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ABSTRACT
We perform numerical simulations of the merging galaxy cluster 1E 0657−56 (the Bullet
Cluster), including the effects of elastic dark matter scattering. In a similar manner to the
stripping of gas by ram pressure, dark matter self-interactions would transfer momentum be-
tween the two galaxy-cluster dark matter haloes, causing them to lag behind the collisionless
galaxies. The absence of an observed separation between the dark matter and stellar compo-
nents in the Bullet Cluster has been used to place upper limits on the cross-section for dark
matter scattering. We emphasize the importance of analysing simulations in an observationally
motivated manner, finding that the way in which the positions of the various components are
measured can have a larger impact on derived constraints on dark matter’s self-interaction
cross-section than reasonable changes to the initial conditions for the merger. In particular, we
find that the methods used in previous studies to place some of the tightest constraints on this
cross-section do not reflect what is done observationally, and overstate the Bullet Cluster’s
ability to constrain the particle properties of dark matter. We introduce the first simulations
of the Bullet Cluster including both self-interacting dark matter and gas. We find that as the
gas is stripped it introduces radially dependent asymmetries into the stellar and dark matter
distributions. As the techniques used to determine the positions of the dark matter and galaxies
are sensitive to different radial scales, these asymmetries can lead to erroneously measured
offsets between dark matter and galaxies even when they are spatially coincident.

Key words: astroparticle physics – galaxies: clusters: individual: The Bullet Cluster –
cosmology: theory – dark matter.

1 IN T RO D U C T I O N

The massive galaxy cluster 1E 0657−56 (the ‘Bullet Cluster’) acts
as a dark matter (DM) particle collider, potentially allowing for
discrimination between different particle physics models of DM. In
particular, limits on the offset between the galaxies and DM associ-
ated with the smaller DM halo (the ‘bullet’) as well as limits on the
loss of DM mass from the bullet have been used to place constraints
on the DM–DM elastic scattering cross-section (Randall et al. 2008;
Kahlhoefer et al. 2014, hereafter R08 and K14, respectively).

Of the myriad of possible DM candidates, the most favoured
candidates for the DM particle (e.g. the lightest neutralino in the
minimal supersymmetric standard model) typically have only weak
non-gravitational interactions. This is not a necessary property of
DM, and it was first noted by Spergel & Steinhardt (2000) that as
well as being allowed from a particle physics perspective, DM with
a significant cross-section for elastic scattering could have interest-
ing astrophysical consequences. In particular, self-interacting dark
matter (SIDM) could alleviate discrepancies between the results of
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N-body simulations of collisionless cold dark matter (CDM) and ob-
servations of dwarf galaxies (for a review see Weinberg et al. 2015).

While SIDM may not be unique in offering a solution to
these ‘small-scale problems’ (Governato et al. 2012; Pontzen &
Governato 2012; Sawala et al. 2016), there are numerous DM parti-
cle candidates that give rise to scattering between DM particles
(Carlson, Machacek & Hall 1992; Bento et al. 2000; Kusenko
& Steinhardt 2001; Mohapatra, Nussinov & Teplitz 2002; Feng
et al. 2009; Tulin, Yu & Zurek 2013b; Boddy et al. 2014; Kapling-
hat, Tulin & Yu 2014; Wang, Zhang & Zhao 2016), so it is an
important challenge to try and constrain the cross-section for DM–
DM scattering from astrophysical observations, in a bid to constrain
the allowed parameter space for DM particle models. If it was found
that DM must have a significant self-interaction cross-section, this
would have a profound effect on particle physics theories of DM,
ruling out many of the favoured (and most searched for) DM can-
didates.

Additional motivation for studying SIDM comes from the de-
tection of separations between the distribution of stars and DM in
galaxy clusters (Williams & Saha 2011; Mohammed et al. 2014;
Massey et al. 2015). If the offset observed in Abell 3827 (Massey
et al. 2015) is interpreted as resulting from SIDM, then it corre-
sponds to an isotropic scattering cross-section of σ/m ∼ 1.5 cm2 g−1
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(Kahlhoefer et al. 2015). While such an offset could potentially
arise from an out of equilibrium system, or dynamical effects such
as tides or dynamical friction acting differently on the differently
distributed stars and DM, offsets of this size appear to be rare in a
�CDM universe (Schaller et al. 2015).

With this motivation, we revisit (R08, K14) the use of galaxy-
cluster collisions to constrain the nature of DM. Clusters are useful,
as their distribution of DM can be probed by both strong and weak
gravitational lensing. The relative velocities of DM particles within
clusters is also of order 1000 km s−1, two orders of magnitude larger
than in dwarf galaxies. Velocity-dependent cross-sections can arise
naturally in models for SIDM (Ackerman et al. 2009; Buckley &
Fox 2010; Loeb & Weiner 2011; van den Aarssen, Bringmann &
Pfrommer 2012; Tulin, Yu & Zurek 2013a), and constraining such
models requires a handle on the cross-section at different velocity
scales (Kaplinghat, Tulin & Yu 2016).

The first attempt to use colliding galaxy clusters to constrain
the collisional nature of DM (Markevitch et al. 2004) found that
σ/m < 5 cm2 g−1 from limits on the size of any potential offset
between the DM and stars in the Bullet Cluster. This constraint,
derived from analytical toy models, was improved by R08 who
ran N-body simulations of Bullet Cluster-like systems with SIDM.
Combined with tighter constraints on any DM–galaxy separation
(Bradač et al. 2006), they found σ/m < 1.25 cm2 g−1.

Owing to the high relative velocity of the DM haloes in the Bul-
let Cluster, DM particles from the bullet that scatter with particles
from the main cluster will typically have sufficient energy to es-
cape the potential of the bullet halo, and so the bullet halo would
evaporate due to DM self-interactions. The mass-to-light ratio of
the bullet halo is similar to that of the main halo, and if one as-
sumes that this similarity means that less than 23 per cent of the
DM in the inner regions of the bullet halo could have scattered with
particles from the main halo, then the R08 simulations suggest that
σ/m < 0.7 cm2 g−1. However, observations of over 200 galaxy clus-
ters (Popesso et al. 2007) have shown that there is significant scatter
in the luminosity–mass relation for clusters. Specifically, Popesso
et al. (2007) found that the r-band luminosity of clusters was tightly
related to the number of galaxies with an r-band absolute magnitude
of Mr ≤ −20, but that from the number of galaxies the mass of the
cluster could only be predicted with an accuracy of 55 per cent.
This suggests that the significance of the σ/m < 0.7 cm2 g−1 result
derived in R08 is overstated, as it assumes little intrinsic scatter in
the mass-to-light ratios of clusters.

Since the discovery of the Bullet Cluster, other colliding clus-
ter systems have been found, and used to constrain the cross-
section for DM scattering. Similar analysis to that performed on
the Bullet Cluster places limits of σ/m < 4 cm2 g−1 from MACS
J0025.4−1222 (Bradač et al. 2008), σ/m < 3 cm2 g−1 from Abell
2744 (Merten et al. 2011), and σ/m < 7 cm2 g−1 from DLSCL
J0916.2+2951, the ‘Musket Ball Cluster’ (Dawson et al. 2012).

K14 pointed out that during galaxy-cluster collisions, DM parti-
cles preferentially collide along the merger axis, and that these sys-
tems could be used to determine not just the cross-section for DM
scattering, but its angular dependence. In particular, they showed
that the resulting distribution of DM is different for the case of short-
range, contact interactions (for which the scattering is isotropic),
compared to long-range interactions, where there is a preference
for low scattering angles, and particles can undergo many small
momentum transfer collisions.

Compared with systems undergoing major mergers, clusters un-
dergoing minor mergers with large mass ratios are ubiquitous.
Harvey et al. (2015) found 30 such clusters, with a total of 72 pieces

of substructure. By looking at the position of the DM substructure
relative to the position of the corresponding stars and gas, they
placed limits of σ/m < 0.47 cm2 g−1 for the DM elastic scattering
cross-section.

In this work we choose to focus on the Bullet Cluster, as the
gas morphology and the lack of line-of-sight velocity difference
between galaxies from the two clusters implies that the collision
has taken place with little impact parameter and in the plane of the
sky (Barrena et al. 2002). In addition, to this simple geometry, X-ray
observations of the shock front leading the gaseous bullet allow the
relative velocity between the two merging clusters to be estimated
(Markevitch 2006). We limit our study to the case of isotropic and
velocity-independent cross-sections, focusing on the importance of
the method used to extract position estimates from the simulations.

Our paper is structured as follows. In Section 2, we discuss our
implementation of DM scattering within an N-body code, as well
as the initial conditions we use for our simulations. In Section 3,
we discuss different methods for measuring the positions of differ-
ent components within a merging galaxy cluster, before applying
these different methods to our simulations in Section 4. Finally, we
give our conclusions in Section 5. We use �m = 0.3, �� = 0.7,
and H0 = 70 km s−1 Mpc−1. At the redshift of the Bullet Cluster
(z = 0.296) 1 kpc corresponds to 0.23 arcsec.

2 SI M U L AT I O N S

2.1 Implementation of DM scattering

We implemented DM scattering on top of the GADGET-3 TREE-PM

N-body code, which is an updated version of the publicly available
GADGET-2 code (Springel 2005). The scattering was done stochasti-
cally using the same algorithm as in Rocha et al. (2013) that they
derive from the Boltzmann equation, although we use a top hat
kernel rather than a spline kernel. At each time-step, the probabil-
ity for each pair of nearby particles to scatter is calculated, and a
random number is drawn to see which particles do actually scatter.
This algorithm is similar to that used in other SIDM simulations
(Kochanek & White 2000; Yoshida et al. 2000; Davé et al. 2001;
Koda & Shapiro 2011; Vogelsberger, Zavala & Loeb 2012; Fry
et al. 2015), with these algorithms differing in the number of neigh-
bours (or search volume) used to find potential scattering pairs.

2.1.1 Assumed DM interaction model

We assume that the particle interactions are fully described by an
azimuthally symmetric differential cross-section, defined in the cen-
tre of momentum frame of the two particles, which could have
some velocity dependence, d2σ

d� dv
. Assuming that the angular and

velocity dependences of the cross-section are separable, we can
consider only an angularly dependent cross-section. The velocity
dependence then enters as a normalization of the total cross-section
between pairs of particles, a function of their relative velocity.

