, based on values from Syvitski et al. (2005). 114 

Syvitski et al. (2005) suggested that pre-human POC fluxes were between 140 and 470 115 

Mtonnes C/yr decreasing to between 126 and 380 Mtonnes C/yr in modern times with the 116 

difference being the role of reservoir storage outstripping the influence of increased soil 117 

erosion.   118 

For the UK, a more detailed analysis of carbon fluxes through and from rivers has 119 

been possible. Worrall et al. (2007) used nationally-collected monitoring data to assess 120 

national-scale loss at the tidal limit, the loss from the terrestrial biosphere and the loss from 121 

rivers to the atmosphere. They found that in total 10.1 tonnes C/km
2
/yr were lost from the 122 

terrestrial biosphere to rivers of which 2.5 tonnes C/km
2
/yr was as POC. However, the study 123 
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considered in-stream losses only for DOC and DIC but did not include POC. Worrall et al. 124 

(2014) updated the POC flux estimates and found that POC loss from terrestrial sources (all 125 

terrestrial sources, not just soil erosion) was 4.6 tonnes C/km
2
/yr with the equivalent of 1.1 126 

tonnes C/km
2
/yr being lost in-stream. 127 

The trade-off between replacement within catchment, transfer to the stream network, 128 

loss in stream, and eventual, permanent burial can be simply expressed as: 129 

 130 

𝑃𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ≥ 𝑃𝑑𝑒𝑙𝑖𝑣𝑒𝑟(1 − 𝑃𝑏𝑢𝑟𝑖𝑎𝑙)  (i) 131 

 132 

where: Preplace = the proportion of organic carbon that is replaced following erosion; 133 

Pdeliver = the proportion of eroded organic carbon delivered to the stream network; and Pburial = 134 

the proportion of POC flux that is buried in marine sediment or other permanent burial. Note 135 

that Equation (i) applies for any eroded particulate organic carbon and not just from soils and 136 

not just from agricultural land. The term (1 – Pburial) represents the loss to the atmosphere in 137 

transit. However, this equation does not hold for greenhouse gases because replacement will 138 

be as CO2 but loss within stream could be as CO2, CH4 or N2O. Therefore, Equation (i) 139 

should be re-written as: 140 

 141 

𝐾𝐶𝑂2𝑃𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ≥ 𝑃𝑑𝑒𝑙𝑖𝑣𝑒𝑟(𝐾𝐶𝑂2𝑃𝐶𝑂2 + 𝐾𝐶𝐻4𝑃𝐶𝐻4 + 𝐾𝑁2𝑂𝑃𝑁2𝑂)  (ii) 142 

1 − 𝑃𝑏𝑢𝑟𝑖𝑒𝑑 = (𝐾𝐶𝑂2𝑃𝐶𝑂2 + 𝐾𝐶𝐻4𝑃𝐶𝐻4 + 𝐾𝑁2𝑂𝑃𝑁2𝑂) (iii) 143 

 144 

where: Kx = the greenhouse gas warming potential of x where x is CO2, CH4 or N2O; and Py 145 

= the proportion of loss of particulate organic matter that is lost as y, with y as CO2, CH4 or 146 

N2O. 147 
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The aim of this study is to assess the complete greenhouse gas impact of soil erosion 148 

of organic matter from erosion to burial and so derive a more complete emission factor for 149 

this process. If a realistic emission factor for soil erosion can be derived, then the benefit of 150 

preventing soil erosion can be better understood. 151 

 152 

2. Approach 153 

This study considers the fluvial system as outlined in Figure 1, whereby eroded organic 154 

matter (gross erosion) can be deposited within the terrestrial source area or delivered to the 155 

stream channel (net erosion). The organic matter removed in gross erosion can (eventually) 156 

be replaced. Replacement can be by a number of processes (as outlined above) but in terms of 157 

greenhouse gases, the carbon is drawn down from the atmosphere as CO2 via photosynthesis 158 

to primary production. Primary production does not draw down carbon from the atmosphere 159 

as CH4 or draw down nitrogen as N2O. The amount of POM that reaches the stream network 160 

is referred to as the net erosion and will be less than the gross erosion due to the internal (on-161 

slope) redistribution. Several studies have suggested that on-slope storage of gross erosion 162 

deposited within, for example, a field can prevent mineralisation of the deposited organic 163 

matter by a number of processes (e.g. rapid burial - Berhe et al. 2007).  164 

 On entering the stream network, POM is subject to a number of physical and 165 

biogeochemical removal processes. POM can be mineralised within the stream network to all 166 

three of the greenhouse gases (CO2, CH4 and N2O). POM can also be permanently buried by 167 

in-channel storage or by overbank sedimentation on to floodplains. It is assumed that POM 168 

inputs to estuaries and oceans will also be prone to mineralisation to CO2, CH4 and N2O or to 169 

permanent burial.  170 

 The processes affecting each step presented in Figure 1 are quantified using data from 171 

the literature, previous results of the authors’ own work and newly available data from UK 172 
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monitoring programmes. For each important process and storage compartment, the range was 173 

estimated. It was not always possible to give a consistent measure of uncertainty for each 174 

input variable or parameter: for some measures a range was not available while for others the 175 

distribution was known such that a mean and standard deviation could be calculated. The 176 

expected value and measure of variation were detailed and the total carbon budget and total 177 

greenhouse gas warming potential were calculated as a stochastic combination of the 178 

estimated ranges. When not known, a distribution was taken to be uniform. 179 

 Wherever possible, the assessment was considered over a 100-year window which in 180 

turn meant that values of Kx - the greenhouse gas warming potential (GWP) of x – in 181 

