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NEW GEOMETRIC REPRESENTATIONS AND DOMINATION
PROBLEMS ON TOLERANCE AND MULTITOLERANCE GRAPHS*
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Abstract. Tolerance graphs model interval relations in such a way that intervals can tolerate
a certain amount of overlap without being in conflict. In one of the most natural generalizations
of tolerance graphs with direct applications in the comparison of DNA sequences from different
organisms, namely multitolerance graphs, two tolerances are allowed for each interval: one on the
left side and the other on the right side. Several efficient algorithms for optimization problems that
are NP-hard in general graphs have been designed for tolerance and multitolerance graphs. In spite
of this progress, the complexity status of some fundamental algorithmic problems on tolerance and
multitolerance graphs, such as the dominating set problem, remained unresolved until now—three
decades after the introduction of tolerance graphs. In this paper we introduce two new geometric
representations for tolerance and multitolerance graphs, given by points and line segments in the
plane. Apart from being important on their own, these new representations prove to be a powerful
tool for deriving both hardness results and polynomial time algorithms. Using them, we surprisingly
prove that the dominating set problem can be solved in polynomial time on tolerance graphs and that
it is APX-hard on multitolerance graphs, thus solving a longstanding open problem. This problem is
the first one that has been discovered with a different complexity status in these two graph classes.
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1. Introduction. A graph G = (V,E) on n vertices is a tolerance graph if
there exists a collection I = {I, | v € V}} of intervals on the real line and a set t =
{tv | v € V} of positive numbers (the tolerances) such that for any two vertices
u,v €V, wv € E if and only if |I, N I,,| > min{t,,t,}, where |I| denotes the length
of the interval I. The pair (I,t) is called a tolerance representation of G. If G has a
tolerance representation (I,t) such that ¢, < |I,| for every v € V, then G is called a
bounded tolerance graph.

If we replace “min” by “max” in the above definition, we obtain the class of maz-
tolerance graphs. Both tolerance and max-tolerance graphs have motivated many
research efforts [2, 4, 7, 9, 10, 16, 17, 12, 14, 15] as they find numerous applications,
especially in bioinformatics, among others [10, 12, 14]; for a more detailed account,
see the book on tolerance graphs [11]. One of their major applications is in the
comparison of DNA sequences from different organisms or individuals by making use
of a software tool such as BLAST [1]. However, in some parts of these genomic
sequences in BLAST, we may want to be more tolerant than in other parts since,
for example, some of them may be biologically less significant, or we may have less
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confidence in the exact sequence due to sequencing errors in more error-prone genomic
regions. This concept leads naturally to the notion of multitolerance graphs which
generalize tolerance graphs [19, 11, 15]. The main idea is to allow two different
tolerances for each interval: one on the left side and the other on the right side.
Then, every interval tolerates in its interior part the intersection with other intervals
by an amount that is a convex combination of these two border-tolerances.

Formally, let T = [l,r] be an interval on the real line, and let I, r; € I be two
numbers between [ and r, called tolerant points. For every A € [0,1], we define the
interval I, ., (A) = [l + (ry — DA, Iy + (r — I;)A], which is the convex combination of
[l,1;] and [ry,7]. Furthermore, we define the set Z(I,1;,r) = {I;, »,(A) | A € [0,1]}
of intervals. That is, Z(I,l;,7¢) is the set of all intervals that we obtain when we
linearly transform [l,;] into [r¢,r]. For an interval I, the set of tolerance-intervals T
of I is defined either as 7 = Z(1,l;, ;) for some values l;,r; € I (the case of a bounded
vertex), or as 7 = {R} (the case of an unbounded vertex). A graph G = (V,E)
is a multitolerance graph if there exist a collection I = {I, | v € V} of intervals
and a family ¢ = {7, | v € V} of sets of tolerance-intervals such that for any two
vertices u,v € V, uv € F if and only if Q, C I, for some @, € 7, or @, C I, for
some @, € 7,. Then the pair (I,t) is called a multitolerance representation of G. If
G has a multitolerance representation with only bounded vertices, i.e., with 7, # {R}
for every vertex v, then G is called a bounded multitolerance graph.

For several optimization problems that are NP-hard in general graphs, such as
the coloring, clique, and independent set problems, efficient algorithms are known for
tolerance and multitolerance graphs. However, only a few of them have been derived
using the (multi)tolerance representation (see, e.g., [19, 10]), while most of these algo-
rithms appeared as a consequence of the containment of tolerance and multitolerance
graphs to weakly chordal (and thus also to perfect) graphs [20]. To design efficient
algorithms for (multi)tolerance graphs, it seems to be essential to assume that a suit-
able representation of the graph is given along with the input, as it has been recently
proved that the recognition of tolerance graphs is NP-complete [17]. Recently, two new
geometric intersection models in the 3-dimensional space were introduced for both tol-
erance graphs (the parallelepiped representation [16]) and multitolerance graphs (the
trapezoepiped representation [15]), which enabled the design of very efficient al-
gorithms for such problems, in most cases with (optimal) O(nlogn) running
time [15, 16]. In spite of this, the complexity status of some algorithmic prob-
lems on tolerance and multitolerance graphs still remains open three decades after
the introduction of tolerance graphs in [8]. Arguably, the two most famous and in-
triguing examples of such problems are the minimum dominating set problem and
the Hamilton cycle problem (see, e.g., [20, p. 314]). Both of these problems are
known to be NP-complete in the greater class of weakly chordal graphs [3, 18] but
solvable in polynomial time in the smaller classes of bounded tolerance and bounded
multitolerance (i.e., trapezoid) graphs [13, 6]. The reason why these problems resisted
solution attempts over the years seems to be because the existing representations for
(multi)tolerance graphs do not provide enough insight to deal with these problems.

Our contribution. In this paper we introduce a new geometric representation for
multitolerance graphs, which we call the shadow representation, given by a set of line
segments and points in the plane. In the case of tolerance graphs, this representation
takes a very special form, in which all line segments are horizontal, and therefore
we call it the horizontal shadow representation. Note that both the shadow and
the horizontal shadow representations are not intersection models for multitolerance
graphs and for tolerance graphs, respectively, in the sense that two line segments may
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not intersect in the representation although the corresponding vertices are adjacent.
However, the main advantage of these two new representations is that they provide
substantially new insight for tolerance and multitolerance graphs, and they can be
used to interpret optimization problems (such as the dominating set problem and its
variants) using computational geometry terms.

Apart from being important on their own, these new representations enable us
to establish the complexity of the minimum dominating set problem on both toler-
ance and multitolerance graphs, thus solving a longstanding open problem. Given
a horizontal shadow representation of a tolerance graph GG, we present an algorithm
that computes a minimum dominating set in polynomial time. On the other hand,
using the shadow representation, we prove that the minimum dominating set problem
is APX-hard on multitolerance graphs by providing a reduction from a special case
of the set cover problem. That is, there exists no Polynomial Time Approximation
Scheme (PTAS) for this problem unless P = NP. This is the first problem that has
been discovered with a different complexity status in these two graph classes. There-
fore, given the (seemingly) small difference between the definition of tolerance and
multitolerance graphs, this dichotomy result appears to be surprising.

Organization of the paper. In section 2 we briefly revise the 3-dimensional in-
tersection models for tolerance graphs [16] and multitolerance graphs [15], which
are needed in order to present our new geometric representations. In section 3 we
introduce our new geometric representation for multitolerance graphs (the shadow
representation) and its special case for tolerance graphs (the horizontal shadow rep-
resentation). In section 4 we prove that DOMINATING SET on multitolerance graphs
is APX-hard. Then in sections 5—7 we present our polynomial algorithm for the dom-
inating set problem on tolerance graphs, using the horizontal shadow representation
(cf. Algorithms 1, 2, and 3). In particular, we first present Algorithm 1 in section 5,
which solves a variation of the dominating set problem on tolerance graphs, called
BoOUNDED DOMINATING SET. Then we present Algorithm 2 in section 6, which uses
Algorithm 1 as a subroutine in order to solve a slightly modified version of BOUNDED
DOMINATING SET on tolerance graphs, namely RESTRICTED BOUNDED DOMINATING
SET. In section 7 we present our main algorithm (Algorithm 3), which solves DoMm-
INATING SET on tolerance graphs in polynomial time, using Algorithms 1 and 2 as
subroutines. Finally, in section 8 we discuss the presented results and some interesting
further research questions.

Notation. In this paper we consider simple undirected graphs with no loops or
multiple edges. In an undirected graph G the edge between two vertices u and v is
denoted by ww, and in this case v and v are said to be adjacent in G. We denote
by N(u) = {v € V : uv € E} the set of neighbors of a vertex u in G, and N[u] =
N(u)U{u}. Given a graph G = (V, E) and a subset S C V', G[S] denotes the induced
subgraph of G on the vertices in S. A subset S C V is a dominating set of G if every
vertex v € V' \ S has at least one neighbor in S. Finally, given a set X C R? of points
in the plane, we denote by Hconvex(X) the conver hull defined by the points of X,
and by X = R?\ X the complement of X in R2. For simplicity of presentation we
make the following notational convention throughout the paper: whenever we need
to compute a set S with the smallest cardinality among a family S of sets, we write

S = min{S}.
2. Tolerance and multitolerance graphs. In this section we briefly revise the

3-dimensional intersection model for tolerance graphs [16] and its generalization to
multitolerance graphs [15], together with some useful properties of these models that
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cot ¢y, 1 cot ¢y 2 cot ¢,

FIG. 1. The trapezoid T, corresponds to the bounded vertex u € Vg, while the line segment T,
corresponds to the unbounded vertex v € V.

are needed for the remainder of the paper. Since the intersection model of [16] for
tolerance graphs is a special case of the intersection model of [15] for multitolerance
graphs, we mainly focus below on the more general model for multitolerance graphs.

Consider a multitolerance graph G = (V, E) that is given along with a multitol-
erance representation R. Let Vp and Vi denote the set of bounded and unbounded
vertices of G in this representation, respectively. Consider now two parallel lines
and Lo in the plane. For every vertex v € V = Vp U Vi, we appropriately con-
struct a trapezoid T, with its parallel lines on L; and Ls, respectively (for details
of this construction of the trapezoids, we refer the reader to [15]). According to this
construction, for every unbounded vertex v € Vi the trapezoid T, is trivial, i.e., a
line [15]. For every vertex v € V = Vg U Viy we denote by ay, by, ¢y, d,, the lower left,
upper right, upper left, and lower right endpoints of the trapezoid T, respectively.
Note that for every unbounded vertex v € Viy we have a, = d,, and ¢, = b,,, since T,
is just a line segment. An example is depicted in Figure 1, where T, corresponds to
a bounded vertex u and T, corresponds to an unbounded vertex v.

We now define the left and right angles of these trapezoids. For every angle ¢, the
values tan ¢ and cot ¢ = ta; denote the tangent and the cotangent of ¢, respectively.
Furthermore, ¢ = arccot x is the angle ¢, for which cot ¢ = x.

DEFINITION 1 (see [15]). For every vertex v € V.= Vg U Vy, the values ¢p,1 =
arccot (¢, — ay) and ¢y 2 = arccot (b, —d,) are the left angle and the right angle
of Ty, respectively. Moreover, for every unbounded vertex v € Vi, ¢y = ¢v1 = du.2
is the angle of T,.

Note here that if G is given along with a tolerance representation R (i.e., if G is a
tolerance graph), then for every bounded vertex u we have that ¢, 1 = ¢, 2, and thus
the corresponding trapezoid T, always becomes a parallelogram [15] (see also [16]).

Without loss of generality, we can assume that all endpoints and angles of the
trapezoids are distinct, i.e., {ay, by, cy,dy} N {av, by, dy} = 0 and {¢y.1, Pu2} N
{Pv1, P02} =0 for every u,v € V with u # v, and assume as well that 0 < ¢y, 1, ¢y 2 <
3 for all angles ¢,,1, ¢,2 [15]. It is important to note here that this set of trapezoids
{T, : v € V = Vg UVy} is not an intersection model for the graph G, as two
trapezoids T, T, may have a nonempty intersection although vw ¢ E. However, the
subset of trapezoids {T, : v € V} that corresponds to the bounded vertices (i.e., to
the vertices of Vi) is an intersection model of the induced subgraph G[Vg].

In order to construct an intersection model for the whole graph G (i.e., includ-
ing also the set Vi of the unbounded vertices), we exploit the third dimension as
follows. Let A = max{b, : v € V} — min{a, : v € V} (where we consider the
endpoints b, and a, as real numbers on the lines L; and Lo, respectively). First,
for every unbounded vertex v € Vi we construct the line segment T, = {(x,y, 2) :

(z,y) € Ty, 2= A — cot ¢, }. For every bounded vertex v € Vg, denote by T, 1 and
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Fic. 2. (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here,
he;,j = A —cot ¢y, j for every bounded vertex v; € Vg and j € {1,2}, while hy; = A — cot ¢y, for
every unbounded vertex v; € V;.

Ty the left and the right line segment of the trapezoid T, respectively. We con-

struct two line segments T,1 = {(z,y,2) : (z,y) € Typ1,2 = A — cot ¢, 1} and
Too = {(z,y,2) : (x,y) € Ty2,2 = A —cot¢,}t. Then for every v € Vg, we
construct the 3-dimensional object T, as the convex hull HCOHVEX(TU, Ty, Ty 2); this
3-dimensional object T, is called the trapezoepiped of vertex v € Vg. The result-
ing set {T,, : v € V.= VU Vy} of objects in the 3-dimensional space is called the
trapezoepiped representation of the multitolerance graph G [15]. This is an intersec-
tion model of G i.e., two vertices v, w are adjacent if and only if T, N T, # 0. For
a proof of this fact and for more details about the trapezoepiped representation of
multitolerance graphs, we refer the reader to [15].