From the differential cross-section, dσ
d�

, we can calculate the total
cross-section as

σ = 2π

∫ π

0
sin θ

dσ

d�
dθ. (1)

We can then define the probability that a scattered particle changes
direction by an angle in the range [θ , θ + dθ ] as

P (θ ) dθ = 1

σ
2π sin θ

dσ

d�
dθ. (2)
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The code can implement velocity and angular-dependent scattering,
but for the rest of this paper we will assume that DM scattering is ve-
locity independent and isotropic, for which dσ

d�
= σ/4π. Point-like

interactions that lead to isotropic scattering result from scattering
mediated by a heavy particle, when the momentum exchange in
the scattering is significantly larger than the mass of the mediator
particle, mφ , i.e. when mφ � (v/c)mDM.

2.1.2 Scattering rate

The scattering rate of an individual DM particle i, with velocity vi ,
is

	i =
∫

f (v′) ρ
σ

m
|vi − v′| d3v′, (3)

where f is the velocity distribution function,1 ρ the local density,
and σ/m the cross-section for DM–DM scattering (which could
depend on |vi − v′|) divided by the DM particle mass). To calculate
scattering probabilities in the simulations, f and ρ are estimated
from the volume within a distance h of a particle’s position. This
leads to the scattering rate

	i =
∑

j

σp|vi − vj |
4π
3 h3

, (4)

where the sum is over all simulation particles in the volume de-
fined by h, and σ p ≡ (σ/m) mp with mp the mass of the simulation
particles. Throughout this work, σ and m will be the cross-section
and mass of individual DM particles, while σ p and mp will be the
cross-section and mass of the simulation particles. Astrophysical
observables, such as core sizes, are determined by the fraction of
particles that are scattered during a process, and so relate to the scat-
tering rate for individual particles. As the scattering rate depends on
the product of the number density of particles and the cross-section,
and the number density of particles scales inversely as the particle
mass, the cross-section of our simulation particles must scale with
the simulation particle mass, such that

σp =
( σ

m

)
mp. (5)

From equation (4), the probability of two particles, i and j, sepa-
rated by a distance less than h, scattering within the next time-step,
�t, is given by

Pij = σp|vi − vj | �t
4π
3 h3

, (6)

where for velocity-dependent cross-sections, σ p would be a function
of |vi − vj |.

In this scattering procedure, h is a numerical parameter that has
to be chosen. In Section 2.3, we investigate the effects of changing
h, using both a fixed h for all particles, as well as a variable h that
adapts to the local density. We also test adding a kernel weighting to
the scattering probability in equation (6), such that the probability
of nearby pairs of particles (separation much less than h) is larger
than that for particles further apart. We find that using a fixed value
of h equal to the gravitational softening length provides correct
results, and that kernel weighting has little effect. This is in contrast
to smoothed-particle hydrodynamics (for which kernel weighting
and adaptive smoothing lengths are necessary) as the scattering is
inherently stochastic, and so it is not important that the scattering
probability varies smoothly.

1 Here f is normalized such that
∫

f (v) d3v = 1.

2.1.3 Scattering kinematics

If two particles with identical mass, and velocities vi and vj , are
to scatter, then we must first move into the centre of momentum
frame, in which the velocities are v′

i and v′
j = −v′

i . We use the
direction of v′

i to define the z-axis, from which θ is measured. Then
we draw a random θ from P(θ ) to determine the polar angle at
which the particles scatter, as well as drawing a random number
that we convert into an azimuthal angle. With these two angles,
the scattering kinematics in the centre of mass frame is completely
determined. Finding the momentum transfer in the centre of mass
frame, we can then move back to the simulation frame, and apply
these momentum kicks.

For the case of isotopic scattering that we consider in this work,
the scattering kinematics is particularly simple. The post-scatter
velocities are

ui = V + w ê

uj = V − w ê, (7)

where the u are the post-scatter velocities, V = (vi + vj )/2, w =
|vi − vj |/2, and ê is a randomly oriented unit vector.

2.1.4 Multiple scatters within a time-step

As particle scattering is implemented on a particle by particle basis,
it is possible for a particle to scatter more than once in a single
time-step. While the low rate of particle scattering2 results in these
multiple scatters being infrequent, it is important that they are dealt
with in an appropriate way. Because the momentum kick from one
scattering event alters the velocities of the particles for any future
scattering event; we cannot allow a particle to scatter twice in one
time-step with the same initial velocity. Instead we arbitrarily order
all pairs of particles, and update the particle velocities when we
decide two particles will scatter. In this way, any future scattering
events involving these particles will use the updated velocities,
essentially time-ordering the scattering events within one simulation
time-step.

A further complication arises when running simulations on mul-
tiple processors. In order for particles that reside on different pro-
cessors (which have access to different memory) to scatter, the
properties of one of the particles must be exported to the processor
on which the other particle resides. To increase parallel efficiency,
all of these exports take place simultaneously, and then processors
determine if any of their imported particles scatter with their own
particles. During this step, it would be possible for a particle that
is currently exported to scatter off an imported particle on its own
processor. As such, the particle could scatter simultaneously on dif-
ferent processors, which would lead to both scattering events taking
place with the same initial velocity for the particle in question.
Conserving energy and momentum in each of the two scattering
events, and then later combining the two momentum kicks, does
not in general conserve energy, and this process could lead to the
production of additional kinetic energy in the simulation.

To prevent this, we assign a direction between each pair of pro-
cessors, and only allow particles to be exported in this direction. We
use a constant search radius for all particles, so that the search is

2 For σ/m =1 cm2 g−1, Robertson et al. (2015) showed that the average
number of scattering events per particle is O(1) by redshift zero, and so the
frequency of particles scattering twice within a single simulation time-step
is very low.
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symmetric, and particles that would have been exported in the other
direction will still have a chance to scatter with particles that they
would find there, when those particles are imported. Essentially,
particles with a separation less than h that reside on different pro-
cessors meet each other once and scatter with the probability given
in equation (6), while particles on the same processor meet twice,
but have half this probability of scattering on each occasion. As-
signing a directionality to the particle send/receive process does not
completely prevent particles scattering simultaneously on different
processors, as it is still possible where particles on three or more
domains3 are within a distance h of each other. However, the rate
of scattering within a time-step is low, and the size of the domains
compared to the size of h is large, such that these events are highly
unlikely.

We keep a log of all scattering events that allows us to detect
these problematic encounters. For three particles drawn from a
Maxwell–Boltzmann velocity distribution, the mean change in en-
ergy when one particle scatters ‘badly’ from the two other particles
is 〈�E〉 = 1

2 〈KE〉, where 〈KE〉 is the mean kinetic energy of indi-
vidual particles. This rises to 〈�E〉 ≈ 0.87〈KE〉, when we weight
the triplets of particles by the probability of them scattering, as
particles with higher relative velocities are more likely to scatter
(equation 6).

In the simulations used in the rest of this work, only one bad
scattering event happened. As the expected change in energy due
to a bad scattering is of the order of the kinetic energy per particle
in the simulation, a bad scattering event changes the total energy
by ∼1 part in NDM, where NDM is the number of DM particles
in the simulation. In our simulations this corresponds to 1 part in
107, making it inconsequential compared to the non-conservation of
energy from gravitational forces. With variable time-steps, manifest
energy conservation is lost (Dehnen & Read 2011), and we find that
in our simulations the typical level of energy conservation over the
course of a simulation is ∼1 part in 104.

2.2 Initial conditions

In order to draw meaningful conclusions on the properties of DM
from a comparison of our simulations to observations, it is im-
portant that the simulations do a reasonable job of recreating the
Bullet Cluster’s observed properties. Lage & Farrar (2014) per-
formed a large suite of magnetohydrodynamic simulations of the
Bullet Cluster, hoping to match a wide range of observational data
sets. In order to constrain the 34 parameters required to generate
their initial conditions, they required over 1000 simulations, which
in our case (looking at the effect of changing the DM–DM scatter-
ing cross-section) would have to be done for each cross-section that
we investigate. This would be an exceptionally computationally
demanding task, and although complicated, the initial conditions
generated are still idealized models for the two clusters, ignoring
the effects of mass accretion prior to or during the merger, and with-
out substructure that could be important for matching to the lensing
data. Instead of attempting the demanding task of finding optimal
initial conditions for each cross-section we investigate, we choose
to take a simple idealized model for the system, which provides a
reasonable match to key data sets. We then investigate how observ-
ables (in particular the offset between DM and galaxies) change as
the DM cross-section is varied.

3 A domain is a region of simulation space that is stored on one processor.

2.2.1 Density profiles

The main constraints on the total density profiles of the two clus-
ters come from lensing observations. As a first model, we take the
best-fitting values from fitting two spherically symmetric Navarro,
Frenk & White (1997, hereafter NFW) mass distributions to
weak-lensing data, as done in Springel & Farrar (2007, hereafter
SF07). With our assumed cosmology, the best-fitting values are
r200 = 2136 kpc, c =1.94, and r200 = 995 kpc, c = 7.12, for the
main cluster and bullet cluster, respectively. Given the redshift of
the system at z = 0.296, the masses of the two haloes are then M200

≈ 1.5 ×1015 M� for the main cluster and M200 ≈ 1.5 ×1014 M�
for the bullet cluster.4

The concentration of the main halo derived from weak lensing
would place this halo well below the concentration–mass relation
derived from observations of galaxy clusters (Merten et al. 2015),
or from numerical (Prada et al. 2012; Dutton & Macciò 2014;
Diemer & Kravtsov 2015) or analytical (Correa et al. 2015) work.
SF07 found that with c = 2, the ram pressure on the gas bullet is not
sufficient to strip it away from its DM halo. The observed gas bullet
trails its DM by ∼100 kpc, which they could match by increasing
the concentration of the main halo to c = 3. Making the main halo
even more concentrated than this resulted in overpredicting the gas–
DM separation, and also lead to the morphology of the bow shock
differing from what is observed. We therefore choose to use c = 3
rather than the weak-lensing derived c =1.94 for the main halo in
our fiducial model for the collision.

