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Abstract:

• Reproducibility of statistical hypothesis tests is an issue of major importance in ap-
plied statistics: if the test were repeated, would the same overall conclusion be reached,
that is rejection or non-rejection of the null hypothesis? Nonparametric predictive
inference (NPI) provides a natural framework for such inferences, as its explicitly pre-
dictive nature fits well with the core problem formulation of a repeat of the test in the
future. NPI is a frequentist statistics method using relatively few assumptions, made
possible by the use of lower and upper probabilities. For inference on reproducibility
of statistical tests, NPI provides lower and upper reproducibility probabilities (RP).
In this paper, the NPI-RP method is presented for two basic tests using order statis-
tics, namely a test for a specific value for a population quantile and a precedence
test for comparison of data from two populations, as typically used for experiments
involving lifetime data if one wishes to conclude before all observations are available.
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1. INTRODUCTION

Testing of hypotheses is one of the main tools in statistics and crucial in

many applications. While many different tests have been developed for a wide

range of scenarios, the aspect of reproducibility of tests has long been neglected:

the question addressed is whether or not a test, if it were repeated under the

same circumstances, would lead to the same overall conclusion, that is rejection

or non-rejection of the null hypothesis. Recently, this topic has started to gain

attention, in particular through the publication of a ‘handbook on reproducibil-

ity’ [4] which provides a collection of papers on the issue. Nevertheless, whilst

hypothesis testing is mainly seen as a frequentist statistics procedure, the classic

frequentist framework is not suited for inference on reproducibility as this is nei-

ther an estimation nor a testing problem. The very nature of reproducibility is

predictive, namely given the results of one test one wishes to predict the outcome

of a possible future test. Coolen and Bin Himd [11] presented nonparametric

predictive inference (NPI) for reproducibility of some basic tests, with more at-

tention to this topic in the PhD thesis of Bin Himd [8], these publications also

provide a critical discussion of earlier methods for reproducibility presented in

the literature.

This paper contributes to development of NPI for reproducibility by con-

sidering two tests based on order statistics, namely a one sample quantile test

and a two sample precedence test. Central to these inferences are NPI results for

future order statistics [12]. This paper provides a concise presentation of NPI for

the quantile and basic precedence test, further details, examples and discussion

are included in the PhD thesis of Alqifari [1].

This paper is organized as follows. Section 2 provides a brief introduction to

NPI, including key results on NPI for future order statistics as used in this paper.

Section 3 discusses aspects of reproducibility of statistical tests and explains the

NPI perspective on such inferences. Section 4 presents the NPI approach to

reproducibility of a basic quantile test. Section 5 considers a precedence test

used for comparison of two populations. Some concluding remarks are given in

Section 6. All computations in this paper were performed using the statistical

software R.

2. NONPARAMETRIC PREDICTIVE INFERENCE

Nonparametric predictive inference (NPI) [5, 10] is a statistical framework

which uses few modelling assumptions, with inferences explicitly in terms of fu-

ture observations. For real-valued random quantities attention has thus far been
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mostly restricted to a single future observation, although multiple future obser-

vations have been considered for some NPI methods, e.g. in statistical process

control [2, 3].

Assume that we have real-valued ordered data x(1) < x(2) < ··· < x(n), with

n ≥ 1. For ease of notation, define x(0) = −∞ and x(n+1) = ∞, or at other known

lower and upper bounds of the range of possible values for these random quan-

tities. The n observations create a partition of the real-line into n + 1 intervals

Ij = (x(j−1), x(j)) for j = 1, ..., n + 1. We assume throughout this paper that ties

do not occur. If we wish to allow ties, also between past and future observations,

we could use closed intervals [x(j−1), x(j)] instead of these open intervals Ij , the

difference is rather minimal and to keep presentation easy we have opted not to do

this here. We are interested in m ≥ 1 future observations, Xn+i for i = 1, ..., m.

We link the data and future observations via Hill’s assumption A(n) [17], or,

more precisely, via A(n+m−1) (which implies A(n+k) for all k = 0, 1, ..., m − 2; we

will refer to this generically as ‘the A(n) assumptions’), which can be considered

as a post-data version of a finite exchangeability assumption for n + m random

quantities. The A(n) assumptions imply that all possible orderings of the n data

observations and the m future observations are equally likely, where the n data ob-

servations are not distinguished among each other and neither are the m future

observations. Let Sj = #{Xn+i ∈ Ij , i = 1, ..., m}, then the A(n) assumptions

lead to

(2.1) P

(

n+1
⋂

j=1

{Sj = sj}

)

=

(

n + m

n

)

−1

where sj are non-negative integers with
∑n+1

j=1 sj = m. Another convenient way

to interpret the A(n) assumptions with n data observations and m future observa-

tions is to think that n randomly chosen observations out of all n + m real-valued

observations are revealed, following which you wish to make inferences about the

m unrevealed observations. The A(n) assumptions then imply that one has no

information about whether specific values of neighbouring revealed observations

make it less or more likely that a future observation falls in between them. For

any event involving the m future observations, Equation (2.1) implies that we can

count the number of such orderings for which this event holds. Generally in NPI

a lower probability for the event of interest is derived by counting all orderings

for which this event has to hold, while the corresponding upper probability is

derived by counting all orderings for which this event can hold [5, 10].