Recall that if G is a tolerance graph, given along with a tolerance representation R,
then ¢,.1 = ¢y,2 for every bounded vertex u. Therefore, in the above construction, for
every bounded vertex u the trapezoepiped T,, becomes a parallelepiped, and in this case
the resulting trapezoepiped representation is called a parallelepiped representation [15,
16].

An example of the construction of a trapezoepiped representation is given in
Figure 2. A multitolerance graph G with six vertices {v1,va,...,vs} is depicted
in Figure 2(a), while the trapezoepiped representation of G is illustrated in Fig-
ure 2(b). The sets of bounded and unbounded vertices in this representation are the
sets Vg = {v3, v4,v6} and Viy = {v1,v9,v5}, respectively.
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DEFINITION 2 (see [15]). An unbounded vertex v € Vi is inevitable if replacing
T, by HCOMGI(TU,TU) creates a new edge uv in G; then u is a hovering vertex of v,
and the set H(v) of all hovering vertices of v is the hovering set of v. A trapezoepiped
representation of a multitolerance graph G is called canonical if every unbounded
vertex is inevitable.

In the example of Figure 2, v, and vy are inevitable unbounded vertices, v; and vy
are hovering vertices of vo and vs, respectively, while v; is not an inevitable unbounded
vertex. Therefore, this representation is not canonical for the graph G. However, if
we replace Ty, by Heonvex (Lo, s au,, Coy ), We get a canonical representation for G in
which vertex v; is bounded.

LEMMA 3 (see [15]). Let v € Vy be an inevitable unbounded vertex of a multitol-
erance graph G. Then N(v) C N(u) for every hovering vertex u € H(v) of v.

LEMMA 4 (see [15]). Let R be a canonical representation of a multitolerance
graph G, and let v € Vi be an (inevitable) unbounded vertex of G. Then there exists
a hovering vertex u of v, which is bounded.

Recall that {T, : v € Vg} is an intersection model of the induced subgraph G[V3]
on the bounded vertices of G, i.e., uv € E if and only if T, N T, # (), where u,v € Vp.
Furthermore, although {T, : v € V = Vg U Vy} is not an intersection model of
G, it still provides the whole information about the adjacencies of the vertices of G;
cf. Lemma 6. For Lemma 6 we need the next definition of the angles ¢, (x), where
u € Vg and a, < x < d,; cf. Figure 1 for an illustration.

DEFINITION 5 (see [15]). Let u € Vi be a bounded vertex, and let ay, by, ¢y, d,, be
the endpoints of the trapezoid T,,. Let x € [ay,d,] and y € [cy,by] be two points on the
lines Lo and Ly, respectively, such that x = Aa,+(1—N)d,, andy = Aey,+(1=A)by, for
the same value A € [0,1]. Then ¢, () is the angle of the line segment with endpoints
x and y on the lines Ly and Ly, respectively.

LEMMA 6 (see [15]). Let u € Vg and v € Vi in a trapezoepiped representation of
a multitolerance graph G = (V,E). Let ay, d,, and a, = d, be the endpoints of T,
and T, respectively, on Lo. Then
e ifa, < ay, then wv € E if and only if T, NT, # 0;
e ifa, < a, <d,, then uwv € E if and only if ¢, < dy(ay);
o ifd, < ay, thenuv ¢ E.

3. The new geometric representations. In this section we introduce new
geometric representations on the plane for both tolerance and multitolerance graphs.
The new representation of tolerance graphs is called the horizontal shadow represen-
tation, which is given by a set of points and horizontal line segments in the plane. The
horizontal shadow representation can be naturally extended to general multitolerance
graphs, in which case the line segments are not necessarily horizontal; we call this
representation of multitolerance graphs the shadow representation. In the remainder
of this section, we present the shadow representation of general multitolerance graphs,
since the horizontal shadow representation of tolerance graphs is just the special case,
in which every line segment is horizontal.

DEFINITION 7 (shadow representation). Let G = (V| E) be a multitolerance graph,
let R be a trapezoepiped representation of G, and let Vg,V be the sets of bounded
and unbounded vertices of G in R, respectively. We associate the vertices of G with
points and line segments in the plane as follows:
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o for every v € Vg, the points py1 = (ay, A — cot¢y.1) and py2 = (dv, A —
cot ¢y, 2) and the line segment L, = (py,1,Pv,2);
e for every v € Viy, the point p, = (a,, A — cot ¢y,).

The tuple (P, L), where L={L, :v € Vg} and P = {p, : v € Vy'}, is the shadow
representation of G. If ¢y 1 = ¢y 2 for every v € Vg, then (P, L) is the horizontal
shadow representation of the tolerance graph G. Furthermore, the representation
(P, L) is canonical if the initial trapezoepiped representation R is also canonical.

Note by Definition 7 that given a trapezoepiped (resp., parallelepiped) represen-
tation of a multitolerance (resp., tolerance) graph G with n vertices, we can compute
a shadow (resp., horizontal shadow) representation of G in O(n) time. As an example
for Definition 7, we illustrate in Figure 3 the shadow representation (P, L) of the
multitolerance graph G of Figure 2.

P V6,2
A L, '
y pljﬁg% h7)5,2
hlr’.’;‘l hz'ba,l
Py - :
B, e Dus Py
hv 2 :
> hl,v,i 2
hvl : gleé,Q
Ay, | Quy d vy Quy dm Ay Qg d, o x

Fic. 3. The shadow representation (P, L) of the multitolerance graph G of Figure 2. The
unbounded vertices Viy = {v1,v2,vs5} and the bounded vertices Vg = {v3,va,v6} are associated with
the points P = {Dv, , Pvg, Pus } and the line segments L = { Ly, , Lv,y, Ly }, respectively.

Observation 1. In Definition 7, L, = {(z, A — cot ¢, ()) : a, < x < d,} for every
bounded vertex v € Vg of the multitolerance graph G.

Now we introduce the notions of the shadow and the reverse shadow of points
and of line segments in the plane; an example is illustrated in Figure 4.

DEFINITION 8 (shadow). For an arbitrary point t = (t,,t,) € R? the shadow of
t is the region Sy = {(z,y) € R? : & < t,, y—x < t, — t,}. Furthermore, for every
line segment L., where u € Vg, the shadow of L, is the region S, = UtELu St.

DEFINITION 9 (reverse shadow). For an arbitrary point t = (t,,t,) € R? the
reverse shadow of t is the region Fy = {(v,y) € R? 1 @ > t,, y—x > t, — t,}.
Furthermore, for every line segment L;, where u € Vg, the reverse shadow of L; is
the region F; = UteLi F;.

LEMMA 10. Let G be a multitolerance graph, and let (P, L) be a shadow repre-
sentation of G. Let uw € Vg be a bounded vertex of G such that the corresponding line
segment L, is not trivial, i.e., L, is not a single point. Then the angle of the line
segment L., with a horizontal line (i.c., parallel to the x-axis) is at most 7 and at
least —7%.

Proof. The two endpoints of L, are the points (a,, A — cot ¢, 1) and (dy, A —
cot ¢y, 2). For the purposes of the proof, denote by 1 the angle of the line segment L,
with a horizontal line (i.e., parallel to the z-axis). To prove that ¢» > —7 it suffices

to observe that a, < d, (cf. Figure 1). To prove that ¢ < 7 it suffices to show that
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t pu,l..: Fu

..'..St

(a) (b)

FIG. 4. The shadow and the reverse shadow of (a) a point t € R? and (b) a line segment L.

(A —cot ¢y,2) — (A —cot ¢y,1) < dy, —a, or, equivalently, that (A — (b, —dy)) — (A —
(cy — ay)) < dy — ay. The latter inequality is equivalent to b, > ¢,, which is always
true (cf. Figure 1). d

Recall now that two unbounded vertices u,v € Vy are never adjacent. The
connection between a multitolerance graph G and a shadow representation of it is the
following. Two bounded vertices u,v € Vg are adjacent if and only if L, NS, # 0
or L, NS, # 0; cf. Lemma 11. A bounded vertex u € Vg and an unbounded vertex
v € Vi are adjacent if and only if p, € Sy; cf. Lemma 12.

LEMMA 11. Let (P, L) be a shadow representation of a multitolerance graph G.
Let u,v € Vg be two bounded vertices of G. Then uv € E if and only if L, NSy # 0
or L, NS, # (.

Proof. Let R be the trapezoepiped representation of G, from which the shadow
representation (P, £) is constructed; cf. Definition 7.

(=) Let uv € E. Assume first that the intervals [ay,d,] and [a,,d,] of the
x-axis share at least one common point, say t,. If ¢,(t;) < ¢y (tz), then the point
(te, A—cot ¢, (t;)) of the line segment L, belongs to the shadow S, of the line segment
L, ie., Ly NS, # 0. Otherwise, symmetrically, if ¢, (t) > ¢,(t), then L, NS, # 0.

Assume now that [a,,d,] and [a,,d,] are disjoint, i.e., either d, < a, or d, <
a,. Without loss of generality, we may assume that d, < a,, as the other case
is symmetric. Then, as uv € E by assumption, it follows that T, N T, # 0 in
the trapezoepiped representation R of G. Thus b, > c¢,, since we assumed that
dy < ay. Therefore, cot ¢, = by, — dy > ¢y — dy = cOt ¢y 1 + (a, — dy). That is,
(A —cot gy 2) —dy < (A —cotdy,1) — ay, and thus the point (d,, A — cot @, 2) of the
line segment L, belongs to the shadow S; of the point ¢ = (a,, A — cot ¢,,1) of the
line segment L,. Therefore, L, NS, # 0.

(<) Let Ly,N Sy # 0 or L, NS, # ). Assume first that the intervals [a,, d,] and
[ay,d,] of the z-axis share at least one common point, say t,. Then t, € [ay,d,] N
[ay,d,], and thus the trapezoids T, and T, in the trapezoepiped representation R
have a common point on the line Ly, i.e., T,, N T, # 0. Therefore, since both u and
v are bounded vertices, it follows that uv € E.

Assume now that [a,,d,] and [a,,d,] are disjoint, i.e., either d,, < a, or d, <
a,. Without loss of generality, we may assume that d, < a,, as the other case is
symmetric. Then L, NS, = 0, and thus L, NS, # @. Therefore, by Lemma 10, it
follows that the point ¢ = (d,, A — cot ¢, 2) of L, must belong to S,. In particular,
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this point ¢ of L, must belong to the shadow Sy of the point ¢’ = (ay, A — cot ¢y, 1)
of L,. That is, (A — cot ¢p,2) — dy < (A —cot ¢y 1) — ay. It follows that (b, — d,) =
cot Py 2 > cot ¢y 1 + (ay — dy) = (cy — an) + (ay — dy), and thus b, > ¢,. Therefore,
since d, < ay, it follows that T, N T, # 0, and thus wv € E. 0

LEMMA 12. Let (P, L) be a shadow representation of a multitolerance graph G.
Let v € Vi and u € Vg be two vertices of G. Then uv € E if and only if p, € Sy,.

Proof. Let R be the trapezoepiped representation of G, from which the shadow
representation (P, L) is constructed; cf. Definition 7. Furthermore, recall that p, =
(ay, A — cot ¢,) by Definition 7.

(=) Let wv € E. If d, < a,, then uwv ¢ E by Lemma 6, which is a contradiction.
Therefore, a, < d,. Assume first that a, < a, < d,. Then Lemma 6 implies that
¢y < ¢u(ay). Thus it follows by Observation 1 that p, € S,. Assume now that
@y < ay. Then Lemma 6 implies that T, N T, # . Thus b, > c,, since a, < ay.
Therefore, cot ¢, = (b, — ay) > (ay — ay) + (¢4 — ay) = (ay — ay) + cot ¢y 1. That
is, (A —cot ¢y,) — ay < (A — cot ¢y,1) — ay, and thus the point p, = (ay, A — cot ¢y)
belongs to the shadow S;, where ¢ = (ay, A — cot ¢y,1) € Ly, i.e., p, € Sy.

(<) Let p, € S,. Then clearly a, < d,,. Assume first that a, < a, < d,. Then,
since p, € Sy, it follows by Observation 1 that A — cot ¢, < A — cot ¢y (a, ), and thus
¢y < ¢y(ay). Therefore, Lemma 6 implies that uv € E.

Assume now that a, < a,. Then, since p, € 5, it follows that p, € S;, where
t = (ay, A —cot¢,1) € L,. Thus (A —cote,) —a, < (A —cotegy,1) — a,. That
is, (by — ay) = cot @y, > (ay — ay) + cot Py 1 = (ay — ay) + (cy — ay), and thus
b, > c,. Therefore, since a, < a,, it follows that T, N T, # (, and thus uv € E by
Lemma 6. ]

Lemmas 11 and 12 show how adjacencies between vertices can be seen in a shadow
representation (P, L) of a multitolerance graph GG. The next lemma describes how
the hovering vertices of an unbounded vertex v € Vi (cf. Definition 2) can be seen in
a shadow representation (P, L).

LEMMA 13. Let (P, L) be a shadow representation of a multitolerance graph G.
Let v € Viy be an unbounded vertex of G, and let uw € V' \ {v} be another arbitrary
vertex. If w € Vg (resp., w € Vi), then u is a hovering vertex of v if and only if
L,NS,#0D (resp., py € Sy).