We model the total matter distribution of each cluster with a
Hernquist profile (Hernquist 1990),

ρ(r) = M

2π

a

r

1

(r + a)3
. (8)

These are used because unlike NFW profiles, they have a finite
mass and so do not need to be truncated. They also have analytical
distribution functions, which allow equilibrium initial conditions to
be easily generated, and quantities such as the expected scattering
rate within a halo to be calculated analytically.

In order to match an NFW profile to a Hernquist profile, we
need to define two matching criteria to fix the Hernquist profile’s
two free parameters. The first of these we take to be matching the
normalization of the density in the central regions, for which ρ ∝
r−1 for both NFW and Hernquist profiles. We also then match the
mass within a radius of r200 for the Hernquist profile to that of
the NFW profile, making use of the mass within a radius r for a
Hernquist profile,

M(<r) = M
r2

(r + a)2
. (9)

Enforcing these matching criteria, we can find the relationship
between the Hernquist parameters, a and M, and the NFW parame-
ters, M200, r200, and c:

M = M200
(r200 + a)2

r2
200

(10)

a = r200√
c2

2
[

ln(1+c)− c
1+c

] − 1
. (11)

4 We define r200 as the radius at which the mean enclosed DM density is
200 times the critical density, and M200 as the mass enclosed within r200.
The concentration, c, is then r200/rs, where rs is the NFW scale radius.
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We note that a similar matching procedure is described in the text of
Springel, Di Matteo & Hernquist (2005), but that they match M200

of the NFW profile to the total mass, M, of the Hernquist profile,
resulting in a slightly different formula for a.

2.2.2 Relative velocity of the DM haloes

The relative velocity between the two DM haloes in the Bul-
let Cluster was originally estimated to be 4700 km s−1, as this
corresponded to the ‘shock velocity’, the velocity of the shock
front relative to the pre-shocked gas (Markevitch 2006). This
large relative velocity would be rare within the context of �CDM
(Hayashi & White 2006), leading to the suggestion of a long-range
fifth-force that would result in additional acceleration (Farrar &
Rosen 2007).

Simulations including gas have since shown that the shock veloc-
ity can be considerably larger than the relative velocity between the
DM haloes. The pre-shocked gas, which belongs to the main halo, is
not at rest with respect to its halo, but is instead moving towards the
bullet halo. Additionally, the shock front is not at rest with respect
to the bullet-halo DM, but moves ahead of it. A discussion of the
mechanisms responsible for these effects is available in SF07.

SF07 find that the observed shock velocity can be matched by
haloes that collide with a velocity corresponding to infall from
infinity. We therefore start our simulations with the cluster centres
separated by 4 Mpc, and with a relative velocity that corresponds
to the velocity they would obtain if falling from rest at infinite
separation, assuming each halo acts like a point mass.

2.2.3 Summary of initial conditions

Our fiducial model for Bullet Cluster-like initial conditions is
two Hernquist profiles, separated by 4 Mpc, and with a rela-
tive velocity of 2970 km s−1 along the line joining the two clus-
ter centres. The main halo corresponds to an NFW profile with
M200 =1.5 ×1015 M� and c = 3, while the bullet halo has
M200 =1.5 ×1014 M� and c = 7.12. When converted into matched
Hernquist profiles (following the method in Section 2.2.1), the
masses and scale radii are M = 3.85 ×1015 M�, a =1290 kpc,
and M = 2.46 ×1014 M�, a = 279 kpc for the main and bullet halo,
respectively.

The mass within each halo is 99 per cent DM, and 1 per cent stars,
though we use an equal number of DM and star particles (107 of
each). The star particles are distributed as a smooth halo following
the DM density. While this is not the case in real galaxy clusters,
where stars reside within galaxies, we do this to allow us to more
easily identify the location of the stellar component. We also run
some simulations including non-radiative gas, which are discussed
in Section 4.4. The gas initially follows the same density profile
as the DM and stars, with the halo mass being 83 per cent DM,
16 per cent gas, and 1 per cent stars. The gas temperature was set
so that the gas was in hydrostatic equilibrium, which for the main
halo in our fiducial mass model gave a maximum gas temperature
of 8.4 keV, in agreement with the temperature of the pre-shocked
gas in the Bullet Cluster (Markevitch 2006).

2.2.4 Comparison to other SIDM studies

In Fig. 1, we show the density distribution of the main halo and
bullet halo from different simulations of the Bullet Cluster. As
we are interested in the offset between stars and DM within the

bullet halo, the fraction of DM particles from the bullet halo that
scatter from a particle in the main halo is an important quantity. We
therefore plot the density distributions of the two haloes in a manner
that allows us to estimate this fraction. For the main halo, we plot the
projected density of DM at different radii, which can be multiplied
by the cross-section to get an optical depth for DM scattering. For
example, an SIDM particle with σ/m =1 cm2 g−1 passing through
the main halo of our fiducial model at a projected radius of 200 kpc,
where the projected surface density is ∼0.15 g cm−2, would have a
∼15 per cent chance of scattering off a particle in the main halo.

In the right-hand panel of Fig. 1, we plot the fraction of particles
at different projected radii within the bullet halo. As the two haloes
collide head-on, this is the distribution of projected radii of the main
halo through which bullet-halo particles will pass (if we ignore the
motion of DM particles within their own halo). We can then use
the two panels of Fig. 1 to calculate the fraction of particles in the
bullet halo that scatter with a particle from the main halo. For our
fiducial model with σ/m =1 cm2 g−1, we expect ∼23 (33) per cent
of particles from the inner 400 (150) kpc of the bullet halo to scatter
with a particle from the main halo, while for R08 and K14 the num-
bers are 21 (33) and 28 (36) per cent, respectively. Considering all
particles in the bullet halo, the number goes down to 12 per cent for
our fiducial model, in good agreement with the value of 13 per cent
that we get in our simulations (see Section 4.3).

2.2.5 Stability of an isolated halo

In Fig. 2, we show the density of an isolated Hernquist profile,
evolved both with and without DM scattering. The halo shown is the
same as the smaller halo in our fiducial model for the Bullet Cluster.
With collisionless DM, the halo forms a small core with a size ∼2ε,
where ε is the Plummer-equivalent gravitational softening length.
The gravitational force between pairs of particles is Newtonian
when they are separated by more than 2.8ε, but is reduced below this
when they are closer, resulting in the formation of small numerical
cores in otherwise cuspy haloes.

With SIDM, the haloes form much larger cores, due to particles
being preferentially scattered out of high-density regions. These
cores form quickly, and settle to a size that is independent of the
DM cross-section, in agreement with Kochanek & White (2000).

Starting our simulations with the cluster centres separated by
4 Mpc results in core passage taking place ∼1.1 Gyr after the sim-
ulations begin. During this time, the density profiles of the SIDM
haloes evolve due to DM scattering, beginning to form constant
density cores at their centres. To check that the extent of core for-
mation does not have a large impact on our results, we experimented
with different initial separations between the two haloes. Starting
the haloes with a separation of 9 Mpc, the haloes have evolved for
3.4 Gyr before they collide. We found this only had a small impact
on our results, changing the best-fitting separation between stars
and DM (with a scattering cross-section of 1 cm2 g−1) from 9.2 to
8.4 kpc at the time of the observed Bullet Cluster in our fiducial
model. This change is small compared to the effects discussed in
Section 4.

2.3 Testing the SIDM implementation

In Fig. 3, we plot the scattering rate per particle in an isolated DM
halo with a Hernquist density profile. The halo has a total mass of
M =1015 M� and a scale radius a =1000 kpc. The simulation was
run for 2.5 Gyr with 106 particles, each with a mass mp =109 M�
and a Plummer-equivalent gravitational softening length ε =12 kpc.
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Figure 1. Left-hand panel: the projected mass density through the main halo of the Bullet Cluster, as a function of projected radius. Right-hand panel: the
distribution of DM mass at different projected radii in the subcluster of the Bullet Cluster, normalized so that

∫ 1 Mpc
0 f (R)dR = 1. Different line styles and

colours correspond to different choices for the density profiles. Our fiducial model is described in Section 2.2.3 while two variations to our fiducial model
(c =1.94 and M200 = 3 ×1014 M�) are described in Section 4.2. The fiducial (truncated NFW) lines are for the underlying NFW profiles that our fiducial
model (which uses Hernquist profiles) are matched to, truncated so there is no mass outside of r200. SF07 was the fiducial model used in that paper, while R08
is for the density profiles used in their simulation with σ/m =1.25 cm2 g−1 (their initial conditions were changed slightly for different cross-sections). K14
only simulated one model for the Bullet Cluster, which had a particularly concentrated bullet halo as evident in the right-hand panel. Lage & Farrar (2014) was
the best-fitting model found from running over a thousand simulations with different initial conditions and comparing the results to several observational data
sets.

Figure 2. The radial density profile of an isolated halo with collision-
less DM as well as SIDM with isotropic cross-sections ranging from 0.5
to 2 cm2 g−1. The dotted lines show the average profile between 1 and
2 Gyr after the start of the simulation, while the solid lines show the period
5–6 Gyr after the start of the simulation. Lines are semitransparent when the
density corresponds to fewer than five particles in a radial bin. The vertical
line corresponds to the Plummer-equivalent gravitational softening length,
ε. For the collisionless DM, the initial Hernquist profile (dashed line) is
stable, except for the formation of a numerical core with size ∼2ε due to
gravitational softening.

Figure 3. The scattering rate per particle in a Hernquist profile DM halo,
plotted as a function of radius. Increasing the size of the search radius used
for DM scattering leads to a decrease of the scattering rate in the inner
regions of the halo. The results converge for h < ε as the density profile in
the simulation forms a numerical core with radius ∼ε due to gravitational
softening. All lines used a fixed h except for the hvar line for which h is
varied for each particle to keep 32 neighbours within the search region. For
the fixed h lines there are corresponding crosses plotted along the analytical
curve at the radius equal to h, showing that for r � h the scattering rate falls
below the analytic result.
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The scattering rate per particle as a function of radius was ex-
tracted from the simulations by taking the location of all scatters
during the simulation and binning them in logarithmically spaced
radial bins. This was then divided by the time-averaged number of
particles within the same radial bins to get the scattering rate per
particle.