In NPI, the A(n) assumptions justify the use of resulting inferences directly

as predictive probabilities. Using only precise probabilities, such inferences can-

not be used for many events of interest, but in NPI we use the fact, in line with

De Finetti’s Fundamental Theorem of Probability [14], that corresponding opti-

mal bounds can be derived for all events of interest [5]. These bounds are lower

and upper probabilities in the theory of imprecise probability [6]. NPI provides
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exactly calibrated frequentist inferences [18], and it has strong consistency prop-

erties in theory of interval probability [5]. In NPI the n observations are explicitly

used through the A(n) assumptions, yet as there is no use of conditioning as in

the Bayesian framework, we do not use an explicit notation to indicate this use

of the data. The m future observations must be assumed to result from the same

sampling method as the n data observations in order to have full exchangeability.

NPI is totally based on the A(n) assumptions, which however should be considered

with care as they imply e.g. that the specific ordering in which the data appeared

is irrelevant, so accepting A(n) implies an exchangeability judgement for the n

observations. It is attractive that the appropriateness of this approach can be de-

cided upon after the n observations have become available. NPI is always in line

with inferences based on empirical distributions, which is an attractive property

when aiming at objectivity [10].

Let X(r), for r = 1, ..., m, be the r-th ordered future observation, so X(r) =

Xn+i for one i = 1, ..., m and X(1) < X(2) < ··· < X(m). The following probabili-

ties are derived by counting the relevant orderings and use of Equation (2.1). For

j = 1, ..., n + 1 and r = 1, ..., m,

(2.2) P
(

X(r) ∈ Ij

)

=

(

j + r − 2

j − 1

)(

n − j + 1 + m − r

n − j + 1

)(

n + m

n

)

−1

.

For this event NPI provides a precise probability, as each of the
(

n+m
n

)

equally

likely orderings of n past and m future observations has the r-th ordered fu-

ture observation in precisely one interval Ij . As Equation (2.2) only specifies the

probabilities for the events that X(r) belongs to intervals Ij , it can be consid-

ered to provide a partial specification of a probability distribution for X(r), no

assumptions are made about the distribution of the probability masses within

such intervals Ij .

Analysis of the probability in Equation (2.2) leads to some interesting

results, including the logical symmetry P (X(r) ∈ Ij) = P (X(m+1−r) ∈ In+2−j).

For all r, the probability for X(r) ∈ Ij is unimodal in j, with the maximum prob-

ability assigned to interval Ij∗ with
(

r−1
m−1

)

(n + 1) ≤ j∗ ≤
(

r−1
m−1

)

(n + 1) + 1.

A further interesting property occurs for the special case where the number

of future observations is equal to the number of data observations, so m = n.

In this case, P (X(r) < xr) = P (X(r) > xr) = 0.5 holds for all r = 1, ..., m. This

fact can be proven by considering all
(

2n
n

)

equally likely orderings, where clearly

in precisely half of these orderings the r-th future observation occurs before the

r-th data observation due to the overall exchangeability assumption. The special

case m = n plays an important role in this paper as it naturally occurs in analysis

of reproducibility of statistical hypothesis tests.
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3. REPRODUCIBILITY OF STATISTICAL TESTS

Statistical hypothesis testing is used in many application areas and nor-

mally results in either non-rejection of the stated null hypothesis or its rejection

in favour of a stated alternative, at a predetermined level of significance. Whilst

this procedure is embedded in the successful long-standing tradition of statistics,

a related aspect that had received relatively little attention in the literature until

recently is the reproducibility of such tests: if the test were repeated, would it

lead to the same overall conclusion? Attention to problems with reproducibility,

including problems with understanding of concepts by practitioners in applica-

tion areas, was raised by Goodman [16] and Senn [21]. Methods for addressing

reproducibility, proposed in the literature since then, have mainly shown that

the classical frequentist framework of statistics may not be immediately suitable

for inference on test reproducibility (see [11] for a discussion of such proposed

methods). Recently, many aspects of reproducibility, including some attention to

statistical methods, have been discussed in a volume dedicated to this topic [4].

The reproducibility probability (RP) for a test is the probability for the

event that, if the test is repeated based on an experiment performed in the same

way as the original experiment, the test outcome, that is either rejection of the

null-hypothesis or not, will be the same. In practice, focus may often be on repro-

ducibility of tests in which the null-hypothesis is rejected, for example because

significant effects tend to lead to new treatments in medical applications. How-

ever, also if the null-hypothesis is not rejected it is important to have a meaningful

assessment of the reproducibility of the test. Note that RP is assessed knowing

the outcome of the first, actual experiment, which consists of the actual observa-

tions, so not only the value of a sufficient test statistic or even just the conclusion

on rejection or non-rejection of the null-hypothesis. This is important as the

RP will vary with different experiment outcomes, which is logical and will lead

to higher RP if the data supported the original test conclusion more strongly.

