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Abstract. Suppose K is a finite field extension of Qp containing
a primitive p-th root of unity. Let Γ<p be the maximal quotient of
period p and nilpotent class < p of the Galois group of a maximal p-

extension of K. We describe the ramification filtration {Γ(v)
<p}v>0

and relate it to an explicit form of the Demushkin relation for
Γ<p. The results are given in terms of Lie algebras attached to the
appropriate p-groups by the classical equivalence of the categories
of p-groups and Lie algebras of nilpotent class < p.

Introduction

Everywhere in the paper p is a prime number, p > 2.
In this paper we continue to study the arithmetical structure of the

Galois group of complete discrete valuation fields of mixed character-
istic initiated in [6].

Let K be a complete discrete valuation field of characteristic 0 with
residue field k ' FpN0 , N0 ∈ N. Set Γ = Gal(K̄/K) and Γ<p =
Γ/ΓpCp(Γ), where Cp(Γ) is the subgroup of p-th commutators in Γ. We
use equivalence of the categories of p-groups and nilpotent Zp-algebras
Lie of nilpotent class < p: the group Γ<p is isomorphic to the group
G(L), where L is a Lie Fp-algebra of nilpotent class < p and the set
G(L) := L is provided with the Campbell-Hausdorff composition law
◦ (for any l1, l2 ∈ L, l1 ◦ l2 = log(exp(l1) exp(l2)).

Assume that K contains a primitive p-th root of unity ζ1. Let eK be
the ramification index of K and set c0 = e∗ = eKp/(p−1) ∈ pN. We use
the notation c0 (resp., e∗) when working with fields of characteristic p
(resp., 0). Recall briefly the main results from [6]. (For two R-modules
A and S we usually write AS instead of A⊗R S.)

a) Relation to the characteristic p case.

Fix a uniformizer π0 in K and let K̃ = K({πn | n ∈ N}), where
πpn = πn−1. Then the field-of-norms functor X provides us with a

complete discrete valuation field X(K̃) = K of characteristic p with
residue field k and fixed uniformizer t = lim←− πn. There is also a natural

identification of G = Gal(Ksep/K) with ΓK̃ = Gal(K̄/K̃). This gives
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us the exact sequence of p-groups (where G<p is an analog of Γ<p and
τ0 ∈ Gal(K(π1)/K) is such that τ0(π1) = ζ1π1)

(0.1) G<p
ι<p−→ Γ<p −→ 〈τ0〉Z/p −→ 1 .

b) Nilpotent Artin-Schreier theory.
This theory allows us to fix an identification η0 : G<p ' G(L), where
L is a profinite Lie algebra over Fp, which depends on the uniformizer
t ∈ K and a choice of α0 ∈ k such that Trk/Fp(α0) = 1. The algebra
Lk has a system of generators {Dan | a ∈ Z+(p), n ∈ Z/N0} ∪ {D0},
where Z+(p) = {a ∈ N | gcd (a, p) = 1}. Note that for all a and
n, σ(Dan) = Da,n+1 where σ is the morphism of p-th power. With
this notation, let e =

∑
a∈Z+(p) t

−aDa0 + α0D0 ∈ LK, fix a choice of
f ∈ LKsep such that σf = e ◦ f and set for any τ ∈ G<p,

η0(τ) = (−f) ◦ τ(f) ∈ G(L) .

We treat D0 in the context of others Dan by setting D0n := σn(α0)D0.

c) Ramification filtration in G<p.
With respect to the identification η0, the images G(v)

<p of the rami-

fication subgroups G(v) ⊂ G in G<p come from ideals L(v) of L. For
all γ ∈ Q>0 and N ∈ Z, there are explicitly defined F0

γ,−N ∈ Lk,
cf. Section 1.4 of [6], such that for any v > 0 and sufficiently large

(fixed) N > Ñ(v), L(v) appears as the minimal ideal in L such that

F0
γ,−N ∈ L

(v)
k for all γ > v.

d) Fundamental sequence of Lie algebras.
Use equivalence of the categories of p-groups and Lie algebras of

nilpotent class < p to replace (0.1) by the exact sequence of Lie Fp-
algebras L ι<p−→ L −→ Fpτ0 −→ 0. Let {L(s)}s>1 be the minimal
central filtration of ideals in L such that for all s, Dan ∈ L(s)k if
a > (s− 1)c0. Then Ker ι<p = L(p) and we obtain the exact sequence
of Lie Fp-algebras with L̄ = L/L(p)

(0.2) 0 −→ L̄ −→ L −→ Fpτ0 −→ 0 .

e) Replacing τ0 by h ∈ AutK.
When studying the structure of (0.2) we can replace τ0 by a suitable

h ∈ AutK. This allows us to apply formalism of nilpotent Artin-
Schreier theory to specify a lift τ<p of τ0 to L and to introduce a re-
current procedure of recovering ad τ<p(Dan) := [Dan, τ<p] ∈ L̄k and
ad τ<p(D0) := [D0, τ<p] ∈ L̄. More precisely, suppose

ζ1 ≡ 1 +
∑
i>0

[βi]π
(c0/p)+i
0 mod p
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with Teichmüller representatives [βi] of βi ∈ k. Then h can be defined
as follows: h|k = idk and h(t) = t(1 +

∑
i>0 β

p
i t
c0+pi) = tẽxp(ω(t)p),

where ẽxp is the truncated exponential and ω(t) ∈ tc0/pk[[t]]∗.

f) The structure of L.
Analyzing the above recurrent procedure modulo C2(L̄)k we obtained

that the knowledge of the elements adτ<p(Dan) allows us to kill all gen-
erators Dan of L̄k with a > e∗. In other words, Lk has a minimal system
of generators {Dan | 1 6 a < e∗, n ∈ Z/N0} ∪ {D0} ∪ {τ<p}. On the
other hand, adτ<p(D0) ∈ C2(L̄) ⊂ C2(L) appears as (the Demushkin)
relation for L.

In this paper we study the ramification ideals L(v) of L, i.e. the ideals

such that Γ
(v)
<p = G(L(v)), where Γ

(v)
<p are the images of Γ(v) ⊂ Γ in Γ<p.

These steps could be briefly outlined as follows.

g) Ramification ideals L(v).
For v > e∗, all ramification ideals L(v) are contained in L̄ and come

from the appropriate ideals L(v′), where the upper indices v and v′

are related by the Herbrand function ϕK̃/K . This allows us to find

for 2 6 s < p, the biggest upper ramification numbers v[s] of the
maximal p-extensions K[s] of K with the Galois groups of period p
and nilpotent class 6 s. The ramification ideals L(v) with v 6 e∗

require an additional generator – a “good” lift τ<p of τ0 (i.e. such that
τ<p ∈ L(e∗)). A characterization of such lifts is the most difficult part
of the paper where we need a technical result from [3].

h) Explicit formulas for adτ<p with “good” τ<p.
The formulas for adτ<p(Dan) and adτ<p(D0) have been obtained

modulo C3(Lk) as a second central step of our recurrent procedure
in [6], Subsection 3.6. A general expression for adτ<p(D0) is given in
Section 3 – this is explicit form of the Demushkin relation in terms of
ramification generators F0

γ,−N .

Remark. The numbers v[s], 2 6 s < p, were found in [5] in a more
general context of p-extensions with Galois groups of nilpotent class
< p and period pM , M ∈ N, but the proof contains a gap. In Section
4 we gave a corrected version in the case M = 1; the same procedure
can be applied in the case of arbitrary M .

0.1. Main results. Suppose for all a ∈ Z0(p) := Z+(p)∪{0}, Va0 ∈ L̄k
are such that adτ<p(Da0) = Va0. In particular, V00 = α0V0, where
V0 = (adτ<p)D0 ∈ L̄, and the knowledge of all Va0 determines uniquely
the differentiation adτ<p (note that for all n, adτ<p(Dan) = σn(Va0)).

The recurrent relation from [6] appears in the following form

(0.3) σc1 − c1 +
∑

a∈Z0(p)

t−aVa0 =
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−
∑
k>1

1

k!
t−(a1+···+ak)ω(t)p[. . . [a1Da10, Da20], . . . , Dak0]

−
∑
k>2

1

k!
t−(a1+···+ak)[. . . [Va1 , Da20], . . . , Dak0]

−
∑
k>1

1

k!
t−(a1+···+ak)[. . . [σc1, Da10], . . . , Dak0],

where in all last three sums the indices a1, . . . , ak run over the set Z0(p).
The lifts τ<p and the solutions {c1 ∈ L̄K, {Va0 ∈ L̄k | a ∈ Z0(p)}} of
(0.3) can be recovered uniquely one from another. In particular, c1 is
a strict invariant of a lift τ<p.

State the main results of this paper.

Suppose c1 =
∑

m∈Z c1(m)tm, where all c1(m) ∈ L̄k.
Consider ωp =

∑
j>0Ajt

e∗+pj, Aj ∈ k, from e) and Ñ(e∗) from c).

Let L̄(e∗) be the image of L(e∗) in L̄.

Theorem 0.1. τ<p is “good” iff

c1(0) ≡
∑
j>0

Ñ(e∗)−1∑
i=0

σi(AjF0
e∗+pj,−i) mod L̄(e∗)

k .

Theorem 0.2. a) If v > e∗ then Γ
(v)
<p = G(L(v)), where L(v) is the

image of L(v∗) in L̄ ⊂ L and v∗ = e∗ + p(v − e∗);

b) if v 6 e∗ and τ<p is “good” then Γ
(v)
<p = G(L(v)), where L(v) is

generated by the image of L(v) in L̄ and τ<p.

Theorem 0.3. If 2 6 s < p then v[s] = eK(1 + s/(p− 1))− 1/p.

Remark. v[1] = e∗(= eK(1 + 1/(p − 1)) is a well-known fact at the
level of abelian field extensions.

Consider the set of all (a1, n1, . . . , as, ns), where all ai ∈ Z0(p), ni ∈ Z
are such that n1 > n2 > · · · > ns = 0 and

∑
16i6s[ai/e

∗] 6 p− 1− s.
Let δ+(e∗) be the minimum of positive values of

(e∗ + pj)− p−n1(a1p
n1 + · · ·+ asp

ns) ,

where (a1, n1, . . . , as, ns) runs over the set of above defined vectors and
j runs over the set of all non-negative integers. Set

N+(e∗) = min{n ∈ N | pnδ+(e∗) > e∗(p− 1)} .
Fix N0 > N+(e∗)− 1 and set Ω0 =

∑
j>0AjF0

e∗+pj,−N0 .

Introduce the operators F0 and G0 on L̄k such that for any l ∈ L̄k,

F0(l) =
∑

16k<p

αk−1
0

k!
[. . . [l, D0], . . . , D0︸ ︷︷ ︸

k−1 times

], G0(l) =
∑

06k<p

αk0
k!

[. . . [l, D0], . . . , D0︸ ︷︷ ︸
k times

] .
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Consider the relation

(0.4) (G0σ − id)c0 + F0(V0) = −G0σ
N0+1Ω0 .

Theorem 0.4. a) There is a bijection between the lifts τ<p and solu-
tions (c0, V0) of (0.3), with c0 ∈ L̄k and V0 ∈ L̄.

b) If τ<p corresponds to (c0, V0) then the Demushkin relation appears
in the form (ad τ<p)D0 = V0;

c) If N0 > Ñ(e∗) then τ<p is “good” if and only if c0 ∈ L̄(e∗)
k .