2.3.1 Analytical expectation for scattering rates in haloes

For the analytical calculation of the expected scattering rate per par-
ticle, the density and the mean pairwise velocity need to be known.
The density distribution is given in equation (8), while the pairwise
velocities can be calculated from the velocity dispersion. Given
isotropic velocities following a Maxwell–Boltzmann distribution,
the mean pairwise velocity is given by

〈
vpair

〉 = (4/
√

π )σ1D, where
σ 1D is the one-dimensional velocity dispersion. This can be calcu-
lated from the density profile and the Jeans equation, which (again
assuming an isotropic velocity distribution) gives

σ 2
1D = GM

12a
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, (12)

for a Hernquist profile.
Integrating over the velocity distribution function in equation (3)

gives the average scattering rate for particles at position r ,

	(r) = 〈σ vpair〉(r)ρ(r)

m
. (13)

If the DM cross-section is velocity independent then 〈σ vpair〉 =
σ 〈vpair〉 = σ (4/

√
π)σ1D, and we can calculate the expected scatter-

ing rate per particle at different radii in the halo from equations (8)
and (12). This is shown as the dashed line in Fig. 3.

2.3.2 Scattering rates in simulated haloes

As DM scattering leads to the formation of a cored density profile
and also changes the velocity distribution, the scattering rate as a
function of radius would not follow the analytical relation once the
system has evolved due to self-interactions. To allow for a direct
comparison to the analytical result we turn off the momentum kicks
from scattering, such that the scattering algorithm is used to find
particles that scatter, but does not actually change the particles’
momenta as a result of scattering.

Fig. 3 demonstrates that our code reproduces the correct scat-
tering rate within the halo at all but the smallest radii – where the
scattering rate falls below the analytic prediction. This behaviour
is easily understood by noting that the search radius for finding
neighbours from which to scatter, h, acts as a scale on which the
density and velocity distribution are smoothed in the calculation of
scattering probabilities. The search radius therefore smooths away
the density cusp in the scattering rate calculation leading to de-
creased scattering rates compared to the true unsmoothed rate. The
scattering rate in the simulations drops significantly below the ana-
lytic rate only for radii less than h, so using a small h is preferred
to capture the scattering rate in small high-density regions.

For h smaller than the gravitational softening length, ε, the radius
within which 	 falls below the analytical result ceases to change.
This is because there is a core formed in the particle distribution
due to gravitational softening, with the core size of the order of
ε. Pushing h to smaller values than ε therefore cannot recover

the analytical result, because the particle distribution is already
smoothed on the scale of the gravitational softening.

As using a small h leads to larger probabilities for pairs of par-
ticles to scatter (equation 6), smaller time-steps must be used to
keep these probabilities below 1. We find that setting h = ε allows
the usual dynamical time-steps to be used, while not excessively
smoothing the density in the calculation of scattering rates.

Rocha et al. (2013) found that their scattering algorithm underpre-
dicted scattering rates for small values of h in low-density regions.
Specifically, they found the scattering rate dropped below the cor-
rect rate when h (ρ/mp)1/3 � 0.2, i.e. when h is less than 20 per cent
of the mean interparticle separation. For h = 0.1 kpc in Fig. 3, h
is ∼4 per cent of the mean interparticle separation at r = 2a, but
the scattering rate still matches the analytical prediction. The result
found by Rocha et al. (2013) may be a result of allowing scattering
probabilities within a time-step to go above 1. This is discussed
further, along with some more tests of the SIDM implementation,
in Appendix A.

3 MEASURI NG POSI TI ONS

In order to measure the offsets between different components, we
first need a definition of position for each of the components. Obser-
vationally, the methods used to find the positions of the gas, galaxies,
and DM are typically all different, and may also be different from
the methods used to find the positions in associated simulations. It
is therefore important that we understand the effects of changing
the method used to find the positions of the various components, in
a bid to understand how to best analyse the simulations in order to
compare the results with observations.

3.1 Shrinking circles

The shrinking-circles approach to finding the position associated
with a set of discrete points (the simulation particles) is the 2D ana-
logue of the shrinking-spheres approach often used to find density
peaks in N-body simulations (see e.g. Power et al. 2003). All of
the particles under consideration are first projected along one axis.
Then a circle is drawn. centred on the mean position of all particles,
with radius chosen to be the distance between this centre and the
most distant particle. The radius is then shrunk by a factor f and
a new centre is calculated from the mean position of all particles
within the current circle. The radius is shrunk again, and the process
continues until the radius of the circle is Rmin. The mean position of
all particles within this final circle gives the position of this set of
particles.

This was the method employed by R08 who used Rmin = 200 kpc.
This method clearly only gives one position for a distribution of par-
ticles, and so to get the position of both DM haloes from a simulation
of the Bullet Cluster, the method needs to be run separately on par-
ticles belonging to the different haloes, or be started with the circles
already shrunk to a size where they only contain one DM peak.

3.2 Parametric fits to 2D density maps

As an alternative to using shrinking circles to find the positions
of the two haloes, we simultaneously fit the projected-density map
with two profiles that have analytical projected densities. We use
2D projections of Pseudo Isothermal Elliptical Mass Distributions
(PIEMDs), which have a 3D density profile

ρ(r) = ρ0

(1 + r2/r2
core)(1 + r2/r2

cut)
; rcut > rcore. (14)
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This profile has a core with central density ρ0 and size rcore, outside
of which ρ ∝ r−2 as for an isothermal sphere, until r � rcut for
which the density falls off as r−4. This density profile is useful
in these SIDM simulations, where the additional free parameter
over an NFW or Hernquist profile, allows the cores produced by
DM scattering to be well-fitted. The 3D potential and projected-
potential are also analytical for this model, making it popular in
gravitational-lensing analyses where deflection angles, shears, and
convergence depend on gradients of the projected potential.

The projected density for a PIEMD is

(R) = 2
∫ ∞

R

ρ(r)r√
r2 − R2

dr

= 0
rcore rcut

rcut − rcore

(
1√

r2
core + R2

+ 1√
r2

cut + R2

)
, (15)

where R is the projected radius from the centre of the halo, and

0 = πρ0
rcore rcut

rcut + rcore
. (16)

As described in Kassiola & Kovner (1993), the axially symmetric
projected-density profile in equation (15) can be made elliptical by
substituting R → R̃, where

R̃2 = x̃2

(1 + ε)2
+ ỹ2

(1 − ε)2
, (17)

and x̃ and ỹ are the spatial coordinates from the centre of the halo,
along the major and minor projected axes of the halo, respectively.
The ellipticity of the halo is defined as ε = (a − b)/(a + b), where
a and b are the semimajor and semiminor axes. Along with ε, there
is an additional parameter φ that describes the angle between the
x̃-axis and the x-axis, i.e. the position angle of the major axis of the
halo relative to our coordinate system (x, y).

We find the 2D positions of the DM haloes by simultaneously
fitting two PIEMDs to the total projected DM density. We first
discuss the case of fitting the distribution to a single isolated halo,
the progression to two haloes then being relatively straightforward.

Each halo is described by seven parameters: the coordinates of
the centre (X, Y), the central density ρ0, the core radius rcore, the
outer radius rcut, the ellipticity ε, and the position angle φ. The
distribution of simulation particles is split into evenly sized bins,
generating the data map, dij, to which we find the best-fitting para-
metric model. Given values for the seven parameters that describe a
PIEMD, the surface density can be calculated at each bin using (R)
from equation (15) and using R → R̃ calculated as the distance be-
tween the centre of each bin and the halo centre (X, Y) transformed
according to equation (17). This would more accurately be done by
integrating (x, y) over the area of the bin. As the density is roughly
constant for R̃ < rcore, and our bin size used is smaller than the core
radii found, the variation of  across any individual bin is small,
and the mean surface density within a bin is well approximated by
the surface density at the bin centre.

The model map, mi, is the expected number of particles in each
bin given the current parameter values, θ . This is simply the surface
density at the bin position multiplied by the bin area, and divided
by the mass of the simulation particles.

Once we have a data map and a model map, we can calculate the
probability of getting our data map given the model map (i.e. the
likelihood). For a bin with a given model value, we expect the data
value to be Poisson distributed with the expectation value equal to
the model value. The likelihood is the product over all map bins
of the probabilities of obtaining each data value given the model

value:

L(θ = {X, Y , ρ0, rcore, rcut, φ, ε}) =
∏

i

m
di
i e−mi

di!
. (18)

We can combine this likelihood function with a set of priors to
calculate posterior probabilities for the parameters. This is done us-
ing EMCEE (Foreman-Mackey et al. 2013), a PYTHON implementation
of the affine-invariant ensemble sampler for Markov chain Monte
Carlo proposed by Goodman & Weare (2010). We choose flat priors
for X, Y, rcore, and rcut, with a prior on ρ0 that is flat in log-space.

In Fig. 4, we show the results of fitting two PIEMDs to a syn-
thetic density map. The synthetic map was generated by taking the
projected-density profile of two PIEMDs, here chosen to have pa-
rameters similar to that of the Bullet Cluster at the time at which it is
observed, and then drawing a number of particles in each bin from
a Poisson distribution with mean equal to the number of particles
expected from the analytic profiles, assuming a particle mass equal
to that used in our fiducial simulations.

The map in the top-right of Fig. 4 shows visually the level of
noise associated with having a discrete set of particles and using
20 kpc bins, while the main corner plot shows that the fitting proce-
dure recovers the input model within the error contours of the 2D
projected posterior distributions. As the likelihood function in equa-
tion (18) is based upon Poisson statistics in each bin, the width of the
posterior distributions shows the uncertainty in model parameters
due to having a finite number of simulation particles. Of particular
interest is the width of the posterior of the halo position along the
collision axis (X), as it is the separation of different components
along this axis that can be used to infer the DM cross-section. Us-
ing the particle mass used in our simulations, the width of the X
posterior distribution is ∼2 kpc.

3.3 Parametric fits to shear maps

3.3.1 Generating shear maps

Although the projected density is technically observable through
size and flux magnifications (as recently done in Duncan et al. 2016),
weak lensing is usually done using the gravitational shear field.
While the intrinsic ellipticities of galaxies are typically larger than
the ellipticity from gravitational shear, with a large number of lensed
galaxies the projected mass distribution of the lensing object can be
determined.