A sufficient test statistic, if of reduced dimension compared to the full data set,

does not provide suitable input for the NPI method, hence the use of the full

data set is required for the inferences considered in this paper.

Coolen and Bin Himd [11] introduced NPI for RP, denoted by NPI-RP, by

considering some basic nonparametric tests: the sign test, Wilcoxon’s signed rank

test, and the two sample rank sum test. For these inferences NPI for Bernoulli

quantities [9] and for real-valued observations [5] were used. This did not lead

to precise valued reproducibility probabilities but to NPI lower and upper re-

producibility probabilities, denoted by RP and RP , respectively. For these tests

analytic methods were presented to calculate the NPI lower and upper probabil-

ities for test reproducibility. To enable NPI for more complex test scenarios, the

NPI-bootstrap method can be used, as introduced and illustrated by Bin Himd [8]

for the Kolmogorov–Smirnov test.
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This paper presents NPI-RP for two classical tests which are based on

order statistics, namely a one sample quantile test (Section 4) and a two sample

precedence test (Section 5). For these inferences, NPI for future order statistics

[12] is used, as briefly reviewed in Section 2. We assume that the first, actual

experiment led to ordered real-valued observations x(1) < x(2) < ··· < x(n). As we

consider an imaginary repeat of this experiment, we use NPI for m = n future

ordered observations, henceforth denoted by X
f

(1) < X
f

(2) < ··· < X
f

(n), with the

superscript f used to emphasize that we consider future order statistics.

4. QUANTILE TEST

The quantile test is a basic nonparametric test for the value of a population

quantile [15]. Let κp denote the 100×p-th quantile of an unspecified continuous

distribution, for 0 ≤ p ≤ 1. On the basis of a sample of observations of indepen-

dent and identically distributed random quantities Xi, i =1, ..., n, we consider the

one-sided test of null-hypothesis H0: κp = κ0
p versus alternative H1: κp > κ0

p, for

a specified value κ0
p. We restrict attention in this paper to NPI for reproducibility

of this one-sided quantile test. The corresponding methodology for the two-sided

test follows the same steps and is included in the PhD thesis of Alqifari [1], where

also some more discussion and examples are given of the tests presented in this

paper. Actually, there is an interesting issue about two-sided tests in such sce-

narios, that requires some further thought. If the original test leads to rejection

of the null hypothesis due to a relatively small value of the test statistic, would

one consider the test result to be reproduced if a future test leads to rejection due

to a relatively large value of the test statistic, so in the other tail of the statistic’s

distribution under H0? Technically perhaps this is the case, but on the basis of

the combined evidence of the two tests one would probably want to investigate

the whole setting further and not regard the second test as confirming the results

of the first test. This is left as a topic for consideration.

Under H0, κ0
p is the 100×p-th quantile of the distribution function of the

Xi, so P (Xi ≤ κ0
p |H0) = p. Define the random variable K as the number of Xi

in the sample of size n that are less than or equal to κ0
p, that is

K =

n
∑

i=1

1
{

Xi ≤ κ0
p

}

with 1{A} = 1 if A is true and 1{A} = 0 if A is not true. A logical test rule is to

reject H0 if X(r) > κ0
p, where X(r) is the r-th ordered observation in the sample

(ordered from small to large), for a suitable value of r corresponding to a chosen

significance level, so if K ≤ r − 1. For significance level α, r is the largest integer
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such that

P
(

X(r) > κ0
p |H0

)

=
r−1
∑

i=0

(

n

i

)

pi(1 − p)n−i ≤ α .

For large sample sizes the Normal distribution approximation to the Binomial

distribution can be used in order to determine the appropriate value of r.

For a given data set x1, ..., xn, the test statistic of the one-sided quantile test

as defined above is the number of observations less than or equal to κ0
p, denoted

by

k =
n
∑

i=1

1
{

xi ≤ κ0
p

}

.

For the value r derived as discussed above, H0 is rejected if and only if k ≤ r − 1.

Based on such data and the result of the actual hypothesis test, that is

whether the null hypothesis is rejected in favour of the alternative hypothesis

or not, NPI can be applied to study the reproducibility of the test. First we

consider the case where k ≤ r − 1, so the original test leads to rejection of H0.

