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A The Complete Model

The complete system of non-linear equations describing the equilibrium are given by
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lnAt = lnγ + lnAt−1 + ln zt

ln zt = ρz ln zt−1 + εzt

lnµt = ρµ lnµt−1 + εµt

ln ξt = ρξ ln ξt−1 + εξt

ln(1− τ t) = ρµ ln(1− τ t−1) + (1− ρµ) ln(1− τ)− εµt

with an associated equation describing the evolution of price dispersion, ∆t =
∫ 1
0

(
Pt(i)
Pt

)−η
di,

which is not needed to tie down the equilibrium upon log-linearisation. The model is then closed

with the addition of a description of monetary policy, which will either be rule based, or derived

from various forms of optimal policy discussed in the main text.

In order to render this model stationary we need to scale certain variables by the non-

stationary level of technology, At such that kt = Kt/At whereKt = {Yt, Ct,Wt/Pt}. All other real

variables are naturally stationary. Applying this scaling, the steady-state equilibrium conditions
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reduce to:

NϕXσ = w(1− τ)

1 = βRπ−1/γ = βr/γ

y = N = c

X = c(1− θ)
η

η − 1
=

1

w
.

This system yields

Nσ+ϕ (1− θ)σ = w(1− τ). (1)

which can be solved for N . Note that this expression depends on the real wage w, which can

be obtained from the steady-state pricing decision of our monopolistically competitive firms. In

Appendix B we contrast this with the labour allocation that would be chosen by a social planner in

order to fix the steady-state tax rate required to offset the net distortion implied by monopolistic

competition and the consumption habits externality.

B The Social Planner’s Problem

The subsidy level that ensures an efficient long-run equilibrium is obtained by comparing the

steady state solution of the social planner’s problem with the steady state obtained in the decen-

tralised equilibrium. The social planner ignores the nominal inertia and all other inefficiencies

and chooses real allocations that maximise the representative consumer’s utility subject to the

aggregate resource constraint, the aggregate production function, and the law of motion for habit-

adjusted consumption:
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∗
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∗
t

X∗
t = C∗t /At − θC∗t−1/At−1

The optimal choice implies the following relationship between the marginal rate of substi-

tution between labour and habit-adjusted consumption and the intertemporal marginal rate of

substitution in habit-adjusted consumption

(N∗
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)−σ
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The steady state equivalent of this expression can be written as

(N∗)ϕ+σ (1− θ)σ = (1− θβ) .

If we contrast this with the allocation achieved in the steady-state of our decentralised equi-

librium given by equation (1), we can see that the two will be identical whenever the tax rate is

set optimally to be

τ∗ ≡ 1−
η

η − 1
(1− θβ).

Notice that in the absence of habits the optimal tax rate would be negative, such that it is

effectively a subsidy which offsets the monopolistic competition distortion. However, for the

estimated values of the habits parameter the optimal tax rate is positive as the policy maker

wishes to prevent households from overconsuming.

C Derivation of Objective Function

Individual utility in period t is

Γ0 = E0
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−
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t ξ−σt
1 + ϕ

)

where Xt = ct − θct−1 is habit-adjusted aggregate consumption after adjusting consumption for

the level of productivity, ct = Ct/At.

Linearisation up to second order yields
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where where tip(3) includes terms independent of policy as well as terms of third order and higher.

For every variable Zt with steady state value Z we denote Ẑt = log(Zt/Z).

The second order approximation to the production function yields the exact relationship

N̂t = ∆̂t + ŷt , where yt = Yt/At and ∆t =

1∫

0

(
Pt(i)
Pt

)−η
di. We substitute N̂t out and follow Eser

et al. (2009) in using
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to yield
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The second order approximation to the national income identity yields
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2
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Finally, we use that in the efficient steady-state X
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terms to arrive at
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After normalising the coefficient on inflation to one, we can write the microfounded objective

function as,
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 , (2)

where the weights on the two real terms are functions of model structural parameters, where

Φ1 =
σ(1−θ)
1−θβ

(1−βα)(1−α)
αη and Φ2 =

ϕ(1−βα)(1−α)
αη .