Proof. Let G = (V, E), and let R be the trapezoepiped representation of G, from
which the shadow representation (P, £) is constructed; cf. Definition 7.

(<) Let u be a hovering vertex of v. That is, if we replace the line segment 7T}, by
Heonvex (T, T,) in the trapezoepiped representation R (i.e., if we make v a bounded
vertex), then the vertices u and v become adjacent in the resulting trapezoepiped
representation R’. Denote the new graph by G’ = (V, E U {uv}), i.e., R’ is a trape-
zoepiped representation of G’. Note here that since both T}, and T, are line segments,
Heonvex (T, T',) is a degenerate trapezoepiped which is 2-dimensional.

Consider the shadow representation (P’, L") of G’ that is obtained by this new
trapezoepiped representation R’. Note that P’ =P\ {p,} and L' = LU {L,}, where
L, is a trivial line segment that consists of only one point p,. Assume first that
u € Vy. Then, since v is bounded and v is adjacent to u in G’, Lemma 12 implies
that p, € S,. Assume now that v € V. Then, since v is bounded and v is adjacent
to u in G, Lemma 11 implies that L, NS, # ® or L, NS, # @. That is, p, € Sy,
or L, NS, # 0, since L, = {p,}. If p, € Sy, then u and v are adjacent in G, by
Lemma 12, which is a contradiction. Therefore, L, NS, # 0.
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(=) Consider the shadow representation (P’, £’) that is obtained by the shadow
representation (P, L) of G such that P’ = P\ {p,} and L' = LU {L,}, where L, is
a trivial line segment that consists of only one point p,. Then (P’,L’) is a shadow
representation of some multitolerance graph G’, where the bounded vertices Vi of G’
correspond to the line segments of £ and the unbounded vertices V7, of G’ correspond
to the points of P’. Furthermore, note that V}; = Vg U {v} and V; = Viy \ {v}.

Assume first that v € V§ and L, NS, # 0. Then, since both u,v € V}, Lemma 11
implies that u and v are adjacent in G’. Thus, since u is not adjacent to v in G, it
follows that u is a hovering vertex of v. Assume now that u € V; and p,, € S,. Then,
since both v € V;, Lemma 12 implies that v and v are adjacent in G’. Thus, similarly,
u is a hovering vertex of v. ]

In the example of Figure 3 the shadows of the points in P and of the line segments
in £ are shown with dotted lines. For instance, p,, € Sy, and p,, ¢ Sy,, and thus the
unbounded vertex vy is adjacent to the bounded vertex vz but not to the bounded
vertex vy. Furthermore L,, N S,, # 0, and thus vs and vy are adjacent. On the
other hand, L,, NSy, = Ly, NSy, =0, and thus v and vy are not adjacent. Finally,
Puy, € Sy, and Ly, NS, # 0, and thus v; is a hovering vertex of vy and vy is a hovering
vertex of vs. These facts can be also checked in the trapezoepiped representation of
the same multitolerance graph G in Figure 2(b).

4. DOMINATING SET is APX-hard on multitolerance graphs. In this
section we prove that the dominating set problem on multitolerance graphs is APX-
hard. Let us first recall that an optimization problem P; is L-reducible to an opti-
mization problem P, [21] if there exist two functions f and g, which are computable
in polynomial time, and two constants «, 8 > 0 such that

e for any instance Z of Py, f(Z) is an instance of P» and OPT(f(Z)) < « -
OPT(Z); and

e for any feasible solution D of f(Z), g(D) is a feasible solution of Z, and it
holds that |¢(g(D)) — OPT(Z)| < B - |e(D) — OPT(f(Z))|, where ¢(D) and
¢(g(D)) denote the costs of the solutions D and g(D), respectively.

Let us now define a special case of the unweighted set cover problem, namely the
SPECIAL 3-SET COVER (S3SC) problem [5].

THEOREM 14 (see [5]). SPECIAL 3-SET COVER is APX-hard.

SPECIAL 3-SET COVER

Input: A pair (,S) consisting of a universe Y = AUW U X UY UZ, and a
family S of subsets of U such that

the sets A, W, X, Y, Z are disjoint;

A={a;:ien}, W=_{w,:iem]}, X ={z;:ie[m]},Y ={y;: i €
(m]}, Z ={z:i€[m]}

e 2n = 3m;

for all ¢ € [n], the element a; belongs to exactly two sets of S; and

S has 5m sets; for every t € [m] there exist integers 1 < i < j < k < n such
that S contains the sets {a;, w;}, {wi, z}, {aj, ze, ue}s {ye, 2}, {an, 2}
Output: A subset Sg C S of minimum size such that every element in ¢ belongs
to at least one set of Sp.
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L5m+1 L5 )
m-+2. :

FiG. 5. The construction of the shadow representation in Theorem 15.

THEOREM 15. DOMINATING SET is APX-hard on multitolerance graphs.

Proof. From Theorem 14 it is enough to prove that SPECIAL 3-SET COVER is
L-reducible to DOMINATING SET on multitolerance graphs.!

Given an instance Z = (U, S) of SPECIAL 3-SET COVER as above we construct
a multitolerance graph f(Z) = (P, L), where P and L are the sets of points and line
segments in the shadow representation of f(Z) as follows. For every element a; € A,
we create the point p,, of P on the line {(z,—z) : z > 0}. Furthermore, for every
element ¢ € WUXUY UZ, we create the point p, of P on the line {(t, tan(%)t) : t < 0}
such that for every ¢ € [m] the points that correspond to the elements w;, z;, y;, and
z; appear consecutively on this line (cf. Figure 5). Then, since every set of S contains
at most one element of A and at most two elements of W U X UY U Z, it can be
easily verified that we can construct for every set Q; € S, j € [5m], a line segment
L; such that the points of P that are contained within its shadow S; are exactly
the points of P that correspond to the elements of @, (cf. Figure 5). Furthermore,
we construct an additional line segment Lg,,+1, with left endpoint I5,,+1 and right
endpoint 75,41, respectively, such that l5,,4+1 (resp., rsm1) lies below and to the left
(resp., below and to the right) of every endpoint of PU{L1, Lo, ..., Ls;, }. Then note
that the line segment Ls,,+1 corresponds to a hovering vertex of every point p € P
in the multitolerance graph f(Z); cf. Lemma 13. Moreover, the line segment L, 11
is a neighbor to all other line segments {L1, Lo, ..., L5y } in the multitolerance graph
f(2); cf. Lemma 11. Finally, we add the line segment Ls,, 1o such that Ls,,11 is its
only neighbor; cf. Figure 5. This concludes the construction of the new instance f(Z).

Claim 1. OPT(f(Z)) < OPT(Z) + 1, and thus OPT(f(Z)) < 2-OPT(Z).

Proof of Claim 1. Let Sg C S be an optimum solution of an instance Z to SPECIAL
3-SET COVER, and let D be the subset of £ in the instance f(Z) of DOMINATING
SET, where a line segment L of f(Z) belongs to D if and only if the corresponding
set of Z belongs to S. Let now D' = D U{Lsm41}. As S is an optimum solution
of 7 it follows that all the elements of U belong to some set of S, and from the
construction of f(Z) it follows that all points of P are contained inside the shadows
of the line segments in D. Thus, every point of P has a neighbor in D. Notice also
that from the construction of Ls,,+1 all line segments of £ have Lg,,,+1 as a neighbor.
Therefore, as |D| = |S| and Lspy1 ¢ D, D' = DU {Lsp+1} is a solution to f(Z) of
size OPT(Z) + 1. As DOMINATING SET is a minimization problem, we obtain that
OPT(f(Z)) < |D'| = OPT(Z) + 1. O

I This proof is inspired by the proof of Theorem 1.1(C5) in [5].
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We now define the function g which, given a feasible solution D of f(Z), returns
a feasible solution g(D) of Z. Let D be a feasible solution of f(Z).

If L1 does not belong to D, then Lg,, 2 belongs to D, since Ls,, 11 is the only
neighbor of Ls, 2. By replacing Ls, 12 by Lsm41 we obtain a solution of f(Z) of the
same size. Thus, without loss of generality we may assume that Ls,,11 belongs to D.
Furthermore, by the minimality of D it follows that D does not contain Ls,, 2. Recall
that all line segments {L1, Lo, . .., L5y, } have Ls,, 11 as a neighbor in D and that every
point p of f(Z) is contained in the shadow of some line segment L, € {L1, Lo, ..., Lsm}
in f(Z). Thus, for every point p € PN D, the set (D \ {p}) U{L,} is also a solution
of f(Z) and has size at most |D|. Therefore, without loss of generality we may also
assume that D contains only line segments. As Ls,+1 € D is not a neighbor of
any point of P in f(Z), the set D \ {Lsm+1} contains all neighbors of the points of
f(@). Let S C S contain all sets from S that correspond to the line segments of
D\ {Lsm+1}. From the construction of f(Z) we obtain that each element of I in T
belongs to at least one set of Sy. We define g(D) to be that set Sp. Finally, notice
that |Sp| < |D| — 1. This implies the following simple observation.

Observation 2. If D is a solution of f(Z), then g(D) is a solution of Z and
c(9(D)) < ¢(D) - 1.

Claim 2. OPT(f(I)) = OPT(Z) + 1.

Proof of Claim 2. Let D be an optimum solution of f(Z). From Observation 2,
we obtain that there exists a solution S of Z such that |S| < OPT(f(Z)) — 1. As
SPECIAL 3-SET COVER is a minimization problem, it follows that OPT(Z) < |S| <
OPT(f(Z)) — 1, and thus OPT(Z) + 1 < OPT(f(Z)). We now obtain the desired
result from Claim 1. O

We finally prove that ¢(g(D)) — OPT(Z) < ¢(D) — OPT(f(Z)). Notice that this
is enough to prove the reduction for & = 2 (Claim 1) and g = 1. Claim 2 yields that
¢(g(D)) — OPT(Z) = ¢(g9(D)) — OPT(f(Z)) + 1, and thus it follows by Observation 2
that

c(9(D)) = OPT(f(Z)) +1 < ¢(D) =1 = OPT(f(Z)) + 1 = ¢(D) — OPT(f(Z)).

This completes the proof of the theorem. 0

5. Bounded dominating set on tolerance graphs. In this section we use
the horizontal shadow representation of tolerance graphs (cf. section 3) to provide a
polynomial time algorithm for a variation of the minimum dominating set problem
on tolerance graphs, namely BOUNDED DOMINATING SET, formally defined below.
This problem variation may be interesting on its own, but we use our algorithm for
BOUNDED DOMINATING SET as a subroutine in our algorithm for the minimum dom-
inating set problem on tolerance graphs; cf. sections 6 and 7. Note that given a
horizontal shadow representation (P, L) of a tolerance graph G = (V, E), the repre-
sentation (P, L) defines a partition of the vertex set V into the set Vz of bounded
vertices and the set Vi of unbounded vertices. Indeed, every point of P corresponds
to an unbounded vertex in Vi, and every line segment of £ corresponds to a bounded
vertex of Vp. We denote P = {p1,p2,...,pjp|} and L ={L1, Lo, ..., Lz}, where
[P+ L] = [Vu| + [VB| = |V].

In this section we deal only with tolerance graphs and their horizontal shadow
representations. Thus, from now on all line segments {L; : 1 < ¢ < |£|} will be
assumed to be horizontal. Furthermore, with a slight abuse of notation, for any two
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elements x1,zo € P U L, we may say in the following that z; is adjacent with zo
(or x; is a neighbor of ) if the vertices that correspond to z; and x5 are adjacent
in the graph G. Moreover, whenever Py C P, C P and £; C Lo C L, we may
say in the following that the set Py U L1 dominates Py U Ly if the vertices that
correspond to P; U L are a dominating set of the subgraph of G induced by the
vertices corresponding to Py U Lo.

BOUNDED DOMINATING SET on tolerance graphs

Input: A horizontal shadow representation (P, L) of a tolerance graph G.
Output: A set Z C £ of minimum size that dominates (P, L), or the announce-
ment that £ does not dominate (P, £).

Before presenting our polynomial time algorithm for BOUNDED DOMINATING SET
on tolerance graphs, we first provide some necessary notation and terminology.

5.1. Notation and terminology. For an arbitrary point ¢t = (¢,,t,) € R? we
define the following two (infinite) lines passing through ¢:
e the vertical line I'}°"* = {(¢,,s) € R? : s € R}, i.e., the line that is parallel to
the y-axis; and )
e the diagonal line T{"8 = {(s,s+ (t, —t,)) € R2: s € R}, i.e., the line that is
parallel to the main diagonal {(s,s) € R? : s € R}.
The lines TY* and I8 are illustrated in Figure 6(a) (see also Figure 4(a)).
For every point t = (t,t,) € R?, each of the lines I'y°", '8 separates R? into two
regions. With respect to the line I'}*"® we define the regions RZ . (I'}*"") = {(z,y) €

R? : x < t,} and RZ,, (") = {(z,y) € R? : © > t,} of points to the left and to

the right of [Y°*, respectively. Similarly, with respect to the line I{*8 we define the
regions R (T%) — {(z,) € B2 s y—a > b, — £,} and R, (T9™%) — {(2,y) € B2
y—x <t,—t,} of points to the left and to the right of I'{"*®  respectively.