Reproducibility of this test result is therefore the event that, if the test were

repeated, also leading to n observations, then that would also lead to rejection

of H0. Using the notation for future observations introduced in Section 3, this

would occur if the r-th ordered observation of the future sample exceeds κ0
p. The

NPI lower and upper reproducibility probabilities for this event, as function of

k ≤ r − 1, are

RP (k) = P
(

X
f

(r) > κ0
p |k
)

=
n+1
∑

j=1

1
{

xj−1 > κ0
p

}

P
(

X
f

(r) ∈ Ij

)

and

RP (k) = P
(

X
f

(r) > κ0
p |k
)

=
n+1
∑

j=1

1
{

xj > κ0
p

}

P
(

X
f

(r) ∈ Ij

)

,

respectively. Note that the dependence of these lower and upper probabilities

on the value k is not explicit in the notation used for the terms on the right-

hand side, but is due to the number of data xj that exceed κ0
p. It is easily shown

that P (Xf

(r) > κ0
p |k) = P (Xf

(r) > κ0
p |k+1), which leads to RP (k) = RP (k +1) for

values of k leading to rejection of H0.

If the original test does not lead to rejection of H0, so if k ≥ r, then re-

producibility of the test is the event that the null hypothesis would also not get

rejected in the future test. The NPI lower and upper reproducibility probabilities

for this event, as function of k ≥ r, are

RP (k) = P
(

X
f

(r) ≤ κ0
p |k
)

=
n+1
∑

j=1

1
{

xj ≤ κ0
p

}

P
(

X
f

(r) ∈ Ij

)
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and

RP (k) = P
(

X
f

(r) ≤ κ0
p |k
)

=
n+1
∑

j=1

1
{

xj−1 ≤ κ0
p

}

P
(

X
f

(r) ∈ Ij

)

,

respectively. It is easily seen that RP (k) = RP (k − 1) for values of k such that

k − 1 leads to H0 not being rejected. If an actual observation in the original test

is exactly equal to the specified value κ0
p, then the NPI method would actually

provide a precise reproducibility probability. We do not consider this further

as the test hypotheses must always be specified without consideration of the

actual test data, hence this case is extremely unlikely to occur; for some further

discussion see [1].

The minimum value that can occur for the NPI lower reproducibility prob-

abilities for this one-sided quantile test, following either rejection or non-rejection

of the null hypothesis in the original test, is equal to 0.5. This follows directly

from the formulae for the NPI lower reproducibility probabilities given above,

together with P (X(r) < xr) = P (X(r) > xr) = 0.5 as explained in Section 2. The

NPI upper reproducibility probabilities can be equal to one. This occurs when

all observations in the original test are less than κ0
p, so k = n, in which case the

original test let to H0 not being rejected for all values of r (so for all order statis-

tics considered, hence for any level of significance); this reflects that, with no

evidence in the original data in favour of the possibility that the data values can

actually exceed κ0
p, one cannot exclude the possibility that no future observations

could exceed this value. Note that the corresponding NPI lower reproducibility

probability will be less than one, reflecting that the original data set only provides

limited information, this lower probability will increase towards one as function

of n. The upper reproducibility probability is also equal to one if all observations

in the original test are greater than κ0
p, so k = 0, for which case the reasoning is

similar to that above but of course now with H0 being rejected.

Example 1. Suppose that the original test has sample size n = 15 and we

are interested in testing the null hypothesis that the third quartile, so the 75%

quantile, of the underlying distribution is equal to a specified value κ0
0.75 against

the alternative hypothesis that this third quartile is greater than κ0
0.75, tested

at significance level α = 0.05. Using the Binomial distribution for the classical

quantile test, this leads to the rule that H0 is rejected if x(8) > κ0
0.75 and H0 is not

rejected if x(8) < κ0
0.75. Note that we do not discuss the case x(8) = κ0

0.75 which

is slightly different as the NPI approach leads to precise probabilities instead of

lower and upper probabilities (see [1]), it is also of little practical relevance.

Table 1 presents the NPI lower and upper reproducibility probabilities for

all values of k, which is the number of observations in the original test which

are less than κ0
0.75. If k ≤ 7 then the original test leads to H0 being rejected

while it is not rejected for k ≥ 8. Hence, the NPI lower and upper reproducibility

probabilities are for the events X
f

(8) > κ0
0.75 and X

f

(8) < κ0
0.75, respectively. This
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table illustrates the logical fact that the worst reproducibility is achieved for k at

the threshold values 7 and 8, with increasing RP values when moving away from

these values, leading to maximum NPI-RP values for k = 0 and k = 15. Because

for this test the threshold between rejecting and not rejecting H0 is between k = 7

and k = 8 out of n = 15 observations, the NPI-RP values are symmetric, that is

the same for k = j and k = 15 − j for j = 0, 1, ..., 7 in Table 1.

Table 1: NPI-RP for third quartile, n = 15 and α = 0.05.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 0.9989 1 6 0.6424 0.7689 12 0.9359 0.9749
1 0.9929 0.9989 7 0.5 0.6424 13 0.9749 0.9929
2 0.9749 0.9929 8 0.5 0.6424 14 0.9929 0.9989
3 0.9359 0.9749 9 0.6424 0.7689 15 0.9989 1
4 0.8682 0.9359 10 0.7689 0.8682
5 0.7689 0.8682 11 0.8682 0.9359

Table 2 presents NPI-RP values for the quantile test considering the me-

dian, so the 50% quantile, again with sample size n = 15 and testing the null

hypothesis that the median is equal to a specified value κ0
0.5 against the one-sided

hypothesis that it is greater than κ0
0.5, at level of significance α = 0.05. This leads

to the test rule that H0 is rejected if the number k of observations that are smaller

than κ0
0.5 is less than or equal to 3, and H0 is not rejected if k ≥ 4. Note that

throughout this paper, precise values 0.5 and 1 are presented without additional

decimals, so the values 1.0000 are actually less than 1 but rounded upwards.