Corollary 0.5. a) For any lift τ<p,

(ad τ<p)D0 +
∑

06n<N0

σn(Ω0) ∈ [L̄, D0];

b) if k = Fp then there is a “good” lift τ<p, such that the Demushkin

relation appears in the form (adτ<p)D0 + F−1
0 (Ω0) = 0.

0.2. Concluding remarks. Our description of Γ<p together with its
ramification filtration may serve as a guide to what a nilpotent local
class field theory should be about. Our approach gives the objects
of this theory on the level of groups of nilpotent class < p together
with induced ramification filtration. Regretfully, our description is not
functorial: it depends on a choice of uniformizer in K.

It would be very interesting to compare our results with the con-
struction of Γ in [9], cf. also [8]. This construction uses iterations of
the Lubin-Tate theories via the field-of-norms functor and is done in-
side the group of formal power series with the operation given by their
composition. However, it is not clear how to extract from that con-
struction even well-known properties of the Galois group of a maximal
p-extension of K.

Acknowledgements. The author expresses a deep gratitude to the
referee: his advices allowed the author to avoid a considerable amount
of inexactitudes and to improve very much the quality of the original
exposition.

1. Arithmetical lifts

1.1. Review of ramification theory. The following brief sketch of
ramification theory of continuous automorphisms of complete discrete
valuation fields with finite residue field of characteristic p (we need only
this case) is based on the papers [7, 11, 12].

Let E be a basic complete discrete valuation field with finite residue
field kE . Let R0(E) be the completion of a separable closure Esep of
E . Note that in the characteristic 0 case, R0(E) = Cp, and in the
characteristic p case, R0(E) = FracR := R0 is the field of fractions
of Fontaine’s ring R = lim←−OCp/p (the projective limit is taken with
respect to the p-power maps).
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Denote by vE the extension of the normalized valuation on E to R0.
Let I be the group of all continuous automorphisms of R0 which are
compatible with vE and induce the identity on the residue field of R0.

Agree that all fields below E,F, L etc, are finite extensions of E in Esep
and use the appropriate notation vE, kE, etc. Let mE be the maximal
ideal of the valuation ring of E. Note that the inertia subgroup Γ0

E of
ΓE = Gal(Esep/E) is a subgroup in I.

Let IE = {ι|E | ι ∈ I}.
For g ∈ IE, let v(g) = min {vE(g(a)− a) | a ∈ mE} − 1.
For x > 0, set IE,x = {g ∈ IE | v(g) > x} .
For a field extension F/E, let IF/E = {ι ∈ IF | ι|E = idE}. For

x > 0, let

IF/E,x = IF,x
⋂
IF/E .

If ι1, ι2 ∈ IF/E and x > 0 then ι1 and ι2 are x-equivalent iff for any
a ∈ mF , vF (ι1(a)−ι2(a)) > 1+x. Denote by (IF/E : IF/E,x) the number
of x-equivalent classes in IF/E. Then the Herbrand function for F/E
can be defined for all x > 0, as ϕF/E(x) =

∫ x
0

(IF/E : IF/E,x)−1dx. This
function has the following properties:

• ϕF/E is a piece-wise linear function with finitely many edges;

• if L ⊃ F ⊃ E is a tower of finite field extensions then for any
x > 0, ϕL/E(x) = ϕF/E(ϕL/F (x));

• the last edge point of the graph of ϕF/E is (x(F/E), v(F/E)), where

x(F/E) = inf
{
x > 0 | (IF/E : IF/E,x) = |IF/E|

}
is the largest lower and v(F/E) = ϕF/E(x(F/E)) is the largest upper
ramification numbers for the extension F/E.

The following proposition is just a direct adjustment of the appro-
priate fact from the classical ramification theory for finite Galois ex-
tensions.

Proposition 1.1. Suppose g ∈ IE and v(g) = y. Then

max{v(f) | f ∈ IF , f |E = g} = ϕ−1
F/E(y) .

Proof. We can assume that F/E is totally ramified of degree d.
Suppose θ is a uniformizing element in F and P (T ) ∈ E[T ] is its

minimal monic polynomial over E. Then P (T ) = T d+a1T
d−1 +· · ·+ad

is an Eisenstein polynomial and v(g) = vE(g(ad)− ad)− 1 = y.
Note that for all 1 6 i < d, vE(g(ai)θ

d−i − aiθd−i) > vE(g(ad)− ad),
Therefore, vE(g∗P (θ)) = vE(g∗(P )(θ)− P (θ)) = 1 + y.

Let θ1, . . . , θd be all roots of g∗P (T ) in Êsep. Then all d different
lifts fi of g to F are uniquely determined by the condition fi(θ) = θi,
i = 1, . . . , d. Clearly, v(fi) = vF (θ − θi)− 1.

Assume that x = v(f1) is maximal, i.e. 1 + x > vF (θ − θi) for all i.
It remains to prove that y = ϕF/E(x).
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Let Ai := vF (θi − θ1)− 1 > 0. Note A1 = +∞. Then

vF (g∗P (θ)) =
∑

16i6d

vF (θ − θi) =
∑

16i6d

min{1 + x, 1 + Ai} = d+ ϕ(x)

The function ϕ(x) =
∑

16i6d min{x,Ai} is peace-wise linear, ϕ(0) =
0 and if x is different from all Ai then

ϕ′(x) = |{Ai | Ai > x}| = |IF/E,x| = (IF/E : IF/E,x)−1d = dϕ′F/E(x) .

Therefore, ϕ(x) = dϕF/E(x) and, finally, 1 + y = vE(g∗P (θ)) =
d−1vF (g∗P (θ)) = d−1(d+ dϕF/E(x)) = 1 + ϕF/E(x). �

Corollary 1.2. The restriction IF −→ IE given by the correspondence
f 7→ g := f |E defines for any x0 > 0, the surjection IF,x0 −→ IE,y0,
where y0 = ϕF/E(x0).

Proof. Let f ∈ IF,x0 and v(g) = y. By Proposition 1.1, x0 6 v(f) 6
ϕ−1
F/E(y). This implies that y0 6 y, i.e. g ∈ IE,y0 .
On the other hand, if g ∈ IE,y0 then v(g) = y > y0 and by Proposi-

tion 1.1 there is f ∈ IF,ϕ−1
F/E

(y) ⊂ IF,x0 such that g = f |E. �

Definition. The ramification filtration {I(y)
/E }y>0 on I with upper num-

bering over E is a decreasing sequence of the subsets I(y)
/E ⊂ I for all

y > 0, such that

I(y)
/E = {ι ∈ I | ∀F/E, ι|F ∈ IF,ϕ−1

F/E
(y)} .

Note that for any y > 0, I(y)
/E = I(yF )

/F , where ϕF/E(yF ) = y. Also,

Γ
(y)
E := ΓE ∩ I(y)

/E is the usual higher ramification subgroup Γ
(y)
E of ΓE

with the upper number y from [10]. The largest ramification number
v(F/E) is characterized by the following property:

• the ramification subgroup Γ
(y)
E acts trivially on F iff y > v(F/E).

1.2. Definition of arithmetical lifts.

Definition. For a field extension F/E we say that f ∈ IF is arithmeti-
cal over E (or f is an arithmetical lift of g = f |E) if v(g) = ϕF/E(v(f)).

Equivalently, f is arithmetical over E if there is ι ∈ I(v(g))
/E such that

ι|F = f .

Note that Corollary 1.2 implies that f is arithmetical over E iff
v(f) = max {v(f ′) | f ′ ∈ IF , f ′|E = g}. In particular, arithmetical
lifts always exist.

Proposition 1.1 and Corollary 1.2 imply the following property.

Proposition 1.3. Suppose E ⊂ L ⊂ F are finite field extensions and
f ∈ IF . Then:
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a) f is arithmetical over E iff f is arithmetical over L and f |L is
arithmetical over E;

b) suppose F/E is Galois, f, f ′ ∈ IF are such that f |E = f ′|E = g
and f is arithmetical over E; then f ′ is arithmetical over E iff there is

τ ∈ Γ
(v(g))
E such that f ′ = f · τ |F .

Proof. The part a) follows from the composition property of the Her-

brand function. As for the part b), note that f = ι|F , where ι ∈ I(v(g))
/E

and there is τ ∈ ΓE such that for ι′ := ιτ , we have f ′ = ι′|F . We must
verify that

• ι′ ∈ I(v(g))
/E iff τ ∈ I(v(g))

/E ∩ ΓE = Γ
(v(g))
E .

Suppose ι′ ∈ I(v(g))
/E . Then for any finite field extension E ′/E, and

any a ∈ mE′ , we have that

ε′ := ϕ−1
E′/E(v(g)) + 1 6 vE′(ι

′(a)− a) = vE′(ι(τa− a) + (ι(a)− a)) .

But vE′(ι(a) − a) > ε′ (use that ι ∈ I(v(g))
/E ) implies vE′(τa − a) > ε′

and, therefore, τ ∈ Γ
(v(g))
E .

Inversely, if τ ∈ Γ
(v(g))
E and a ∈ mE′ then vE′(τa − a) > ε′ and

vE′(ι
′(a)− a) = vE′(ι(τa− a) + ι(a)− a) > ε′, i.e. ι′ ∈ I(v(g))

/E . �

As a direct application of the above proposition note the following.
Suppose g ∈ IE, vg = v(g) and E (vg) ⊂ Esep is the subfield fixed by

Γ
(vg)
E . We will call f ∈ I arithmetical over E if for any finite extension
F/E the restriction f |F is arithmetical over E.

Corollary 1.4. a) ι ∈ I is arithmetical lift of g = ι|E if and only if
ι(vg) := ι|E(vg) is arithmetical over E;

b) ι(vg) is a unique arithmetical lift of g to E (vg).

Proof. Suppose F/E is Galois, Gal(F/E) = Γ, F (vg) = F Γ(vg)
, f ∈ IF ,

f |E = g and f |F (vg) = f (vg).
If f is arithmetical over E then by Proposition 1.3a) f (vg) is also

arithmetical over E.
Inversely, suppose f (vg) is arithmetical over E and f ′ ∈ IF is arith-

metical lift of f (vg) to F . Then there is τ ∈ Gal(F/F (vg)) = Γ(vg) such
that f = f ′τ and by Proposition 1.3b) f is arithmetical over E. This
proves a) of our proposition.

Suppose h, h′ ∈ IF (vg) are lifts of g. Then there is τ ∈ ΓF (vg) :=
Gal(F (vg)/E) such that h′ = hτ . If h, h′ are arithmetical over E then

by Proposition 1.3b), τ ∈ Γ
(vg)

F (vg)
= {e} and h = h′. �
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2. Characterization of arithmetical lifts

2.1. Differentials of lifts. In this Section we review the results from
Sections 2 and 3 of [6]. Recall, we have the identification η0 : G<p =
Gal(K<p/K) ' G(L), given via η0(τ) = (−f) ◦ τ(f), where e =∑

a∈Z0(p) t
−aDa0 ∈ LK and f ∈ LKsep are such that σf = e ◦ f . There

is a decreasing central filtration {L(s)}s>1 in L such that Dan ∈ L(s)
if a > (s − 1)c0, where c0 ∈ pN. We have also h ∈ AutK such that
h|k = id and h(t) = tẽxp(ωh(t)

p), where ωh(t) ∈ tc0/pk[[t]]∗.