The magnification of sources is described by the convergence,
κ , while the distortion to the shape of galaxies is described by the
shear (γ 1, γ 2). Here γ 1 describes stretching and squashing along
the x-axis, while γ 2 describes these at 45◦ to the x-axis. In fact, the
effect of lensing on galaxy ellipticities is described by the reduced
shear, g = γ /(1 − κ). The quantities κ , γ 1, and γ 2 can all be related
to the effective lensing potential, �, through

κ = 1

2

(
∂2�

∂x2
+ ∂2�

∂y2

)
, (19)

γ1 = 1

2

(
∂2�

∂x2
− ∂2�

∂y2

)
, (20)

and

γ2 = ∂2�

∂x∂y
. (21)
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Figure 4. The posterior distributions for the model parameters of the smaller halo (on the right in the convergence map), found from simultaneously fitting
two PIEMDs to the projected density generated from two model PIEMDs. The contours show 68 and 95 per cent confidence intervals. The model values used
to generate the projected density are shown by the blue lines, and are recovered within the posterior distributions returned by the fitting procedure. The model
values for the larger halo were also recovered, but are not shown here for clarity. The plot was made using CORNER.PY (Foreman-Mackey 2016).

The convergence is also given by the scaled projected density

κ(x, y) = (x, y)

crit
, (22)

where the critical surface density, crit, is dependent on the geom-
etry of the source, observer, and lens through

crit = c2

4πG

Ds

DlDls
, (23)

where Ds, Dl, and Dls are the angular diameter distances between
the observer and the source, observer and lens, and lens and source,
respectively.

Using equations (22) and (23), we can generate a κ map from a
simulation snapshot by binning the 2D particle distribution, having

projected along the third dimension. Using the number of particles
in a bin, the particle mass, and the bin area, we can calculate a
projected density, (x, y). Then, given a redshift for the lens (here,
z = 0.296 as for the observed bullet cluster) and a redshift for
the source galaxies (here, we use zs =1), we can calculate the
critical surface density, which for our choice of cosmology was
crit = 2.85 ×109 M� kpc−2.

Once we have a κ map, we can generate maps of γ 1 and γ 2 by
making use of equations (19)–(21). Taking the Fourier transform of
these equations, we find

κ̂ = −1

2
(k2

x + k2
y)�̂, (24)
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γ̂1 = −1

2
(k2

x − k2
y)�̂, (25)

and

γ̂2 = −kxky�̂, (26)

where k = (kx, ky) is the wave vector conjugate to x = (x, y). These
can be rearranged to give

γ̂1 = k2
x − k2

y

k2
x + k2

y

κ̂, (27)

and

γ̂2 = 2kxky

k2
x + k2

y

κ̂. (28)

Finding γ 1 and γ 2 is then simply a case of taking the Fourier
transform of κ , multiplying by the appropriate function of kx and ky,
and taking the inverse Fourier transform to return the desired shear
component. The two components of g are then given by these shear
components divided by 1 − κ .

3.3.2 Shear-map likelihood function

Given maps of the two reduced shear components generated from
a simulation snapshot, gd

1,i and gd
2,i , we can calculate a likelihood

function

L(θ ) =
∏

i

exp

(
(gd

1,i − gm
1,i)

2

2σ 2
γ

)
exp

(
(gd

2,i − gm
2,i)

2

2σ 2
γ

)
, (29)

where gm
1,i and gm

2,i are the maps generated from the parametric
model described by θ . When reconstructing a shear field from the
ellipticities of lensed galaxies, the variance of each component of
the shear field at a pixel, σ 2

γ = σ 2
int + σ 2

meas, comes from the intrinsic
ellipticities of galaxies as well as shape-measurement errors. Shape-
measurement errors depend on the quality of the data, as well as
the method used to measure shapes, while the intrinsic ellipticities
of galaxies are an unavoidable limitation to lensing measurements
using gravitational shear. We thus set σ meas = 0 in this work, and
assume that the only limitation to reconstructing a mass model
using weak lensing comes from the number density of galaxies
and the width of their intrinsic ellipticity distribution. Leauthaud
et al. (2007) found that for each galaxy σ int ∼0.26 across a wide
range of sizes, magnitudes, and redshifts. Thus, given a number of
lensed galaxies, N, within a pixel of a shear map, the contribution of
intrinsic ellipticities to the average ellipticity of galaxies in that bin
will be normally distributed with zero mean and standard deviation
σγ = 0.26/

√
N .

In this work, we use a square shear map with a side length of
3 Mpc, centred on the centre of mass of the two haloes. We first
produce a convergence map of this same area, and then gener-
ate a shear map from this, following the procedure described in
Section 3.3.1. In order to avoid wraparound errors, the convergence
map is zero-padded up to a side length of 10 Mpc. The posterior
distribution for parameters describing two elliptical PIEMDs can
then be calculated as for the projected density, using the likelihood
function in equation (29), where σγ is calculated assuming a source-
galaxy density of 80 galaxies arcmin−2. We also mask out any pixels
where κ > 0.6, as in these regions the reduced shear can become
very large and then individual pixels dominate the likelihood, these
regions are approaching or in the strong-lensing regime, and would
not typically enter a weak-lensing analysis.

The result of fitting to a shear map generated from the projected-
density profile in Fig. 4 is shown in Fig. 5. Unlike the case of fitting
to the projected density, the width of the posterior distribution is
no longer driven by the number of simulation particles, but by our
greater uncertainty on the shear map from the intrinsic shapes of
lensed galaxies. The synthetic shear map generated (and shown in
the top-right of Fig. 5) did not include any shape noise, and so
the posterior distributions returned are centred on the true model
values. The width of the posterior describes the range of results one
would expect to derive had there been shape noise, as demonstrated
by the red dots which show the maximum likelihood parameter
values for 20 different realizations of maps where Gaussian noise
was added to the synthetic shear map, with the variance of the noise
corresponding to σ 2

γ .
The width of the posterior distributions in Fig. 5 suggest that using

gravitational shear with 80 galaxies arcmin−2, we cannot determine
the position of the bullet DM halo to better than ∼±40 kpc. This
is consistent with Harvey et al. (2015) who found a typical 1σ

error of 60 kpc on the DM halo positions determined from weak
gravitational lensing with ∼60 galaxies arcmin−2 (Harvey, private
communication).

4 R ESULTS

4.1 Offsets with different cross-sections

As our fiducial method to measure the positions of both stars and
DM, we fit two PIEMDs to the projected surface density as described
in Section 3.2. Doing this independently for the DM and stellar
component, we can then measure the offset along the collision axis
between the two components. This was done for collisionless DM
as SIDM with four different cross-sections. The offset between the
stars and DM of the smaller bullet halo is shown as a function of the
position of this halo in Fig. 6. This position was measured along the
collision (x) axis, relative to the centre of mass of the two haloes. As
the main halo is substantially more massive than the bullet halo, this
position is similar to the separation between the two DM haloes.
For collisionless DM, the observed DM halo separation of 720 kpc
occurs when the bullet halo is at XDM ≈ 600 kpc.

The offsets scale linearly with cross-section, in agreement with
R08 and K14, but the size of the offsets for a given cross-section are
considerably smaller than those found in R08, and about 40 per cent
smaller than in K14. For σ/m =1 cm2 g−1, the offset at the time of
the observed Bullet Cluster is ∼10 kpc, whereas R08 find that a
similar cross-section leads to the DM trailing the galaxies by al-
most 40 kpc. From the observed trailing of galaxies by DM of
25 ± 29 kpc, R08 placed constraints on the DM cross-section of
σ/m <1.25 cm2 g−1, whereas all of our simulated cross-sections
would be consistent with this observation. This discrepancy is in-
vestigated in the following two sections, where we vary our initial
conditions, and then the method used to measure positions.

4.2 Sensitivity to varying initial conditions

The offsets for different cross-sections depend on the initial condi-
tions used, as changing the masses and concentrations of the haloes
changes the rate of DM scattering as well as the gravitational forces
that dominate the dynamics of the merger. In this section, we inves-
tigate changing the initial conditions. We vary one parameter at a
time from its value in our fiducial model, and change the parame-
ters in a way that has been used in previous simulations or has been
hinted at by previous results.
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Figure 5. Similar to Fig. 4, but for the case of fitting to reduced gravitational shear. The red points indicate the maximum likelihood parameter values found
from fitting to the underlying shear map from the model with the addition of 20 different realizations of noise from source-galaxy intrinsic ellipticities. In the
shear map in the top-right the colour represents the value of the reduced shear, while the white lines show the direction.

4.2.1 Main-halo concentration

The first parameter we vary is the concentration of the main halo.
Our fiducial model used c = 3, as this was found to be required by
SF07 to reproduce the observed offset between the bright X-ray bul-
let and the associated DM halo. This result used the rather limiting
assumption (as used in this work) that the gas density initially fol-
lows the DM density. Lage & Farrar (2014) used more complicated
models for their initial conditions, with triaxial DM haloes, and a
seven-parameter model for the gas profile of each halo. They found
their best-fitting model to have c =1.17 ± 0.14 for the main halo,
which would put this halo well below the median concentration–
mass relation. To investigate how a low initial concentration for

the main halo affects our results, we ran simulations with an initial
concentration for the main halo of c =1.94, which was the best-
fitting concentration for the main halo measured after the collision
via weak lensing.

The resulting offsets with collisionless DM and SIDM with
σ/m =1 cm2 g−1 are shown in Fig. 7. The offset with SIDM is
reduced relative to the fiducial model, which is to be expected given
that with a lower concentration, the projected density through the
centre of the halo is reduced. This means that particles in the bullet
halo, which has a zero impact parameter and passes through the
centre of the main halo, pass through less DM and are less likely
to scatter from particles in the main halo. In fact, the fraction of
DM particles from the bullet halo, which scatter with particles from
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Figure 6. The offset between the stellar (galaxy) and DM component of
the bullet halo for different SIDM cross-sections, where both the stellar and
DM positions were determined by simultaneously fitting two PIEMDs to the
respective projected maps. The offsets scale linearly with DM cross-section,
and at the time of the observed bullet cluster the DM trails the galaxies by
∼10 kpc for σ/m =1 cm2 g−1. Lines are semitransparent around the time of
core passage (which due to tidal forces happens at XDM ≈ −80 kpc before
the centres of mass of the two haloes meet) due to a degeneracy in the
positions of the two haloes leading to spurious offsets.

