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There are many cases where one needs to limit
the x-ray dose, or the number of projections, or
both, for high frame rate (fast) imaging. Normally it
improves temporal resolution but reduces the spatial
resolution of the reconstructed data. Fortunately, the
redundancy of information in the temporal domain
can be employed to improve spatial resolution. In this
paper, we propose a novel regularizer for iterative
reconstruction of time-lapse computed tomography
(CT). The non-local penalty term is driven by the
available prior information and employs all available
temporal data to improve the spatial resolution of
each individual time frame. A high resolution prior
image from the same or a different imaging modality
is used to to enhance edges which remain stationary
throughout the acquisition time while dynamic
features are tend to be regularized spatially. Effective
computational performance together with robust
improvement in spatial and temporal resolution
makes the proposed method a competitive tool to
state-of-the-art techniques.
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1. Introduction
In many situations in X-ray tomographic imaging it is not possible to collect enough data for good
quality reconstructions using conventional filtered back projection (FBP) techniques [1]. Examples
can be found in medical imaging, where the accumulated dose must be kept to a minimum and in
the imaging of quickly evolving events, where the time per projection or the number of projections
must be severely reduced in order to capture the temporal dynamics of the scanned sample. In
such cases, iterative techniques can provide better reconstructions [2].

When dealing with iterative image reconstruction there is a strong need for regularization
techniques which impose a priori information on the desired solution [2,3]. The nature of this
information can be different, for example, some local or non-local neighbour correlations can be
encouraged [4]. In some cases, additional information can be extracted not only from the spatial
domain but also from the temporal space [5,6]. Sometimes, it is possible to augment the main
reconstruction dataset with supplementary information using the same or a different imaging
modality [7,8]. Normally, other modality dataset will have a different image characteristics, such
as, intensity, resolution, geometry and noise variation. This can restrict the “direct” embedding of
the prior information into reconstruction process [8].

Previously, there have been successful attempts to improve spatial resolution in time-
lapse tomography using prior information [9–12]. This supplementary information is normally
obtained before the time-lapse experiment (e.g. a pre-scan in high resolution) and regarded as the
reference image. For example, in [9], the assumption about the prior image is provided without
the explicit use of regularization which leads to improvement in resolution. The use of high
resolution image to regularize the main dataset is already a well-established approach and one
of the most common approaches in this area is Prior Image Constrained Compressed Sensing
(PICCS) [10], which employs a high quality prior image in the sparse regularization framework
to improve spatial resolution.

In [11], supplementary information is provided to improve a non-local regularization strategy.
Non-local (NL) image regularization [13], which is based on successful NL denoising methods
[14], has been commonly applied to image reconstruction problems [16–18] and also to time-lapse
reconstruction [11,12,19].

In this paper, we present a novel multi-modal non-local regularization technique which
uses supplementary information to drive a spatio-temporal regularization process for time-
lapse tomography. We use a prior image of higher resolution that can be from the same or
a different imaging modality, which distinguishes our method from the previously proposed
mono-modal algorithms [9–12]. Additionally, the proposed algorithm employs all the available
temporal information (not just adjacent time frames as in [19]) which greatly improves the signal-
to-noise ratio (SNR) of reconstructions. The prior image is used to select the most structurally
valuable neighbours for temporal regularization, which also leads to improved spatial resolution
and substantially accelerates numerical performance.

In common with [12] we aim to minimize the computational complexity and achieve a
sufficient trade-off for spatio-temporal resolution while using non-local regularizers. While the
method in [12] sacrifices temporal resolution to improve spatial resolution we aim to restore the
desirable balance by introducing a constraint which restricts regularization across dissimilar time
frames.

The proposed method is compared to state-of-the-art PICCS regularization technique and
shows much more promising results when the given prior image is not ideal (noisy and/or
partially uncorrelated with the imaged dataset).

It should be noted that in the current state our method is well suited for a specific class of video
denoising or time-lapse reconstruction problems. Specifically, our technique has the potential to
significantly enhance edges which remain stationary throughout the acquisition experiment while
dynamic features are tend to be regularized spatially. In material science our method is well suited
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to problems such a fluid flow through rigid porous structures such as rocks [12], solid oxide fuel
cells [20] and bioscaffolds [21].