Equations (ii) and (iii) were then 3.67, 24, and 292 for CO2, CH4 and N2O respectively. By 182 

convention, fluxes of carbon, or greenhouse gases, are considered relative to the atmosphere 183 

and therefore sinks to land are negative. 184 

 185 

3. Methods 186 

In line with the approach above this study estimated: replacement ratio; enrichment ratio; 187 

mineralisation rate of internally-redistributed sediment; the ratio of net erosion leaving the 188 

site of erosion (e.g. an agricultural field) to the stream network and the gross erosion within 189 

the site of erosion (e.g. the field) (net to gross ratio – Quinton et al., 2006); fluvial flux of 190 

POM; C/N of POM; proportion of loss as CH4 and N2O; estuarine removal; shelf sea 191 

removal; and, terrestrial burial efficiency. 192 

 193 

3.1. Replacement rate 194 

A key component of the argument that terrestrial erosion represents a net carbon sink is the 195 

extent to which the eroded carbon can be replaced. Van Oost et al. (2007) took the 196 

replacement rate to be between 0.19 and 0.58 with a preferred value of 0.26, i.e. 26% of the 197 
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eroded carbon is replaced. However, several studies (e.g. Quinton et al., 2006) have assumed 198 

replacement rates as high as 1. Therefore, we assumed a range of 0.19 to 1.  199 

 200 

3.2. Enrichment ratio 201 

Gross erosion of soil has been commonly observed to be enriched in carbon relative to the 202 

bulk soil; this fractionation is expressed as an enrichment ratio – the proportion of the carbon 203 

in the eroded particle relative to that in the bulk surface soil. Quinton et al. (2006) identified 204 

enrichment ratios as between 1.2 and 4.7 for UK soils. We have assumed that enrichment 205 

ratios observed for soil erosion in agricultural soils are true for erosion for other settings. 206 

 207 

3.3. Mineralisation rate of internally redistributed sediment 208 

Most studies have assumed this to be zero (e.g. Van Oost et al., 2007) but we believe it is 209 

unreasonable to assume that no redistributed carbon can be mineralised. Van Hemelryck et al. 210 

(2010) measured the mineralisation rate of redistributed soil particles; applying their derived 211 

equations over a 100-year window, i.e. the same window of time for which the GWP values 212 

are derived, gives a value of 0.75. In other words, over a 100-year period, 25% of the 213 

internally redistributed will be mineralised to CO2 and 75% will remain. Therefore, for this 214 

study we took the range of the proportion of internally re-distributed organic matter that is 215 

stored over a 100-year window as between 0.75 to 0.95.  216 

 217 

3.3. Net to gross ratio 218 

Gross erosion (e.g. the erosion rate within the field) will not necessarily reach the fluvial 219 

network and can instead be deposited on-slope. Thus the net erosion (that which leaves the 220 

field and enters the channel network) is less than or equal to the gross erosion. One reason for 221 

the difference between the net and the gross erosion rates is the storage of sediment within 222 
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field and before reaching the stream network. Quinton et al. (2006) reviewed net to gross 223 

ratio for UK settings and gave values of between 0.47 and 0.65, i.e. at its maximum, the net 224 

erosion was 65% of the gross erosion. 225 

 226 

3.4. Fluvial flux of POM 227 

Worrall et al. (2014) examined all 35,490 records of POM concentration from 1974 to 2010 228 

from all 270 catchments with a mean discharge > 2 m
3
/s included in the UK’s Harmonised 229 

Monitoring Scheme. Applying the rule that for a flux calculation within any monitored 230 

catchment there would have to be a minimum of 12 samples per year, this gave 2,808 flux 231 

estimates from 111 sites. When only the flux estimates for sites at the tidal limit of the 232 

catchment were considered and only those with data between 2001 and 2010, then the flux of 233 

POM from 80 catchments across the UK for the years 2001 to 2010 could be calculated. In-234 

stream losses were then estimated by comparing these catchments, and allowing for 235 

differences in hydro-climatic and land-use factors. This approach is based upon net POM 236 

fluxes from these catchments and so includes all sources of POM to the fluvial network and 237 

not just from one specific source or process. The 80 catchments covered a range of 238 

landscapes in England and Wales where the soil type varied from 0 to 100% of 3 soil classes 239 

(mineral, organo-mineral and organic soils as defined by Hodgson, 1997). Land use in the 80 240 

catchments varied from: 0.1 to 70% arable; 2 to 78% grassland; and 0.4 to 36% urban.   241 

In-stream losses can be due to turnover of the organic matter or burial in channel or in 242 

the floodplain. To calculate the proportion of the in-stream loss due to floodplain 243 

sedimentation, it is necessary to estimate the proportion of time that the discharge in any UK 244 

river is greater than bankfull discharge, and therefore the proportion of time in which there is 245 

flow and sediment delivery to the floodplain. Nixon (1959) found that 29 English rivers were 246 

at or exceeded their bankfull discharge between 0.1 and 2.9% of the time, i.e. overbank 247 
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sedimentation would be occurring between 1 day every 3 years and 11 days per year. Days of 248 

overbank sedimentation are likely to be days of high flow in the main channel and thus days 249 

of considerable sediment flux. Therefore, using the POM flux data from Worrall et al. (2014), 250 

we assumed the highest flows each year were overbank flows and that any sediment flux they 251 

carried was lost to overbank storage. The number of days of flux lost to overbank 252 

sedimentation was varied from the lowest to the highest value as measured by Nixon (1959) 253 

(0.33 to 11 days per year) with the assumption that the first day of overbank sedimentation 254 

was the day with the highest flux of POM in that year and then, for each further day of the 255 

overbank sedimentation, it was assumed that these were days of progressively lower POM 256 

flux. It was then assumed that all the POM flux on days of overbank sedimentation was lost 257 

to overbank sedimentation. The POM flux lost each year to overbank sedimentation was 258 

expressed as a percentage of the total POM flux from the catchment for that year. Because all 259 

available comparator data were for overbank storage of suspended sediment and not POM, 260 

the calculation was also performed for suspended sediment based upon flux values given by 261 