Figure 7. DM–galaxy offsets as in Fig. 6, but with four different sets
of initial conditions, each run with collisionless DM and SIDM with
σ/m =1 cm2 g−1. These initial conditions are described in Section 4.2, but
in summary are as follows: compared to our fiducial model, ‘c =1.94’ has a
lower concentration for the main halo, ‘v = 4000 km s−1’ has an increased
relative velocity between the two haloes, and ‘M200 = 3 ×1014 M�’ has a
more massive bullet halo.

the main halo, drops from 13 per cent for our fiducial model to
10 per cent, in broad agreement with estimates of the scattering
fraction that can be made from Fig. 1.

4.2.2 Relative velocity between haloes

As discussed in Section 2.2.2, the shock velocity in the observed
Bullet Cluster is 4700 ± 600 km s−1. In previous works using the
Bullet Cluster to constrain SIDM (R08, K14), this has been used
as the relative velocity between the two DM haloes, despite hy-
drodynamical simulations showing that the relative velocity of the
shock front and pre-shocked gas in Bullet Cluster-like simulations

Figure 8. DM–galaxy offsets with σ/m =1 cm2 g−1 and four different
impact parameters, as well as a head-on collision. The runs are labelled
by the angle between the separation of the two haloes and the velocity of
the bullet halo measured at the time of the observed Bullet Cluster, θobs.
The fitting was done by simultaneously fitting two PIEMDs to the projected
mass distribution. In the top panel the impact parameter was in the plane of
the sky, while in the bottom panel it was along the line of sight.

is significantly higher than the relative velocity of the DM haloes
(Milosavljević et al. 2007; SF07; Lage & Farrar 2014).

In Fig. 7, we show how the offset between the bullet DM halo and
galaxies changes when the collision velocity is increased. We start
the haloes with a relative velocity of 4000 km s−1 at a separation of
4 Mpc, which leads to a relative velocity of 4700 km s−1 at the time
of the observed Bullet Cluster. This is in contrast with our fiducial
model, where haloes start with the velocity corresponding to falling
from rest at infinite distance, and the relative velocity between DM
haloes is 3900 km s−1 at the time of the observed Bullet Cluster. We
find that the offsets are not very sensitive to this change in relative
velocity.

4.2.3 Mass of bullet halo

The weak-lensing-derived mass for the bullet halo of
M200 =1.5 ×1014 M� is low in comparison with the strong-lensing
results (Bradač et al. 2006) that calculate the mass in a 300 kpc
radius cylinder centred on the bullet halo’s brightest cluster galaxy
to be 3 ×1014 M�. While this is the total mass in this region, and
includes a contribution from the main halo, this is still suggestive
that the weak-lensing mass may be an underestimate. Simulations
that have looked to reproduce the gas morphology and luminosity
have also found best-fitting mass ratios for the merger between 7:1
and 5:1 (Milosavljević et al. 2007; Mastropietro & Burkert 2008;
Lage & Farrar 2014).

For these reasons, we run simulations with an increased mass for
the bullet halo of M200 = 3 ×1014 M�, keeping the concentration
the same as in our fiducial model. This leads to a significant increase
in the separation between DM and galaxies in the bullet, with the
offset at the time of the observed Bullet Cluster increasing from
10 kpc for our fiducial model to 14 kpc.

4.2.4 Impact parameter

While the gas morphology implies a collision that was close to
head-on, the bright gas bullet is not located precisely along the
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Table 1. Summary of non-zero impact parameter simulations.

r∗( kpc) θ init(◦) b4 Mpc( kpc) rmin( kpc) θobs(◦)

0 0 0 0 0
12.5 3.2 224 102 6
25 4.5 316 153 10
50 6.4 447 236 18
100 9.1 632 354 30

line connecting the centres of the two cluster haloes, suggesting a
small non-zero impact parameter. We therefore run simulations with
off-centre collisions, and investigate how sensitive the DM–galaxy
offsets are to this change.

We continue to start the simulations with the two haloes separated
by 4 Mpc and on a zero-energy orbit, but rotate the velocities of the
haloes by θ init with respect to the x-axis that connects the two halo
centres (keeping the velocities of the two haloes antiparallel). We
choose θ init such that the two haloes would have a closest approach
of r∗ if they behaved as point masses throughout the merger. The
force between the two haloes is reduced (compared to the case
of point masses) when their mass distributions overlap, so that
the actual minimum separation between the halo centres, rmin, is
significantly larger than r∗.

We summarize our different impact parameter runs in Table 1.
Along with r∗, θ init, and rmin, we include the perpendicular distance
between the two haloes’ velocities when they are separated by
4 Mpc, b4 Mpc, and the angle between the halo–halo separation and
the bullet-halo velocity at the time of the observed Bullet Cluster,
θobs. Assuming that gas is stripped in the opposite direction to the
direction of motion, θobs should roughly correspond to the angle
between the DM–gas separation in the bullet halo and the DM–DM
separation between the two haloes.

In Fig. 8, we plot the separation between the DM and galaxies
with different impact parameters. In the top panel, the impact pa-
rameter is in the plane of the sky, while in the bottom panel it is
along the line of sight, and the collision appears as if head on. Note
that in the top panel we measure the 2D offset between the DM and
galaxies, as this offset is no longer along the x-axis.

We find that moderate impact parameters only have a small effect
on the DM–galaxy offsets. SF07 found that r∗ < 12.5 kpc to avoid
a gas distribution that is more asymmetric than that observed, while
Mastropietro & Burkert (2008) found that an impact parameter,
b =150 kpc, gave the best match to the gas morphology and relative
X-ray brightness of the two gaseous haloes. This means that even
our smallest non-zero impact parameter is large compared to that
used for the best-fitting results from other simulations of the Bullet
Cluster, and so we expect any impact parameter consistent with the
observed Bullet Cluster to decrease the DM–galaxy offset by less
than 20 per cent.

4.3 Offsets with different position measures

Having found that the offset results are reasonably insensitive to
the choice of initial conditions, in Fig. 9 we show the effect of us-
ing different methods to measure positions. For both collisionless
DM and SIDM with σ/m =1 cm2 g−1, we measured the separa-
tion between the stellar and DM components of the bullet halo
using the methods described in Section 3. For the shrinking circles
and projected-density measurements, the same method was used
for finding the position of both the stars and DM, while for the
shear measurement the separation is that between the stellar halo

Figure 9. DM–galaxy offsets as in Fig. 6, but measured using different
methods: fitting to the projected surface density (), the reduced gravi-
tational shear (g), and two different shrinking-circles techniques. For all
methods but g, the same method was used to find the position of both the
stars and the DM, while for g it was only the DM measured using shear with
the stars being measured using . The two shrinking-circles techniques are
described in Section 4.3.

measured by fitting to the projected density and the DM halo mea-
sured using reduced gravitational shear. Fig. 5 demonstrates that
with 80 galaxies arcmin−2, the position of the bullet halo can only
be determined to ±40 kpc. As this uncertainty is larger than the off-
sets for any of our simulated cross-sections, detecting SIDM using
weak lensing and the Bullet Cluster alone would not be possible.
In Fig. 9, the lines derived from reduced gravitational shear used
8000 galaxies arcmin−2, giving errors indicative of what could be
achieved with ∼100 Bullet Cluster-like systems.

As discussed in Section 3.1, the shrinking-circles procedure will
only return one position for a distribution of particles. We therefore
use two different approaches to return the position of the bullet halo,
both of which shrink the circle down to a final size of Rmin = 200 kpc
as used by R08. The first method (Halo 2) is to apply the shrinking-
circles procedure to only the particles that were originally part of the
bullet halo. The second method (All DM) is to apply the shrinking-
circles procedure to all of the DM, but starting with a circle centred
on the second halo, as determined by Halo 2, with a starting radius
of 500 kpc.

The different methods for measuring positions give very different
results for the same SIDM cross-section, highlighting the impor-
tance of matching the analysis to what is done observationally. The
offsets measured for σ/m =1 cm2 g−1 using different methods can
be as different as the offsets for the different cross-sections shown
in Fig. 6, particularly soon after core passage. Of particular note
is the large offsets measured using shrinking circles on all of the
DM. This method was also highly sensitive to the choice of starting
position and starting radius, suggesting it is not a robust way to
measure offsets from simulations. As a method similar to this was
used by R08, this explains the large offsets and tight constraints on
the DM cross-section that they found.

The sensitivity to the method used to measure the positions can
be understood when one considers that after core passage of the
two haloes, there are three distinct sets of DM particles: those
originally from the main halo that have not interacted with any
particles from the sub halo, those originally from the sub halo that
have not interacted with any particles from the main halo, and
particles from one halo that have scattered with a particle from
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Figure 10. For SIDM with σ/m =1 cm2 g−1, the projected density of all
DM in red, with the projected density of DM particles that have scattered
with a particle originally from the other DM halo shown in blue contours, and
also projected along the axes and shown as 1D histograms. The total mass
in these scattered particles is 6.5 ×1013 M�, corresponding to 13 per cent
of particles from the bullet halo scattering with particles in the main halo.

the other halo.5 The momentum transfer between the two haloes
caused by isotropic DM elastic scattering acts differently to the
stripping of gas due to hydrodynamical forces, as only a subset
of DM particles receive a momentum kick. These particles then
lag behind the halo from which they came, gravitationally pulling
it back, but they do this equally to unscattered DM particles and
galaxies, and so do not lead to an offset between unscattered DM
particles and the collisionless galaxies. Any offset found between
the DM and galaxies is a result of fitting the wake of scattered
particles and so depends sensitively on how positions are measured.

For σ/m =1 cm2 g−1, we show the projected DM density at the
time of the observed Bullet Cluster in Fig. 10, along with the dis-
tribution of particles that have scattered with a particle from the
other halo. For this cross-section and our fiducial initial conditions,
13 per cent of particles from the bullet halo scatter with particles
from the main halo. The distribution of these scattered particles is
quite broad, with the highest projected density of scattered particles
being only 10 per cent of the total projected density at the same
location.