Furthermore, for an arbitrary point ¢t = (t,,t,) € R? we define the region 4,
(resp., B;) that contains all points that are both to the right (resp., to the left) of
I}t and to the right (resp., to the left) of I8, That is,

ver dia,
Ay = R?ight(rt t) N Rfight (I g)’
Bt = RIQeft (errt) N Rlzeft (F?Iag)'

An example of the regions A; and By is given in Figure 6(a), where A; (resp., B;) is
the shaded region of R? that is to the right (resp., to the left) of the point ¢. Consider
an arbitrary horizontal line segment L; € £. We denote by [; and r; its left and its
right endpoint, respectively; note that possibly I; = r;. Denote by A = {l;,r; : 1 <
i < |L£]} the set of all endpoints of all line segments of £. Furthermore, denote by
B = {I{"8 ATyt ;¢ ¢ e A} the set of all intersection points of the vertical and the
diagonal lines that pass from points of A. Note that A C B.

Given a horizontal shadow representation (P, £) we always assume that the points
P1,D2, - - -, pp| are ordered increasingly with respect to their z-coordinates. Similarly,
we assume that the horizontal line segments L1, Lo, ..., Lz are ordered increasingly
with respect to the x-coordinates of their endpoint r;. That is, if ¢ < j, then p; €
Ri g (Tye™") and r; € R (T7"). Notice that without loss of generality, we may
assume that all points of P and all endpoints of the horizontal line segments in £
have different xz-coordinates.
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FiG. 6.‘(a) The regions A¢, By and the lines Ff”t,F?mg. (b) A left-crossing pair (j,5'), where
L3, p1 € E;lgfn and Ly, L2,p2 ¢ ﬁ;lj-{n- (¢) A right-crossing pair (i,i'), where Ls,p3 € Eff{f

L4, Lg,pa ¢ ﬁie{f

DEFINITION 16. Let L;, Ly, € L, and let Lj,Lj € L, where possibly i' =i and
possibly j' = j. The pair (j,j') is a left-crossing pair if l; € S;,,. Furthermore, the
pair (i,i") is a right-crossing pair if ry € Sy,. For every left-crossing pair (j,j') we
define

E;fjg,ht ={xePUL:xC A, wheret= F}’f"t N I‘ld;“g},
and for every right-crossing pair (i,i") we define

Ll —{z e PUL:x C By, where t = reertn Ffj/“g}.

ii =
Finally, for every line segment Ly € L we define

Ly ={z e PUL: & C R, (1)},
Examples of left-crossing and right-crossing pairs (cf. Definition 16) are illustrated
in Figure 6.

DEFINITION 17. Let S C P UL be an arbitrary set. Let (i,4') be a right-crossing
pair and (j,7') a left-crossing pair. If L;, Ly € S and S C ﬁie{,t, then (i,i") is the
end-pair of the set S. If Lj, Ly € S and S C E;fjgflt, then (j,5') is the start-pair of
the set S.
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DEFINITION 18. Let S C P U L be an arbitrary set. The line segment Ly € S is
the diagonally leftmost line segment in S if there exists a line segment L; € LN S
such that (j,q) is the start-pair of S.

Observation 3. Every nonempty set S C £ has a unique end-pair, a unique start-
pair, and a unique diagonally leftmost line segment.

5.2. The algorithm. In this section we present our algorithm for BOUNDED
DOMINATING SET on tolerance graphs; cf. Algorithm 1. Given a horizontal shadow
representation (P, L) of a tolerance graph G, we first add two dummy line segments
Lo and Ljzj4q (with endpoints lo,7o and [jz|4+1,7|z|4+1, respectively) such that all
elements of P UL are contained in A, and By, ,. Let £ = LU {Lo,Lij11}-
Note that (P, L’) is a horizontal shadow representation of some tolerance graph G’,
where the bounded vertices V}; of G’ correspond to the line segments of £ and the
unbounded vertices V{; of G’ correspond to the points of P. Furthermore, note that
Vi = Ve U{vo,v|z|+1} and V; = Vi, where vg and |41 are the (isolated) bounded
vertices of G’ that correspond to the line segments Lo and L |11, respectively. Finally,
observe now that the set V}, dominates the augmented graph G’ if and only if the
set Vp dominates the graph G; moreover, a set S C Vg dominates G if and only if
S'U{vo,v|z|+1} dominates G'.

For simplicity of presentation, in the following we refer to the augmented set
L’ of horizontal line segments by £. In the remainder of this section we will write
L ={Ly,La,...,Li}, with the understanding that the first and last line segments
Ly and L)z of £ are dummy. Furthermore, we will refer to the augmented tolerance
graph G’ by G.

For every pair of points (a,b) € A x B such that b € R%,, (03¢, define X (a,b)
to be the set of all points of P and all line segments of £ that are contained in the
region By, \ I} and to the right of the line I'di#8; cf. Figure 7. That is,

(1) R(a’? b) = (Bb \ Fgert) N R?ight (ngag)’
(2) X(a,b)={x e PUL:x2C R(a,b)}.
: ..-'ngag

FIG. 7. The shaded region contains the points of R(a,b) C R2, where (a,b) € A x B. The set
X (a,b) contains all elements of P UL that lie within R(a,b). In this ezample, L1,p1 € X (a,b) and
Ly, Ls,p2 & X(a,b).

Now we present the main definition of this section, namely the quantity

BDp ry(a,b,q,i,i") for the BOUNDED DOMINATING SET problem on tolerance
graphs.
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DEFINITION 19. Let (a,b) € A X B be a pair of points such that b € nght(l“dmg)

Let (i,i") be a right-crossing pair, and let Ly be a line segment such that Ly € Ciezf,t

and L, Ly € L9, Furthermore, let b € Ry, #(T2e™). Then BD(p r)(a,b,q,4,1') is a
dominating set Z C L of X(a,b) with the smallest size such that
o (i,1') is the end-pair of Z, and
o L, is the diagonally leftmost line segment of Z.
If such a dommatmg set Z C L of X( ) does mot ezist, we define
BD(p7L)(0J, b,q,i,i") = L and |BD 7),[:)(0,717,(], i) =

Note that we always have Lg, L;, Ly € BD(']),L)(G,7 b,q,4,4"). Furthermore, some
of the line segments L,, L;, L;; may coincide; i.e., the set {Ly, L;, L } may have one,
two, or three distinct elements. However, since b € R (¥e) in Definition 19, it
follows that L; ¢ B, \ I'y", and thus L; ¢ X (a,b). For simplicity of presentation
we may refer to the set BD(p r)(a,b,q,4,i") as BDg(a,b,q,i,i"), where (P, L) is the
horizontal shadow representation of the tolerance graph G, or just as BD(a, b, q,i,1)
whenever the horizontal shadow representation (P, £) is clear from the context.

Observation 4. BD(a,b,q,i,i") # L if and only if £ N E;ightﬂﬁfif,t is a dominating
set of X(a,b).

Observation 5. BD(a,b,q,%,1") = {Lgq, L;, Ly} if and only if {L,, L;, Ly} domi-
nates X (a, b).

Observation 6. If R(a,b) C S;, then BD(a,b,q,4,i") = {Lg, L;, Ly }.

Due to Observations 4-6, without loss of generality we assume below (in Lem-
mas 20-25) that BD(a,b,q,4,7') # L and that BD(a,b,q,%,7") # {Lq, L;, Ly}, and
thus also R(a,b) ¢ S; (cf. Observation 6). We provide our recursive computations for
BD(a,b,q,i,i') in Lemmas 20, 22, and 25. In Lemma 20 we consider the case where
b e S5,, and in Lemmas 22 and 25 we consider the case where b ¢ 5j,.

LEMMA 20. Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i') #
{Ly,Li, Ly}, where R(a,b) € S;. Ifb € Sy, then

(3) BD(a,b,q,i,i') = BD(a,b*, q,1i,7'),

where b* = TP N F;i_mg,

Proof. Define the point b* = I'}*™* N Fldiiag of the plane. If @ € S, then R(a,b) C
S;, which is a contradiction. Thus a ¢ S;,, and therefore R(a,b*) C R(a,b). Consider
now an element z € X (a,b) \ X(a,b*). Then z N S; # 0, and thus z is dominated by
the line segment L;. Therefore, for every set Z of line segments such that L; € Z,
we have that Z dominates the set X (a,b) if and only if Z dominates the set X (a, b*).
Therefore, BD(a, b, q,i,i') = BD(a,b*, q,4,4). d

Due to Lemma 20, without loss of generality we may assume in the following (in
Lemmas 21-25) that b ¢ S;,. In order to provide our second recursive computation
for BD(a,b,q,i,i") in Lemma 22 (cf. (4)), we first prove in the next lemma that the
set on the right-hand side of (4) is indeed a dominating set of X (a,b), in which L, is
the diagonally leftmost line segment and (i,4’) is the end-pair.

LEMMA 21. Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i') #
{Ly, Li, Ly}, where R(a,b) € S; and b ¢ S;,. Let ¢ € R* and Ly, L;, Ly € L
such that

T4 left .
L Ly € (Lo n L) \ (L),
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2. (4,4) is a right-crossing pair of (ﬁgight N Eie{,t) \{L;}, where j’ =i’ whenever
i |
3. Ly € Eleff and Lj, Lj € L’”ght'
4. ¢ = F””t NTE9 if ps e Rleﬁ(F”m), and ¢ = b otherwise; and
5. the set X(a b) \ X (a,c) is dominated by {L;, Lj}.
If BD(a,c,¢,j,5') # L, then {Ly, L;} U BD(a,c, ¢, j,j') is a dominating set of
X(a,b), in which L is the dz'agonally leftmost line segment and (i,1") is the end-pair.

Proof. Assume that BD(a,c¢,q¢’,j,j') # L. Since X (a,b)\ X (a, ¢) is dominated by
{L;, Lj} by the assumptions of the lemma, it follows that {L,, L;} U BD(a,c,¢, j,j')
is a dominating set of X(a,b).

We now prove that (i,i') is the end-pair of {L4, L;} U BD(a,c¢, ¢, j,j’). First,
recall by the assumptions of the lemma that L;, Ly € Eﬂﬁiefﬂ and note that
L% C L. Therefore, since BD(a,c,q',j,5') L'ﬁﬁfﬁ, by definition, it fol-
lows that BD(a,c,q’,j,j') C Eﬂﬁleﬁ First, let # = 4. Then clearly L; = Ly €
{Lq,L;} U BD(a,c,q,j,j') C Cﬂﬁlfft, and thus in this case (4,7') = (¢,4) is the
end-pair of {Lg, L;} U BD(a,c,¢',7, ]) Now let ¢ # 4. Then j/ = i’ by the
assumptions of the lemma, and thus BD(a,c¢,q¢',j,5') = BD(a,c,q,j,i"). Then
L;,Ly € {Ly,L;} UBD(a,c,¢,j,5') C Eﬂ[,flt, and thus again (i,4’) is the end-
pair of {L4, L;} UBD(a,c,q¢,7,5).

Finally, since Ly € (£58" 0 L) \ {L;} by the assumptions of the lemma, it
follows that Ly C REp, (F?qiag); cf. Definition 16. Therefore, since L, is by definition
the diagonally leftmost line segment of BD(a,c,q’,j,j'), it follows that L, is the
diagonally leftmost line segment of {L4, L;}U BD(a,c,q’,7,5"). This completes the
proof of the lemma. 0

Given the statement of Lemma 21, we are now ready to provide our second re-
cursive computation for BD(a, b, q,4,4") in the next lemma.

LEMMA 22. Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i') #
{L4,L;, L'}, where R(a,b) € S; and b ¢ S;,. If BD(a,b,q,i,7') \ L; dominates
all elements of {x € X(a,b) : x N (S; UF;) # 0}, then

(4) BD(a,b,q,i,i") = {Lg, Li} U prqr}i]nj,{BD(mc, ¢33}

where the minimum is taken over all ¢,q', j, ' that satisfy conditions 1-5 of Lemma 21.
Proof. Let Z C LN ﬁ"ght Eleft be a dominating set of X (a, b) such that L, is the

diagonally leftmost line segment of Z and (i,1") is the end-pair of Z. Suppose that
|Z| = |BD(a,b,q,i,i')| and that all elements of {z € X(a,b) : z N (S; U F;) # 0} are
dominated by Z \ L;. Recall that L; ¢ X (a,b). Thus, Z\ {L;} is a dominating set of
X(a,b). Let (4,5') denote the end-pair of Z\ {L;}. Then all elements of X (a,b) that
are contained in RZ, (I'7°™*) must be dominated by {L;, L; }. Define

LY NTyes if 1y € Ry (DY),

c= 7

b otherwise.
That is, the set X(a,b) \ X(a,c) is dominated by {L;,L;j}. Let L, denote the
diagonally leftmost line segment of Z \ {L;}. Note that if L, # L;, then L, = L,.
Furthermore, note that Ly, € [,ff and Lj,L; € E“ght Since Z C LN E“ght £1elf/t,
it follows that (j,j’) is a right-crossing pair of (Ef;ght Lieft) \ {L;} and that Ly €
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(crght 0 L)\ {L;}. Furthermore, if i # ¢, then Ly € Z \ {L;}, and thus by the
choice of the right-crossing pair (j,j') as the end-pair of Z \ {L;}, it follows that
§ =

Since L, L; € ﬁief,t \ {L;}, note that L, ¢ BD(a,b,q’,j,j’). Moreover, note that
X(a,c) € X(a,b), and thus Z \ {L;} is also a dominating set of X (a,c). Therefore,
since (j,j’) is the end-pair of Z \ {L;}, it follows that

Ly} UBD(a,c,d 4, 3')| = |BD(a,e.d' 5,3 < 12\ (L} if Ly # L
and that
|BD(a,c,q',j,5") <|Z\{L;}| if L, =L;.
That is, in both cases where L, # L; or L, = L;, we have that

|{anLi} U BD(a7b’ q/’jvj/)| =1+ |({Lq} U BD(CL,C, q/7j’j/)) \ {LZH
(5) =14 |BD(a,c,q,j,5")l
<1+ |Z\{L;}| =|Z| = |BD(a,b,q,i,i)|.