Of course, these NPI-RP values are not symmetric, and reproducibility becomes

very likely for initial test results with a substantial number of observations less

than κ0
0.5. But rejection of H0, which occurs for k ≤ 3 and is often of main

practical relevance, has relatively low NPI-RP values.

Table 2: NPI-RP for median, n = 15 and α = 0.05.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 0.9502 1 6 0.7865 0.8775 12 0.9986 0.9997
1 0.8352 0.9502 7 0.8775 0.9359 13 0.9997 0.9999
2 0.6743 0.8352 8 0.9359 0.9698 14 0.9999 1.0000
3 0.5 0.6743 9 0.9698 0.9873 15 1.0000 1
4 0.5 0.6592 10 0.9873 0.9954
5 0.6592 0.7865 11 0.9954 0.9986

Tables 3 and 4 present the NPI-RP results for the same one-sided quantile

test on the third quartile for n = 30, at significance levels α = 0.05 and α =
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0.01, respectively. Using the Normal distribution approximation, the test rule

for α = 0.05 is to reject H0 that this third quartile is equal to κ0
0.75 in favour

of the alternative hypothesis that it is greater than κ0
0.75 if k ≤ 18 and not to

reject it if k ≥ 19, where k is again the number of observations less than κ0
0.75.

For α = 0.01, H0 is rejected if k ≤ 16 and not rejected if k ≥ 17. The change in

level of significance α leads obviously to change of the rejection threshold, with

H0 being rejected for a smaller range of values k in case of smaller value of α.

Comparison of Table 3 with Table 1 shows that the larger sample size tends to lead

to slightly less imprecision, that is the difference between corresponding upper

and lower probabilities, this is e.g. shown by considering the upper probabilities

RP (k) for the values of k next to the rejection thresholds, so corresponding to

RP (k) = 0.5.

Table 3: NPI-RP for third quartile, n = 30 and α = 0.05.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 1.0000 1 11 0.9651 0.9811 22 0.7941 0.8666
1 1.0000 1.0000 12 0.9398 0.9651 23 0.8666 0.9210
2 1.0000 1.0000 13 0.9023 0.9398 24 0.9210 0.9580
3 1.0000 1.0000 14 0.8503 0.9023 25 0.9580 0.9805
4 0.9999 1.0000 15 0.7826 0.8503 26 0.9805 0.9923
5 0.9998 0.9999 16 0.6995 0.7826 27 0.9923 0.9976
6 0.9993 0.9998 17 0.6038 0.6995 28 0.9976 0.9995
7 0.9981 0.9993 18 0.5 0.6038 29 0.9995 0.9999
8 0.9956 0.9981 19 0.5 0.6054 30 0.9999 1
9 0.9905 0.9956 20 0.6054 0.7056

10 0.9811 0.9905 21 0.7056 0.7941

Table 4: NPI-RP for third quartile, n = 30 and α = 0.01.

k RP (k) RP (k) k RP (k) RP (k) k RP (k) RP (k)

0 1.0000 1 11 0.9023 0.9406 22 0.9101 0.9483
1 1.0000 1.0000 12 0.8493 0.9023 23 0.9483 0.9731
2 1.0000 1.0000 13 0.7805 0.8493 24 0.9731 0.9875
3 0.9999 1.0000 14 0.6971 0.7805 25 0.9875 0.9949
4 0.9995 0.9999 15 0.6019 0.6971 26 0.9949 0.9983
5 0.9986 0.9995 16 0.5 0.6019 27 0.9983 0.9995
6 0.9964 0.9986 17 0.5 0.6026 28 0.9995 0.9999
7 0.9916 0.9964 18 0.6026 0.6995 29 0.9999 1.0000
8 0.9824 0.9916 19 0.6995 0.7852 30 1.0000 1
9 0.9664 0.9824 20 0.7852 0.8559

10 0.9406 0.9664 21 0.8559 0.9101
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5. PRECEDENCE TEST

As a second example of NPI for reproducibility of a statistical test based on

order statistics we consider a basic nonparametric precedence test. Such a test,

first proposed by Nelson [19], is typically used for comparison of two groups of

lifetime data, where one wishes to reach a conclusion before all units on test have

failed. The test is based on the order of the observed failure times for the two

groups, and typically leads to, possibly many, right-censored observations at the

time when the test is ended. Balakrishnan and Ng [7] present a detailed introduc-

tion and overview of precedence testing, including more sophisticated tests than

the basic one considered in this paper. NPI for precedence testing was presented

by Coolen-Schrijner et al. [13], without consideration of reproducibility. It should

be emphasized that we consider here the NPI approach for reproducibility of a

classical precedence test, so not of the NPI approach to precedence testing [13].