Worrall et al. (2013b). It was assumed that POM flux lost to overbank sedimentation was 262 

permanently stored and not mineralised to the atmosphere within the time frame considered. 263 

The limitations of these assumptions are discussed later on.  264 

Collins and Walling (2007) gave values of in-channel storage as between 18% and 265 

57% of the outlet flux for two UK lowland streams but they noted that most of this storage 266 

was transient. Indeed, Walling et al. (2002) noted that permanent in-channel storage was only 267 

between 2 and 5% of the catchment-outlet flux of suspended sediment and, given that 268 

Worrall et al. (2014) showed that on average suspended sediment in the UK was 30% POM, 269 

then for this study it is assumed that in-channel storage of was 1 – 2% of the incoming POM 270 

flux. 271 

 272 
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3.5. C/N of POM 273 

Worrall et al. (2014) estimated POC and PON from POM given that the organic carbon 274 

content of organic matter was between 45 and 50% and that the average C/N ratio of 275 

suspended sediment in the UK was 8.1 ± 5.2 (n=13: Hillier, 2001). Here, we used POM data 276 

collected as part of the LOIS project (Neal and Davies, 2003) compared to literature values 277 

(Table 1). The LOIS project collected 2,484 samples for POM across 5 years for the Humber 278 

Basin (26,109 km
2
; 17% of the UK catchment area). Analysis of variance (ANOVA) was 279 

used to test whether C/N of POM varied from between sampling site, sampling month and 280 

sampling year. To comply with the assumptions of ANOVA, the data were tested using the 281 

Levene and the Anderson-Darling tests and transformed as required. Differences between the 282 

levels of significant factors were tested using the post hoc Tukey test. Data from the LOIS 283 

project were augmented and compared with data from the literature. There was no 284 

information in the LOIS data on the concentration of particulate nitrogen or particulate 285 

carbon so we followed Worrall et al. (2014) and used a range of 45 to 50%. 286 

 287 

3.6. Proportion of CH4 and N2O 288 

POM lost in the fluvial network, estuaries or shelf seas can be lost as CO2, CH4 or as N2O. 289 

Therefore, this study examined the literature (Table 2 & 3) to find ranges of the loss of CH4 290 

as a proportion of C loss in aquatic systems and likewise the loss of N2O as a proportion of N 291 

loss. 292 

 293 

3.7. Estuarine removal 294 

Estuaries will remove sediment and with it POM. Tappin et al. (2003) reported a POC budget 295 

for the Humber estuary (17% of UK’s runoff drains through this estuary with a residence 296 

time of 2-3 months) and found that for 3 years (1994 -1996) the flux of POC from the estuary 297 
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varied between 16 and 43% of the fluvial POC flux into the estuary and that burial rate was 298 

4% of input with the remainder of the fluvial POC flux input to the estuary being mineralised 299 

(between 36 and 54%). The estimates from Tappin et al. (2003) are given without further 300 

estimates of any uncertainty and the ranges given were used with the additional caveat that 301 

there must be mass balance. The proportion of organic matter buried was taken such that 302 

mass balance was met, i.e. proportion of the incoming flux that was buried may be greater 303 

than 4% given the variation in the proportions lost to mineralisation and the exported from 304 

the estuary. That is: 305 

 306 

 𝑃𝑏𝑢𝑟𝑖𝑎𝑙
𝑒𝑠𝑡𝑢𝑎𝑟𝑦

= 1 − 𝑃𝑚𝑖𝑛𝑒𝑟𝑎𝑙
𝑒𝑠𝑡𝑢𝑎𝑟𝑦

− 𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
𝑒𝑠𝑡𝑢𝑎𝑟𝑦

 (iv) 307 

 308 

where: 𝑃𝑥
𝑒𝑠𝑡𝑢𝑎𝑟𝑦

 = the proportion of the x with x as buried (burial), mineralised to greenhouse 309 

gases (mineral) or transiting through the estuary to the shelf (transfer). 310 

 311 

3.8. Shelf-sea processes 312 

Galy et al. (2007) reported very high burial efficiencies (approx. 100%) of fluvially-derived 313 

carbon in the Ganges-Brahmaputra fan, which they ascribed to rapid burial, but these 314 

sediments also have remarkably small POC contents (0.6 x 10
12

 mol C/yr from 1 x 10
9
 tonnes 315 

of suspended sediment, equivalent to less than 1% C content - Frances-Lenard and Derry, 316 

1997), and therefore the Ganges-Brahmaputra has an export equivalent to 4.4 tonnes 317 

C/km
2
/yr compared to the 3.5 tonnes C/km

2
/yr that the UK exports at its tidal limit. Equally, 318 

the estimate of 100% burial, and therefore a large carbon sink due to the Ganges-319 

Brahmaputra fan, has neglected to account for the in-stream losses of carbon from 320 

particulates before reaching the sea. For other rivers, Burdige (2005) suggested a removal 321 

rate from source to ocean sediment of 70% based upon a measured burial efficiency in ocean 322 
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sediment of 30%. Burdige (2005) presented no new data but quoted data from Aller (1998) 323 

who in turn quoted Canfield (1994) who included data from Middleburg (1991) and Reimer 324 

et al. (1992), but relied mostly upon data from Canfield (1989). In this study we supplement 325 

this information further with data from Meyer et al. (2007), Weijers et al. (2009), Li et al 326 

(2013) and Hung et al. (2012). The data from these sources are for the carbon sedimentation 327 

rate but not the sedimentation rate of terrestrial organic carbon. Therefore, the following 328 

sources were used to estimate the burial rate of the terrestrial organic carbon compared to the 329 

sedimentation rate in shelf seas: Burdige (2005), Weijers et al. (2009), Li et al. (2013), Hung 330 

et al. (2012) and Meyer et al. (2007). These data were compiled to relate the carbon 331 

sedimentation rates to the burial efficiency of the terrestrials organic carbon. With respect to 332 

the UK, there are several studies of the sediment and carbon budgets of the North Sea 333 