2. Method

(a) Parallel beam time lapse tomography
A discrete representation of the stationary attenuation coefficients to be reconstructed can be
written as a system of linear equations

bj =

N∑
i=1

ajixi + δj , (2.1)

where bj , j = 1, . . . ,M is the measured projection data (sinogram) and M is the total number
of projections, xi, i= 1, . . . , N is the discrete distribution of attenuation coefficients to be
reconstructed (N is the total number of image elements) and δj is the noise component in the
measurements bj . Weights aji ∈ [0, 1] (contribution of element i to the value detected in the bin j)
are forming the sparse system matrix A :RN →RM .

Let us consider a problem in which part of the image changes over time and the other part
remains effectively stationary. Writing equation (2.1) in a matrix-vector form and adding the
temporal dimension gives

bk =Akxk + δk, k= 1, 2, . . . ,K (2.2)

whereK is a total number of 3D time frames. Similarly to the algorithm in [12] we use all available
time frames.

The explicit (direct) solution for (2.2) can be written as x̂k =A†kbk with a pseudo-inverse A†k =
(ATA)−1k ATk bk. This direct inversion (if practically possible) is highly sensitive to noise due to
amplification of high-frequency components: x̂k =A†kbk =A†k(Akxk + δk) =xk +A†kδk. In our
case the system of equations (2.2) is severely underdetermined (M�N ) and the system matrixA
is ill-conditioned. To find an approximate solution x̂ from the undersampled noisy measurements
one can choose regularized iterative techniques instead of direct approaches [2,3].

In this paper, we aim at reconstructing iteratively the set of images xk while adding a novel
spatio-temporal regularization penalty.

(b) Regularized time-lapse iterative reconstruction algorithm
Define X := (xT1 ,x

T
2 , . . . ,x

T
K)T as the vector containing all images of the time lapse series and

similarly define the measured projections vector asB := (bT1 , b
T
2 , . . . , b

T
K)T . Therefore the system

of equations to solve isB =AX , where the block diagonal matrixA is given as:

A=


A1 0 . . . 0

0 A2 0
...

. . .
...

0 0 . . . AK

 (2.3)

The traditional approach to solve a linear system of equations, such as (2.1), is to find the best
fit x̂ to the exact x using the least-squares (LS) approximation [22]. In other words, one would
like to minimize the `2 norm between the forward projections and the measure projection data:

X̂ = argmin
X

{
1

2
‖B −AX‖22

}
, (2.4)

where X̂ := (x̂T1 , x̂
T
2 , . . . , x̂

T
K)T . The optimization problem (2.4) is quadratic and can be solved

using gradient based techniques, such as the conjugate gradient least squares (CGLS) algorithm
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[22]. To turn (2.4) into a well-posed problem, one has to regularize the solution X by adding a
penalty term R(X), resulting in the following regularized problem:

X̂ = argmin
X

{
β

2
‖B −AX‖22 +R(X)

}
︸ ︷︷ ︸

Φ(X)

, (2.5)

where β is a regularization parameter which represents the trade-off between the data fidelity
and the regularization term.

The gradient of the cost function Φ(X) can be calculated as:

∇Φ(X) = βAT (AX −B) +∇R(X). (2.6)

Rather than using direct minimization approaches (e.g. gradient descent) to solve problem (2.5)
one can use splitting techniques [23]. The idea is to split the data fidelity and regularization terms
using proximity operators. This approach leads to simpler stackable optimization problems, such
as forward-backward splitting (FBS) or Bregman-type methods [16]. Applied to our minimization
problem (2.5), the estimate X̂ can be computed using the following two-step FBS algorithm: V n+1 =Xn − τ

[
AT (AXn −B)

]
Xn+1 = argmin

X

(
R(X) + β

2 ‖X −X0‖22
)
; X0 =V n+1.

(2.7)

In algorithm (2.7), one can see that the first step solves the unregularized LS problem and
the second is the data term dependent image denoising step [16]. To accelerate convergence
of (2.7) we will replace the gradient descent (GD) minimization (first step) with a Conjugate
Gradient Least Squares (CGLS) algorithm [22]. Although CGLS converges faster than GD, the
overall convergence proof for (2.7) method does not hold anymore [23], however, in practice this
combination provides successful results [19]. The main focus of our interest here is the nature of
the penalty term R(X).