We consider the classical scenario with two independent samples. Let

X(1) < X(2) < ··· < X(nx) be the ordered real-valued observations in a sample of

size nx drawn randomly from a continuously distributed population, which we re-

fer to as the X population, with a probability distribution depending on location

parameter λx. Similarly, let Y(1) < Y(2) < ··· < Y(ny) be the ordered real-valued

observations in a sample of size ny drawn randomly from another continuously

distributed population (the Y population) with a probability distribution which

is identical to that of the X population except for its location parameter λy.

The hypothesis test for the locations of these two populations considered here is

H0 : λx = λy versus H1: λx < λy, which is to be interpreted such that, under H1,

observations from the Y population tend to be larger than observations from the

X population.

The precedence test considered in this paper, for this specific hypothesis

test scenario, is as follows. Given nx and ny, one specifies the value of r, such

that the test is ended at, or before, the r-th observation of the Y population. For

specific level of significance α, one determines the value k (which therefore is a

function of α and of r) such that H0 is rejected if and only if X(k) < Y(r). The

critical value for k is the smallest integer which satisfies

P
(

Xk < Yr|H0

)

=

(

nx + ny

nx

)

−1 r−1
∑

j=0

(

j + k − 1

j

)(

ny − j + nx − k

ny − j

)

≤ α .

Note that the test is typically ended at the time T = min(X(k), Y(r)), with the

conclusion that H0 is rejected in favour of the one-sided alternative hypothesis

H1 specified above if T = X(k) and H0 is not rejected if T = Y(r). It is of interest

to emphasize this censoring; continuing with the original test would make no

difference at all to the test conclusion, but further observations would make a

difference for the NPI reproducibility results, as will be discussed later.
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The NPI approach for reproducibility of this two-sample precedence test

considers again the same test scenario applied to future order statistics, and

derives the lower and upper probabilities for the event that the same overall test

conclusion will be derived, given the data from the original test. This involves

the earlier described NPI approach for inference on the r-th future order statistic

Y
f

(r) out of ny future observations based on the data from the Y population, and

similarly for the k-th future order statistics X
f

(k) out of the nx future observations

based on the data from the X population, where the values of r and k are the

same as used for the original test (as we assume also the same significance level for

the future test). Note, however, that there is a complication: for full specification

of the NPI probabilities for these future order statistics, we require the full data

from the original test to be available. But, as mentioned, the data resulting from

the original precedence test typically has right-censored observations for at least

one, but most likely both populations, and these are all just known to exceed the

time T at which the original test had ended.

Before we proceed, we discuss this situation in more detail as it is important

for the general idea of studying reproducibility of tests. We should emphasize

that we have not come across this issue before in the literature, but it seems

to be important and more details are provided by Alqifari [1]. There are two

perspectives on the study of reproducibility of such precedence tests. First, one

can study the test outcome assuming that actually complete data were available,

so all nx and ny observations of the X and Y populations, respectively, in the

original test are assumed to be available. Secondly, one can consider inference for

the realistic scenario with the actual data from the original test, so including right-

censored observations at time T . The first scenario is the most straightforward

for the development of NPI-RP, and we start with this scenario. Then we explain

how this first scenario, without additional assumptions, leads to NPI-RP for the

second scenario.

The starting point for NPI-RP for the precedence test is to apply NPI for

nx future observations, based on the nx original test observations from the X

population, which are assumed to be fully available, and similarly for ny future

observations based on the ny observations from the Y population. Using the

results presented in Section 2, with notation adapted to indicate the specific

populations, the following NPI lower and upper reproducibility probabilities are

derived. First, if H0 is rejected in the original test, so x(k) < y(r), then

RP = P
(

X
f

(k) < Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx) < y(jy−1)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

,

RP = P
(

X
f

(k) < Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx−1) < y(jy)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

.
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If H0 is not rejected in the original test, so x(k) > y(r), then

RP = P
(

X
f

(k) > Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx−1) < y(jy)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

,

RP = P
(

X
f

(k) > Y
f

(r)

)

=

nx+1
∑

jx=1

ny+1
∑

jy=1

1
{

x(jx) < y(jy−1)

}

P
(

X
f

(k) ∈ Ix
jx

)

P
(

Y
f

(r) ∈ I
y
jy

)

.

The following general results for this NPI lower and upper reproducibility

probabilities are easily derived [1]. Both in case of rejecting and not rejecting

H0, the maximum possible value of the NPI upper reproducibility probability

is 1. If H0 was rejected this occurs if x(nx) < y(1), while if H0 was not rejected

this occurs if x(1) > y(ny), so both cases lead to maximum reproducibility if the

original test data were entirely separated in the sense that either all observations

from X population occurred before all observations from the Y population, or

the other way around.