(Brockman et al., 1990; de Hass et al., 1997a, b).  334 

 335 

4. The net effect of soil erosion on GHG emissions 336 

4.1. Fluvial flux of POM 337 

The best-fit multiple regression equation reported by Worrall et al. (2014) was: 338 

 339 

𝑃𝑂𝑀𝑓𝑙𝑢𝑥 = 3827 + 6.7𝑂𝑟𝑔𝑚𝑖𝑛 + 8.1𝑂𝑟𝑔 + 7.5𝐺𝑟𝑎𝑠𝑠 − 2.4𝐴𝑟𝑒𝑎 (v) 340 

 (842) (2.6) (2.2) (3.3)  (1.4) 341 

r
2
 = 0.5, n=80, p < 0.05  342 

 343 

where: Orgmin = the area of organo-mineral in the catchment (km
2
); Org = the area of 344 

organic soils in the catchment (km
2
); Grass = the area of grazed land within the catchment 345 

(km
2
); and Area = the area of the catchment (km

2
). The values in brackets represent the 346 

standard errors in the coefficients. Equation (v) can be interpreted as an export coefficient 347 
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model where each regression coefficient is interpreted as an export coefficient. Thus, 348 

Equation (v) predicts that 1 km
2
 of organo-mineral soil would export 6.7 ± 2.6 tonnes/km

2
/yr 349 

of POM where the range denotes the coefficient’s standard error.  This interpretation suggests 350 

the biggest source of POM is organic soil; POC fluxes are commonly reported for peat-351 

covered catchments where the extent of degradation and vegetation cover control the loss of 352 

POC and fluxes can be as high as 195 tonnes C/km
2
/yr (Evans et al., 2006). Most 353 

contemporary studies of soil erosion in the UK and especially those concerned with the 354 

carbon or greenhouse gas emissions have focused upon mineral soils and arable land (e.g. 355 

Rickson, 2014), but the results from this study imply there is no significant flux of POM from 356 

a catchment with only arable or urban land use on mineral soils. Most studies have focused 357 

on the production of sediments from soil erosion as opposed to the study of POM more 358 

generally (e.g. Quinton et al., 2006); Equation (v) implies that certain land uses are not that 359 

important in the contemporary flux of POM from the UK. Equation (v) has a y-intercept 360 

value which predicts that any catchment will have a minimum export of 3817 ± 842 361 

tonnes/yr; this may relate to erosion unrelated to land use, e.g. bank erosion. Equation (v) can 362 

be applied across the UK given knowledge of land use and soil distribution (Defra, 2005, 363 

Lilly et al., 2009) to give the flux of POM from the UK at the tidal limit: the average value 364 

for the period 2001 to 2010 was 1195 ± 308 ktonnes/yr. 365 

Equation (v) includes a significant loss term with catchment area which implies that, 366 

for every additional 1 km
2
 of catchment area, 2.4 tonnes/yr of POM are lost. Given the loss 367 

rate, the amount of POM lost in transit through UK rivers would be 594 ± 206 ktonnes/yr 368 

which in turn means a loss of POM at the soil source of 1854 ± 238 ktonnes/yr.  This gives an 369 

in-stream removal rate for POM of 33.5 ± 11.2%. 370 

Using the estimates of days of bankfull discharge and the highest daily fluxes gives an 371 

estimate that, for one day each year, the loss to floodplains of suspended sediment flux is 372 
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2.5% of the total flux leaving the catchment and therefore the maximum percentage lost to 373 

overbank sedimentation would be 27.5% (i.e. for 11 days per year of bankfull or greater 374 

discharge). The same analysis for POM flux shows that only 0.97% of the annual flux is lost 375 

per day of overbank flow, in which case after 11 days of overbank flow only 10.9% of the 376 

POM flux would be removed. Note that the percentage losses are less for POM than for 377 

suspended sediment, i.e. POM is not fractionated into overbank storage relative to suspended 378 

sediment. In the UK case, the proportion of suspended sediment that is organic matter 379 

decreases as flow increases. Walling et al. (1999) estimated overbank sedimentation for the 380 

Yorkshire Ouse as 30% of the outlet flux (23% of influent suspended sediment flux) and as 381 

40% of the outlet flux (29% of influent flux) for the River Tweed. Erkens (2009) gave a long-382 

term, Holocene accumulation rate of total sediment in the Rhine floodplain as 27% of the 383 

upstream input, but this was not a measure of the organic carbon storage. Hoffmann et al. 384 

(2009) suggested that the long-term storage of carbon on the Rhine floodplain was equivalent 385 

to the downstream flux of POC at the catchment outlet. In contrast, Gomez et al. (2003) 386 

found only 4% POC storage in a New Zealand floodplain.  387 

 388 

4.2. C/N of POM 389 

Across 5 years (1994 - 1998) and 16 sites across 13 rivers (Rivers Aire, Calder, Derwent, 390 

Don, Great Ouse, Nidd, Yorkshire Ouse, Swale, Trent, Tweed, Ure, Wear and Wharfe – 391 

Robson and Neal, 1997), the median POC/PON C/N ratio was 11.5 with an interquartile 392 

range of 9.2 to 14.3. The Anderson-Darling test showed the data were log-normally 393 

distributed and so ANOVA was performed on log-transformed data; the Box-Cox 394 

transformation removed 7 out of 2,477 data. ANOVA showed that all factors were 395 

significant. By far the most important factor was the difference between months with a 396 

minimum in C/N value in June and a maximum in February; the seasonal cycle is remarkably 397 
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symmetrical. The second most important factor is the difference between years, although post 398 

hoc testing indicated that the main difference lay between the years 1993 (13.8 ± 1) and 1995 399 