(c) NL-means based spatio-temporal regularization
The discrete representation of the spatio-temporal (ST) regularization term is based on NL
gradient [16,17] and given by

R(X) =

K∑
k=1

N∑
i

∑
j∈Ns(i)

ωi,j(xk)(xj − xi,k)2, (2.8)

where the search domain Ns is restricted to the volumetric neighbourhood size of Nsearch ×
Nsearch ×K with the number of neighbours equal toN2

searchK. Note that the volumetric search
area Ns includes all time-frames K. Non-negative and symmetric weights ωi,j are calculated as:

ωi,j(x) = exp

(
−
∑
l∈Np(xi,l−xj,l)2

h2

)
, (2.9)

where Np is a quadratic similarity patch size of Nsim ×Nsim and parameter h corresponds to the
noise level in x.

The Euler-Lagrange equation of the second minimization problem in (2.7) with the penalty
term (2.8) is as follows:

K∑
k=1

N∑
i

∑
j∈Ns(i)

ωi,j(xk)(xj − xi,k) + β(X −X0) = 0. (2.10)

With the weight term fixed, the Euler-Lagrange equation (2.10) is linear and GD based schemes
can be used to find the solution. Here we used the fixed point minimization scheme to solve (2.10)
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efficiently [15]:

Xn+1 =
βX0 +

∑K
k=1

∑N
i

∑
j∈Ns(i)

ωi,j(xk)xj

β
∑K
k=1

∑N
i

∑
j∈Ns(i)

ωi,j(xk)
(2.11)

As it can be seen from the ST regularizer (2.8), there is no special treatment for xi,t; t=
[1, 2, . . . ,K] \ {k} elements which are dissimilar to xi,k. When intensity of xi,t is different from
intensity of xi,k element there is a probability that the information in t frame is quite different to
the current time-frame k. Therefore, if regularization is unconstrained for t frame it can potentially
lead to over-smoothing of dynamic (or dissimilar) features [12]. Similar to the method introduced
in [18], we constrain regularization across potentially dissimilar time frames with the following
rule:

γ <
xi,k
xi,t

<
1

γ
; t= 1, 2, . . . ,K, (2.12)

where γ is a constant. For every i-th element in time frame k we check that the i-th element
in different time frame t is similar in terms of intensity. If elements are dissimilar ((2.12) is not
fulfilled) the temporal frame t is not considered for regularization within the search space Ns(i).
During our experiments we found that the condition (2.12) and the choice of γ is critical to avoid
smoothing of dynamic features.

Although, the proposed ST penalty term can handle random noise in reconstructed images
much better than just a spatial penalty, the current implementation is computationally infeasible.
In the next section we will show how additional information can be embedded into (2.8) to
improve spatial resolution and significantly reduce computational time.

(d) Embedding structural information into ST regularization
Let zi, i= 1, . . . , N be a supplementary dataset, then the structural information can be extracted
from z in the following way. The following similarity measure is calculated as:

ϕ(z) =

N∑
i

∑
j∈Nr(i)

∑
l∈Np

(zi,j,l − zj,i,l)2, (2.13)

where Nr is a quadratic similarity patch size of Nsearch ×Nsearch. The vector ϕ, calculated for
every zi, provides distribution of similarity values within the window Nr . Smaller values in ϕ
demonstrate higher similarity to zi and by sorting values from low to high, one can choose n0 of
the most similar to zi elements:

n0 =
⌈
(Nsearch)

2np
⌉
; np ∈ (0, 1], (2.14)

where np is empirically chosen parameter which controls the number of j-th elements in Nr taken
to build a structural set.