D A Bayesian Learning Rate Indicator

This section applies the Bayesian learning rate indicator proposed by Koop et al. (2013) to check

the degree of parameter identification under discretion, commitment, and the simple rule with

Markov switching rule parameters in Table 2. This indicator does not propose a ‘Yes/No’ answer

to the question of whether a given parameter is identified. However, it indicates the degree of

identification. This indicator is developed on the basis of Bayesian asymptotic theory. As sample

size increases, the role of the prior vanishes and the posterior of the parameter asymptotically

converges to its true value.

The advantage of this indicator is that it can be easily applied to models with Markov-

switching parameters, since it requires only a few additional steps during an ordinary Bayesian
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estimation. However, applying this indicator requires prior knowledge that a subset of model

parameters is known to be identifiable. Therefore, we rely on results obtained using Iskrev (2010)

that the fixed parameter versions of our model closed with either a simple rule or optimal policy

are identifiable.

In developing this indicator Koop et al. (2013) assume Gaussian priors to obtain analytical

solution of posterior precision when the sample period reaches infinity. However, for most DSGE

models, the priors are non-Gaussian. Therefore, the exact expression of posterior precision is

different from those illustrated in Koop et al. (2013). In applying this indicator to a DSGE

model, Caglar et al. (2011) suggest treating the Hessian at the posterior mode as the measure

of posterior precision. The technical details of this indicator can be found in Koop et al. (2013).

Here, we focus on how this indicator is applied to our Markov switching models.

Let θ = [θi, θu]
′ be a vector of model parameters, with the assumption that θi is known to

be identified, while the identification of θu is under question. Prior to applying the Bayesian

learning rate indicator, we use Iskrev (2010) to determine how we split the model parameters

into θi and θu. θu includes parameters that are associated with Markov switching in policy, shock

variances and parameters in the transition matrix. These parameters cannot be incorporated in

the Iskrev (2010) test. For both commitment and discretion θu = [p11, p22, q11, q22, σξ(s=1,2),

σµ(s=1,2), σz(s=1,2), ωπ(S=2)], while for the simple rule with Markov-switching rule parameters θu

= [p11, p22, q11, q22, σξ(s=1,2), σµ(s=1,2), σz(s=1,2), σR(s=1,2), ψ1(S=1,2), ψ2(S=1,2), ρ
R
(S=1,2)].

1

To implement this indicator, we simulate samples of artificial data from each models. Models

with Markov-switching parameters complicate the data generating processes (DGPs). To simulate

data from a Markov-switching model, we need to set the model parameters and the probabilities

of each regime. We set model parameters equal to posterior means in Table 2. Unlike when

using a fixed parameter model to generate datasets as discussed in Koop et al. (2013) and Caglar

et al. (2011), we cannot generate a single large dataset and then take subsets of it to produce

smaller samples. This is because probabilities of different sample sizes have to correspond to the

estimated transition probabilities (p11, p22, q11, q22).

We generate data samples with T = 100, 1000, 10000 and 20000. In order to ensure our

implementation of this indicator is as comparable as possible across models, we use the same seed

for the random number generator for DGPs in each case.

Tables D1, D2 and D3 present the normalised posterior precision of parameters included in θu

under discretion, commitment and a simple rule. As discussed in Koop et al. (2013), we observe

1We set ωπ(S=1) = 1, therefore ωπ(S=1) is not included in θu under optimal policy.
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that posterior precision need not rise monotonically with T. The posterior precision may, in fact,

fall before rising depending on prior type. However, Koop et al. (2013) show that the normalised

posterior precision of an unidentified parameter will shrink to zero very quickly as T increases.

To make our results robust, we double our sample size from T = 10000, the largest sample size

used in Koop et al. (2013) to T = 20000. It can be seen that none of the normalised posterior

precision in θu collapse to zero when T = 20000. This indicates that our model parameters are

reasonably well identified.