(10.1 ± 1). The year 1995 was a drought year in the UK (1 in 33 year drought – Worrall et al. 400 

2008). The difference between sites explained only 4.8% of the original variance and was 401 

between only 3 out of the 16 sites Calder (Methley Bridge 12.7), Swale (Catterick Bridge 402 

13.0) and Trent (Cromwell Lock 10.1). 403 

 The review of literature data allowed an estimation of mean and standard deviation 404 

for 47 catchments (Table 1). The geometric mean of the catchments, not including any of the 405 

UK data, was 10.3. The discharge-weighted average from the review of Ittekkot and Zhang 406 

(1989) was 10.7 and for the LOIS data the geometric mean was 11.7. Therefore, applying this 407 

to UK values of POM flux, the flux of POC at the tidal limit would be 601 ± 152 ktonnes 408 

C/yr. The POC flux at the terrestrial source would be 877 ± 102 ktonnes C/yr meaning that 409 

the carbon lost through the streams of the UK would be 290 ± 96 ktonnes C/yr. Equally, the 410 

flux of PON at the tidal limit would be 52 ± 13 ktonnes N/yr. The PON flux at the soil source 411 

would be 74 ± 14 ktonnes C/yr meaning that the nitrogen lost through the streams of the UK 412 

would be 23 ± 9 ktonnes N/yr. 413 

 414 

4.3. Shelf-sea processes 415 

Burdige (2005) suggested a figure of 30% for burial efficiency of terrestrial organic matter 416 

into permanent burial in shelf sediments; Weijers et al. (2009), Li et al. (2013), Hung et al. 417 

(2012), and Meyer et al. (2007) had values between 30 and 79% with a median value of 59% 418 

(n=13, Figure 2). Given the median value of terrigenous input of the organic sedimentation 419 

rate means that the best-fit equation is for burial efficiency (𝐵𝑡𝑜𝑚
𝑒𝑓𝑓

):  420 

 421 

𝐵𝑡𝑜𝑚
𝑒𝑓𝑓

= 49 + 5.7𝑙𝑜𝑔𝑒(𝑆𝑜𝑚) n = 25,  r
2
 = 67.4%,  p < 0.05 (vi) 422 
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(3.0) (0.8) 423 

 424 

where: Som = the sedimentation rate of organic matter (g C/m
2
/yr).; 425 

Brockman et al. (1990) estimate that the POC flux to the North Sea basin is 4 426 

Mtonnes C/yr. Haas et al. (1997a, b) give the carbon budget for the basin itself. On the North 427 

Sea plateau the accumulation is limited by scouring currents to 100 ktonnes C/yr with most 428 

accumulation in the deep channels to the east of the sea (Norwegian channel and Skaggerak) 429 

at 1 Mtonnes C/yr and another 0.1 Mtonnes C/yr exported off the shelf into the Norwegian 430 

Sea (de Haas et al., 1997a,b): this would give a burial efficiency of 30%.  de Haas et al. 431 

(1997a) suggest that 20% of the accumulated sediment is of terrestrial origin and they 432 

measured a series of sedimentation rates varying from 0.05 to 0.35 g/m
2
/yr which, given the 433 

relationship presented in Equation (vi), gives a range of burial efficiency from 31 to 43% 434 

with a 95% confidence interval of 27 to 49%. However, for the UK, the North Sea is but one 435 

shelf sea and de Hass et al (2002) note that for the Celtic Sea the sea bed is entirely made of 436 

re-worked Pleistocene sediment which meant that there was no accumulation on the shelf but 437 

there are no measurements of the export off the shelf to the ocean. Therefore, in the case of 438 

UK, figures of burial efficiency for the North Sea must be viewed as the upper range of 439 

possible values. 440 

 441 

4.4. Proportion of loss as CH4 442 

Included in the analysis is the range of values for reservoirs (Guerin et al., 2006). Of the 12 443 

measurements that are detailed in Table 2, the range used in this study was taken as the 5
th

 to 444 

95
th

 percentile range (0.64% to 2.2%) with a median value of 0.97%. 445 

 446 

4.5. Proportion of loss as N2O 447 
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The ranges reported in the literature are given in Table 3. The IPCC guidelines say that the 448 

N2O yield would be 2.5% of leached N, where leached N is calculated as 30% of applied 449 

fertiliser and manure N when runoff is greater than 50% of pan evaporation (IPCC, 2007). 450 

Clearly such an approach has no application to PON. Baulch et al. (2011) found a consistent 451 

N2O yield of 0.75% across 72 watersheds in the US. The present estimate of N2O flux from 452 

UK rivers is 24 ktonnes N2O/yr, based on IPCC guidelines.  453 

 454 

4.6. Stochastic modelling of GHG emissions factor 455 

The ranges of the input parameters used are given in Table 4. Given the stochastic 456 

combination of the ranges developed above, the total greenhouse gas flux due to particulate 457 

erosion, flux and burial from and in the UK leads to a median emission of 3853 ktonnes 458 

CO2eq/yr with a 5
th

 to 95
th

 percentile range of 2970 to 7807 ktonnes CO2eq/yr. The median 459 

greenhouse gas flux of the replacement of -2490 ktonnes CO2eq/yr with a 5 to 95
th

 percentile 460 

range of -1260 to -5822 ktonnes CO2eq/yr, which is 56.9% of the emissions (ranging between 461 

25.3 and 137.9%). Given the input ranges, there is only a 12.8% chance that erosion in the 462 