2.1.1. Let h<p be a lift of h to K<p. Then there are unique c ∈ LK and
A = Adh<p ∈ AutL such that (idL ⊗ h<p)(f) = c ◦ (A⊗ idK<p)f . The
correspondence Π : h<p 7→ (c, A) induces a bijection of the set of all
lifts h<p of h and the set of pairs (c, A) ∈ LK × AutL such that

(2.1) (idL ⊗ h)e ◦ c = σc ◦ (A⊗ idK)e .

If c =
∑

i∈Z t
ic(i), where all c(i) ∈ Lk then c(0) is a strict invariant of

the lift h<p. Consider

M :=
∑

16s<p

t−sc0L(s)m + L(p)K ,

M<p :=
∑

16s<p

t−sc0L(s)m<p + L(p)K<p

where m and m<p are the maximal ideals of the valuation rings of K
and, resp., K<p. Then M ⊂ M<p is embedding of Lie Fp-algebras,
e ∈M and f ∈M<p.

Define the decreasing filtration by ideals M[i], i > 0, of M by
setting M[0] := M and for i > 1, M[i] := L(i)k + tc0iM. Then
M<p[i] :=M[i] + tc0iM<p, i > 0, is a decreasing filtration of ideals in
M<p. Note that for all i, M[i] =M∩M<p[i].

Consider the embedding of Lie Fp-algebras

M̄ :=M/M(p− 1) ⊂ M̄<p :=M<p/M<p(p− 1) ,

where M(p − 1) = tc0(p−1)M and M<p(p − 1) = tc0(p−1)M<p. The
images of the above filtrations M[i] and M<p[i] in the quotients M̄
and M̄<p will be denoted by M̄[i] and M̄<p[i]. Note that M̄ [p] =
M<p[p] = 0. Denote by f̄ and ē the images of f and e in M̄<p and M̄.

2.1.2. Let K(p) := KG(L(p))
<p and h(p) := h<p|K(p). Then η0 induces the

identification η̄0 : Gal(K(p)/K) ' G(L̄). Note that η̄0(τ) = (−f̄)◦τ(f̄)
(use that L̄ = M̄<p|σ=id).

Let G̃h be the subgroup generated by all lifts h<p in AutK<p. Then

Cp(G̃h) = G(L(p)), G̃h/Cp(G̃h) ⊂ AutK(p), and there is an exact se-
quence of p-groups

0 −→ G(L̄) −→ Gh −→ 〈h〉Z/p −→ 1 ,
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where Gh = G̃h/Cp(G̃h)G̃ph is the maximal quotient of G̃h of nilpotent
class < p and period p. This sequence appears also at the level of Lie
Fp-algebras in the form

0 −→ L̄ −→ Lh −→ Fph −→ 0 ,

where G(Lh) = Gh.
Proceeding in M̄ we specify the image of the lift h(p) in Gh by setting

(idL̄ ⊗ h(p))f̄ = c̄ ◦ (Ā ⊗ idK(p))f̄ where c̄ = cmodM(p − 1) ∈ M̄
and Ā = AmodL(p) = Adh(p) = ẽxp(adh(p)). Then for n ∈ N,
(idL̄ ⊗ h(p)n)f̄ = c̄(n) ◦ f̄(n), with f̄(n) and c̄(n) such that:

a) f̄(n) = (Ān ⊗ idK(p))f̄ = f̄ +
∑

16i<p f̄
(i)ni, where for 1 6 i < p,

f̄ (i) = (adih(p)⊗ idK(p))f̄/i! ∈ (Ā⊗ idK(p) − idM̄<p
)iM̄<p ⊂ M̄<p[i] ;

b) c̄(n) =
∑

16i<p cin
i modM(p− 1), where all ci ∈M[i].

As a result, (idL̄ ⊗ h(p)n)f̄ = f̄ +
∑

i>1 f̄in
i, where all f̄i ∈ M̄<p[i].

2.1.3. Let M̄f be the minimal Lie subalgebra in M̄<p containing M̄
and all the elements (Adn h(p)⊗ idK(p))f̄ with n ∈ N. Then M̄f does
not depend on a choice of h(p) and appears as the minimal subalgebra
in M̄<p containing M̄ and all f̄ (i) (we set f̄ (i) = 0 if i > p). Then
idL̄ ⊗ h(p) acts on M̄f , the resulting action of Gh on M̄f is strict, the
filtration M̄<p[i] induces a Gh-equivariant filtration M̄f [i] on M̄f , and
for all i, f̄ (i) and f̄i belong to M̄f [i].

This gives the action idL̄ ⊗ h(p)U : M̄f −→ M̄f ⊗ Fp[[U ]] of the
formal additive group Ga,Fp on M̄f given via the relation

(idL̄ ⊗ h(p)U)f̄ = f̄ ⊗ 1 +
∑
i>1

f̄i ⊗ U i

and this action can be uniquely recovered from its linear component
(i.e. the differential) d(idL̄ ⊗ h(p)U) : M̄f −→ M̄f ⊗ U .

Note that hU(t) ≡ tẽxp(Uωph) mod tpc0+1 and

d(idL̄ ⊗ hU)e = −
∑

a∈Z0(p)

t−aωphaDa0 ⊗ U modM(p− 1) .

There is the following recurrent congruence modulo M(p − 1) for
c̄1 = c1 modM(p− 1) and Va0 := adh(p)(Da0) modL(p)k, a ∈ Z0(p),

(2.2) σc̄1 − c̄1 +
∑

a∈Z0(p)

t−aVa0 ≡

−
∑
k>1

1

k!
t−(a1+···+ak)ωph[. . . [a1Da10, Da20], . . . , Dak0]

−
∑
k>2

1

k!
t−(a1+···+ak)[. . . [Va10, Da20], . . . , Dak0]
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−
∑
k>1

1

k!
t−(a1+···+ak)[. . . [σc̄1, Da10], . . . , Dak0]

(the indices a1, . . . , ak in all above sums run over Z0(p)).

Any solution {c̄1, {Va0 | a ∈ Z0(p)}} of congruence (2.2) modulo
M(p − 1) can be uniquely lifted to a solution {c1, {Va0 | a ∈ Z0(p)}}
of (2.2) modulo L(p)K ⊂ M(p − 1). As a result, cf. [6], Subsection
3.5, the appropriate c1 ∈ L̄K is a strict invariant of the lift h(p). Even
more, if c1 =

∑
i∈Z t

ic1(i) where all c1(i) ∈ L̄k then c1(0) is a strict
invariant of h(p).

2.2. Statement of Criterion. In this subsection we study arithmeti-
cal lifts h<p of h and prove that h<p is arithmetical iff h(p) = h<p|K(p) is
arithmetical. This allows us to characterize arithmetical lifts in terms
related to the differentials d(idL̄ ⊗ h(p)U).

Suppose h<p is arithmetical over K.
By Corollary 1.4b) such lift h<p is unique modulo the ramification

subgroup G(c0)
<p = G(L(c0)) (note that v(h) = c0). Therefore, we can

characterize arithmetical lifts h<p by studying the action of h<p on

f modL(c0)
K<p
∈ (L/L(c0))K(c0) , where K(c0) := KG(L(c0))

<p , cf. Section 1.3 of

[6].
The following proposition provides us with the opportunity to char-

acterize arithmetical lifts h<p by working with f̄ = f modM<p(p− 1).
(Recall that f̄ allows us to control efficiently the lifts h(p) = h<p|K(p),
cf. the beginning of Section 2.1.2. )

Proposition 2.1. L(p) ⊂ L(c0).

Proof. Proposition follows easily from Lemma 2.3 below. �

Corollary 2.2. h<p is arithmetical iff h(p) is arithmetical (over K).

Proof. Indeed, use that both automorphisms are arithmetical over K
iff h<p|K(c0) = h(p)|K(c0) := h(c0) is arithmetical over K. �

Lemma 2.3. If a > (s− 1)c0 then Dan ∈ L(c0)
k + Cs(Lk).

Proof of lemma. This lemma was proved in [1] but the proof is very
short and we shall reproduce it. Recall that wt(Dan) > s means that
(s− 1)c0 6 a. Use induction on s.

If s = 1 there is nothing to prove.
Assume s > 2 and the lemma is proved for all s′ < s. Consider

F0
a,−N = aDa0 + ( commutators of order > 2) ∈ L(c0)

k ,

cf.[6], Subsection 1.4. This element is a linear combination of the com-
mutators a1[. . . [Da1n1 , Da2n2 ], . . . , Datnt ], where

a) 0 = n1 > · · · > nt > −N ;

b) a = a1p
n1 + · · ·+ atp

nt .
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If for 1 6 i 6 t, Daini
∈ L(si) \ L(si + 1) then

a 6 a1 + · · ·+ at < (s1 + · · ·+ st)c0

and this implies s 6 s1 + · · ·+ st.
Suppose t > 2. Then wt(Daini

) > min{si, s−1} and by the inductive

assumption our commutator belongs to L(c0)
k + Cs′(Lk), where s′ =∑

16i6t min{si, s− 1} > min{s1 + · · ·+ st, s} = s. �

As a result, the property for h<p to be arithmetical over K can be
stated in terms of the differential (idL̄ ⊗ h(p)U)f̄ = f̄1 ⊗ U or, equiva-
lently in terms of (adh(p) ⊗ idK(p))f̄ and the linear part c̄1 ∈ M̄[1] of
c̄(U), cf. Subsection 2.1.

Note that if h<p is arithmetical then for any g ∈ G<p, h−1
<p g h<p ≡

gmodG(c0). (Indeed, g−1h<pg is another lift of h which is also arith-

metical and, therefore, it coincides with h<p modulo G(c0)
<p .) Therefore,

Adh<p ≡ idLmodL(c0). In particular,

(Adh<p ⊗ idK<p)f ≡ f modL(c0)
K<p

is a necessary condition for h<p to be arithmetical. It is natural to
expect that a sufficient condition for h<p to be arithmetical over K re-

quires additional condition which can be stated in terms of c̄1 modL(c0)
K .

Even more, we are going to establish this condition in terms related only

to c1(0) ∈ Lk modL(c0)
k , where we set c̄1 =

∑
m∈Z c1(m)tm modM(p−1)

with all c1(m) ∈ Lk.

Theorem 2.4. The following properties are equivalent:

a) h<p is arithmetical over K;

b) (Adh<p − idL)L ⊂ L(c0) and for a sufficiently large N ,

c̄1 ≡
∑
γ,j

∑
06i<N

σi(Aj(h)F0
γ,−it

−γ+c0+pj) modL(c0)
K +M(p− 1) ;

c) for a sufficiently large N ,

c1(0) ≡
∑
j>0

∑
06i<N

σi(Aj(h)F0
c0+pj,−i) modL(c0)

k .

The proof will be given in Subsections 2.4-2.7 below.

Remark. Note that if γ > c0 and i > Ñ(c0), cf. [6], Theorem 1.2,

then F0
γ,−i ∈ L

(c0)
k . There is also δ > 0, cf. Section 2.3 below, such

that if F0
γ,−i /∈ L

(c0)
k and γ < c0 then γ < c0 − δ. (In other words, any

γ ∈ [c0 − δ, c0) can’t be presented in the form a1 + a2p
n2 + · · ·+ asp

ns ,
where 1 6 s < p, all nj 6 0 and all aj ∈ Z0(p) ∩ [0, (p − 1)c0).)