In both cases of rejecting or not rejecting H0 in the original test, the min-

imum value of the NPI lower reproducibility probability is 0.25. If H0 was re-

jected, this occurs if y(r−1) < x(1) and x(k) < y(r) and y(ny) < x(k+1). If H0 was

not rejected, this occurs if x(k−1) < y(1) and y(r) < x(k) and x(nx) < y(r+1). Both

these smallest possible values for RP result from data orderings that, whilst

leading to a test conclusion, are least supportive for it, together with the fact

that P (Xf

(k) < x(k)) = P (Xf

(k) > x(k)) = 0.5 (and similar for Y
f

(r)) as discussed in

Section 2.

The effect of local changes to the combined ordering of the data of the

two populations in the original test is important. Suppose that, for given data

for the X and Y populations for the original test, observations y(u) and x(v) are

such that y(u) < x(v) and in the combined ordering of all nx + ny data they are

consecutive. Now suppose that we change these observations, and denote them

by ỹ(u) and x̃(v), respectively, such that they keep their order in the data from

their own population but between them change their order, so x̃(v) < ỹ(u). Then

this local change to the combined ordering of the data leads to increase of both

the NPI lower and upper probabilities for the event X(k) < Y(r), that is

P
(

X(k) < Y(r) | y(u) < x(v)

)

< P
(

X(k) < Y(r) | x̃(v) < ỹ(u)

)

,

P
(

X(k) < Y(r) | y(u) < x(v)

)

< P
(

X(k) < Y(r) | x̃(v) < ỹ(u)

)

.

This implies that the NPI-RP inferences for the precedence test depend monoton-

ically on the combined ordering of the original test data, which is an important

property to derive such inference for actual tests including right-censored obser-

vations, as discussed after the next example.
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Example 2. Nelson [20] presents data consisting of six groups of times

(in minutes) to breakdown of an insulating fluid subjected to different levels of

voltage. To illustrate NPI-RP for the basic precedence test as discussed above,

we assume that sample 3 provides data from the X population and sample 6 from

the Y population, these times are presented in Table 5. Both samples are of size

10, and we assume that the precedence testing scenario discussed in this section

is followed, so we assume that the population distributions may only differ in

location parameters, with H0 : λx = λy tested versus H1: λx < λy. We assume

that r = 6, so the test is set up to end at the observation of the sixth failure time

for the Y population. We discuss both significance levels α = 0.05 and α = 0.1.

The missing values in Table 5 are only known to exceed 3.83.

Table 5: Times to insulating fluid breakdown.

X sample 0.94 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 *

Y sample 1.34 1.49 1.56 2.10 2.12 3.83 * * * *

For significance level α = 0.05, the critical value is k = 10, while for α = 0.1

this is k = 9. Therefore, the provided data will lead, in this precedence test, to

rejection of H0 at 10% level of significance but not to rejection of H0 at 5%

level of significance. For both scenarios, the NPI lower and upper reproducibility

probabilities are presented in Table 6, for all of the possible orderings of the

right-censored observations. Note that in total 15 observations are available, with

1 value of the X sample and 4 values of the Y sample only known to exceed 3.83.

Table 6: NPI-RP for precedence test on insulating fluid breakdown data.

rank of x10

α = 0.05 α = 0.1

RP RP RP RP

16 0.3871 0.7814 0.3885 0.7079
17 0.4746 0.8209 0.3490 0.6665
18 0.5496 0.8484 0.3215 0.6309
19 0.6019 0.8627 0.3072 0.6062
20 0.6290 0.8669 0.3029 0.5934

In this table, we give the rank, from the combined ordering of all 20 observations,

of the right-censored observation x(10), for example when this is 17 it implies that

y(7) < x(10) < y(8). Table 6 presents both the results for α = 0.05, in which case

H0 was not rejected in the original test, hence reproducibility is achieved if H0

is also not rejected in the future test, and the results for α = 0.05, in which case
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H0 was rejected so reproducibility also implies rejection of H0 in the future test.

Note that for α = 0.1 we still assume that y(6) = 3.83 was actually observed, even

though the test could have been concluded at time x(9) = 2.57 because x(9) < y(6)

was conclusive for the test in this case. Table 6 shows that the NPI-RP values are

increasing in the combined rank of x(10) for α = 0.05 and decreasing for α = 0.1,

which illustrates the monotonicity of these inferences with regard to changes in

ranks of the data as discussed above, as increasing combined rank of x(10) provides

more evidence in support of H0, hence in favour of reproducing the original test

result for α = 0.05 but against doing so for α = 0.1. We notice that the actual

rank that x(10) would have among the 20 combined observations has substantial

influence on the NPI-RP values. In this example, the imprecision RP − RP is

large. This is due to the relatively small data sets and the fact that two groups of

data are compared, with imprecision for the predictive inferences for both groups

through the A(n) assumptions for each group.