4.3.1 The position returned by shrinking circles to different final
radii

To illustrate the problems with using a shrinking-circles procedure
to measure the positions of stars and DM, we show an example in
Fig. 11, run on our fiducial simulation with σ/m =1 cm2 g−1 at the
time of the observed Bullet Cluster (the same snapshot used for
Fig. 10). The position returned for both the stars and DM varies as

5 For particles that are involved in an interhalo scattering event, particles
from the two haloes are indistinguishable when the scattering cross-section
is isotropic.

Figure 11. Top panel: the average projected surface density measured in a
400 kpc strip centred on the collision axis, for both the stars and DM (the
stellar surface densities have been scaled up so that the mass in stars matches
that in DM). The points show the position of the bullet halo returned by the
shrinking circles procedure with different Rmin, with the width of horizontal
bars being twice Rmin. Bottom panel: the DM–galaxy offset as a function of
Rmin. The dark line corresponds to the top panel (when the two haloes are
separated by ∼720 kpc, and with σ/m =1 cm2 g−1), while the lighter lines
are for successive snapshots separated by 10 Myr.

a function of Rmin, with the offset between the stars and DM also
depending sensitively on Rmin.

An initial position for each of the stellar and DM components
of the bullet halo is made by running shrinking circles on only
particles that were part of the bullet halo in the initial conditions.
The initial radius used was 400 kpc, a bit over half of the separation
between the two DM haloes. Initially, as the circles are shrunk and
recentred, they shift left due to the gradient in density coming from
the main halo. As this gradient is steeper closer to the main halo, the
DM position (that initially lies to the left of the stellar position) is
affected more by the presence of the main halo, which in turn leads to
spuriously large offsets. As the circles are shrunk further, they centre
in on a region dominated by the bullet halo, and the offsets decrease.
Shrinking down to Rmin � 50 kpc, the results become noisy as the
number of particles involved in the position estimate decreases, and
there is no clear density peak (with σ/m =1 cm2 g−1, the core size
of the bullet halo is ∼100 kpc, though this is less obvious in the top
of Fig. 11 due to projection effects).

Even before the results become noisy, the offsets between the
stellar and DM peaks become very small, in agreement with K14
who found that the peaks in stellar and DM projected density were
perfectly coincident when DM scattering was isotropic. This raises
the question of whether any constraints can be placed on isotropic
SIDM from looking at separations between local galaxy and DM
peaks in colliding clusters. That being said, most studies that look
for offsets between galaxies and peaks in free-form lensing recon-
structions, either bin lensed galaxies (Ragozzine et al. 2012; King
et al. 2016) effectively smoothing the DM distribution on some
scale, or use a regularization scheme (e.g. Bradač et al. 2006), such
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that the diffuse cloud of scattered particles (Fig. 10) could shift the
derived DM peak back and lead to a measurable offset.

From the bottom panel of Fig. 11, it is clear that Rmin = 200 kpc
can give misleadingly large offsets, which explains the tight con-
straints on the DM cross-section found by R08. What is also clear
is that there is no good choice for Rmin, as the results do not con-
verge as Rmin is decreased. For these reasons, we fit parametric
models to our haloes in this paper, as is often done in gravitational-
lensing analyses (Smith et al. 2005; Richard et al. 2010; George
et al. 2012; Harvey et al. 2015; Massey et al. 2015; Shu et al. 2016).
While this does not directly relate to what was done in Bradač et al.
(2006), where strong and weak lensing were combined to produce
a non-parametric mass model of the Bullet Cluster, a mock strong-
lensing analysis is beyond the scope of this paper. We cannot do
strong lensing with our simulations, as the surface density of our
simulated bullet halo does not exceed the critical surface density
for a lens at the Bullet Cluster’s redshift. The absence of strong
lensing with SIDM was noted by Meneghetti et al. (2001), who
found that with moderate cross-sections of 0.1–1 cm2 g−1, the num-
ber of radial and giant-tangential arcs would fall well below what
is observed. However, they point out that even with a collisionless
DM simulation, the number of strong-lensing features falls below
what is observed, and that bright central galaxies probably play an
important role in generating strong-lensing features. While this is
certainly an interesting avenue to constrain SIDM, without includ-
ing the effects of galaxy-formation physics in our simulations, and
with these simulations starting from idealized initial conditions, our
work is not suited to testing whether the presence of strong-lensing
features can constrain the DM cross-section.

4.4 Offsets including gas

So far, the results have been from simulations without any gas.
However, real galaxy clusters have significant gas fractions. While
there is less gas than DM, the additional hydrodynamic forces that
act on the gas can alter the dynamics of merging clusters. In this
section, we look at the changes from the previous results when each
halo contains an adiabatic gas component making up 16 per cent of
the total halo mass.

The resulting offsets between stars and DM are shown in Fig. 12.
The offsets measured for σ/m =1 cm2 g−1 remain largely un-
changed, with a small decrease (compared with the gas-free case)
in the offset measured by fitting to the projected surface density.
This results from the decreased optical depth for scattering as par-
ticles pass through the main halo, owing to ∼16 per cent of the DM
mass now being in the form of gas. Most strikingly, there is now a
significant offset measured with collisionless DM when measuring
the DM position using gravitational shear. This is surprising, partic-
ularly as our DM and stars have the same phase space distribution
at all times in our collisionless DM run, so this offset is a result of
different fitting methods returning substantially different position
estimates.

4.4.1 Explaining offsets with collisionless DM

In the top row of Fig. 13, we plot the projected DM distribution,
and resulting shear field, at the time of the observed Bullet Cluster,
but only using particles that were part of the bullet halo in the initial
conditions. What is clear from the projected density is that the mass
distribution is not elliptically symmetric, with the peak on small
scales being shifted to the left of (i.e. lagging behind) the centre

Figure 12. The offset between the stars and DM from simulations including
adiabatic gas. As in Fig. 9, the g measurement is the offset between the DM
position measured using reduced shear and the stellar position measured by
fitting to the projected density of stars. As such, the large offset with colli-
sionless DM which is not seen when both the stellar and DM positions are
measured from their projected densities, means that fitting to the projected
density or reduced shear of the same mass distribution, can lead to strongly
differing results.

Figure 13. The convergence (left-hand column) and reduced shear (right-
hand column) due to the bullet-halo DM, for a simulation with collisionless
DM and non-radiative gas. The top row shows the simulation output (only in-
cluding DM particles that are part of the bullet halo in the initial conditions),
while the middle and bottom rows show the best-fitting maps generated
by fitting to the projected surface density and reduced gravitational shear,
respectively. Each panel is 1 Mpc across.
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Figure 14. Top panel: the x-position of the bullet DM halo measured using
shrinking circles on only the DM particles that are part of the bullet halo in the
initial conditions. The position is shown as a function of the radius to which
the circle is shrunk, with the DM halo shifting to the left as the measurement
is made on smaller scales. The best-fitting positions of the bullet DM halo
from fitting to the projected density and reduced gravitational shear are
also shown. Bottom panel: the signal-to-noise integrated over the projected
density or reduced shear map, due to mass within an annulus of fixed width
at radius R. This was calculated using the projected density as a function of
R from the best-fitting model to the projected density. Further details are in
Appendix B.

of mass measured on larger scales. This is quantified in the top
panel of Fig. 14 where we show the position returned by applying
the shrinking circles algorithm on the DM particles from the bullet
halo, shrinking down to different final radii, Rmin.

The middle and bottom rows of Fig. 12 show the best-fitting maps
from fitting to the projected surface density and reduced gravita-
tional shear, respectively. The projected-surface-density fit favours
a more elliptical halo, centred further to the right, than the shear fit.
This, combined with the fact that the halo position shifts left when
measuring on smaller scales, suggests that reduced shear is more
sensitive to the inner regions of the halo, whereas the projected-
density fit is more sensitive to larger scales. In the bottom panel of
Fig. 14, we show that this is what is expected, plotting (for both 

and g) the sum of the signal-to-noise ratio over the whole map, due
to annuli of mass at different radii. The details of this are explained
in Appendix B. We find that this quantity peaks at R ∼60 kpc for
reduced shear and R ∼230 kpc for the projected density, in rough
agreement with the shrinking circles Rmin that returns the same
position as the respective fitting procedure.

Asymmetry in the DM distribution, and consequent differences
in the positions returned by different fitting methods is most pro-
nounced for the collisionless DM case as the cuspy halo is tightly
bound to the gas. The formation of DM cores with SIDM reduces
the strength of this gravitational binding, such that when the gas is
stripped with SIDM, it does not drag back the central regions of
the DM halo as strongly as with collisionless DM. The stripping
of gas is just one mechanism that could cause an asymmetric DM

profile, but serves as a cautionary tale for attempts to use offsets
between different cluster components to constrain DM’s collisional
properties. The general result that an asymmetric profile can lead to
a measured offset between spatially coincident components, due to
them being measured using techniques sensitive to different scales,
is an important systematic to consider in future studies.

4.4.2 Changes to the gas morphology

Aside from its effect on the DM distribution, the gas itself could
potentially be used as a probe of DM self-interactions. Unfortu-
nately, changes to the gas morphology as the DM cross-section is
changed are fairly small, with the largest differences being the width
and temperature of the shocked region. Increasing the DM cross-
section lowers the luminosity-weighted projected temperature in the
shocked-gas region, from 30 keV with collisionless DM, to 25 keV
with σ/m = 2 cm2 g−1, both well within the quoted observational
error (Markevitch 2006).

This decrease in temperature also comes with an increase in the
width of the shocked region. The distance between the shock front
and the contact discontinuity connecting the shocked gas to the
cold gas bullet, increases from 70 kpc with collisionless DM to
110 kpc with σ/m = 2 cm2 g−1. While this latter value is in better
agreement with the observed distance between the shock front and
contact discontinuity (∼140 kpc), we find (in agreement with SF07)
that this distance is highly sensitive to the concentration of the main
halo, making this measurement unsuitable for constraining the DM
cross-section.

5 C O N C L U S I O N S

We have presented modifications to the GADGET-3 code to include
elastic DM scattering, allowing us to run simulations with SIDM.
We have shown that this code performs as expected when used
for simple test cases where the correct behaviour can be predicted
analytically. We have also discussed the choice of the numerical
parameter, h, which is the radius within which particles look for
neighbours to scatter with. We have shown that the choice h ∼ε

leads to the correct scattering rate within a DM halo, without the
computational overhead associated with having an environmentally
dependent h.