UK is a greenhouse gas sink. When the individual greenhouse gases are considered, then CO2 463 

represents 74% of the greenhouse gas warming potential (59 to 89% - 5
th

 to 95
th

 percentile); 464 

CH4 represents 3.8% of the greenhouse gas warming potential (2.1 to 6.5% - 5
th

 to 95
th

 465 

percentile); and N2O 22% of the greenhouse gas warming potential (5 to 37% - 5
th

 to 95
th

 466 

percentile). The largest loss of greenhouse gases is from the shelf seas (48%), then estuaries 467 

(30%), with the least from the rivers (19%). The distribution of the greenhouse gas fluxes and 468 

POM fluxes are summarised in Figure 3. When overall flux of greenhouse gases is compared 469 

to flux of particulate carbon from the soil, then 1 tonne of particulate carbon entering the 470 

fluvial network gives a median emission factor of 5.5 tonnes CO2eq/tonnes C/yr with a 3.3 to 471 

9.9 as the 5
th

 to 95
th

 percentile.  472 
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For 1 tonne of C released as particulate matter to the fluvial network, then it is 473 

possible to give ranges of what this may mean in terms of gross erosion. Given the ranges 474 

discussed above, 1 tonne of fluvial organic particles will have come from 0.47 to 1 tonne of 475 

gross erosion of soil carbon, which will in turn have been replaced by between 0.19 and 1 476 

tonne C. The emission factor of 1 tonne of gross carbon erosion is then: 477 

 478 

𝐺𝑊𝑃𝑂𝑒 = 𝐺𝑊𝑃𝑁𝑒 −
𝑁𝐶𝑒

𝐺𝐶𝑒
𝑅𝑀𝐾𝐶𝑂2

 (vii) 479 

 480 

where: GWPNe = the emission factor of net erosion of organic particles (tonnes CO2eq/yr); 481 

𝑁𝑒
𝐺𝑒

⁄ = the net to gross erosion ratio; R = replacement rate; M = mineralisation rate of 482 

internally redistributed carbon particles; 𝐾𝐶𝑂2
= the greenhouse gas warming potential of CO2 483 

(3.67). Given the ranges quoted above, the median value of the sink due to replacement and 484 

internal deposition is a sink of -1.1 tonnes CO2eq/yr with a 5
th

 to 95
th

 percentile range of -0.6 485 

to -2.3 tonnes CO2eq/yr. Given this value for the sink due to replacement and internal 486 

redistribution, then the emission factor of 1 tonne of carbon (GWPOe) from gross erosion 487 

would be a source of 4.4 tonnes CO2eq/yr with a 5
th

 to 95
th

 percentile range 1.6 to 8.9 tonnes 488 

CO2eq/yr.  489 

Many authors have noted that eroded soil is enriched in organic carbon compared to 490 

topsoil; Quinton et al. (2006) gave a range of enrichment ratios of between 1.2 and 4.7 for 491 

UK soils. The majority of mineral soils in the UK have been 2 and 4% soil organic carbon for 492 

a range of land uses (Bell et al., 2010). Assuming that the supply of POM to the fluvial 493 

network is predominantly supplied from soil erosion, then 1 tonne of gross mineral erosion 494 

represents 0.09 tonnes of C in gross erosion (with a range 0.03 to 0.16 tonnes C) meaning that 495 

the emission factor for 1 tonne of gross erosion is 0.30 (5
th

 to 95
th

 percentile range of 0.11 to 496 
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0.66) tonnes CO2eq/yr. Erosion rates in the UK have been reviewed by Defra (2005b) which 497 

indicated median values of net soil loss from arable fields in England as 410 tonnes/km
2
/yr 498 

and from English grasslands as 60 tonnes/km
2
/yr. Boardman (2013) reviewed soil erosion in 499 

Britain and gives values as high 4500 tonnes/km
2
/yr for a bare sandy loam compared to 500 

values as low as 30 tonnes/km
2
/yr for clay soil under cereals, i.e. limits suggested on gross 501 

erosion estimated above are very low compared to those observed in the UK.. 502 

For 1 tonne C released to the fluvial network, the gross erosion can be calculated 503 

given the range of values of  
𝑁𝑒

𝐺𝑒
⁄  as discussed above; the amount of GHG this removes is 504 

3.67R. Therefore, for gross soil erosion to be a net sink of GHG the following must be true: 505 

 506 

𝐾𝐶𝑂2

𝐺𝑊𝑃𝑁𝑒
𝑅 > [

𝑁𝐶𝑒

𝐺𝐶𝑒
+ (1 −

𝑁𝐶𝑒

𝐺𝐶𝑒
) 𝑀] (viii) 507 

 508 

Given the ranges used in this study, for a GHG sink this can only be achieved if R > 0.7 with 509 

𝑁𝑒
𝐺𝑒

⁄  < 0.47.  510 

 511 

4.7. Stochastic modelling of GHG emissions factor 512 

When just carbon is considered, and not all GHGs, there is a median emission of 1099 513 

ktonnes C/yr with a 5
th

 to 95
th

 percentile range of 697 to 1575 ktonnes C/yr. The median 514 

carbon flux of the replacement is 656 ktonnes C/yr with a 5
th

 to 95
th

 percentile range of 343 515 

to 1587 ktonnes C/yr, which is 63.7% of the emissions (with a 5
th

 to 95
th

 percentile between 516 

34 and 140%). Given the input ranges, there is only a 17.9% chance that erosion in the UK is 517 

a carbon sink.  518 

 519 

5. Discussion 520 
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Given the data used in this study, it is possible to update estimates of the GHG fluxes from 521 

UK rivers. This study has not updated the carbon budget estimates for UK rivers provided by 522 

Worrall et al. (2014) but has updated the estimates of the GWP of those fluxes by considering 523 

not just the turnover of DOC and POC to CO2 but the turnover of POM and DOM to CO2, 524 