Finally Lemma 21 implies that if BD(a,c,¢',j,5') # L, then {L,, L;}U
BD(a,c,q',j,7') is a dominating set of X(a,b), in which L, is the diagonally
leftmost line segment and (¢,4') is the end-pair. Therefore, |BD(a,b,q,1,i')|
{Lgq,L;} U BD(a,b,q,7,j")|, and thus it follows by (5) that |BD(a,b,q,%,1)]
|{Lq’Li}UBD(a7b7q/7j7j/)|'

In order to provide our third recursive computation for BD(a,b,q,i,i') in
Lemma 25 (cf. (6)), we first prove in Lemmas 23 and 24 that the set on the right-
hand side of (6) is indeed a dominating set of X (a,b), in which L, is the diagonally
leftmost line segment and (¢,4’) is the end-pair.

LEMMA 23. Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i') #
{Lq,Li, Ly}, where R(a,b) € S; and b ¢ S,,. Let c € R* such that
L. c€ BN R(a,b) and c € R}, (T1*") \ Fy,,
2. PNnX(a,b)NEF.NEF; =0.
If BD(a,c,q,i,i') # L and BD(c,b,q,4,i') # 1, then BD(a,c,q,i,i') U
BD(e,b,q,i,7') is a dominating set of X (a,b), in which L, is the diagonally leftmost
line segment and (i,i") is the end-pair.

Proof. Assume that BD(a,c,q,i,i') # L and BD(e,b,q,i,i") # L. First, note
that since ¢ € R(a,b) by assumption, it follows that X (a,c) U X(¢,b) C X(a,b);

cf. (2). Furthermore, since ¢ € R(a,b) C By and ¢ € Rfight(Fz’ie“) \ F}, by the

o Il IA

assumption, it follows that also b € RZ,, (T7*"*) \ F1,. Now recall that b € Rf, g, (T}e™)
by Definition 19, and thus also ¢ € R (T)"*). Therefore, since ¢ € RZ,,, (T}") \ F,

by the assumption, it follows that S.N['d#8 C S;UF;. Moreover, since ¢ € R e (1Y)
and b € R (T¥e"), it follows that F. N R(a,b) C S; U F;.
The line segments of £ N X (a, ) can be partitioned into the following sets:

Ly =LNX(a,c),

Ly =LNX(c,b),

L3={Ly € LNX(ab):LpNE,#0},
Ly={Ly € LN X(a,b): L, NS, NId2e L}
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Since BD(a, ¢, q,i,i") # L and BD(c,b,q,i,7") # L by assumption, it follows that
the line segments of £; are all dominated by BD(a, ¢, q,14,4"), and the line segments of
Lo are all dominated by BD(c, b, q,1,4"). Furthermore, since F.NR(a,b) C S;UF; as we
proved above, it follows that all line segments of L3 are dominated by the line segment
L;. Moreover, since S. N T4 C S, U F; as we proved above, it follows that all line
segments of £, are dominated also by the line segment L;. That is, all line segments
of LNX(a,b) = L1ULyUL3ULy are dominated by BD(a,c,q,4,i')UBD(c, b, q,i,7).

Since P N X (a,b) N F. N F; = () by the assumption, the points of P N X (a,b) can
be partitioned into the following sets:

P =PNX(a,c),
=PNX(cbh),
Ps=PNX(a,b)NF.NS;.

It is easy to see that the points of P; are all dominated by BD(a, ¢, q,4,4') and that
the points of Py are all dominated by BD(c, b, q,14,4"). Furthermore, the points of Ps
are dominated by the line segment L;. Thus, all points of P N X (a,b) = P; UP2 UPs
are dominated by BD(a,c,q,i,i) U BD(c,b,q,i,i'). Summarizing, BD(a,c,q,i,i) U
BD(c,b,q,i,i') is a dominating set of X(a,b).

Furthermore, since (i,i') is the end-pair of both BD(a,c,q,i,i) and
BD(c,b,q,i,i"), it follows that (i,i’) is also the end-pair of BD(a,c,q,i,i) U
BD(ec,b,q,i,4"). Similarly, since L, is the diagonally leftmost line segment of both
BD(a,c,q,i,i') and BD(c,b,q,1,i'), it follows that L, is also the diagonally leftmost
line segment of BD(a,c,q,i,i') U BD(c,b,q,i,i"). This completes the proof of the
lemma. ]

LEMMA 24. Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i') #

{Lq7L1,L }, where R(a,b) € S; and b gé Si,. Let ¢ € R? and Ly € L such that
1. ¢ € BN R(a,b) andc ek,

Li,Ly € L7,

Ly € LM 0 L) and 1y € Fy,,

d e deg orcd e deg and
5. PN X(a,b) N Fu = 0.

If BD(a,c,q,i,i") # L1 and BD(c,b,¢',i,i') # L, then BD(a,c,q,i,i) U
BD(c',b,q,i,1') is a dominating set of X(a,b), in which L, is the diagonally left-
most line segment and (i,i’) is the end-pair.

Proof. Assume that BD(a,c,q,4,i') # L and BD(c,b,¢,4,i") # L. First, note
that since ¢’ € R(a,b) by assumption, it follows that X (a,c’) U X(¢/,b) C X(a,b);
cf. (2).ASince c € Fj, by assumption, it follows that Fv C Fj, C S; U Fj. Moreover, if
c e I‘;h/ag, then S. N Fg}ag - P?l,ag, and thus S N Pg}ag C Sy UF,.

Similarly to the proof of Lemma 23, the line segments of £ N X(a,b) can be
partitioned into the following sets:

L1=LNX(a,c),

Lo=LNX(,D),

Ls={Lpe€ LN X(a,b): Ly N Fy #0},
Li={Ly € LNX(a,b): Ly N Se NTI* £ 0},

Since BD(a,c,q,i,i") # L and BD(c,b,q’,i,i") # L by assumption, it follows
that the line segments of £, are all dominated by BD(a,c,q,4,i') and that the line

= W ok
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segments of Ly are all dominated by BD(¢/,b,q’,4,4"). Furthermore, since F, C S;UF;

as we proved above, it follows that all line segments of L3 are dominated by the line

segment L;. If ¢ € thag’ then £4 = (). Suppose that ¢ € P?l,ag. Then, since
q

Sy N F(Ci,iag C S, UF, as we proved above, it follows that all line segments of L4
are dominated by the line segment L, . That is, in both cases where ¢’ € ngag or
c e I’?i,ag, all line segments of £ N X (a,b) = £1 U Ly U L3 U Ly are dominated by
BD(a,¢,q,i,i') U BD(¢, b, i,i').

Since ¢’ € Fy, and PN X(a,b) N F. = () by the assumption, it follows that the
points of PN X (a,b) can be partitioned into the following sets:

Pr=PnNX(ac),
P2 ZPﬂX(C/,b).

It is easy to see that the points of P; are all dominated by BD(a, ¢, q,1,i’) and that the
points of Py are all dominated by BD(c/,b,q’,4,4'). Summarizing, BD(a,c,q,i,i) U
BD(c,b,q,i,i') is a dominating set of X (a,b).

Since (i,4") is the end-pair of both BD(a,c,q,i,i') and BD(c',b,q¢,4,4'), it fol-
lows that (i,4’) is also the end-pair of BD(a,c,q,i,i") U BD(c',b,q',4,7"). Now note
that L, is the diagonally leftmost line segment of BD(a, ¢/, q,4,1’) and Ly is the diag-
onally leftmost line segment of BD(c,b,¢,4,i"). Therefore, since L, € E’f;ght N Eief,t
by assumption, it follows that L, remains the diagonally leftmost line segment of
BD(a,d,q,i,i') UBD(c,b,q',i,i"). This completes the proof of the lemma. d

Given the statements of Lemmas 23 and 24, we are now ready to provide our
third recursive computation for BD(a, b, q,4,4') in the next lemma.

LEMMA 25. Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i') #
{Ly4,L;,Li'}, where R(a,b) € S; andb ¢ S;,. If BD(a,b,q,%,i")\L; does not dominate
all elements of {x € X(a,b) : x N (S; UF;) # 0}, then

(6) BD(a,b,q,i,i') = min

/ /
()

BD(a,c,q,i,i") UBD(c, b, q,i,1'),
BD(a,c,q,i,i') UBD(c,b,¢,i,1),

where the minimum is taken over all ¢,c,q that satisfy the conditions of Lemmas 23
and 24, i.e.,
1. ¢,d € BN R(a,b),

¢ € R (L1 \ Fi, and ¢ € F,

Li,Ly € L,
Ly € LM L¥ and 1y € Fy,,

i,/
c e F;l;,ag orc € ng‘ag’ and
6. PNX(a,b)NF.NF;=0 and PN X(a,b)N F. = 0.

Proof. Assume that BD(a, b, q,4,4") \ L; does not dominate all elements of {x €
X(a,b) : 2N (S; UFE;) # 0}. Recall that b € Ry, (Ty"") by Definition 19. First, we
prove that also b € R, (T}°"). Assume otherwise that b ¢ R2 ., (T}*"*). Then, since
b ¢ S;, by the assumption of the lemma, it follows that b € B;,. Thus, (S; U F;) N
B, = 0, i.e., L; does not dominate any element of X (a,b); cf. (2). Therefore, since
BD(a,b,q,i,7')\ L; does not dominate all elements of {x € X (a,b) : xN(S;UF;) # 0}
by assumption, it follows that BD(a,b,q,4,7’) also does not dominate all elements
of X(a,b), which is a contradiction to the assumption that BD(a,b,q,i,i") # L.

Therefore, b € RZ,,, (T}°™).

CU L
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Let zo € X(a,b) be such that zo N (S; U F;) # 0 and ¢ is not dominated by
BD(a,b,q,i,i') \ L;. Let also Z C LN E’;ghtﬂﬁfff be an arbitrary dominating set
of X(a,b) such that L, is the diagonally leftmost line segment of Z and (i,4’) is the
end-pair of Z. Suppose that |Z| = |BD(a,b,q,i,i')| and that zy is dominated by
L; but not by Z \ L;. Note that such a dominating set Z always exists due to our
assumption on BD(a,b, q,i,i). We distinguish the following two cases.

Case 1. xp N Riy, (I‘f:ag) # (. Let t € R? be an arbitrary point of
xo N Rfight(F?iiag). Since zgp € X(a,b) and b € RZ, (T}"") by Definition 19, it fol-
lows that t € S; U F;. If t € S;, then let t* € R(a,b) be an arbitrary point on the
intersection of the line segment L; with the reverse shadow F; of the point t, i.e.,
t* € R(a,b) N L; N F;. Note that t* always exists, since z9 € X (a,b), R(a,b) € S; by
the assumption of the lemma, and b € Rfight (I‘;’f”) as we proved above. Otherwise,

if t € Fj, then we define ¢* = t. Since t € RZ;, (Ffiiag) by assumption, note that in
both cases where t € S; and t € F;, we have that t € Sy« and that either t* € L; or

Suppose there exists a line segment Ly € Z \ L; such that ¢t* € Si. Then, since
t € Sy, it follows that also t € Sk. Thus the element o € X(a,b) is dominated
by Ly € Z \ L;, which is a contradiction. Therefore, t* ¢ Sj, for every line segment
Ly € Z\ L;.

Let j be the greatest index such that for the line segment L; € Z\ L; we have r; €
RZ ., (Tyert). That is, for every other line segment Ly € Z\ L; with ry € RZ,, (I¥'), we
have r; € Riq (D)) Ifr; € RE,, (T)), then we define t1 = r;. If r; ¢ RZ ., (I7),
then we define ¢, = ;. Furthermore, if such a line segment L; does not exist in Z'\ L;
(ie., if rs & RE, (TYY) for every Ly € Z \ L;), then we define again t; = [;.

Let Lj € Z\ L; be a line segment such that lj; € R%., (I%€) and that for every

other line segment L, € Z \ L; with [, € RZ (T8 we have I, € RZ ght (F?ji/ag). If
lj € R, (T°8), then we define ty = lj. If Ij ¢ R, (T %), then we define ty = b.
Furthermore, if such a line segment L, does not exist in Z\ L; (i.e., if Is ¢ Ry, (Tdiee)
for every Ly € Z \ L;), then we define again ty = b.

Now we define

__ twvert diag
c=T{"" N,

It is easy to check by the above definition of ¢; and t5 that ¢ € BN R(a,b) and that
¢ € R, (TY) \ F,.