Let us define a structural set Sz(i, n0,Nr) which consists of n0 most similar to zi elements
within the quadratic window Nr . The set Sz(i, n0,Nr) is created according to the selection
rule (2.14). If, the supplementary image z has an improved resolution over xk and images
have structural similarity (at least partially), then one can use the set Sz(i, n0,Nr) to drive the
regularization process. The main aim of structural set Sz(i, n0,Nr) is to reduce dimensionality of
the volumetric search space Ns(i) in (2.8). The modified set N̂s(i) has the same spacial dimensions
as Ns(i), but the number of neighbours for regularization process is reduced to n0K. One can see
that n0K <<N2

searchK when np << 1 in (2.14).
This approach is similar to the one which is used for multi-modal image reconstruction [8],

however since it is non-local, it is more stable to noise than just using local voxel absolute
differences [12]. This means that the proposed technique is a much more robust way of extracting
additional information from a prior image which also can be degraded with noise or image
artifacts.
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(e) Pseudocode for the proposed NLST algorithm
Here we present a pseudocode for time-lapse tomographic reconstruction using the proposed
structurally driven NLST penalty (2.8).

Algorithm 1 Iterative image reconstruction using the NLST regularization using structural
information

Initialize: X = 0, z, β, Nsearch, Nsim, np, γ, h, MaxOuter, MaxInner, ε

while m<MaxOuter do

CGLS step to obtain estimate V m+1

setX0 =V
m+1

while n<MaxInner

calculateXn+1using (2.11)

check that ‖Xn+1 −X‖22 < ε

n= n+ 1

end

set V m+1 =Xn+1

check that ‖V m+1 −X‖22 < ε

m=m+ 1

end

3. Numerical Experiments
In this section, two different numerical experiments are performed, which demonstrate the
improvement of the proposed NLST technique over a state-of-the-art PICCS method [18]. The aim
of the PICCS method is the same as the method proposed and involves the integration of a prior
image into the reconstruction process to improve spatio-temporal resolution. The optimization
problem for PICCS using the total variation (TV) penalty [24] and a prior image z is given as:

x̂k = argmin
xk

[
α‖xk − z‖TV + (1− α)‖xk‖TV +

λ

2
‖bk −Akxk‖22

]
; α∈ [0, 1]. (3.1)

We perform PICCS optimization with respect to each time frame xk. The main goal of (3.1) is to
find the best approximation to each time frame xk when z is available and the trade-off between
xk and z is controlled by a parameter α. Note that PICCS is not using all available temporal
information as the NLST method but is based solely on the prior image z and the current time
frame xk. We optimized (3.1) using FBS splitting where the LS term was solved independently
with CGLS and the PICCS minimization sub-problem was performed with the GD method using
the time step parameter τ (see table (1)).

To avoid storing the large sparse matrix A we used on-the-fly forward and backward
projection operations of the GPU accelerated modules from the ASTRA toolbox [27]. C-OMP
implementation using MATLAB wrapper of the proposed NLST algorithm (2.8) is freely available
here [25].
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To quantify our results we use two measures: the first measure is the root mean square error
(RMSE):

RMSE(x, x̂) =

√√√√ 1

N

N∑
i=0

(xi − x̂i)2. (3.2)

where x is the exact image and x̂ is a reconstructed image. And the second is the structural
similarity index (SSIM) [28] which is given as:

SSIM(x, x̂) =
(2µxµx̂ + C1) + (2σxx̂ + C2)

(µ2x + µ2x̂ + C1)(σ
2
µx + σ2µx̂ + C2)

; SSIM∈ [−1, 1], (3.3)

where µ and σ are the mean intensity and standard deviation of image block respectively (we used
a 8× 8 quadratic patch). σxx̂ denotes the cross-correlation and C1,2 are small constants to avoid
singularity [28]. SSIM is a more advanced quality measure than RMSE (3.2), as it considers image
degradation as a visually perceived change in structural information. The SSIM value equals 1 if
images are identical.

We optimized thoroughly all the reconstruction parameters (see section (a)) and the optimal
parameters are given in table (1).

Table 1: Parameters for the image reconstruction experiment (see Fig. 5).