CH4 and N2O. Table 5 updates the estimates of the GWP and, based upon median values of 525 

the ranges used above, the median value of GWP of UK rivers is 14254 ktonnes CO2eq/yr; 526 

this equates to an additional 58 tonnes CO2eq/km
2
/yr for the UK land area lost from the fluvial 527 

network.  528 

This estimate of the GHG loses from the UK fluvial network has been based upon the 529 

assumption that any storage in the fluvial system is a permanent sink, i.e. there is no loss of 530 

organic matter from the in-channel or floodplain storage on the time scales of decades. 531 

Hoffman et al. (213b) have shown that over the last 7500 years the floodplains of European 532 

rivers have acted as a net carbon sink because they represent an environment which has a 533 

high preservation potential for carbon and that, when this material erodes and is replaced by 534 

primary productivity, then the floodplain is still a net sink of carbon. However, even with this 535 

mechanism a proportion of POM stored on floodplains would be mineralised and returned to 536 

the atmosphere and a further proportion of the POM stored on floodplains would be lost to 537 

the atmosphere as the stored POM is eroded and returned to the fluvial network. Therefore, 538 

even if the fate of POM within fluvial storage is a net sink, this study has made the even more 539 

conservative assumption that all of the fluvial storage is acting as a sink. Secondly, it should 540 

also be noted that Hoffman et al. (2013b) show their result for carbon and not for greenhouse 541 

gases. The relative high standing water tables of floodplains mean that the proportion of 542 

organic matter lost maybe smaller but the proportion of the deposited POM lost as the more 543 

powerful greenhouse gases (CH4 and N2O) maybe greater (Pinay et al., 2007). Thirdly, it 544 

should be pointed out that the proportion of the POM lost as storage in the fluvial network is 545 
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almost 6 times smaller than that lost directly to the atmosphere via turnover in the river and, 546 

furthermore, the greatest proportion of the loss of POM is not in the river network but in the 547 

estuaries and shelf seas. Therefore, the estimates given here are likely to be underestimates. 548 

The estimates made in this study show the critical importance of the interplay of the 549 

net to gross erosion and the replacement of soil organic matter. In this study we have 550 

assumed a broader range of replacement rates than assumed by Van Oost et al. (2007) but 551 

there is no information on what controls replacement rates and how this relates to gross 552 

erosion. It could be argued that the ability of a soil to replace carbon lost as erosion will be 553 

akin to its rate to turnover soil organic carbon (SOC). An arable soil in southern England has 554 

a surface SOC residence time of 22 years (Jenkinson and Raynor, 1977). If a soil has between 555 

2 and 4% SOC, then the plough layer (depth of 20 cm) of an arable field contains between 5.2 556 

and 10.4 kg of organic carbon /m
2
 (assuming an average bulk surface soil density of 1300 557 

kg/m
3
) and the organic carbon is turning over at a rate of between 0.24 and 0.48 kg C/m

2
/yr. 558 

Given an enrichment ratio (1.2 to 4.7) and the range in %SOC (2 to 4%) used in this study, 559 

then this turnover rate would be equivalent to the amount of carbon exported in a gross 560 

erosion of between 3.9 (5
th

 to 95
th

 percentile range of 0.5 to 8.6) kg C/m
2
/yr equivalent to a 561 

median gross soil erosion of 30.8 tonnes/km
2
/yr (5

th
 to 95

th
 percentile between 2.7 to 91.9 562 

tonnes/km
2
/yr). As noted above, grassland soils in the UK would tend to have the higher 563 

%SOC and the lower gross soil erosion rates which suggests that for many mineral soils 564 

under certain land uses (e.g. grassland), the replacement rate could be close to 1 but that the 565 

replacement rate (R) would decrease rapidly for arable fields where %SOC is naturally lower 566 

and gross soil erosion is commonly higher. It should also be repeated that the evidence for the 567 

UK is that mineral soils under arable usage are not the most important sources of POM 568 

leaving the UK. 569 
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 Given the values of the emissions factors estimated above, then it is possible to re-570 

consider the impact of soil erosion at the national and global scale. Quinton et al. (2006) 571 

estimated that between 0.2 and 0.76 Mtonnes C/yr were released by soil erosion in England 572 

and Wales (rescaled to the UK this would be 0.3 to 1.2 Mtonnes C/yr) which we can now 573 

equate to 3.9 Mtonnes CO2eq/yr (with a 5
th

 to 95
th

 range of 1.0 to 8.3 Mtonnes CO2eq/yr). 574 

When added to the river loss, it suggests that, considering the total fate of carbon from soil 575 

source to burial at sea, then the equivalent loss of greenhouse gas to the atmosphere for the 576 

UK is 17254 ktonnes CO2eq/yr (71 tonnes CO2eq/km
2
/yr).  577 

At a global scale, Van Oost et al. (2007) estimated that between 470 and 610 Mtonnes 578 

C/yr were eroded from agricultural land worldwide and, given the emissions factors 579 

presented above, meant that global, agricultural soil erosion was a median net source of 3.5 580 

Gtonnes CO2eq/yr (1.4 to 8.4). Lal (2003) estimated that global soil erosion was 75 581 

Gtonnes/yr of which he estimated that 15-20 Gtonnes were lost to rivers and that between 4 582 

and 6 Pg C/yr of carbon were lost to the oceans with 20% mineralisation of the carbon, 583 

suggesting that 0.8 to 1.2 Gtonnes C was released to the atmosphere each year. Lal (2003) did 584 

not consider replacement or enrichment ratio and assumed a %SOC of eroded sediment in 585 

rivers of between 2 and 3% while for the UK a median value of 16% was found (Worrall et 586 

al. (2014).  587 

When studies argue that soil erosion can lead to carbon storage, the obvious 588 

conclusion is that soil erosion must be allowed – even encouraged - in order to store more 589 

and more carbon. Quinton et al. (2006) found that slope contouring significantly decreased, 590 

by 33%, gross soil and carbon erosion losses; other techniques were explored and, although 591 

having positive results, there were not such significant effects. Rickson (2014) reviewed 73 592 

studies of soil erosion mitigation from the UK of which 43 quantified the effectiveness of the 593 

intervention. Rickson (2014) concluded that none of the 18 techniques were significantly 594 
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different from each other and so it was impossible to select one mitigation technique over 595 

another; nevertheless, taken together, all 18 techniques decreased the soil erosion typically by 596 