Table D1: Posterior precision divided by sample size (Discretion)

Parameters n = 100 n = 1000 n = 10000 n = 20000

Parameters associated with the MS mechanism

ωπ(S=2) 5.246 3.280 1.355 0.733

σξ(s=1) 2.022 3.584 2.938 2.778

σξ(s=2) 2.969 0.959 1.628 1.505

σµ(s=1) 7.324 8.812 5.512 7.017

σµ(s=2) 4.447 1.151 1.768 1.815

σz(s=1) 7.628 8.525 4.567 8.475

σz(s=2) 4.480 1.210 1.704 1.645

p11 8.244 1.692 1.735 1.274

p22 35.245 11.901 3.209 1.804

q11 19.865 2.834 4.836 5.573

q22 12.903 15.956 10.427 11.448

Table D2: Posterior precision divided by sample size (Commitment)

Parameters n = 100 n = 1000 n = 10000 n = 20000

Parameters associated with the MS mechanism

ωπ(S=2) 8.262 4.963 4.195 2.766

σξ(s=1) 1.171 1.770 4.881 2.657

σξ(s=2) 3.405 1.184 0.857 0.817

σµ(s=1) 0.154 0.207 0.383 0.318

σµ(s=2) 0.506 0.226 0.251 0.152

σz(s=1) 2.969 12.158 11.467 9.317

σz(s=2) 4.175 2.602 3.618 2.113

p11 6.023 20.369 20.935 16.786

p22 15.055 14.846 8.503 5.381

q11 10.221 13.311 10.774 8.300

q22 2.451 12.749 14.382 12.000
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Table D3: Posterior precision divided by sample size (simple rule)

Parameters n = 100 n = 1000 n = 10000 n = 20000

Parameters associated with the MS mechanism

ρR(S=1) 27.191 30.109 29.181 29.731

ρR(S=2) 2.089 1.469 1.852 3.036

ψ1(S=1) 0.538 0.573 0.409 0.504

ψ1(S=2) 0.717 1.558 1.764 1.777

ψ2(S=1) 2.042 0.605 0.237 0.258

ψ2(S=2) 2.636 0.697 0.304 0.327

σR(s=1) 48.769 63.814 70.160 67.808

σR(s=2) 6.584 6.019 4.348 5.173

σξ(s=1) 1.518 1.967 2.483 2.380

σξ(s=2) 1.007 0.907 0.776 0.703

σµ(s=1) 1.025 0.238 0.015 0.016

σµ(s=2) 0.286 0.041 0.006 0.008

σz(s=1) 9.299 8.299 9.649 10.309

σz(s=2) 1.035 1.019 0.761 1.047

p11 36.516 21.990 11.710 15.341

p22 5.293 3.395 3.785 4.816

q11 8.116 9.110 11.263 11.229

q22 3.379 2.246 1.762 2.015

E Implicit Interest Rate Rule

This section outlines how, in principle, we can construct an interest rate rule underpinning dis-

cretion, and estimates that rule without imposing the cross-equation restrictions implied by dis-

cretion.

There are numerous ways of representing the policy rules implied by discretion, which will

rarely be unique, even although the equilibrium implied by discretionary policy will be. To

consider potential functional forms of an instrument rule we employ the following Lagrangian

representation of the policy problem under discretion:

L =
1

2





ω1
(
(1− θ)−1(ŷt − θŷt−1) + ξ̂t

)2
+ ω2

(
ŷt −

σ
ϕ ξ̂t

)2

ωπ,st

(
π̂2t +

ζα−1

(1−ζ) [π̂t − π̂t−1]
2
)
+ ω3

(
∆R̂t

)2



+ βEtVt+1

+λ1t

[
(1− θ)−1(ŷt − θŷt−1)− (1− θ)−1(Etŷt+1 − θŷt)

+ 1
σ

(
R̂t − Etπ̂t+1 − Etẑt+1

)
+ (1− ρ)ξ̂t

]

+λ2t [π̂t − χfβEtπ̂t+1 − χbπ̂t−1 − κc(σ(1− θ)−1(ŷt − θŷt−1) + ϕŷt + µ̂t)],
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where, due to the linear-quadratic nature of our policy problem, the expectations variables are a

linear function of the states which include π̂t and ŷt, while the value function, Vt, will be quadratic

in the states. The first order condition for R̂t is

ω3∆R̂t − λ1t

[
1

1− θ

∂Etŷt+1

∂R̂t
+
1

σ

∂Etπ̂t+1

∂R̂t
−
1

σ

]
− λ2tχfβ

∂Etπ̂t+1

∂R̂t
+ β

∂EtVt+1

∂R̂t
= 0.