Parameter Method Value Description
MaxOuter NLST 11 Outer iterations (CGLS) number in alg. (1)
MaxInner NLST 1 Inner iterations number in alg. (1)
Nsearch NLST 11 The size of the searching window
Nsim NLST 3 The size of the similarity window
np NLST 0.05 The number of n0 neighbours (2.14)
β NLST 2.6 Regularization parameter (2.11)
h NLST 0.15 Noise dependent threshold (2.9)
γ NLST 0.9 Parameter in (2.12)
MaxOuter PICCS 12 Outer iterations (CGLS) number
MaxInner PICCS 25 Inner GD iterations number
λ PICCS 0.01 Regularization parameter (3.1)
α PICCS 0.4 Trade-off parameter (3.1)
τ PICCS 0.001 Time step parameter for GD
ε NLST and PICCS 1e-05 An iteration tolerance constant

(a) Image reconstruction of modelled data
Similarly to [12], a synthetic dynamically changing phantom for time-lapse tomographic image
reconstruction was created as follows. First, a high quality reconstruction based on an X-ray
projection dataset collected for a rock sample (porous granitic gravel), which was acquired
on a Nikon XTH 225 ST cone beam scanner at the Manchester X-ray facility, was calculated
with the Feldkamp algorithm (FDK). This reconstruction is displayed in Fig. 1 (left). Based on
this reconstruction, the rock region was extracted and all other attenuation values were set to
zero, resulting in the image displayed in Fig. 1 (middle). Next, fluid flow was simulated in the
void space region, where the time points at which fluids enters a certain voxel were randomly
generated by applying a global thresholding operation on a 2D Perlin noise image [26]. The
stationary and dynamic regions of interest (ROIs) are shown in Fig. 1 (right).

In this experiment, we simulated two cases, namely cases where 45 and 25 projections were
taken per time frame (30 time frames in total) resulting in 1350 and 750 projections respectively.
Projections were collected using the Golden Ratio (GR) firing order technique [29]. The GR
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Figure 1: From left to right: reconstruction of the porous granitic gravel sample from 2000
projections using the FDK algorithm; realistic rock phantom created from image; rendered 3D
phantom (x, y + time) phantom where stationary and dynamic ROI’s are shown.

scanning approach is used to obtain projections in a non-sequential order. The basic idea is
to adapt the angular sequence of projections so that any subsets of chronologically contiguous
projections contain sufficient information for reconstruction. This technique is well suited to
iterative reconstruction methods because one can divide the scan into an arbitrary number of
subscans which are normally sampled below the Nyquist rate. Each projection was generated
with a strip kernel [1] and a higher resolution version of the phantom, i.e., on a 800× 800 isotropic
pixel grid. Poisson distributed noise was applied to the projection data, assuming an incoming
beam intensity of 30000 (photon count). Reconstructions were calculated on a 300× 300 isotropic
pixel grid and with a linear projection model [1], thus avoiding the “inverse crime” of generating
the data with the same model as the model that is used for calculating the reconstruction. In total,
30 different time frames were reconstructed by subdividing the simulated projection data into 30
distinct subsets of 45 and 25 projections each.

For a fair comparison of the CGLS-PICCS and CGLS-NLST methods we initially optimized the
parameters (see parameters in table 1). In Fig. (2) we present the result of the final optimization
procedure for α of PICCS and β of the NLST method. Other parameters previously chosen to be
optimal (or nearly optimal) are fixed as shown in table 1.

a selection for PICCS
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Figure 2: Optimization procedure to find the optimal values of α for the PICCS method (3.1) and
β for the NLST method (2.11). The optimization was performed with respect to RMSE values in
stationary and dynamic ROI’s of the phantom (see Fig. 1(right)).

In Fig. 3 we show the obtained RMSE values for the CGLS, CGLS-PICCS and CGLS-NLST
methods for cases when 45 and 25 projections are used to reconstruct each time frame. One can
see that the proposed CGLS-NLST method outperforms CGLS-PICCS in both cases. Notably, for
the case reconstructed from 25 projections per time frame the difference in RMSE values between
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NLST and PICCS becomes more apparent (see Fig. 3 (right)). Those results demonstrate that the
proposed method is more robust in dealing with under-sampled noisy projection data.

RMSE's for 45 Projections
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RMSE's for 25 Projections
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Figure 3: RMSE values for the whole data set X̂ reconstructed with different methods from
45 (left) and 25 (right) projections per time frame k. The proposed regularization method
outperforms the CGLS-PICCS and CGLS methods.

The SSIM values were calculated for the reconstructed datasets and shown in Fig. 4. The time
frames k= 1, 7, 15, 22 from the whole reconstructed dataset X̂ for 45 projections are shown in
Fig. 5. One time frame k= 22 is shown in Fig. 6 were reconstruction from 25 projection angles is
performed.