Therefore, in b) we can take N > max{Ñ(c0), logp((p − 1)c0/δ)} and

in c) N > Ñ(c0) (under these conditions the appropriate RHS’s do not
depend on N).
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2.3. Auxiliary result. We review here a technical result from [3], Sec-
tion 3. (Note that all results in [3] were obtained in the contravariant
setting, cf. discussion in [6], Subsection 1.1) This paper deals with ex-
plicit calculations with ramification ideals in Lie algebras over Z/pM+1.
It is much easier to follow these calculations when assuming that M = 0
(we need only this case). First, introduce the relevant objects and as-
sumptions.

Introduction of objects.

Set M = 0 (we need the period p case but all constructions in Section
3 of [3] were done modulo pM+1). Let A = [0, (p− 1)v0)∩Z0(p), where
v0 > 0 (later we shall specify v0 = c0). (In [3] we used pv0 in the
definition of A instead of (p−1)v0 but everything works with (p−1)v0.)
Let L(A) be a free Lie algebra over k ' FpN0 with the set of generators

{Dan | a ∈ A+ = A ∩ Z+(p), n ∈ Z/N0} ∪ {D0} .
As a matter of fact, we agreed in [3] that n ∈ Z and Dan1 = Dan2

iff n1 ≡ n2 modN0. For n ∈ Z, set D0n = (σnα0)D0 and note that
again D0n depends only on nmodN0. Consider the σ-linear morphism
L(A) −→ L(A) such that for all a and n, Dan 7→ Da,n+1 and denote
this morphism also by σ. Then L0 := L(A)|σ=id is a free Lie algebra
over Fp and L0

k = L(A).
Consider the contravariant analogue of the elements F0

γ,−N from [6],
Subsection 1.4, (use the same conditions for all involved indices)

Fγ,−N =
∑

16s<p

(−1)s−1
∑

a1,...,as
n1,...,ns

a1η(n1, . . . , ns)[. . . [Da1n1 ,Da2n2 ], . . . ,Dasns ] .

Recall that a1, . . . , as run over A and n1, . . . , ns run over Z such that
γ(ā, n̄) = a1p

n1 + · · ·+ asp
ns = γ.

Denote by L0
N(v0) the minimal ideal in L0 such that its extension of

scalars L0
N(v0)k contains all Fγ,−N with γ > v0. Let Ñ(v0, A) be such

that the ideals L0
N(v0) coincide for all N > Ñ(v0, A) and denote this

ideal by L0(v0).
Let Γ = Γ(A, v0) be the set of all γ = a1p

n1 + · · · + asp
ns , where all

ai ∈ A, 0 = n1 > n2 > · · · > ns, 1 6 s < p.

Choice of parameters δ, r∗, N∗:

a) let δ = δ(A, v0) > 0 be sufficiently small such that v0 − δ >
max{γ | γ ∈ Γ, γ < v0}, pδ < 2v0 and v0 − δ ∈ Z[1/p];

b) let r∗ ∈ Q be such that vp(r
∗) = 0 and v0 − δ < r∗ < v0;

c) let N∗ ∈ N be such that N∗ > Ñ(v0, A) + 1 and for q = pN
∗
, we

have r∗(q − 1) = b∗ ∈ N (note vp(b
∗) = 0), a∗ = q(v0 − δ) ∈ pN;

d) note that if q satisfies the conditions from c) then any its power
qA with A ∈ N also satisfies these conditions; therefore, we can enlarge
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(if necessary) q to obtain the following inequalities:

r∗ − (v0 − δ) >
r∗ + p(v0 − δ)

q
, v0 − r∗ >

−r∗ + ϕ(p)(e(p)v0(p− 1))

q

All above constructions and choices were made in Section 3.1 of [3],
except the additional conditions pδ < 2v0 and the second inequality
in d). In this inequality ϕ(p) and e(p) are the Herbrand function and,
resp., the ramification index of the extension K(p)/K. Recall that K(p)
is a subfield of K<p, fixed by G(L(p)) and [K(p) : K] <∞.

We need the auxiliary field extension K′ = K(r∗, N∗) of K such that:
— [K′ : K] = q;

— the Herbrand function ϕK′/K has only one edge point (r∗, r∗);

— K′ = k((t′)), where t = t′ qE(t′ b
∗
)−1 with the Artin-Hasse expo-

nential E(X) = exp(X +Xp/p+ · · ·+Xpn/pn + . . . ).

The field K′ played very important role in our approach to the ram-
ification filtration, cf. e.g. [1, 2, 3, 4]. (Note that K′/K is not a
p-extension if N∗ > 1.)

Adjust the notation from [3] to our situation by setting N̂ = Ñ =

N∗ − 1 (in particular, Ñ could be different from Ñ(v0, A) introduced
earlier).

Let ê
(0)
L =

∑
a∈A t

−aDa0 and e
′(q)
L =

∑
a∈A t

′ −aqDa0. (We follow max-

imally close the notation from [3].) Clearly, the elements ê
(0)
L and e′L :=∑

a∈A t
′ −aDa,−N∗ are analogs of our element e ∈ LK and σN

∗
e′L = e

′(q)
L .

Note that both these elements belong to L0
K′ = L(A)⊗kK′ (for ê

(0)
L use

that t = t′qE(t′b
∗
)−1).

The technical result from [3] we are going to apply below deals with
estimates in the envelopping algebra A of L0. We can describe this
result as follows.

Let J be the augmentation ideal in A. Adjusting the notation from
[3] note that (since we work with the case M = 0) O1 = K′, t1 = t′,
O0 = k[[t′]], J1 = JK′ and JO = J ⊗O0.

Use the map ẽxp from L0
K′ to JK′ mod JpK′ , cf. [6], the beginning

of Subsection 3.3. We obtain the elements E0 = ẽxp(ê
(0)
L ), E ′0 =

σN
∗
ẽxp(e′L) and (where we specified m = 1) the element Φ

(Ñ)
0 = Φ

(Ñ)
01 =

Φ11Φ21, cf. the first paragraph on p.890 in the proof of Lemma 2 in
Subsection 3.10 of [3]. Explicit expressions for Φ11 and Φ21 from the
second paragraph on p.890 must be written in the following way

Φ11 = ẽxp(e
′(q)
L ) ẽxp(σe

′(q)
L ) . . . ẽxp(σÑe

′(q)
L )

Φ21 = ẽxp(−σÑ ê(0)
L ) . . . ẽxp(−σê(0)

L ) ẽxp(−ê(0)
L ) .

(By misprint they appeared in [3] as the products of the same factors
but taken in the opposite order.) Note that when adjusting the notation
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from [3] to our situation we have that E0−N̂(a, n) = σnE(a, t′b
∗
) and,

therefore, E0−N̂(a, n)σn(t−qa1 Da0) coincides with σn(t−aDa0).
Using properties α) − γ) from Subsection 3.3 of [6] we obtain that

Φ
(Ñ)
0 = ẽxp(φ

(Ñ)
0 ), where φ

(Ñ)
0 ∈ G(L0

K′) = G(L(A)⊗k K′) is equal to

φ
(Ñ)
0 = e

′(q)
L ◦ (σe

′(q)
L )◦ · · · ◦ (σÑe

′(q)
L )◦ (−σÑ ê(0)

L )◦ · · · ◦ (−σê(0)
L )◦ (−ê(0)

L ) .

Then properties (a) and (b) of Φ
(Ñ)
0 from Proposition 9 of Subsection

3.9 in [3] imply the following properties of the element φ
(Ñ)
0 , cf. the

proposition from Subsection 3.10 of [3] (where LO := L0 ⊗O0).

Proposition 2.5. a) φ
(Ñ)
0 , σφ

(Ñ)
0 ∈ L0(v0)K′ +

∑
16j<p t

′−ja∗Cj(LO);

b) φ
(Ñ)
0 ◦ ê0

L ≡ e
′(q)
L ◦ σφ

(Ñ)
0 modLH0

1, where

LH0
1 = L0(v0)K′ + t′q(b

∗−a∗)∑
16j<p t

′−(j−1)a∗Cj(LO).

This technical result from [3] can be translated into the covariant
setting and the notation from this paper as follows.

Let v0 = c0.
Consider the map Π from L0 to L such that Πk(Dan) = Dan for all

a ∈ A and n ∈ Z/N0 and for any l1, l2 ∈ L0, Π([l1, l2]) = [Π(l2),Π(l1)].
Then the (ramification) ideal L0(v0) is mapped to L(c0). Essentially,

Π is a morphism of Lie algebras (where L0 is taken with the opposite
Lie structure) and it induces isomorphism of the appropriate quotients
by L0(c0) and L(c0), respectively (use that by Proposition 2.1 all Dan ∈
L(c0)
k if a > (p− 1)c0).

Clearly, ΠK′(ê
(0)
L ) ≡ emodL(c0)

K′ and

ΠK′(e
′
L) ≡ e′ :=

∑
a∈Z0(p)

t′−aDa,−N∗ modL(c0)
K′ .

If φ0 := ΠK′(φ
(Ñ)
0 ) then φ0 ≡ (−φ) ◦ (σN

∗
φ′) modL(c0)

K′ , where we set

φ = (σÑe) ◦ · · · ◦ (σe) ◦ e and φ′ = (σÑe′) ◦ · · · ◦ (σe′) ◦ e′.
Let

MK′ :=
∑

16j<p

t−c0jL(j)m′ + L(p)K′ ,

where m′ is the maximal ideal of the valuation ring O0 of K′. Similarly,
set

MK′<p
=
∑

16j<p

t−c0jL(j)m′<p
+ L(p)K′<p

where K′<p and m′<p are the analogs of K<p and m<p for K′.
Note that the above introduced modules MK′ and MK′<p

are not

obtained from M and, resp., M<p when we replace K by K′. Under
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such replacement we obtain from M and M<p the following modules

M′ :=
∑

16j<p

t′ −c0jL(j)m′ + L(p)K′ ,

M′
<p :=

∑
16j<p

t′ −c0jL(j)m′<p
+ L(p)K′<p

.

However, σN
∗M′ ⊂MK′ and σN

∗M′
<p ⊂MK′<p

.
Now we use the special choice of involved parameters to deduce from

above Proposition 2.5 the following proposition.

Proposition 2.6. a) φ0, σ(φ0) ∈MK′ + L(c0)
K′ ;

b) e ◦ φ0 ≡ (σφ0) ◦ (σN
∗
e′) mod

(
tc0(p−1)MK′ + L(c0)

K′

)
Proof. a) From the definition of a∗ it follows that a∗ = (c0− δ)q < c0q.
Therefore, for 1 6 j < p,

t′ −ja
∗
Π(Cj(LO)) ⊂ t′ −ja

∗
O0Cj(L) ⊂ t−jc0m′Cj(L) ⊂ t−jc0L(j)m′ .

For part b), we need for 1 6 j < p,

q(b∗ − a∗)− (j − 1)a∗ > (p− j − 1)qc0 .