Thus far, we have studied reproducibility of the basic precedence test from

the perspective of having the complete data available, in Example 2 this was

illustrated by considering all possible orderings for the right-censored data in

the two samples. However, a more realistic perspective is to only use the actual

test outcome, without any assumptions on the ordering of the right-censored

observations. Using lower and upper probabilities, this can be easily achieved by

defining RP as the minimum of all NPI lower probabilities for reproducibility over

all possible orderings for the right-censored observations, and similarly by defining

RP as the maximum of all NPI upper probabilities for reproducibility over all

possible orderings for the right-censored observations. Hence, in Example 2,

this leads to RP = 0.3871 and RP = 0.8669 for α = 0.05, and RP = 0.3029 and

RP = 0.7079 for α = 0.1. Of course, this leads to increased imprecision compared

to every possible specific ordering of the right-censored observations, but it is

convenient as no further assumptions about those right-censored observations

are required. Furthermore, to derive the NPI-RP values for this perspective one

does not need to calculate the corresponding values for each possible combined

ordering of right-censored observations, due to the above discussed monotonicity

of these inferences. Hence, we always know for which specific ordering of right-

censored observations these NPI-RP values are obtained, that is either with all

right-censored observations from the X sample occurring before all right-censored

observations from the Y sample, or the other way around, depending on the actual

outcome of the original test. This perspective is illustrated further in Example 3.

Example 3. We consider again NPI-RP for the precedence test as pre-

sented in this section, so with one-sided alternative hypothesis H1: λx < λy. Sup-

pose that nx = 10 units of the X population and ny = 8 units of the Y population

are put on a life test, where one wants at most two Y units to actually fail, so

the value r = 2 is chosen. Testing at significance level α = 0.05, the critical value

is k = 7, so H0 is rejected if x(7) < y(2) while H0 is not rejected if y(2) < x(7).
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Note that, with the test ending at time min(x(7), y(2)), there are least 3 right-

censored X observations and at least 6 right-censored Y observations; this leads

to large imprecision in the NPI-RP values. Table 7 presents the NPI lower and

upper reproducibility probabilities for this test, for all possible data in the orig-

inal test, which are indicated through the rankings of all observations until the

test is ended, in the combined ranking of the X and Y samples. As indicated,

the columns to the left relate to the cases where H0 is not rejected while the

columns to the right relate to the cases where H0 is rejected. All these NPI-RP

values are calculated using the monotonicity with regard to the combined ranks

of the right-censored observations, as explained above. These results illustrate

the earlier discussed maximum value 1 for RP and minimum value 0.25 for RP .

It is particularly noticeable that the NPI lower reproducibility probabilities for

this test tend to be small, which is not really surprising due to the large number

of right-censored observations resulting from the choice r = 2.

Table 7: NPI-RP for precedence test with nx = 10, ny = 8,
r = 2, k = 7 and α = 0.05.

H0 not rejected H0 rejected

X ranks Y ranks RP RP X ranks Y ranks RP RP

— 1,2 0.4992 1 1–7 — 0.3833 1
1 2,3 0.4951 0.9988 1–6,8 7 0.3367 0.8833
2 1,3 0.4970 0.9992 1–5,7,8 6 0.2993 0.8425
1,2 3,4 0.4826 0.9924 1–4,6–8 5 0.2739 0.8098
1,3 2,4 0.4884 0.9946 1–3,5–8 4 0.2593 0.7875
2,3 1,4 0.4903 0.9951 1,2,4–8 3 0.2526 0.7748
1–3 4,5 0.4553 0.9733 1,3–8 2 0.2504 0.7690
1–4 5,6 0.4075 0.9314 2–8 1 0.25 0.7670
1–5 6,7 0.3375 0.8582
1–6 7,8 0.25 0.7509
2–7 1,8 0.3663 0.8375

6. CONCLUDING REMARKS

The NPI approach to reproducibility of tests provides many research chal-

lenges. It can be developed for many statistical tests, while for some data types

(e.g. multivariate data) first NPI requires to be developed further. The test sce-

narios studied for particular tests may require careful attention, as illustrated

by the different perspectives discussed for the precedence test in Section 5. As

mentioned, the precedence test scenario discussed in this paper is very basic.

Balakrishnan and Ng [7] present a detailed introduction and overview of prece-

dence testing, including more sophisticated tests than the basic one considered
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in this paper. In practice, it is important for such tests, and also in general, to

also consider the power of the test; thus far this has not yet been considered in

the NPI approach for reproducibility of testing. With further development of

this approach, we are aiming at guidance on selection of test methods which, for

specified level of significance, have good power and good reproducibility prop-

erties. This may often require more test data than needed following traditional

guidance, but the assurance of good reproducibility is important for many ap-

plications and may lead to savings in the longer run by reducing processes, such

as development of new medication, to continue on the basis of false test results

which may later turn out not to be reproduced in repeated tests under similar

circumstances. Further details, examples and discussion of the tests presented in

this paper are given in the PhD thesis of Alqifari [1].
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