Assume that there exists at least one point pr, € PN X (a,b)NF.NF;. Then, since
BD(a,b,q,i,i") # L by assumption, there must be a line segment Ly € Z \ L; such
that Ly, dominates pg. Since pp € F. by assumption, it follows that Ly N F, # (.
If iy € RE;, (D7), then ryy € RZ,, (1Y) by the above definition of ¢, and thus the
line segment Lj, does not dominate the point py, which is a contradiction. Therefore,
re & RE, (DY), If [y € Rfight(Ffiag) then Iy € RZ; (F328) by the above definition
of ¢, and thus the line segment Ly does not dominate the point py, which is a

contradiction. Therefore, Iy ¢ Rfight(F?jag). Summarizing, ry ¢ R, (I¥) and
Iy €& Rfight(l"?*iag), and thus Ly N Fy« # 0. That is, t* € Sy for some Ly € Z \ L,
which is a contradiction, as we proved above. Thus there does not exist such a point

Pk, i'e-a

PNX(a,b)NF,.NF;=0.
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Assume that t* € L;. Then, since t* ¢ Sy for every line segment Ly € Z \ L; as
we proved above, we can partition the set Z \ {Lq, L;, Ly } into the sets Zvelow, Zieft,
and Zyigne as follows:

Zbelow = {Lk €7 \ {L(J7LiaLi'} : Lk: N Si 7é @}a
(7) Ziete = {Lk € Z\{Lq, Li, L'} : L, N Si = 0, Ly, C Rty (T3)},
Zrigne = {Li € Z\{Lq, Lis L} : L0 S; = 0, Ly © Ry (T2"%)}

Assume now that t* € F; \ L;; then t* =t is a point of 2. Note that all points
of PN X(a,b) N F; are dominated by Z \ L;, since they are not dominated by L; and
BD(a,b,q,i,i") # L by assumption. Therefore, xo is a line segment, i.e., zg € L.
Assume that there exists a line segment Ly € Z \ L; such that Ly N (Sg U Fyx) #
(). Then z( is dominated by Ly € Z \ L;, which is a contradiction. Therefore,
LN (S¢x U Fyx) = () for every line segment Ly € Z\ L;. That is, for every L € Z\ L;
we have that either Ly C By« or Ly C Az«. Therefore, in the case where t* € F; \ L,
we can partition the set Z \ {L4, L;, Ly} into the sets Zpelow, Zlett, and Zyighy as
follows:

Zbelow = [Z)a
(8) Zieft = {Lx € Z\{Lq, Li, Ly} : L, C By},
Znight = {Lx € Z\{Lqy, L;, Lis} : Ly C A=}

Notice that in both cases where t* € L; and t* € F; \ L;, the set Z; =
Zhelow U Ziery U {Ly, L;, Ly} is a dominating set of X(a,c). Furthermore, the set
Zy = Zyight U {Lq, L;, Ly} is a dominating set of X (¢, b). Moreover, L, is the diago-
nally leftmost line segment and (4,4") is the end-pair of both Z; and Z;. Therefore,
|BD(a,c,q,i,4")| < |Zi| and |BD(c,b,q,i,i")| < |Zs|. Now, since {Lg, L;, Ly} C
BD(a,c,q,i,i') N BD(c,b,q,i,i), we have that

|BD(a,c,q,i,i') U BD(c,b,q,i,i')| < |BD(a,c,q,i,i)| + |BD(c,b,q,1,i)]
_|{Lq>Li’Li’}|
<|Zi|+12Z2| — {Lg, Ls, Lir }|
= | Zpelow U Ziety U{Lgq, Li, L' }|
+[Zright U {Lg, Li, Lir Y| — [{Lg, Li, Lir }|
= | Zvelow| + | Ziett| + | Zright| + [{Lqs Li, Lir }|
=|Z| = |BD(a,b,q,i,i")|.

Finally, Lemma 23 implies that if BD(a,c¢,q,4,i') # L and BD(¢,b,q,i,i") # L,
then BD(a,c,q,4,4') UBD(c,b,q,i,4') is a dominating set of X (a,b), in which L, is
the diagonally leftmost line segment and (i,’) is the end-pair. Therefore,

|BD(a/ab7Qai7i/)| < |BD(a,c,q,i,i/) U BD(C7 b7 Q7Zall)|

It follows that |[BD(a,b,q,i,i')| = |BD(a,c,q,i,i') U BD(c,b,q,i,')|.

Case 2. xo N Rfight(l"iiag) = (. Then, since zo N (S; U F;) # O by the initial
assumption on zo, it follows that zoNF; # (. Note that all points in PNX (a, b)NF; are
dominated by Z \ {L;}, since they are not dominated by L; and BD(a,b,q,i,i') # L

by assumption. Therefore, zo € £. Let t* € R? be an arbitrary point of zo N Fj.
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If i/ # 4 and [y € Rleft(l“dlag) then Ly € Z\ {L;} and L;; dominates zo, which

( dlag)

is a contradiction. Therefore, if i’ # i, then l;; ¢ RZ,, Furthermore, it follows

that if Ly # L;, then also Lg # Ly.

Assume that there exists a line segment Ly € Z'\ L; such that Ly N (S U Fix) #
(. Then zo is dominated by Ly € Z \ L;, which is a contradiction. Therefore,
LN (S U Fyx) = 0 for every line segment Ly € Z\ L;. That is, for every Ly € Z\ L;
we have that either Ly C By« or Ly C A;+. Therefore, similarly to (8) in Case 1, we
can partition the set Z \ {Lg, L;, L/} into the sets Zier, and Zigng as follows:

Ziett = {Lr € Z\{Lg, Li, L} : Ly C By-},
(9) Zright = {Lk cZ \ {Lq,Li,Li/} : Lk - At*}-

Similarly to Case 1, let j be the greatest index such that for the line segment
L; € Z\ L; we have r; € RZ, ([}°™). That is, for every other line segment L, € Z\ L;
with ry € R2,, (T, we have ry € R2,, (T}er). If 7j € R, (T, then we define
t1 = rj. Iy & RE,, (D7), then we define ¢; = [;. Furthermore, if such a line
segment L; does not exist in Z \ L; (i.e., if 7y ¢ RE, (I¥™) for every L, € Z \ L;),
then we define again t; = [;.

Let Ly € Z\ L; be a line segment such that ; € R% (T ['1%8) and that for every
other line segment L, € Z \ L; with [, € erght(Fdlag), we have [ € erght(l"?jifg).
If [j; € RZ;, (T, then we define Ly = Lj. If [y ¢ R2,(T'*%), then we define
Ly = L;. Furthermore, if such a line segment Lj does not exist in Z \ L; (i.e., if
Is & Rl (T ['8) for every L, € Z\ L;), then we define again Ly = L;. ‘

Thus, in both cases where Ly = Lj» and Ly = L, it follows that Ly € ﬁg‘ght N
L’lefﬁ“ and that [, € Fj,. Note that it can be either Ly # L, or Ly = L,. Furthermore,
recall that if i’ # ¢, then l; ¢ Rleft(l"iiag) as we proved above. Therefore, L;, L €
Erlght )

Now we define the point ¢ as follows. If I, € RZ, (I‘giag), then we define to = ly.
Otherwise, if I, ¢ RZ,, (Fglag)7 then we define ¢t = b. Furthermore, we define

! __ 1vert diag
c =T NI,

Therefore, due to the above definition of t; and tg, it follows that ¢’ € I‘?i/ag or
q

d e I‘fiag. Furthermore, note that ¢’ € Sy-. It is easy to check by the definition of #;
and to that ¢ € BN R(a,b) and that ¢ € Fj,. Since ¢’ € F},, note that F. C F;, and
thus Fo N F; = F.. Thus, similarly to Case 1, we can prove that

PO X (a,b) N Fo = 0.

Now recall the partition of the set Z \ {Lg, L;, L;/} into the sets Zier, and Zyighe;
cf. (9). Notice that the set Z1 = Zier U{Lq, Li, Ly } is a dominating set of X (a, ') and
that the set Zy = Zyight U {Lg/, L;, Ly } is a dominating set of X (¢/,b). Furthermore,
L, is the diagonally leftmost line segment of Z; and (4,4’) is the end-pair of Z;.
Similarly, Ly is the diagonally leftmost line segment of Z; and (¢,4) is the end-pair
of Zy. Therefore, |BD(a,c,q,3,i")| < |Z1| and |[BD(c,b,q,i,i")| < |Za|.

Let first Ly = Lg. Then, since {Ly, L;, Ly } € BD(a,c,q,%,i")UBD(c,b,¢',,7'),
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it follows that

|BD(a,c,q,i,7') U BD(c',b,q,i,i')| < |BD(a,c,q,4,7')| + |BD(,b,q ,i,i")]|
_|{Lqﬂ Li, Li’}l
<|Zi|+|Z2| = {Lq, Li, Li }|
= [Ziets U{Lq, Li, Lir }| + | Zrigne U {Lg', Li, L }|
_|{Lq>Li7Li'}’|

- |Zleft‘ + |Zright| + |{anLiaLi’}|
=|Z| = |BD(a,b,q,i,7')|.

Let now L, # Ly. Then I, € R%, (I} %), since Ly € LI as we proved

lq

above. Furthermore, since I, € R2, (T*#) by definition of ¢, it follows that L, # L.

i

Therefore, also Ly # Ly, as we proved above. Moreover, if Ly # L;, then Ly = Ljs
by the above definition of ¢/, and thus Ly € Zyigns. Therefore, in both cases where
Lq/ = L; and Lq/ % L;, we have Zy = Zright U {Lq/7 L;, Lz/} = Zright U {LZ‘, Lil}. Thus,
since {L;, Ly} C BD(a,c,q,i,i") N BD(c,b,q,4,%'), it follows that

|BD(a,c,q,i,i') UBD(c',b,q,i,i")| < |BD(a,c,q,4,i)| + |BD(,b,q ,i,i)]
—{Li, Li' }|
<|Zi| + [Z2| = {Li, Li'}|
= |Ziete U{Lq, Li, Li' }| + | Zrignt U {Ls, Lt }|
—[{Ls, Lir }|
= |Ziett U {Lg}| + | Zvight| + [{Li, L }|
= |Ziete| + | Zrigne| + {Lq} + {Li, L' }|
=|Z| = |BD(a,b,q,i,i/)|.

Finally, Lemma 24 implies that if BD(a,c,q,i,i') # L and BD(c/,b,¢,4,i') # L,
then BD(a,d,q,i,i')UBD(c,b,q¢,i,7') is a dominating set of X (a,b), in which L, is
the diagonally leftmost line segment and (¢,’) is the end-pair. Therefore,

|BD(a,b,q,i,4)| < |BD(a,d,q,i,i")UBD(,b,q,i,4)|.

It follows that |BD(a,b,q,i,i')| = |BD(a,c,q,i,i') U BD(c,b, ¢, i,i")|.

Summarizing Cases 1 and 2, it follows that the value of BD(a,b,q,1,i") can be
computed by (6), where the minimum is taken over all values of ¢, ¢, ¢, as stated in
the lemma. ]

Using the recursive computations of Lemmas 20, 22, and 25, we are now ready to
present Algorithm 1 for computing BOUNDED DOMINATING SET on tolerance graphs
in polynomial time.

THEOREM 26. Given a horizontal shadow representation (P,L) of a tolerance
graph G with n vertices, Algorithm 1 solves BOUNDED DOMINATING SET in O(n?)
time.

Proof. In the first line, Algorithm 1 augments the horizontal shadow represen-
tation (P, L) by adding to £ the two dummy line segments Lo and Ljz4; (with
endpoints lo,79 and l|z|11,7|z|+1, respectively) such that all elements of P U L are
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Algorithm 1 BOUNDED DOMINATING SET on tolerance graphs.

Input: A horizontal shadow representation (P, L), where P = {p1,pa,...,pjp|} and
L={L1,Ls,..., Ly}

Output: A set Z C £ of minimum size that dominates (P, L), or the announcement
that £ does not dominate (P, L)

1: Add two dummy line segments Lo and Lz, completely to the left and to the
right of P U L, respectively

2 L+ LU{Lo,Ligj41}; denote L= {Li,Lo,..., Lz}, where now Ly and Lz
are dummy

3 A {li,ri 1 <i<|L]}; B+ {TV8NTyert ¢t e A}

for every pair of points (a,b) € A x B such that b € Rfight (P'diag) do

{initialization}

>

5 X(a,b) < {z € PUL:x C (B \Ty™) MR, (05%)}

6: for every ¢,i,i' € {1,2,...,|£|} do

7: if r; € S, then {(4,7') is a right-crossing pair}

8: if Ly € £, Li, Ly € L&, and b e R (IY") then

9: e« {x e PUL:x C By, where t =) N I‘fj?g}

10: Lt {z e PUL:z CRE,, (T)")}

11: if LN Ef;ghtﬂﬁfif,t does not dominate all elements of X (a,b) then
12: BD(a,b,q,i,i') + L

13: else if {L,, L;, L;} dominates all elements of X (a,b) then
14: BD(avbaQaiai/) A {quLiaLi’}

15: else .

16: BD(a,b,q,i,i") < LN Ef}lghtﬂﬁﬁf {initialization}

17: for every pair of points (a,b) € A x B such that b € Rfight(ngag) do
18:  for every ¢,i,i’ € {1,2,...,|£|} do

19: if r; € S, then {(i,i') is a right-crossing pair}

20: if Ly € L, Li, Ly € LY, and b e R (I7") then

21: Compute the solutions Z1, Zs, Z3 by Lemmas 20, 22, and 25, respectively
22: for k=1 to 3 do

23: if |Zx| < |BD(a,b,q,i,i")| then BD(a,b,q,i,i) + Zj

24: if BD(l1,7z,1,|L],|£]) = L then return £ does not dominate (P, £)
25:  elsereturn BD(ly,rc,1,|L], |£]) \ {L1, Lz}

contained in A,, and Bl‘ Ll In the second line, the algorithm renumbers the ele-
ments of the set £ such that £ = {L1, Lo, ..., Lz}, where in this new enumeration
the line segments L; and Lz are dummy. Furthermore, in line 3, the algorithm
computes the point sets A and B (cf. section 5.1).