This can be rewritten as q(r∗ − (c0 − δ)) > r∗ + (p − 2)c0 − (j − 1)δ.
This follows from the inequality pδ < 2v0 in a) and the first inequality
in d) from the beginning of this subsection. �

2.4. Implication a) ⇔ b), I. Suppose h<p is arithmetical. This
means that h(c0) = h<p|K(c0) = h(p)|K(c0) is (a unique) arithmetical

lift of h. Then the appropriate c̄1 = c1 mod(M(p− 1) +L(c0)
K<p

) appears
as the “linear part of c” if and only if

(idL̄ ⊗ h(p)U)f̄ = c1U ◦ f mod (M<pU
2 + tc0(p−1)M<pU + L(c0)

K<p
U) .

Consider the field K′ from Subsection 2.3. This field is isomorphic
to K and this isomorphism can be extended to an isomorphism of K<p
and its analog K′<p. Let f ′ ∈ M′

<p be such that σf ′ = e′ ◦ f ′. Then
Proposition 2.6 b) implies the following lemma.

Lemma 2.7. f ′ can be chosen in such a way that

f ≡ φ0 ◦ σN
∗
f ′mod

(
tc0(p−1)MK′<p

+ L(c0)

K′<p

)
.

Proof. Let g = (−f) ◦ φ0 ◦ σN
∗
f ′ ∈M′

K′<p
. Then by Proposition 2.6b)

σg ≡ gmod (tc0(p−1)MK′<p
+ L(c0)

K′<p
) .

This congruence implies that

g ∈ L+ tc0(p−1)MK′<p
+ L(c0)

K′<p
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(use that σ is topologically nilpotent on tc0(p−1)MK′<p
modL(p)K′<p

).

Therefore, there is l ∈ L such that g ≡ lmod (tc0(p−1)MK′<p
+ L(c0)

K′<p
)

and we obtain our lemma with f ′ replaced by f ′ ◦ (−l). �

2.5. Implication a) ⇔ b), II. Now note that K ⊂ K′ induces the
embeddings K<p ⊂ K′K<p ⊂ K′<p.

Suppose g ∈ IK and ĝ ∈ I is its arithmetical lift (i.e. for any
finite field extension E/K, v(ĝ|E) = ϕ−1

E/K(v(g))). Introduce (similarly

to MK′<p
)

MR0 =
∑

16j<p

t−c0jL(j)mR
+ L(p)R0 .

Then Lemma 2.7 implies that modulo tc0(p−1)MR0 + L(c0)
R0

we have

(idL ⊗ g<p)f ≡ (−idL ⊗ g)φ ◦ (idL ⊗ g′)σN
∗
φ′ ◦ (idL ⊗ g′<p)σN

∗
f ′ .

Here g<p := ĝ|K<p , g′<p := ĝ|K′<p
and g′ := ĝ|K′ are all arithmetical over

K. (Recall, φ0 ≡ (−φ) ◦ (σN
∗
φ′), cf. Section 2.4.)

Proposition 2.8. Suppose v(g) = c0. Then

a) (idL ⊗ g′<p − idK′<p
)σN

∗
f ′ ∈ tc0(p−1)MR0;

b) (idL ⊗ g′ − idK′)σ
N∗φ′ ∈ tc0(p−1)MR0.

Proof. Let K′(p) be an analogue of K(p) for K′.
If we set g′(p) = ĝ|K′(p) then it is arithmetical over K and

v(g′(p)) = ϕ−1
(p)(ϕ

−1
K′/K(c0)) = ϕ−1

(p)(r
∗ + q(c0 − r∗)) > e(p)c0(p− 1) ,

cf. item d) in Section 2.3. This means that for any a ∈ K′(p),
(2.3) g′(p)(a)− a ∈ at′c0(p−1)R .

Now notice that f ′modL(p)K′<p
∈ L̄K′(p), cf. [6], Section 1.3. This

implies that f ′ ∈ MK′(p) + L(p)K′<p
, where MK′(p) is an analogue of

MK′<p
for K′(p). Now property (2.3) implies that

(idL ⊗ g′<p)f ′ − f ′ ∈ t′c0(p−1)M′
R0

+ L(p)R0 = t′c0(p−1)M′
R0
,

where M′
R0

:=
∑

16j<p t
′−c0jL(j)mR

+ L(p)R0 , and we obtain a) by

applying σN
∗
.

For similar reasons,

v(g′) = r∗ + q(c0 − r∗) > ϕ(p)(e(p)c0(p− 1)) > c0(p− 1)

(we use that ϕ(p)(e(p)x) > x for any x > 0), and then for any a ∈ K′,

g′(a)− a ∈ at′c0(p−1)R .

This implies

(idL ⊗ g′)e′ − e′ ∈ t′c0(p−1)M′
R0
, (idL ⊗ g′)φ′ − φ′ ∈ t′c0(p−1)M′

R0
,

and we obtain b) by applying σN
∗
. �
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Corollary 2.9. Suppose g ∈ IK, v(g) = c0 and g<p is a lift of g to
K<p. Then the following conditions are equivalent:

a) g<p is arithmetical lift of g;

b) (idL ⊗ g<p)f ≡ (−idL ⊗ g)φ ◦ φ ◦ f mod (tc0(p−1)MR0 + L(c0)
R0

) .

Proof. Assume that g<p is arithmetical. We can assume that g<p =
g′<p|K<p where g′<p ∈ IK′<p

is arithmetical lift of g. Then Lemma 2.7

and Proposition 2.8 imply that modulo tc0(p−1)MR0 + L(c0)
R0

(idL ⊗ g<p)f ≡ (−idL ⊗ g)φ ◦ (idL ⊗ g′)σN
∗
φ′ ◦ (idL ⊗ g′<p)σN

∗
f ′

≡ (−idL ⊗ g)φ ◦ φ ◦ φ0 ◦ σN
∗
f ′ ≡ (−idL ⊗ g)φ ◦ φ ◦ f ,

and we obtained b).
Assume that b) holds. If go<p ∈ IK<p is an arithmetical lift of g then

we can apply b) and obtain

(idL ⊗ g<p)f ≡ (idL ⊗ go<p)f mod (tc0(p−1)MR0 + L(c0)
R0

) .

On the other hand, there is l ∈ G(L) such that g<p = go<pη
−1
0 (l). Then

the above congruence implies that

l ∈ tc0(p−1)MR0 + L(c0)
R0
⊂ mRLR + L(c0)

R0
.

But then l ∈
(

mRLR + L(c0)
R0

)
|σ=id = L(c0). Therefore, g<p is also

arithmetical. �

2.6. Implication a) ⇔ b), III. Let 1 6 n < p. Applying Corollary
2.9 to g = hn and its lift hn<p we obtain that the following two properties
are equivalent:

• hn<p is arithmetical;

• (idL ⊗ hn<p)f = c(n) ◦ (An ⊗ idK<p)f , where (An − idL)L ⊂ L(c0)

and c(n) ≡ (−idL ⊗ hn)φ ◦ φmodM(p− 1) + L(c0)
K .

Clearly, the first condition holds if and only if h<p is arithmetical.
The second condition means that (A− idL)L ⊂ L(c0) and

c(U) ≡ (−idL ⊗ hU)φ ◦ φmodM(p− 1) + L(c0)
K .

The both parts of the last congruence can be recovered uniquely from
their linear terms: this is obvious for (−idL⊗hU)φ◦φ and was explained
in [6], Section 3.5, for c(U), cf. also overview in Section 2.1. Therefore,
the equivalence of a) and b) will be proved if we show that the linear
part of (−idL⊗hU)φ ◦φ takes the prescribed value from part b) of our
theorem.

Recall that φ = (σÑe) ◦ · · · ◦ (σe) ◦ e.
Apply identities (3.5) and (3.6) from Subsection 3.2 of [6], use the

definition of the elements F0
γ,−N ∈ Lk from Subsection 1.4 of [6] and
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the abbreviation dh := d(idL⊗hU) to obtain the following congruences
modulo U2:

e+ dhe ≡ e ◦

∑
k>1

(1/k!)[. . . [dhe, e], . . . , e︸ ︷︷ ︸
k−1 times

]



≡ e ◦

(
−U

∑
γ>0 ,j>0

Aj(h)F0
γ,0 t

−γ+c0+pj

)
Similarly,

σe+ σdhe ≡ σe ◦

∑
k>1

(1/k!)[. . . [σdhe, σe], . . . , σe︸ ︷︷ ︸
k−1 times

]


then

(σe+ σdhe) ◦ e ≡

(σe) ◦ e ◦

∑
k0>1
k1>0

1

k0!k1!
[. . . [σdhe, σe], . . . , σe︸ ︷︷ ︸

k0−1 times

], e], . . . , e︸ ︷︷ ︸
k1 times

]



= (σe) ◦ e ◦

−U∑
γ>0
j>0

σ(Aj(h)F0
γ,−1t

−γ+c0+pj)


and taking above formulas together we obtain η0(τ) = (−f) ◦ τ(f)

(σe+σdhe)◦(e+dhe) ≡ (σe)◦e◦

−U∑
γ>0
j>0

∑
06i61

σi(Aj(h)F0
γ,−it

−γ+c0+pj)


We can continue similarly to obtain that

(id⊗ hU)φ ≡ φ ◦

−U∑
γ>0
j>0

∑
06i6Ñ

σi(Aj(h)F0
γ,−it

−γ+c0+pj)

 modU2

η0(τ) = (−f) ◦ τ(f)
So, the linear term takes the prescribed value and the statements a)

and b) of theorem are equivalent.
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2.7. The end of proof of Theorem 2.4. Obviously, b) implies c).
Suppose a lift h<p has ingredients c1 and {Va0 | a ∈ Z0(p)} and c1(0)

satisfies the condition c) of our theorem. Take the maximal 1 6 s0 6 p
such that h<p|KG(L(s0))

<p
is arithmetical. If s0 = p then h(p) is arithmetical

and this implies that h<p is arithmetical.
Suppose s0 < p.
Let ho<p be some arithmetical lift of h with the appropriate ingredi-

ents co1 and {V o
a | a ∈ Z0(p)}. Therefore,

c1 ≡ co1 modL(c0)
K + L(s0)K .

Note that for all a ∈ Z0(p), Va0 ∈ L(c0)
k + L(s0)k and V o

a ∈ L
(c0)
k . Then

recurrent relation (2.2) (considered at the s0-th step) implies that

σc1 − c1 +
∑

a∈Z0(p)

t−aVa0 ≡ σco1 − co1 modL(c0)
K + L(s0 + 1)K .

Therefore, by [6], Lemma 2.2b), all Va0 ∈ L(c0)
k + L(s0 + 1)k and

c1 − co1 ≡ c1(0)− co1(0) modL(c0)
K + L(s0 + 1)K .

So, if c1(0) satisfies c) then c1 ≡ co1 modL(c0)
K + L(s0 + 1)K and the

restriction h<p|KG(L(s0+1))
<p

is arithmetical. The contradiction. Theorem

2.4 is completely proved.

3. Explicit calculations in Lh

In this Section we apply the above techniques to study the lifts
h(p) = h<p|K(p). In Section 2 we studied the properties of h<p|K(c0)

and that was sufficient to characterize arithmetical lifts h<p. If we
want to describe the structure of the Lie algebra Lh we need to study
the invariants adh(p) and c1 of h(p).