We have used this code to perform idealized simulations of Bullet
Cluster-like systems. With SIDM, the momentum transfer from
particles in the main halo to particles in the bullet halo with which
they scatter, leads to a tail of scattered particles in the bullet halo that
shifts the measured position of this halo relative to the collisionless
stars. Our fiducial model for the Bullet Cluster was derived from
fits to weak-lensing data. Changes to this fiducial model led to
changes in the measured offsets between stars and DM, although
these changes were small and in a predictable manner.

Our primary conclusion is that the method used to measure
the positions of the different components can have a larger effect
than using a different model for the Bullet Cluster. In particular,
shrinking-circles methods similar to those used by R08 give sub-
stantially larger DM–galaxy offsets than more observationally moti-
vated methods, such as parametric fits to the projected density or re-
duced gravitational shear. This suggests that the σ/m <1.25 cm2 g−1

constraint placed on the cross-section for DM scattering by R08 is
strongly overstated. In fact, for our fiducial model of the Bullet
Cluster with σ/m = 2 cm2 g−1, the DM–galaxy offset at the time
of the observed Bullet Cluster is ∼20 kpc, which is allowed by the
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25 ± 29 kpc observed offset used by R08 to place their constraint.
We produce more robust results by fitting parametric models to the
haloes – which can be done observationally (Smith et al. 2005;
Richard et al. 2010; George et al. 2012; Harvey et al. 2015; Massey
et al. 2015; Shu et al. 2016). We recommend that future simulation
efforts adopt this, or similarly motivated techniques, to enable a
better comparison to observations.

We went on to show results from the first simulations of merging
clusters to include both SIDM and gas. The gas does not have
much effect on the offset between the stellar and DM components.
However, as the gas is stripped it introduces asymmetries into the
stellar and DM components, with the central regions of the bullet
halo lagging behind the larger-scale centre. This is strongest with
collisionless DM where the cuspy halo is tightly bound to the gas.
As the methods used observationally to measure the positions of the
galaxies and DM will be different, they are likely to be sensitive to
different scales. We showed that this can result in a measured offset
between these two components, even if they have an identical spatial
distribution. These asymmetric halo shapes could also be produced
by tidal forces or dynamical friction, and these asymmetries are an
important potential systematic that could lead to the false detection
of SIDM.
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APPENDIX A : TESTS OF SCATTERING
K I N E M AT I C S

A1 Scattering rates

To test our scattering algorithm, we modelled a uniform cube of
particles moving through a constant density background of station-
ary particles. To allow for simple predictions to be made for the
system, we did not allow particles to scatter more than once. All of
the particles in the cube had initial velocities v0 along the z-axis,
and gravity was turned off.

The average rate of scattering is 	 = Nc nb v0 σ p, where Nc is the
number of particles in the cube, and nb = (ρb/mp) is the number
density of background particles. This leads to the expected number
of interactions after a time t:

Nexp = Nc ρb v0 (σp/mp) t . (A1)

The number of scattering events in these test simulations is plotted
in Fig. A1 as a function of the search radius, h. For small values of
h, the number of scattering events falls below that expected. This
was noted by Rocha et al. (2013), who found that scattering was not
correctly resolved for h less than 20 per cent of the mean background
interparticle separation. By running the test case with different time-

steps, we find that this 20 per cent is not an intrinsic property of
simulating scattering using a Monte Carlo method. Instead we find
that the minimum h for which scattering is correctly implemented is
a function of the time-step, scattering cross-section, and the relative
velocity of particles.

In general, the scattering rate is insensitive to h, as the number
of neighbouring particles that a particle finds at each time-step is
proportional to the volume searched ( ∝ h3), but the probability
of scattering from each of those particles follows equation (6) ( ∝
h−3). The product of the number of neighbouring particles, and the
probability of scattering with each of them, gives the total prob-
ability of a particle scattering, which does not depend on h. This
breaks down when the probability to scatter from a neighbouring
particle becomes greater than unity. At that point, the probability of
a particle scattering in a time-step is just the probability of finding
a neighbouring particle during that time-step, which goes as h3.
For this reason, in this ‘probability-saturated’ regime, the rate of
scattering is proportional to h3, as shown by the solid lines in the
right-hand panel of Fig. A1. As the probability for a pair of neigh-
bouring particles to scatter is proportional to �t/h3, a smaller h can
be used when using shorter time-steps.

A2 Choosing hsi

From equation (6), we see that probabilities become greater than
unity when

h <

(
3

4π
σp |vi − vj | �t

)1/3

. (A2)

The time-step criterion used for the DM particles in GADGET is

�t = min

[
�tmax,

(
2ηε

a

)1/2
]
, (A3)

where a is a particle’s acceleration, ε the gravitational softening,
and η a dimensionless constant.

Figure A1. The number of scattering events in our test simulations as a function of neighbour-search radius, h. The left-hand panel is similar to fig. 1 in
Rocha et al. (2013), and we find that we also see a decrease in the rate of scattering, below that expected, when using small h. While this happens for h �
0.2(mp/ρb)1/3 in agreement with the results in Rocha et al. (2013), the precise h at which the drop in scattering rate begins is a function of the simulation
time-step, �t. As discussed in the text, this is a result of the probabilities for pairs of particles to scatter within a time-step becoming greater than 1. These
probabilities are ∝ h−3, and so in the right-hand panel we show the same data as in the left-hand panel, but plotted on logarithmic scales. The solid lines show
N ∝ h3, the result one expects from probability saturation. For these test simulations, Nexp ≈ 104, and the error bars show the 1σ uncertainty, assuming that N
is Poisson distributed.
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Figure A2. The distribution of polar angles and velocity magnitudes of
scattered particles in one of our test simulations. The red dashed line shows
the expected distribution, with the red shaded region showing the 2σ varia-
tion about this expectation, assuming the number of particles in each bin is
Poisson distributed.

As the time-steps are dependent on the dynamics of the system
being simulated, the constraint on h from equation (A2) depends on
the content of the simulation. We found that when using the stan-
dard time-step criterion, the probabilities remained below 1 when
h was set equal to the gravitational softening, ε. For example, the
simulation with our fiducial initial conditions and σ/m = 1 cm2 g−1,
had a maximum probability for a pair of particles to scatter within a
time-step of 0.15, with 99 per cent of scattering events taking place
with a probability <0.03. If running simulations with very large
cross-sections, an additional time-step criterion could be added to
prevent probabilities exceeding unity.

A3 Post-scatter kinematics

As well as the rate of scattering, the directions and velocities of
scattered particles in our test case were compared to expectations.
The expected distribution of velocities and directions is calculated
by transforming the differential cross-section from the centre of
mass frame of the collisions, into the frame of our simulations. For
the case of isotropic scattering, these distributions take on simple
forms, with f(θ ) ∝ sin 2θ , and f(v) ∝ v for v ≤ v0, with no particles
with velocities greater than v0.6 These results are shown in Fig. A2,
with results that match expectations.

A P P E N D I X B: TH E C O N T R I BU T I O N O F M A S S
AT D I F F E R E N T R A D I I TO TH E P RO J E C T E D
D E N S I T Y A N D S H E A R SI G NA L S

In Fig. 14, we see that with an asymmetric DM profile, the posi-
tions of the halo returned from fitting to the projected density and

6 For isotropic scattering, the distribution of scattered particles is the same
for those originally part of the background or originally part of the moving
cube.

reduced gravitational shear differ, being similar to the shrinking-
circles positions of the halo when shrinking to Rmin = 200 and
60 kpc, respectively. This implies that shear is more sensitive to the
central regions of the halo, which appears to be at odds with the
maps in Fig. 13 showing that the projected density (and equiva-
lently convergence) increases towards the centre of the halo, while
the shear has a flatter profile. This can be explained by noting that
shear is a non-local quantity, and that for a circularly symmetric
projected mass distribution the shear at radius R depends on all of
the mass within R. In fact, the tangential shear (γ t) from a circularly
symmetric mass distribution can be written in terms of the ‘excess
surface density’

� = ̄(<R) − (R) = critγt. (B1)

For an annulus of mass at radius R0 with mass M0 the shear
internal to R0 is zero, while the shear at R > R0 is simply the
average surface density within R divided by the critical surface
density. The average surface density is the enclosed mass divided
by the area, so

γt = 1

crit

M0

πR2
. (B2)

The noise in the shear map is independent of position, so the
signal-to-noise ratio in a particular pixel is just proportional to the
shear there. The number of pixels in an annulus at radius R is
proportional to 2πR dR. This implies that the sum of the signal
to noise over all pixels in an annulus at R due to the mass M0

at R0 is proportional to (M0/R2)R dR. Integrating this from R = R0

outwards, we find that the sum of the signal to noise over all pixels in
the map is proportional to M0ln (Rmax/R0), where we have truncated
the integration at a maximum radius Rmax. For Rmax, we use half
the side length of the square regions used when fitting to shear. As
the total signal to noise only grows logarithmically with Rmax, this
choice is not particularly important.

The mass M0, which is the mass in an annulus at radius R0, is the
surface density at radius R0 multiplied by the area of the annulus,
so M0 ∝ (R0)R0. As such, the sum of the signal-to-noise ratio of
all pixels in the map due to mass at radius R0 is

SNRg ∝ R0(R0) ln

(
Rmax

R0

)
. (B3)

The projected density is a local quantity, leading to the calculation
being simpler than for the case of shear. Fitting to the projected
density used Poisson statistics, which for large numbers of particles
per bin can be approximated by Gaussian statistics. The signal-
to-noise ratio of a single pixel is then

√
N ∝ √

, where N is
the number of particles in that pixel. The mass at radius R0 only
contributes to the signal at R0, and the number of pixels at radius
R0 is proportional to R0. Using this, the sum of the signal-to-noise
ratio of all pixels in the map due to mass at radius R0 is

SNR ∝ R0

√
(R0). (B4)

SNRg and SNR are the quantities plotted in the bottom panel of
Fig. 14, where they have been normalized by their maximum value.
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