SSIM for 45 projections
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S

IM

CGLS

CGLS-P
IC
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CGLS-N
LST
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0.1

0.2

0.3

0.4

SSIM for 25 projections

S
S

IM

CGLS

CGLS-P
IC

CS

CGLS-N
LST

0.0

0.1

0.2

0.3

0.4

Figure 4: SSIM values for the whole data set X̂ reconstructed with different methods from 45 (left)
and 25 (right) projections per time frame k. The proposed method slightly outperforms the CGLS-
PICCS method for 45 projections reconstruction case and more significantly for 25 projections.

For reconstructions with the CGLS-PICCS and CGLS-NLST methods (see Fig. 5 and Fig. 6)
we used the reference image which was reconstructed with the CGLS method from 1350 noisy
dynamically changing projections (see Fig. 5 (top)). Note that the reference image is noisy and
dynamic resolution is lost through time averaging in reconstruction process. In Fig. 5 and Fig.
6 one can see that the CGLS-PICCS method is able to improve spatial resolution while using
the reference image, however the noise level is high. The proposed CGLS-NLST method delivers
significant improvement in spatial and temporal resolution and SNR.
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Figure 5: 2D reconstructions of 30 time frames (45 projections each), of which four time frames
are shown. The presented images were reconstructed using the CGLS method (10 iterations),
CGLS-PICCS and CGLS-NLST methods. The reference image (top) is reconstructed with the
CGLS method (15 iterations) from 1350 noisy projections and contains averaged dynamic ROI.
The images reconstructed with the proposed method demonstrate high spatial and temporal
resolution and low level of noise.

Reconstruction from 25 projections per time frame (see Fig. 6) demonstrates that the
proposed method strongly outperforms CGLS-PICCS for under-sampled noisy projection data.
Quantitatively there is also a significant difference in values between the two methods (see Fig. 3
and Fig. 4).
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Figure 6: 2D reconstructions of 30 time frames (25 projections each), of which four time frames are
shown. For reconstruction with CGLS-PICCS and CGLS-NLST the same reference image used as
in Fig. 5 (top). The CGLS-NLST method strongly outperforms the CGLS-PICCS method here.

The choice of np parameter in (2.14) is important since it reduces the search space (less
time for computation) and also drives the regularization process based on the reference image
which results in improved resolution. In Fig. 7, we demonstrate that the optimal value for np is
approximately around 0.09 and the computation time with this value is less than 30 seconds for
one fixed point iteration (2.11). This is more than ten times faster than we take the whole searching
space np = 1, n0 = (Nsearch)

2.

np selection for NLST
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Figure 7: The effect of the np parameter on the accuracy of reconstruction and the computation
time. The optimal value is np = 0.09 and the computation speed is less than 30 seconds for one
fixed point iteration (2.11). The data parameters are 300× 300× 30 pixels and 4 Intel CPU cores
i5 (2.5 GHz) were used.

4. Real data tomographic reconstruction
Here we present numerical results for a real tomographic reconstruction problem of dynamically
evolving objects. Tomographic inversion in this case is severely under-determined and projection
data is contaminated by random noise and artifacts (rings and streaks).

The tomographic experiment (experiment ee10500-1) was performed at I12 JEEP beamline
facility of the Diamond Light Source (DLS) synchrotron (Harwell, UK). The flow of potassium
iodide solution was imaged by suspending the flow outlet tube over the centre of a rotating 15
mm diameter sample holder and allowing a controlled supply of fluid into the sample (bimodal
glass beads 1 : 1 by mass 0.5 mm and 1 mm diameter). The column of particles was rotating at
approximately 3 Hz. The sample was illuminated with direct monochromatic x-rays of 53 keV
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energy. A Vision Research Miro 310M camera was used to acquire the images using a 200-900
microsecond exposure and an projection acquisition rate of 1080 frames per second. Prior to flow,
a high resolution “dry” scan was obtained with 1800 projections in 180 degrees. During the flow
a continuous sequence of over 18000 dynamically evolving “wet” projections were acquired with
180 projections over 180 degrees.