the first order condition for output ŷt is given by,

ω1
1− θ

(
1

1− θ
ŷt −

θ

1− θ
ŷt−1 + ξ̂t

)
+ ω2

(
ŷt −

σ

ϕ
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)

+λ1t

[
1 + θ

1− θ
−

1

1− θ

∂Etŷt+1
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−
1

σ

∂Etπ̂t+1
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+λ2t

[
π̂t − χfβEtπ̂t+1 − χbπ̂t−1 −

κcσ

1− θ
− κcϕ

]
+ β

∂EtVt+1
∂ŷt

= 0.

and the first order condition for inflation, π̂t, is

ωπ,st π̂t + ωπ,st
ζα−1

(1− ζ)
(π̂t − π̂t−1)− λ1t

[
1

1− θ

∂Etŷt+1
∂π̂t

+
1

σ

∂Etπ̂t+1
∂π̂t

]

+λ2t

[
1− χfβ

∂Etπ̂t+1
∂π̂t

]
+ β

∂EtVt+1
∂π̂t

= 0.

In principle, we could use the first order conditions for ŷt and π̂t to eliminate the LMs, λ
1
t and λ2t ,

from the first order condition for R̂t to get an implied instrument rule under discretion. However,

to write such an instrument rule is complicated and difficult to compare informatively with the

estimated simple rules.

Nevertheless, we can see that the implied instrument rule under discretion is a linear function

of the following arguments:

Rt = f(R̂t−1, π̂t, π̂t−1, ŷt, ŷt−1, ξ̂t, ẑt, µ̂t, ξ̂t−1, ẑt−1, µ̂t−1).

where the rule is a function of the contemporaneous values of all endogenous variables and all

states. However, one can manipulate this further, as in Clarida et al. (1999) by substitution of

either the IS curve or the NKPC, to show that the interest rate is a function of expected inflation

and output, current inflation and output and all states,

Rt = f(R̂t−1, Etπ̂t+1, π̂t, π̂t−1, Etŷt+1, ŷt, ŷt−1, ξ̂t, ẑt, µ̂t, ξ̂t−1, ẑt−1, µ̂t−1).
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Therefore, we proceed by estimating a very general interest rate rule containing all these

terms:

R̂t = ρRstR̂t−1 + (1− ρRst)

(
ψ1,st π̂t + ψ2,st ŷt + ψ3,st π̂t−1 + ψ4,st ŷt−1

+ψ5,stEtπ̂t+1 + ψ6,stEtŷt+1

)

+ψ7ẑt + ψ8µ̂t + ψ9ξ̂t + ψ10ẑt−1 + ψ11µ̂t−1 + ψ12ξ̂t−1 + εRt ,

where we allow Markov-switching in parameters of lagged interest rates, expected, current and

lagged output and inflation, and we also allow the interest rate to directly respond shocks. Specifi-

cally, the priors of ρRst ,ψ1,st and ψ2,st are the same as we reported in Table 1 in the paper, while for

the priors of other parameters they are set to follow the normal distribution with wide standard

deviations.

We find that the likelihood at the mode of this general rule is superior to discretion, but it

is over-parameterised that discretion remains dominant in terms of marginal data density, which

is the correct criterion to compare different models within the Bayesian estimation framework.

Therefore, generalising the interest rate rule tends to improve the likelihood, but at the cost of

increasing model complexity.

Table E1 decomposes the marginal data density (which underpins the Bayes factor com-

parisons of model fit) into the likelihood at the mode and the penalty associated with over-

parameterisation. The results suggest that, in terms of likelihood, discretion marginally improves

upon a simple rule with switches in parameters, but that the latter is penalised due to the larger

number of parameters such that discretion is ‘decisively’ preferred to the simple rule in terms of

Bayes Factors.2 The rule with switches in the inflation target has fewer parameters and so faces

a milder penalty, but the underlying likelihood is less favourable which again accounts for the

relative success of discretion.
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