Suppose h(p) is given, as earlier, via

(idL̄ ⊗ h(p))f̄ = c̄ ◦ (Adh(p)⊗ idK(p))f̄

with the appropriate c̄ ∈MmodM(p−1). Then the relevant elements
c1 ∈ LKmodM(p − 1) and Va0 = adh(p)(Da0) ∈ L̄k = Lk/L(p)k,
a ∈ Z0(p), satisfy recurrent relation (2.2). This allows us to proceed
from solutions (c1,

∑
a t
−aVa0) obtained modulo M(p − 1) + L(s)K to

the appropriate “more precise” solutions moduloM(p−1)+L(s+1)K,
for all 1 6 s < p.

As earlier, let c1 =
∑

m∈Z c1(m)tm, where all c1(m) ∈ L̄k. Introduce
c+

1 =
∑

m>0 c1(m)tm and c−1 =
∑

m<0 c1(m)tm. Then

c1 = c−1 + c1(0) + c+
1 .

In this section we find “precise” formulas for c+, c(0) and V0 =
α−1

0 V00 = adh(p)(D0). The expression for adh(p)(D0) is given in Propo-
sition 3.4 below.
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It would be very interesting to resolve completely recurrent relation
(2.2) and to find reasonably compact formulas for c−1 and all the ele-
ments Va0 = adh(p)(Da0), a ∈ Z+(p). This would generalize explicit
calculations from [6], Subsection 3.6. Some steps in this direction have
been made recently by K. McCabe (PhD Thesis, Durham University).

3.1. Explicit formula for c+
1 . Consider all (ā, n̄) = (a1, n1, . . . , as, ns)

such that 1 6 s < p, all ai ∈ Z0(p) and n1 > n2 > · · · > ns = 0.
Set γ(ā, n̄) = a1p

n1 + a2p
n2 + · · ·+ asp

ns .
Set D(ā,n̄) := [. . . [Da1n1 , Da2n2 ], . . . , Dasns ] and wtD(ā,n̄) := s1 + · · ·+

sn, where for all 1 6 i 6 n, (si − 1)c0 6 ai < sic0.
Denote by δ+(c0) the minimum of all positive values of

(c0 + pj)− p−n1γ(ā, n̄) ,

where j > 0 and (ā, n̄) runs over the set of all above vectors with
additional condition wtD(ā,n̄) < p.

Finally, let N+(c0) = min{n > 0 | pnδ+(c0) > c0(p− 1)}.
Relation (2.2) implies that modulo M(p− 1)

(3.1) σc+
1 − c+

1 ≡

−
∑
k>1
j>0

1

k!
Aj(h)

∑
a1,...,ak

tc0+pj−(a1+···+ak)[. . . [a1Da10, Da20], . . . , Dak0]

−
∑
m,k>1

1

k!

∑
a1,...,ak

tpm−(a1+···+ak)[. . . [σc1(m), Da10], . . . , Dak0] .

In both above sums the indices a1, . . . , ak run over Z0(p) with the re-
strictions a1 + · · ·+ak < c0 +pj for the first sum and a1 + · · ·+ak < pm
for the second sum.

Note that c+
1 modM(p− 1) is defined uniquely by (3.1).

Definition. For n∗ > n∗, let F0
γ,[n∗,n∗]

be the partial sum of σn
∗F0

γ,n∗−n∗

containing only the terms [. . . [Da1n1 , Da2n2 ], . . . , Dasns ], such that n1 =
n∗ and ns = n∗. In other words, we keep only the terms such that
n∗ = max{ni | 1 6 i 6 s} and n∗ = min{ni | 1 6 i 6 s}.

Proposition 3.1. Let N0 ∈ N be such that N0 > N+(c0)− 1. Then

c+
1 ≡

∑
j>0

06n6N0

∑
γ<c0+pj

σn(Aj(h)F0
γ,−n)tp

n(c0+pj−γ)modM(p− 1) .

Remark. The RHS of the above congruence does not depend on a
choice of N0 > N+(c0)− 1.

Proof of Proposition. Prove proposition by establishing the formula for
c+

1 modulo M(p− 1) + Cs(LK) by induction on 1 6 s 6 p.
If s = 1 there is nothing to prove.
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Suppose s < p and proposition is proved moduloM(p−1)+Cs(LK).
Prove that modulo M(p− 1) + Cs+1(LK)

(3.2) σc+
1 − c+

1 ≡ −
∑
j>0

06n6N0

σn(Aj(h))
∑

γ<c0+pj

F0
γ,[n,0]t

pn(c0+pj−γ) .

Note that for n = 0,

F0
γ,[0,0] =

∑
a1,...,ak

1

k!
[. . . [a1Da10, Da20], . . . , Dak0]

and for n > 0,

F0
γ,[n,0] =

∑
k>1,γ′>0
a1,...,ak

1

k!
[. . . [σnF0

γ′,−(n−1), Da10], . . . , Dak0] .

In both sums the indices a1, . . . , ak run over Z0(p) with the restric-
tions a1 + · · ·+ ak = γ in the first case and pnγ′ + a1 + · · ·+ ak = pnγ
in the second case.

The first formula allows us to identify the first line of the RHS in
(3.1) with the part of (3.2) which corresponds to n = 0. The second
formula allows us to rewrite modulo Cs+1(LK) the second line of the
RHS in (3.1) (under inductive assumption) as the part of (3.2) which
corresponds to n > 0.

Denote by −Ω the right-hand side of (3.2). Then we have modulo
M(p− 1) + Cs+1(LK) that c+

1 ≡
∑

m>0 σ
mΩ and

c+
1 ≡

∑
n,m,j

∑
γ<c0+pj

σn+m
(
Aj(h)F0

γ,[0,−n]

)
tp

n+m(c0+pj−γ) .

Modulo M(p − 1) we can assume that n1 = n + m 6 N0 and rewrite
the above RHS as∑

γ,j,n1

σn1

(
Aj(h)

∑
06m6n1

F0
γ,[0,−m]

)
tp

n1 (c0+pj−γ) .

It remains to note that
∑

06m6n1
F0
γ,[0,−m] = F0

γ,−n1
.

The proposition is proved. �

3.2. Explicit calculations with c1(0). By (2.2) we have modulo
L(p)k that (here V0 = α−1

0 V00 = adh(p)(D0))

(3.3) σc1(0)− c1(0) + α0V0 ≡

−
∑
k>1
j>0

∑
a1,...,ak

1

k!
Aj(h)[. . . [a1Da10, Da20], . . . , Dak0]

−
∑
k,m>1
a1,...,ak

1

k!
[. . . [σc+

1 (m), Da10], . . . , Dak0]
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−
∑
k>2

1

k!
[. . . [V0, D00], . . . , D00︸ ︷︷ ︸

k−1 times

]

−
∑
k>1

1

k!
[. . . [σc1(0), D00], . . . , D00︸ ︷︷ ︸

k times

]

In the first and second sums the indices ai run over Z0(p) with the
restrictions a1+· · ·+ak = c0+pj in the first case and a1+· · ·+ak = pm
in the second case.

Definition. For n > 0, denote by F+
γ,[n,0] the partial sum of F0

γ,[n,0]

which contains only the terms with [. . . [Da1n1 , Da2n2 ], . . . , Dasns ] such
that if for some i1 > 0, 0 = ns = · · · = ns−i1 < ns−i1−1 then at least
one of as, . . . , as−i1 is not zero.

Fix N0 > N+(c0)− 1.

Lemma 3.2. The sum of the first two lines in the RHS of (3.3) equals

−
∑

06n6N0

j>0

σn(Aj(h))F+
c0+pj,[n,0]

Proof. For the first line use the above definition with n = 0.
For the second line use the following identity∑

k>1
a1,...,ak

(1/k!)[. . . [σnF0
γ,−n+1, Da10], . . . , Dak0] = F+

c0+pj,[n,0]

where n ∈ N, γ < c0 + pj and a1, . . . , ak run over Z0(p) such that
a1 + · · ·+ ak = pn(c0 + pj − γ). �

Introduce the operators

G0 = ẽxp (α0 adD0), F0 = E0(α0 adD0)

on Lk (recall that E0(x) = (ẽxpx− 1)/x). Note that for l ∈ Lk,

F0(l) =
∑
k>1

αk−1
0

k!
[. . . [l, D0], . . . , D0︸ ︷︷ ︸

k−1 times

], G0(l) =
∑
k>0

αk0
k!

[. . . [l, D0], . . . , D0︸ ︷︷ ︸
k times

] .

With this notation we can rewrite (3.3) in the following form

(G0σ − id)c1(0) + F0(α0V0) = −
∑
j>0

∑
06i6N0

σi(Aj(h))F+
c0+pj,[i,0]

Lemma 3.3. Suppose l(α, γ) =
∑

06i6N0 σi(αF0
γ,−i), where α ∈ k.

Then

(G0σ − id)l(α, γ) = −
∑

06i6N0

σi(α)F+
γ,[i,0] +G0σ

N0+1(αF0
γ,−N0)
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Proof of lemma. Directly from definitions it follows for i > 0, that
(G0σ)(σiF0

γ,−i) = σi+1F0
γ,−(i+1) −F

+
γ,[i+1,0]. Therefore,

(G0σ)l(α, γ) =
∑

16i6N0+1

σi(αF0
γ,−i)−

∑
16i6N0+1

(σiα)F+
γ,[i,0]

= l(α, γ)−
∑

06i6N0

(σiα)F+
γ,[i,0]+σ

N0+1(α)
(
−F+

γ,[N0+1,0] + σN
0+1F0

γ,−(N0+1)

)
.

It remains to note that−F+
γ,[N0+1,0]+σ

N0+1F0
γ,−(N0+1) = G0σ

N0+1F0
γ,−N0 .

�

Summarize the above calculations.

Proposition 3.4. Suppose h(p) is a lift of h to K(p) with the “linear
ingredient” c1 = c−1 +c(0)+c+

1 , V0 = (adh(p))D0 and N0 > N+(c0)−1.
Then

c1(0) = c0 +
∑

06i6N0

j>0

σi(Aj(h)F0
c0+pj,−i) ∈ L̄k ,

where c0 ∈ L̄k and V0 ∈ L̄ are arbitrary solutions of the equation

(3.4) (G0σ − id)c0 + F0(α0V0) = −G0σ
N0+1Ω0 ,

with Ω0 =
∑

j>0Aj(h)F0
c0+pj,−N0 .

Remark. a) Modulo [L̄k, D0] equation (3.4) looks like

(σ − id)c0 + α0V0 ≡ −σN
0+1Ω0 ,

and, therefore, admits explicit solutions (use the operators R and S
from [6], Subsection 2.2 together with Lemma 2.2b). This implies V0 =
adh(p)(D0) is congruent modulo [Lk, D0] to (recall that |k| = pN0)

−(idL ⊗ Trk/Fp)(σN
0+1Ω0) ≡ −

∑
06n<N0

σn(Ω0);

b) if k = Fp then (3.4) can be solved: here σ = id and we can set

c0 = −Ω0(= −σN0
Ω0); this implies the existence of a lift h(p) such that

the Demushkin relation appears in the form

adh(p)(D0) + F−1
0 (Ω0) = 0 ;

c) the appearance of operators F0 and G0 in the LHS of (3.4) is
related to a “bad influence” of the generators D0n; this influence can
be seen already at the explicit expressions of the elements F0

γ,−N : the
factors D0n don’t contribute to γ and therefore can appear with al-
most no restrictions in all terms of F0

γ,−N ; e.g. if a ∈ Z0(p) then

F0
a,−N contains together with the linear term aDa0 all terms from

(σ−NG0)(σ−N+1G0) . . . (σ−1G0)F0(aDa0).
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Finally note that Proposition 3.4 allows us to control arithmetic lifts

of h if we require also that N0 > Ñ(c0).