In lines 4-16 the algorithm performs all initializations. In particular, first in
line 5, the algorithm computes the sets X(a,b) C P U L for all feasible pairs
(a,b) € Ax B (cf. (2)). Then the algorithm iteratively executes lines 9-16 for all
values of ¢,4,7" € {1,2,...,|L|} for which BD(a,b, q,4,i') can be defined (these con-
ditions on ¢,4,i" are tested in lines 6-8; cf. Definition 19). For all such values of
q,1,1, the algorithm computes an initial value for BD(a,b,q,4,4') in lines 9-16. In
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particular, in lines 12 and 14 it computes the values of BD(a,b,q,4,4") which can be
computed directly (cf Observations 4 and 5). In the case where BD(a,b,q,i,i') # L
and BD(a,b,q,i,4") # {Lg,L;, Ly}, the set Eﬂﬁ“ghtﬁﬁle, is a feasible (but not
necessarily optimal) solution (cf. Definition 19); therefore in this case the algorithm
initializes in line 16 the value of BD(a,b,q,%,i') to LN £;ightﬂ£ff,t.

The main computations of the algorithm are performed in lines 17-23. In particu-
lar, the algorithm iteratively executes lines 21-23 for all values of a, b, ¢, 7,4 for which
BD(a,b,q,i,i") can be defined (these conditions on a,b,q,i,i are tested in lines 17—
20; cf. Definition 19). In line 21, the algorithm computes all necessary values that are
candidates for the value BD(a,b,q,4,i'), and in lines 22-23 computes BD(a, b, q,1,1)
from these candidate values. The correctness of this computation of BD(a,b,q,i,i")
follows by Lemmas 20, 22, and 25.

Finally, the algorithm computes the final output in lines 24-25. Indeed, since in
the (augmented) horizontal shadow representation (P, L) the two dummy horizontal
line segments are isolated (i.e., the line segments L; and L| in the augmented rep-
resentation; cf. lines 1-2 of the algorithm), they must be included in every minimum
bounded dominating set of the (augmented) tolerance graph. Therefore, the algorithm
correctly returns in line 25 the computed set BD(l1,7|z), 1, |£], |£]) \ {L1, Lz}, as
long as BD(ly, 7|z, 1, |L£|,|£]) # L. Furthermore, if BD(l1, 7|z}, 1,|£],|£]) = L, then
the whole (augmented) set £ does not dominate all elements of the (augmented) set
P UL, and thus in this case the algorithm correctly returns a negative announcement
in line 24.

Regarding the running time of Algorithm 1, first recall that the sets A and B
have O(n) and O(n?) elements, respectively. Thus, the first three lines of the algorithm
can be implemented in O(n?) time. Due to the for-loop of line 4, lines 5-16 are
executed at most O(n?) times. Recall by (1) and (2) that for every pair (a,b) € Ax B,
the region R(a,b) can be specified in constant time (cf. the shaded region in Figure 7)
and the vertex set X(a,b) can be computed in O(n) time. That is, line 5 of the
algorithm can be executed in O(n) time. For every fixed pair (a,b), lines 7-16 are
executed at most O(n?) times, due to the for-loop of line 6. Furthermore, the if-
statements of lines 7 and 8 can be executed in constant time, while each of the
computations of £ief,t and L8 in lines 9 and 10 can be computed in O(n) time.
The if-statement of line 11 can be executed in O(n?) time, since in the worst case
we check adjacency between each element of £ N L‘”ght N EICf,t and each element of
X (a,b). Moreover, each of the lines 12-16 can be tr1v1ally executed in at most O(n)
time. Therefore, the total execution time of lines 4-16 is O(n®).

Due to the for-loop of lines 17 and 18, lines 19-23 are executed at most O(nS)
times, since there exist at most O(n?) pairs (a,b) and at most O(n?) triples {q,,i'}.
Furthermore, since each of the lines 19 and 20 can be executed in constant time, the
execution time of lines 19-23 is dominated by the execution time of line 21, i.e., by
the recursive computation of the set BD(a,b,q,4,4') from Lemmas 20, 22, and 25.
Note that we have already computed in lines 12 and 14 whether BD(a, b, q,,i') # L
and BD(a,b,q,1,i") # {Ly, L;, L' }. Moreover, it can also be checked in constant time
whether R(a,b) ¢ S; and whether b € Sj,, and thus we can decide in constant time in
line 21 whether Lemmas 20, 22, and 25 can be applied. If Lemma 20 can be applied,
the corresponding candidate for BD(a, b, q,,i’) can be computed in constant time by
a previously computed value (cf. (3)).

Assume now that Lemma 22 can be applied. Then the corresponding candidate
for BD(a,b,q,1,i") is computed by the right-hand side of (4) for all values of ¢, ¢, j, j’
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that satisfy the conditions of Lemma 21. Note by condition 2 of Lemma 21 that if
1 # 14, then j/ = i’. Therefore, every feasible quadruple (i,7, 7, j’) is either (3,1, 7, ")
or (i,i’,7,i"); i.e., there exist at most O(n?®) feasible quadruples (i,’,4,5’). Thus,
since we already considered O(n?) iterations for all pairs (i,4’) in line 18, we need
only consider another O(n) iterations (multiplicatively) in line 21 for all feasible pairs
(j,7") in the execution of Lemma 22. Furthermore, there are at most O(n) feasible
values of ¢’ by conditions 1 and 3 of Lemma 21. Moreover, the value of ¢ is uniquely
determined (in constant time) by the values of j and b (cf. condition 4 of Lemma 21);
once ¢ has been computed, we also need O(n) additional time to check condition 5
of Lemma 21. Therefore, Lemma 22 can be applied in O(n?) time in line 21 of the
algorithm.

Assume finally that Lemma 25 can be applied. Then the corresponding candidate
for BD(a,b,q,1,i") is computed by the right-hand side of (6) for all values of ¢,c, ¢
that satisfy the conditions of Lemma 25. Note that there exist O(n?) feasible values
for ¢; cf. conditions 1 and 2 of Lemma 25. Furthermore, once the value of ¢ has been
chosen, we need O(n) additional time to check condition 6 of Lemma 25. Thus, the
upper part of the right-hand side of (6) can be computed in O(n?) time. On the other
hand, there exist O(n) feasible values for ¢’; cf. conditions 3 and 4 of Lemma 25. For
every value of ¢’ there exist O(n) feasible values for ¢’ (cf. condition 5 of Lemma 25);
once the value of ¢ has been chosen, we need O(n) additional time to check condition 6
of Lemma 25. Thus, the lower part of the right-hand side of (6) also can be computed
in O(n?) time. That is, Lemma 25 can be applied in O(n?) time in line 21 of the
algorithm.

Summarizing, the total execution time of lines 17-23 is O(n?). Therefore, since
the execution time of lines 4-16 is O(n®), the total running time of Algorithm 1
is O(n?). 0

6. Restricted bounded dominating set on tolerance graphs. In this sec-
tion we use Algorithm 1 of section 5 to provide a polynomial time algorithm (cf.
Algorithm 2) for a slightly modified version of BOUNDED DOMINATING SET on tol-
erance graphs, which we call RESTRICTED BOUNDED DOMINATING SET, formally
defined below.

RESTRICTED BOUNDED DOMINATING SET on tolerance graphs.

Input: A 6-tuple Z = (P, L, j,j',4,4'), where (P, L) is a horizontal shadow repre-
sentation of a tolerance graph G, (4, j') is a left-crossing pair of G, and (i,4') is a
right-crossing pair of G.

Output: A set Z C £ of minimum size that dominates (P, £), where (g, j/) is the
start-pair and (7,4’) is the end-pair of Z, or the announcement that ﬁﬂﬁ“g?tﬂﬁlfff
does not dominate (P, L).

In order to present Algorithm 2 for RESTRICTED BOUNDED DOMINATING SET
on tolerance graphs, we first reduce this problem to BOUNDED DOMINATING SET
on tolerance graphs; cf. Lemma 35. Before we present this reduction to BOUNDED
DOMINATING SET, we first need to prove some properties in the following auxiliary
Lemmas 27-31. These properties will motivate the definition of bad and irrelevant
points p € P and of bad and irrelevant line segments L; € L; cf. Definition 32. The
main idea behind Definition 32 is the following. If an instance contains a bad point
p € P or a bad line segment L; € £, then £ N £“ght N L does not dominate (P, £).
On the other hand, if an instance contains an 1rrelevant point p € P or an irrelevant
line segment L; € L, we can safely ignore p (resp., L;).
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LEMMA 27. Let T = (P, L,4,5,4,7') be an instance of RESTRICTED BOUNDED
DOMINATING SET on tolerance graphs. Let I = TI'{¢" N deg and r = Tpert N T o9,

If there exists a point p € P such that p € Rleﬁ(f‘ldmg) orp € RZ,,,(Tre™), then
LN E;f;-],ht N Eielf,t does not dominate (P, L).

Proof. Assume otherwise that Z C L is a solution of Z. First, suppose that
there exists a point p € P such that p € RZ, (T d‘ag), where [ = F"ert N Fdlag Then,
by Lemma 12, there must exist a line segment L; € Z such that p e Sk Thus
I, € RZ, (T dlag) which is a contradiction to the fact that (4, j') is the start-pair of Z.

Now suppose that there exists a point p € P such that p € R%, (TY*""), where
r = F),’frt N Fﬂ;?g. Then by Lemma 12, there must exist a line segment L € Z such

that p € Si. Thus r;, € ]Rfight (Iyert), which is a contradiction to the fact that (4,4') is
the end-pair of Z. 0

LEMMA 28. Let T = (P, L,j,7,i,i') be an instance of RESTRICTED BOUNDED
DOMINATING SET on tolerance graphs. Let I =T} F;jjilag and r =Tt OTHe9. If
there exists a point p € P such that p € S;US,., then at least one of the line segments
{Lj/, L;} is a neighbor of p.

Proof. Recall by Definition 16 in section 5.1 that [; € Slj, and ry € Sy, since
(7,4") is a left-crossing pair and (i,i’) is a right-crossing pair. Therefore, since | =
Fvcrt N Fdlag and r = Iy N I‘d’ag by the assumptions of the lemma, it follows that
lESl, andreSn

pr € S5, then also p € 5, (since | € Sy, as we proved above), and thus L, is a
neighbor of p by Lemma 12. Slmilarly, if p € S,, then also p € S,, (since r € S, as
we proved above), and thus L; is a neighbor of p by Lemma 12. ]

LEMMA 29. Let T = (P, L,4,5,4,7') be an instance of RESTRICTED BOUNDED
DOMINATING SET on tolerance graphs. Let | = F”_m N I‘dwg and r =T N I‘dmg If

there exists a line segment Ly € L such that Ly C By or Lt CA,, then LN E”ghfﬂﬁief,t
does not dominate (P, L).

Proof. Assume otherwise that Z C L is a solution of Z. First, suppose that there
exists a line segment L; € £ such that L; C B, where | = Fve“ N Fdlag. Then

by Lemma 11, there must exist a line segment L, € Z such that LN Sk # () or
LyNS; #0. If L;NS; #0, then [}, € Rlcft(Fdlag) which is a contradiction to the fact
that (j,7’) is the start-pair of Z. If Ly NSy 7é (b, then I}, € Rleft(l"lvf”), which is again
a contradiction to the fact that (j,j’) is the start-pair of Z.

Now suppose that there exists a line segment L; € £ such that L; C A,, where
ro=TIy"N Ffj?g. Then by Lemma 11, there exists a line segment L, € Z such
that L; NSk # 0 or Ly NSy # 0. If Ly NSy # 0, then ry € RE,, (T7""), which
is a contradiction to the fact that (4,¢') is the end-pair of Z. If Ly NSy # 0, then
TR € R“ght (I‘fj?g), which is again a contradiction to the fact that (i,4") is the end-pair
of Z. d

LEMMA 30. Let T = (P, L, 4,5 ,4,7') be an instance of RESTRICTED BOUNDED
DOMINATING SET on tolerance graphs. Let | =T} N ]."ldj’;ag and v = Tpert N T 09,
If there exists a line segment Ly € L with one of its endpoints in By U A, and one
point (not necessarily an endpoint) in By N A, then at least one of the line segments
{L;,Lj,L;, L'} is a neighbor of Ly. Moreover, Ly does not belong to any optimum
solution Z of RESTRICTED BOUNDED DOMINATING SET.
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Proof. Let Z be an optimum solution of RESTRICTED BOUNDED DOMINATING
SET. Let L; € L be a line segment with one of its endpoints in B; U A, and one
point (not necessarily an endpoint) in B; N A,. Notice that r; € A, or l; € B;. Let
first 7, € A,. Since L; has also a point in B; N A4,, it follows that L; has a point in
(S; U F;) U (Si U Fyr). Therefore, L; is a neighbor of L; or L; by Lemma 11. Let
now l; € B;. Since L; has also a point in B; N A,, it follows that L; has a point

n (S; U F;) U (Sj UFj). Therefore, L; is a neighbor of L; or L;; by Lemma 11.
Flnally, since r; € A, or l; € By, it follows that r; € erght(Fvert) or ly € Ry (F;’jert).
Therefore, L; ¢ L“ght or Ly ¢ Eleft Thus, since Z C LN E”ght N Ele , it follows that
L ¢ Z. d

LEMMA 31. Let T = (P,L,j,j,i,i") be an instance of RESTRICTED BOUNDED
DOMINATING SET on tolerance graphs. Let 1 =Ty N Fldjllag and r =Tt NTH09. If
there exists a line segment Ly € L such that Ly C BiN A, and Ly ¢ E;ljg,ht N £ie{,t then
at least one of the line segments {L;, Lj/, L;, Ly} is a neighbor of L,. Moreover, Ly
does not belong to any optimum solution Z of RESTRICTED BOUNDED DOMINATING
SET.