We down-sample the resulting data to 500 projections for the “dry” scan and the dynamically
evolving data (“wet”) to 90 projections per time frame. The size of each 2D XY slice is 1024× 1024

pixels and due to parallel geometry each slice can be reconstructed independently. The “dry”
scan was reconstructed iteratively (20 iterations) with CGLS (see Fig. 8) and used as a prior
image for the CLGS-PICCS and CGLS-NLST methods. The reference image has sharp contrast
(all sizes of glass particles are visible), but some level of noise and reconstruction artifacts are
present. We reconstruct thirty dynamically changing volumes and one slice of one of the time
frames where liquid is present is shown for the CGLS, CGLS-PICCS and CGLS-NLST methods
(see Fig. 8) and show how the dynamic information within the data sets can be rendered for
subsequent qualitative and quantitative analysis (see Fig. 9). The CGLS reconstruction has poorer
resolution and higher noise level. The CGLS-PICCS successfully embeds the prior information
into the reconstruction resulting in higher resolution, but overall the reconstruction is noisy. The
proposed CGLS-NLST method produces denoised image with the sharpest contrast and distinctly
outlined liquid front (central ROI). The sharp contrast between liquid and glass particles will
significantly alleviate the post-processing step.

Figure 8: Magnified part of the glass beads dataset (one slice from one of the thirty volumetric time
frames) with the distinct liquid progress (central ROI). The reference “dry” image is reconstructed
with twenty CGLS iterations and used in the CGLS-PICCS and CGLS-NLST algorithms. One can
see that the CGLS-NLST method gives the best spatial resolution and sharpest contrast between
the liquid and glass particles.

Figure 9: The rendered images of the scanned sample showing the liquid ingress into the glass
beads. The volumes (only 50 slices are shown) were reconstructed using the CGLS-NLST method
from 90 projections per time frame (time frames k= 1, 7, 15 were taken).
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Here we comment on the process of choosing the optimal parameters for the compared
methods for real data reconstruction. Although the CGLS-PICCS method has a smaller number of
controlled parameters (see table 1) it has been much more difficult (compared to the CGLS-NLST
method) to find the optimal (visually pleasing) parameters for CGLS-PICCS. In contrast to the
CGLS-NLST method we used exactly the same set of parameters as in table 1 (only β was chosen
differently), however for the CGLS - PICCS we were optimizing for the λ and α parameters. If the
prior image is not ideal (as in our case) it is more difficult with CGLS - PICCS to find the best trade-
off between the noise level present in the data and the prior image as well as to avoid blurring of
dynamically changing features. We conclude that the proposed the CGLS-NLST method is robust
to noise in the prior images, is aware of dynamic features (different from the prior image) present
in the data and is easy to use.

5. Discussion
Exploiting all the available time frames in spatio-temporal regularization is a challenging task and
a good balance is required between spatial and temporal resolution. For the proposed method we
assume that some features are repetitive in time and can be spatially enhanced by the temporal
correlation. Because of this requirement, not every time-lapse tomographic data set is suitable for
the proposed method. Some restrictions are that some structural features should be aligned in
time (otherwise there is no benefit of using this approach) and the prior image is registered to
the main dataset. Although the computation time on CPUs (OMP realization in C language [25])
is significantly reduced with the proposed approach (which makes it feasible even for the large
datasets), a GPU implementation has the potential to accelerate this method even further with a
massive thread parallelization.

The reference image can be obtained by scanning the object for a longer period of time prior
to the dynamic experiment. If the prior image is not available, one can use the reconstructed
image (as a reference) from all collected projection data as it shown in the modelled numerical
experiment (see section (a)). If there is no direct way to obtain a good estimate to constrain
regularization, one should consider methods similar to [12].

6. Conclusion
In this paper, we presented results of a novel spatio-temporal regularization technique which
is based on non-local methods for image denoising. Our method is generalized to employ
all available temporal information and the supplementary data. By employing the temporal
correlation of repetitively imaged object and available prior information, it is possible to achieve a
higher spatial resolution, SNR and the speed of computation in comparison to the state-of-the-art
reconstruction algorithms.

In the current state, this method has the potential for dynamic tomographic applications where
some parts of the imaged object are fixed and others are varying over time. The flexibility of the
proposed regularizing penalty and ease of computer implementation makes it transferable across
a wide range of imaging applications.
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