Proposition 3.5. Suppose N0 > max{N+(c0)−1, Ñ(c0)}. Then (3.4)

admits a solution c0 ∈ L̄(c0)
k and V0 ∈ L̄(c0) and the corresponding lift

h(p) is arithmetical.

Proof. For n > 1, define the triples (Xn, Yn, Zn) by the following recur-
rent relations:

Z1 = −G0σ
N0+1Ω0, Xn = S(Zn), Yn = α−1

0 R(Zn)

Zn+1 = −(G0 − id)σXn − (F0 − id)(α0Yn) .

Then is it easy to see that:

1) for all n, Zn, Xn ∈ (adn−1D0)L̄(c0)
k and Yn ∈ (adn−1D0)L̄(c0);

2) c0 = X1 + · · ·+Xp−1 and V0 = Y1 + · · ·+ Yp−1 satisfy (3.4).

Indeed, for any ideal L′ in L̄ and n > 1, the operators R and S
map (adn−1D0)L′k to itself and the operators G0 − id and F0 − id map
(adn−1D0)L′k to (adnD0)L′k. This proves the first property.

As for the second property, proceed as follows:∑
16i<p

(G0σ − id)Xi +
∑

16i<p

F0(α0Yi)

=
∑

16i<p

(G0 − id)σXi +
∑

16i<p

(F0 − id)(α0Yi) +
∑

16i<p

((σ − id)Xi + α0Yi)

= −(Z2 + · · ·+ Zp−1 + Zp) + (Z1 + Z2 + · · ·+ Zp−1) = Z1 .

Finally Theorem 2.4c) implies that the appropriate lift h(p) is arith-
metical. �

4. The mixed characteristic case

4.1. The field-of-norms functor. Recall the relation between the
mixed and characteristic p cases given by the field-of-norms functor,
cf. [6], Subsection 4.1.

Suppose [K : Qp] < ∞ with the residue field k ' FpN0 and the
ramification index eK . Let π0 ∈ K be a uniformizer and a primitive p-th
root of unity ζ1 ∈ K. Set Γ = Gal(K̄/K) and Γ<p := Γ/ΓpCp(Γ). For

n ∈ N, choose πn ∈ K̄ such that πpn = πn−1, let K̃ =
⋃
n∈NK(πn) and

ΓK̃ = Gal(K̄/K̃). Then ΓK̃ ⊂ Γ and we have the induced continuous
group homomorphism ι : ΓK̃ −→ Γ<p. We also have a projection

j : Γ<p −→ Gal(K(π1)/K) = 〈τ0〉Z/p, where τ0(π1) = π1ζ1, and the

exact sequence ΓK̃
ι−→ Γ<p

j−→ 〈τ0〉Z/p −→ 1.
Let R be Fontaine’s ring and R0 = FracR. We have a natural em-

bedding k ⊂ R, the element t = (πn mod p)n>0 ∈ R and K = k((t)) is
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a closed subfield of R0. Then the field-of-norms functor X identifies
X(K̃) with K and R0 with the completion of Ksep. There is also an
inclusion ιK : ΓK −→ AutR0 which induces identification of ΓK̃ with
G = Gal(Ksep/K). This identification is compatible with the ramifica-
tion filtrations on ΓK and G. The simplest version of this compatibility
states that if v > 0 and v′ = ϕK̃/K(v), where ϕK̃/K is the Herbrand

function of K̃/K then

(4.1) ιK(ΓK̃ ∩ Γ
(v′)
K ) = G(v) .

As a matter of fact, there is a more general property

(4.2) ιK(ΓK) ∩ I(v)
/K = ιK

(
Γ

(v′)
K

)
.

This was stated in [11], Subsection 3.3, in the case of Galois APF
extensions but the proof works word-by-word in the non-Galois case.

The identification ιK |Γ
K̃

composed with ι induces a natural contin-
uous morphism of groups ι<p : G<p −→ Γ<p and we obtain the exact

sequence G<p
ι<p−→ Γ<p

j−→ 〈τ0〉Z/p −→ 1.

4.2. Isomorphism κ<p. Recall the construction of the group isomor-
phism κ<p : Γ<p −→ Gh from [6], Subsection 4.3.

Let η be a closed embedding of K into R0 which is compatible with
the extension vK to R0 of the normalized valuation of K.

Let c0 := e∗(= eKp/(p − 1)). We have e ∈ M ⊂ LK, f ∈ M<p ⊂
LK<p , and if η̂ ∈ AutR0 is a lift of η then (idL ⊗ η̂)f ∈ MR0 ⊂ LR0 .
By [6], Proposition 4.3 c), we have

Proposition 4.1. Suppose (idL⊗η)e ≡ emod t(p−1)c0MR0. Then there
is a unique lift η(p) of η to K(p) such that (idL̄ ⊗ η(p))f̄ = f̄ , where
f̄ = f mod t(p−1)c0MR0.

Let ε = (ζn mod p)n>0 ∈ R, where ζ1 is our fixed p-th primitive root

of unity. If ζ1 = 1 + π
c0/p
0

∑
i>0[βi]π

i
0 where all [βi] are the Teichmuller

representatives of βi ∈ k and β0 6= 0 then (note ε /∈ K)

ε ≡ 1 +
∑
i>0

βpi t
c0+pi mod t(p−1)c0R .

Let h ∈ AutK be such that h|k = idk and h(t) ≡ tεmod t(p−1)c0+1R.
We can assume that h(t) = tẽxp(ωph), where ωh ∈ tc0/pk[[t]]∗, i.e. h
satisfies the conditions from the beginning of Section 2.1.

For any τ ∈ Γ, there is h̃ ∈ 〈h〉 ⊂ AutK such that ιK(τ)|K (t) ≡
h̃(t) mod t(p−1)c0+1R and this h̃ is unique modulo 〈hp〉. This means that

η := ιK(τ)|Kh̃−1 : K −→ R0 satisfies the assumption from Proposition
4.1 amd we obtain a unique lift η(p) ∈ AutK(p) of η.
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Then h̃(p) := η(p)−1ιK(τ)|K(p) ∈ AutK(p) and h̃(p)|K = h̃. As a

result, h̃(p) ∈ G̃h/Cp(G̃h) is a unique lift of h̃ such that

(idL̄ ⊗ ιK(τ))f̄ = (idL̄ ⊗ h̃(p))f̄ .

In addition, the image κ(τ) of h̃(p) in Gh is well-defined.
As a result, the map κ : Γ −→ Gh is uniquely characterized by

(idL̄ ⊗ ιK(τ))f̄ = (idL̄ ⊗ κ̂(τ))f̄ ,

where κ̂(τ) ∈ G̃h/Cp(G̃h) ⊂ AutK(p) is any lift of κ(τ) ∈ Gh.

Proposition 4.2. κ induces a group isomorphism κ<p : Γ<p −→ Gh.

For the proof cf. [6], Proposition 4.4.

4.3. Ramification filtrations. Recall that Γ<p = G(L) has the in-

duced fitration by the images Γ
(v)
<p, v > 0, of the ramification subgroups

Γ(v) with respect to the projection pr<p : Γ −→ Γ<p. This gives the

appropriate filtration by the ideals L(v) of the Lie algebra L.
As earlier in Section 4.2, the elements of ιK(Γ) ⊂ AutR0 can be

considered as the elements of the ramification subsets I(v)
/K , v > 0. This

gives the induced filtration L
(v)
/K on L (the notation indicates to the

“upper numbering with respect to K”) such that G(L
(v)
/K) is the image

of ι−1
K (ιK(Γ) ∩ I(v)

/K ) under the projection pr<p. By property (4.2) we

have L
(v)
/K = L(ϕ

K̃/K
(v)).

The elements of Gh = G(Lh) are related to the field automorphisms

AutK(p) via the natural projection of G̃h/Cp(G̃h) ⊂ AutK(p) to Gh.
Therefore, we can define for any v > 0, the ideal L

(v)
h in Lh as the image

of G̃h/Cp(G̃h) ∩ (resK(p)I(v)
/K ) in Gh. Here for any ι ∈ I, resK(p)ι = ι|K(p).

Note that resK(p)I(v)
/K = IK(p),v′ , where ϕK(p)/K(v′) = v.

Proposition 4.3. For any v > 0, κ<p(L
(v)
/K) = L

(v)
h .

We will prove it in Subsection 4.5 below.

4.4. Ramification estimates in characteristic p. Set for s ∈ N,

K[s] := KG(L(s+1))
<p with respect to the identification η0 : G<p ' G(L).

Then Gal(K[s]/K) = G(L/L(s+ 1)) and K[p− 1] = K(p).
Let vK[s] be the maximal upper ramification number of K[s]/K, i.e.

vK[s] = max{v | G(v) acts non-trivially on K[s]} .

Proposition 4.4. For all s ∈ N, vK[s] = c0s− 1.

Proof. Recall that for any v > 0, πf (e)(G(v)) = L(v) and for a suf-

ficiently large N , the ideal L(v)
k is generated by all σnF0

γ,−N , where

γ > v, n ∈ Z and the elements F0
γ,−N are given in [6], Subsection 1.4.
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The ideal L(v)
k is contained in the ideal generated by the monomi-

als σn[. . . [Da1n1 , Da2n2 ], . . . , Darnr ] such that max{n1, . . . , nr} = 0 and
a1p

n1 + · · ·+ arp
nr > v. So,

v 6 a1 + · · ·+ ar 6 c0wt([. . . [Da1n1 , Da2n2 ], . . . , Darnr ])− r .
If v > c0s− 1 then wt([. . . [Da1n1 , Da2n2 ], . . . Darnr ]) > s+ (r − 1)/c0

implies that all such monomials have weight > s + 1 and, therefore,
L(v) ⊂ L(s+ 1).

If v = c0s− 1 then wt([. . . [Da1n1 , Da2n2 ], . . . Darnr ]) 6 s iff r = 1 and

the only non-zero ai equals c0s − 1. Therefore, L(v)
k modLk(s + 1) is

generated by the images of all Dc0s−1,n and L(v) 6⊂ L(s+ 1). �

Remark. This implies v(X(K<pK̃)/K) = v(K(p)/K) = c0(p− 1)− 1.
In Subsection 4.5 we prove that v(K<p/K(π1)) = c0(p − 1) − 1. This
will give us the values v[s] from Theorem 0.3 from Introduction.

4.5. Proof of Proposition 4.3. We need the following lemma.

Lemma 4.5. Let η(p) ∈ IK(p) be the morphism from Proposition 4.1.
Then η(p) is a unique arithmetical lift of η.

This lemma will be proved in Section 4.7 below.
Continue with the proof of Proposition 4.3.

Suppose τ ∈ Γ and for some v > 0, ιK(τ) ∈ I(v)
/K (in particular, τ

belongs to the inertia subgroup of Γ), i.e. pr<p(τ) ∈ L(v)
/K.