40%. Given that this study has concluded that soil erosion is likely a net source of GHGs, any 597 

decrease in soil erosion immediately represents a GHG saving. Thus, soil conservation can be 598 

shown to prevent GHG emissions to the atmosphere as well as protected terrestrial and 599 

aquatic ecosystem services.  600 

 601 

5. Conclusions 602 

This study has shown that: 603 

i) It is unlikely that soil erosion in the UK represents a net sink of carbon, let alone of 604 

greenhouse gases; 605 

ii) Losses of greenhouse gases to the atmosphere are dominated by CO2 (74%) followed by 606 

N2O (22%) and then CH4 (4%); 607 

iii) The emission factor for 1 tonne of net carbon erosion is between 3.3 and 9.9. tonnes 608 

CO2eq/yr; 609 

iv) The emission factor for 1 tonne of gross carbon erosion is between 1.6 and 8.9 tonnes 610 

CO2eq/yr; 611 

v) The emission factor for gross soil erosion is estimated to be between 0.11 and 0.66 tonnes 612 

CO2eq/yr for every 1 tonnes of gross erosion; 613 

vi) Gross soil erosion can only represent a net sink of carbon and greenhouse gases in 614 

circumstances where the replacement is high (R> 0.7), the net to gross erosion rate is low 615 

(<0.47) and the gross erosion rate is very low (< 91 tonnes/km
2
/yr). 616 

Our results indicate that soil conservation measures are required to protect the atmosphere as 617 

well as land and water. Whilst it is possible in some circumstances that soil erosion can 618 

produce a net carbon sink, in most cases the effect of erosion is detrimental to the atmosphere 619 
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in terms of GHG emissions. Our study finds little evidence therefore to support a more 620 

relaxed approach to soil erosion, indeed quite the converse. Thus, conserving soil organic 621 

carbon provides a more extensive range of ecosystem services than might previously have 622 

been thought, with protection not only of terrestrial, freshwater and marine ecosystems, but 623 

also of the GHG composition of the atmosphere. 624 

 625 
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Table 1. The summary of C/N data used within this study. 860 

 861 

Ref. Region Min. Max. 

Bao et al. (2014) Yangtze 6.4 9.2 

Higueras et al. (2014) Rhone 2.8 14.7 

Bouillon (2012) Congo 7 10.9 

Petrone et al. (2010) W.Australia 2.8 14.7 

Jha and Masao (2013) Japan 5.3 17.8 

Guo et al. (2012) Yukon 19 35 

Wang et al. (2004) Mississippi 10 17 

Martinotti et al. (1997) Po 6.7 8.2 

This study UK 6.7 21.4 

 862 

  863 
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Table 2. The percentage of the C lost to the atmosphere that was lost as CH4. 864 

Ref. Region %C loss as CH4 

Striegl et al. (2012) Yukon 0.72 

Crawford et al. (2014) Wisconsin 0.81 

Crawford et al. (2013c) Yukon 1.1 

Silvennomen et al. (2008) Finland 1.2 

Guerin et al. (2008) Reservoirs 1.4 

  865 
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Table 3. The percentage of the C lost to the atmosphere that was lost as CH4. 866 

Ref. Region Range 

Higgins et al. (2008) Colorado river 0.17 to 4 

Beaulieu et al. (2008) Midwest rivers upto 20.7 

Silvennoinen et al. (2008) Finland 0.02 

Yan et al. (2004) Changjiang 0 – 0.14 

Baulch et al. (2011) USA 0.75 

 867 

  868 
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Table 4. The range of the input parameters  869 

Parameter Range Units 

Replacement rate 0.19  -  1 dimensionless 

Enrichment ratio 1.2 - 4.7 dimensionless 

Mineralisation  0.75 - 0.95 dimensionless 

Net to gross   

POM flux at source 887 - 1504 Ktonnes/yr 

Over bank sedimentation 0.97 % 

Percentage of year with 

overbank sedimentation 

0.1 – 2.9 % 

In-channel storage 2 - 5 % of incoming POM flux 

C/N 9.2 – 14.3 dimensionless 

C in POM 45 – 50 % 

Proportion of C loss as CH4 0.64 – 2.2 % 

Proportion of N loss as N2O 0.3 – 3.0 % 

Estuarine transit 16 – 43 % of incoming POM flux 

Estuarine removal 36 - 54 % of incoming POM flux 

Burial efficiency 27 - 49 % 

 870 
  871 



40 
 

Table 5. The summary of the fluvial carbon and GHG fluxes for the UK rivers. 872 

Pathway Flux (ktonnes 

C/yr) 

Export (tonnes 

C/km
2
/yr) 

Flux(ktonnes 

CO2eq/yr) 

POM 863 3.5  

POM loss 264 1.1 998 

DOM 909 3.7  

DOM loss 2650 10.9 11062 

Excess CO2 598 2.5 2194 

Total loss at source 5020 21.8  

Total loss to atmosphere 3512 15.2 14254 

 873 

 874 

  875 
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Figure 1. Schematic diagram of the generation and fate of particulate organic matter as 876 

considered in this study. 877 

 878 

Figure 2.The terrigenous organic matter burial efficiency compared to the sedimentation rate. 879 

 880 

Figure 3. Summary of flux, sinks and sources of POM (values in bold – ktonnes/yr) and 881 

greenhouse gases (values italics – ktonnes CO2eq/yr) as estimated by this study. Ranges on 882 

these are provided in the text. 883 