Consider g = κ(τ) = κ<p(pr<p(τ)) ∈ Gh.
We can assume that g̃ ∈ G̃h/Cp(G̃h) ⊂ AutK(p) is a lift of g such

that for any v′ > 0, g ∈ L(v′)
h if and only if g̃ ∈ resK(p)I(v′)

/K . Note that

in the previous notation from the definition of κ we have g̃|K = h̃ ∈ 〈h〉
and g̃ = h̃(p).

Let η := ιK(τ)|Kh̃−1 ∈ IK and η(p) := ιK(τ)|K(p)g̃
−1 ∈ IK(p). Clearly,

η(p)|K = η.

By the definition of h̃, ιK(τ)(t) ≡ h̃(t) modt(p−1)c0+1R. This implies
that for any a ∈ Z0(p),

(4.3) η(t−a)− t−a ∈ t−a+(p−1)c0R

and, therefore, (idL ⊗ η)e ≡ emod t(p−1)c0MR0 . From the definition of
κ it follows also that (idL̄ ⊗ η(p))f̄ = f̄ , and by Lemma 4.5, η(p) is
arithmetical lift of η.

By (4.3), there is vo > (p− 1)c0 − 1 such that η ∈ IK,vo . Therefore,

η(p) ∈ resK(p)I(vo)
/K , or equivalently,

ιK(τ)|K(p) ≡ g̃mod resK(p)I(vo)
/K .

So, for all 0 6 v 6 (p− 1)c0 − 1 and τ ∈ ΓK ,

pr<p(τ) ∈ L(v)
/K ⇔ κ<p(pr<pτ) ∈ L(v)

h .
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It remains to prove that if vo > (p− 1)c0 − 1 then L
(vo)
/K = L

(vo)
h = 0.

Suppose τ ∈ Γ is such that pr<p(τ) ∈ L
(vo)
/K . We can assume that

ιK(τ) ∈ I(vo)
/K . Let m ∈ Zp be such that ιK(τ)(t) = tεm. Then m ≡

0 mod p because ιK(τ)|K ∈ IK,vo and vo > c0.
Let τ̂0 ∈ Γ be such that τ̂0(π1) = π1ζ1 and for any pn-th root of unity

ζn, τ̂0(ζn) = ζn. Note that ιK(τ̂0)|K ∈ IK,c0 and ιK(τ̂0)(t) = tε. This
implies that τ̂−m0 τ ∈ ΓK̃ and ιK(τ̂−m0 τ) ∈ G = Gal(Ksep/K).

Using that κ(τ̂0)p = e we obtain (idL̄ ⊗ ιK(τ̂ p0 ))f̄ = f̄ . By Lemma
4.5, ιK(τ̂ p0 )|K(p) is arithmetical over K. But ιK(τ̂0

p)|K ∈ IK,(p−1)c0 and,

therefore, ιK(τ̂ p0 )|K(p) ∈ resK(p)I((p−1)c0)
/K and

ιK(τ̂−m0 τ)|K(p) ∈ resK(p)I(v′)
/K ∩Gal(K(p)/K) = Gal(K(p)/K)(v′) ,

where v′ = min{(p − 1)c0, v
o} > (p − 1)c0 − 1. By the ramification

estimate from Proposition 4.4 this ramification subgroup is trivial and
ιK(τ̂−m0 τ)|K(p) = e.

It remains to note that κ<p(pr<pτ) = κ(τ) = κ(τ̂−m0 τ) appears as

the image of ιK(τ̂−m0 τ)|K(p) under the natural projection of G̃h/Cp(G̃h)
to Gh. Therefore, κ<p(pr<pτ) = 0 and pr<pτ = 0.

For similar reasons, L
(vo)
h = 0 if vo > (p− 1)c0 − 1.

Proposition 4.3 is proved.

4.6. Main results. Theorems 0.1-0.4 are stated in the Introduction.

• Proof of Theorem 0.1.
By Proposition 4.3 a lift τ<p is good if and only if the lift κ<p(τ<p)

is good. It remains to apply Theorem 2.4.

• Proof of Theorem 0.2.

Recall that Γ
(v)
<p = G(L

(v′)
/K ), where v′ = ϕK̃/K(v) and e∗ = c0.

— If v′ > c0 then L
(v′)
/K coincides with the image L̄(v′) of L(v′) in L̄.

Indeed, if v′ > (p−1)c0−1 then L
(v′)
/K = 0, cf. the proof of Proposition

4.3. By Proposition 4.4, L̄(v′) is also zero.

Now suppose c0 < v′ 6 (p − 1)c0 − 1 and τ̄ ∈ L
(v′)
/K . Let τ ∈

Γ(v) be such that pr<p(τ) = τ̄ . Then (in notation from Section 4.5)

there is m ∈ pZp such that τ̂−m0 τ ∈ ΓK̃ and ιK(τ̂−m0 τ)|K(p) belongs to

resK(p)(I(v′)
/K ∩ G) = resK(p)G(v′). As a result, κ<p(τ̄) = κ(τ̂−m0 τ)) and,

therefore, τ̄ belong to L̄(v′). The opposite embedding L̄(v′) ⊂ L
(v′)
/K is

obvious.
This proves the case a) of our theorem, because if c0 < v′ 6 pc0 then

v∗ = v′, and if v′ > pc0 then v∗ = c0 + p(v − c0) > (p − 1)c0 − 1 and
L̄(v∗) is also 0.

— If v 6 c0 then L
(v)
/K is generated by L̄(v) and the image of τ̂0.
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Clearly, L̄(v′) and the image of τ̂0 belong to L
(v)
/K. With above nota-

tion, if τ̄ ∈ L(v)
/K then for some m ∈ Zp, τ−m0 τ ∈ ΓK̃ , again ιK(τ̂−m0 τ) ∈

resK(p)G(v) and τ̄ ∈ L̄(v).
It remains to note that τ̂0|K<p is a good lift of τ0.

• Proof of Theorem 0.3.
It follows directly from Proposition 4.4.

• Proof of Theorem 0.4
It follows from results of Section 3 together with Proposition 4.3.

4.7. Proof of Lemma 4.5. The proof is based on the same idea as
the proof of Theorem 2.4 but is considerably easier: we do not need
the difficult technical result from [3]. This happens because we are still

studying the lifts from K to K(p) but these lifts come from I(vo)
K , where

vo > (p−1)c0−1, cf. below. (In Theorem 2.4 we worked with vo = c0.)
First of all, the condition

(4.4) (idL ⊗ η)e ≡ emod t(p−1)c0MR0

implies η|k = idk and η(t−(p−1)c0+1) ≡ t−(p−1)c0+1 mod mR (just fol-
low the coefficient for D(p−1)c0−1,0). As a result, we obtain η(t) ≡
tmod t(p−1)c0mR, i.e. there is vo > (p− 1)c0 − 1 such that η ∈ IK,v0 .

Prove that L(vo) ⊂ L(p).

It will be sufficient to verify that all generators F0
γ,−N of L(vo)

k (where

γ > vo) belong to L(p)k. All such F0
γ,−N are linear combinations of the

commutators of the form [. . . [Da1n1 , ], . . . , Damnm ], where m < p, all
ai ∈ Z0(p), all ni 6 0 and a1p

n1 + · · ·+ amp
nm > vo. If wt(Daini

) = si,
then (si − 1)c0 6 ai < sic0 and

(p− 1)c0 − 1 < vo 6 a1 + · · ·+ am < (s1 + · · ·+ sm)c0 .

This implies that s1 + · · · + sm > p (use that a1 + · · · + am ∈ Z). So,
all our commutators have weight > p and, therefore, belong to L(p)k.

Now Corollary 1.4 implies that there is only one arithmetical lift of
η to K(p). Therefore, it will be sufficient to prove that

• if η(p) is arithmetical lift of η then (idL̄ ⊗ η(p))f̄ = f̄ .

As earlier in Section 2.3, let e(p) and ϕ(p) be the ramification index
and, resp., the Herbrand function for K(p)/K.

Suppose

(4.5) vo > ϕ(p)(e(p)(p− 1)c0) .

Then η(p) ∈ IK(p),vo
(p)

, where vo(p) > e(p)(p − 1)c0 and, therefore,

(idL̄⊗ η(p))f̄ = f̄ (use that for any a ∈ K(p), η(p)a− a ∈ at(p−1)c0R)).
This proves our lemma under assumption (4.5).

Otherwise, we can apply the trick from Section 2 as follows.
We use the notation from the beginning of Section 2.3.
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Take K′ = K(ro, N o), where the parameters ro ∈ Q and N o ≡
0 modN0 satisfy the following requirements (this can be done by en-
larging (if necessary) N o with fixed ro, cf. Subsection 2.3):

•1) ro(qo − 1) ∈ Z+(p) where qo = pN
o

and (p− 1)c0 − 1 < ro < vo;

•2) ro(1− 1/qo) > (p− 1)c0 − 1;

•3) ro + qo(vo − ro) > ϕ(p)(e(p)(p− 1)c0).

Use the uniformiser t′ to define an analog e′ =
∑

a∈Z0(p) t
′−aDa0 ∈ LK′

of e for K′ and set e′(q
o) = σN

o
e′ =

∑
a∈Z0(p) t

′−aqoDa0 ∈ LK′ .
Verify that •2) implies e ≡ e′(q

o) mod t(p−1)c0MR0 . Indeed:

1) Suppose a > (p− 1)c0. Then t−aDa0, t
′−aqoDa0 ∈ L(p)R0 .

2) Suppose 1 6 s < p−1 and (s−1)c0 6 a 6 sc0−1, i.e. Da0 ∈ L(s)k.
From the definition of K′ we have t− t′qo ∈ t′qo+ro(qo−1)R. This implies
(use •2) that t ≡ t′q

o
mod t(p−1)c0mR and, therefore,

(t−a−t′−aqo)Da0 ∈ t−a+(p−1)c0−1mRDa0 ⊂ t(p−1−s)c0L(s)mR
⊂ t(p−1)c0MR0

Now we can proceed similarly to the proof of Proposition 4.3 a) from
[6] to obtain the existence of m ∈ t(p−1)c0MR0 such that

e ≡ (σm) ◦ e′(q) ◦ (−m) modL(p)R0 ,

and the existence of f ′ ∈ Lsep such that σf ′ = e′ ◦ f ′ and

(4.6) f ≡ m ◦ σNo

(f ′) modL(p)R0 .

Consider the fields tower K ⊂ K′ ⊂ K′K(p) ⊂ K′(p) ⊂ K′<p, where
K′(p) and K′<p are analogs of K(p) and, resp, K<p for K′. Let η̂′ be an
arithmetical lift of η to K′<p. Then η(p) := η̂′|K(p), η

′(p) := η̂′|K′(p) and
η′ := η̂′|K′ are arithmetical over K.

So, η′ ∈ IK′,v′o , where v′o = ro + qo(vo − ro) > ϕ(p)(e(p)(p − 1)c0).
Therefore, we can apply assumption (4.5) and (use that η′(p) is arith-
metical over η′) deduce the following congruence

(idL̄ ⊗ η′(p))f ′ ≡ f ′modt′(p−1)c0M′
R0

(here M′
R0

is an analogue of MR0 for K′). This implies that

(idL̄ ⊗ η′(p))σN
o

(f ′) ≡ σN
o

(f ′) modt(p−1)c0MR0

(use that σN
oM′

R0
⊂MR0). It remains to note that (4.6) implies now

that (idL̄ ⊗ η(p))f̄ = f̄ . The lemma is proved.
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