Proof. Suppose first that L, ¢ C“ght. Then I, € Rleft(f‘z’f”) orl; € Rleft(f‘i_ifg).
We first consider the case where [; € Rleft(f“’e”). Then, since I; € B; N A, by
figne(T dlag) This implies that I; € Sj/, and thus Lj
is a neighbor of L;. We now consider the case where I; € RZ, (Ff;lag). Then, since
(FZ’frt). This implies that l; € Fj

assumption, it follows that I; € R

l; € BN A, by assumption, it follows that [, € R?
and thus L; is a neighbor of L.

The case where L; ¢ Eief,t can be dealt with in exactly the same way, implying
that in this case, L; or L; is a neighbor of L;. O

right

From Lemmas 27 and 29 we define now the notions of a bad point p € P and a bad
line segment L; € L, respectively. Moreover, from Lemmas 28, 30, and 31 we define
the notions of an irrelevant point p € P and of an irrelevant line segment L, € L, as
follows.

DEFINITION 32. Let T = (P,L,5,5',i,i') be an instance of RESTRICTED
BOUNDED DOMINATING SET on tolerance graphs. Let | = F“m N deg and r =
reertn I‘fj}lg, A point p € P is a bad point if p € Rleﬂ(deg) orp € R”qht(f‘}fe”).

A point p € P is an irrelevant point if p € S; U S,. A line segment Ly € L is a bad
line segment if Ly C B; or Ly C A,. Finally, a line segment L; € L is an irrelevant
line segment if either Ly C B;N A, and L; ¢ E”ght LY or Ly has an endpoint in

0,37
B, U A, and another point in By N A,.

The next lemma will enable us to reduce RESTRICTED BOUNDED DOMINATING
SET to BOUNDED DOMINATING SET on tolerance graphs; cf. Lemma 35.

LEMMA 33. Let T = (P, L, 4,5 ,4,7") be an instance of RESTRICTED BOUNDED
DOMINATING SET on tolerance graphs, which has no bad or irrelevant points p € P
and no bad or irrelevant line segments L € L. Then we can add a new line segment
L;1 to the set P UL such that L; is the only neighbor of L; ;.

Proof. Since there are no bad or irrelevant points p € P and no bad or irrelevant
line segments L € £ by assumption, there exists a point x € R? such that for every
p € P and for every Ly € L\ {L;}, we have that p, L, € erght(I‘frt). That is, no

element of PU(L \ {L,}) has any point in the interior of the region Ry = rlg;ht(I“’c“)ﬁ

RZ .. (TVert). Furthermore, we define the region R C Ry, where R| = R; ORIC&(F?;,&g).
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This region R] is illustrated in Figure 8 for the case where j' # j; the case where
j' = j is similar. Now we add to £ a new line segment L, arbitrarily within the
interior of the region RY; cf. Figure 8. By the definition of R] it is easy to verify that
L; 1 is adjacent only to L. 0

vert vert i
¥ ryert g

F1G. 8. The addition of the line segment Lj 1, in the case where j' # j.

In the following we denote by I;; the left endpoint of the new line segment L ;.
Similarly to Definition 19 in section 5.2, we present in the next definition the quan-
tity RD¢p r)(j, ', 4,4") for the RESTRICTED BOUNDED DOMINATING SET problem on
tolerance graphs.

DEFINITION 34. Let T = (P,L,5,5',1,i') be an instance of RESTRICTED
BOUNDED DOMINATING SET on tolerance graphs. Then RDp r)(j,7’,1,4") is a dom-
inating set Z C LN E;qu,ht N £fezf,t of (P, L) with the smallest size, in which (j,j') and
(i,1") are the start-pair and the end-pair, respectively. If such a dominating set Z does
not exist, we define RD(p ry(j,7',1,1') = L and |RD(7D)L)(j,j/,i,i/)| = 0.

Observation 7. RD(p r)(j,5',i,i') # L if and only if L;, Ly € L, L;, Ly €
E;i’%}“, and £N E;iﬁl,“t N L:iezf/t is a dominating set of (P, L).

For simplicity of presentation we may refer to the set RD(p r(j,7',4,7') as
RD¢(j,7',i,4"), where (P, L) is the horizontal shadow representation of the toler-
ance graph G. In the next lemma we reduce the computation of RD(p )(j,5',4,")
to the computation of an appropriate value for the bounded dominating set problem
(cf. section 5).

LEMMA 35. Let T = (P, L, 4,5 ,4,7") be an instance of RESTRICTED BOUNDED
DOMINATING SET on tolerance graphs, which has no bad or irrelevant points p € P
and no bad or irrelevant line segments L € L. Let (P,L) be the augmented
representation that is obtained from (P,L) by adding the line segment L;1 as in
Lemma 33. Furthermore, let r = Ty N Fﬁj,ag. If RDep r)(j,7',1,4") # L, then

RD(P,C) (jvj/7 i, Zl) = BD(’P,Z‘:) (lj,la r, jlv i l/)

Proof. Let | = I} N F?jf‘g and r = " N [{2¢. Then, since by assumption
there are no bad or irrelevant points p € P or line segments L € L in the instance
= (P,L,j,7,i,1), it follows that all elements of P U L are entirely contained in the
region A; N B, of R?; cf. Definition 32. Therefore, all elements of P U £ belong to
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the set {L;} U X (I,7); cf. (2) in section 5.2. Now recall from the construction of the
augmented representation (P, L) from (P, £) in the proof of Lemma 33 that L, is
the only element of P U £ that does not belong to the set {L;} U X (I, r); cf. Figure 8.
Furthermore, it is easy to check that the set of elements of P U L is exactly the set
{Li} U X (7).

Since RD(p r)(j,j',4,i') # L by assumption, it follows by Observation 7 that
Lj, Ly € L& and Li, Ly € E“fht as well as that Eﬁﬁ“fht NLEY is a domi-
nating set of (P,L). Furthermore, since L; is the only neighbor of L;; in the

augmented representation (P, L), it follows that £ N E;t?%lt N LY is also a dominat-

ing set of (P,L). Moreover, since E;lfht C E”ght (cf. Definition 16 in section 5.1),

it follows that also Eﬂﬁ;i,ght NLES is a domlnating set of (P,L). Therefore,

BD(P7E)(lj71,r,j’,i,i’A) # 1 by Observation 4. That is, BD(Pf)(lj,l,r,j’,i,i’) is a
dominating set Z C £ of X(I;1,7) with the smallest size, in which (¢,4’) is its end-pair
and L, is its diagonally leftmost line segment (cf. Definition 19 in section 5.2). Since
Lj/ is the diagonally leftmost line segment of BD(P,E)(ljJ’T" j'i,4"), it follows that
Lji¢ BD(RE)(lj’l,r,j’,i, i'). Therefore, L; € BD(p,E)(lj,la r,j’,4,1"), since L; is the
only neighbor of L; 1 in (P, £). Thus, (j, ;) is the start-pair of BD(P,E) (Lia,r, g ,4,1).
Finally, since also P U L = {L;} U X(l;1,7) as we proved above, it follows that
RD(”/:’E) (j,j/, i, Z/) = BD(’P,E) (lj,la r, j/, i, ’L/) 0

We are now ready to present Algorithm 2 which, given an instance Z =
(P,L,j,7',1,7") of RESTRICTED BOUNDED DOMINATING SET on tolerance graphs,
either outputs a set Z C LN E“ght Elef,t of minimum size that dominates all ele-
ments of (P, L), or announces that such a set Z does not exist. Algorithm 2 uses
Algorithm 1 (which solves BOUNDED DOMINATING SET on tolerance graphs; cf. sec-
tion 5) as a subroutine.

THEOREM 36. Given a 6-tuple T = (P, L,j,5,i,4'), where (P, L) is a horizontal
shadow representation of a tolerance graph G with n vertices, (j,j') is a left-crossing
pair and (i,i') is a right-crossing pair of (P, L), Algorithm 2 computes RESTRICTED
BOUNDED DOMINATING SET in O(n®) time.

Proof. If the horizontal shadow representation (P, L) contains at least one bad
point p € P or at least one bad line segment L, € L (cf. Definition 32), then
LN E;i??t N Ellef,t does not dominate (P, L) by Lemmas 27 and 29. Thus, in the case
where such a bad point or bad line segment exists in (P, L), Algorithm 2 correctly
returns L; cf. lines 1-2. Furthermore, due to Observation 7, the algorithm correctly
returns L in line 8 if at least one of the conditions checked in line 3 is not satisfied.

Assume now that all conditions that are checked in line 3 are satisfied. Then
RDp £)(4,7',1,4") # L by Observation 7. Let P; CP and £y C L be the set of all
irrelevant points and line segments, respectively (cf. Definition 32). Then, by Lemmas
28, 30, and 31, every point p € P; and every line segment L; € £; is dominated by at
least one of the line segments {L;, L;/, L;, L, }. Furthermore, by Lemmas 30 and 31,
no line segment L; € L; is contained in any optimum solution Z of RESTRICTED
BOUNDED DOMINATING SET. Thus, Algorithm 2 correctly removes the sets P; and
Ly of the irrelevant points and line segments from the instance; cf. lines 4-5.

In line 6 the algorithm augments the set £ of line segments to the set £ by adding
to it the line segment L;; as in Lemma 33. Then the algorithm returns in line 7 the
value BD p, 7 (lj1,m,7',4,1") by calling Algorithm 1 as a subroutine (cf. section 5).
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Algorithm 2 RESTRICTED BOUNDED DOMINATING SET on tolerance graphs.

Input: A 6-tuple Z = (P, L,j,j',i,i'), where (P, L) is a horizontal shadow repre-
sentation of a tolerance graph G, (j,j’) is a left-crossing pair, and (i,4') is a
right-crossing pair of (P, L).

Output: A set Z C £ of minimum size that dominates (P, L), where (j, ;') is the
start-pair and (¢,4') is the end-pair of Z, or the value L.

1: if (P, L) contains a bad point p € P or a bad line segment Ly € £ (cf. Defini-
tion 32) then

2:  return L

3 if Lj, Ly € L, Li, Ly € E;i’?}t, and £ N E;i?}lt N LY is a dominating set of
(P, L) then

4:  Compute the sets P; C P and £; C L of irrelevant points and line segments

(cf. Definition 32)

5. P« P\Pi; L L\Ly; 7 DyrnTiies

6: L+ LU{L;1} (cf. Lemma 33)

7. return BD(P)E)(ZJ-J, r,j',4,1") {by calling Algorithm 1}

8: else return L

The correctness of this computation in line 7 follows immediately by Lemma 35.
Regarding the running time of Algorithm 2, note by Definition 32 that we can
check in constant time whether a given point p € P (resp., a given line segment
L; € L) is bad or irrelevant. Therefore, each of the lines 1, 2, and 4 of the algorithm
can be executed in O(n) time. The execution time of the if-statement of line 3 is
dominated by the O(n?) time that is needed to check whether £ N E;i%}lt NLEY is a
dominating set of (P, L). Furthermore, lines 5-6 can be executed trivially in total
O(n) time. Finally, line 7 can be executed in O(n?) time by Theorem 26, and thus
the total running time of Algorithm 2 is O(n?). O

7. Dominating set on tolerance graphs. In this section we present our main
algorithm (Algorithm 3) which computes in polynomial time a minimum dominating
set of a tolerance graph G, given by a horizontal shadow representation (P, £). Algo-
rithm 3 uses as subroutines Algorithms 1 and 2, which solve BOUNDED DOMINATING
SET and RESTRICTED BOUNDED DOMINATING SET on tolerance graphs, respectively
(cf. sections 5 and 6). Throughout this section we assume without loss of generality
that the given tolerance graph G is connected and that G is given with a canonical
horizontal shadow representation (P, £). It is important to note here that in contrast
to Algorithms 1 and 2, the minimum dominating set D that is computed by Algo-
rithm 3 can also contain unbounded vertices. Thus always D # 1, since in the worst
case D contains the whole set P U L.

For every p € P we denote N(p) ={Ly € L:p € Si} and H(p) ={x € PUL:
x NS, # 0}. Note that due to Lemmas 12 and 13, N(p) is the set of neighbors of
p and H(p) is the set of hovering vertices of p. Furthermore, for every Ly € L we
denote N(Lg) ={peP:peSptU{Ls € L: LiN Sk # D or LyNS; # 0}. Note that
due to Lemmas 11 and 12, N(Lyg) is the set of neighbors of Ly.

Observation 8. Let (P, L) be a canonical representation of a connected tolerance
graph G, and let p € P. Then N(p) C N(x) for every x € H(p) by Lemma 3.
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Furthermore, H(p) N L # () by Lemma 4.

LEMMA 37. Let (P, L) be a canonical horizontal shadow representation of a con-
nected tolerance graph G, and let D be a minimum dominating set of (P, L). If there
exists a point p € P such that p € D and (N(p) U H(p)) N D # 0, then there exists a
dominating set D' of (P, L) such that |D'| = |D| and |[D'NP|=|DNP|-—1.

Proof. We may assume without loss of generality that P # () and £ # (). Indeed, if
P = (b, then we can just solve the problem BOUNDED DOMINATING SET (see section 5);
furthermore, if £ = (), then the graph G is an independent set. Consider a point p € P
such that p € D. Suppose first that = € D for some z € N(p), i.e., N(p) N D # (.
Recall by Observation 8 that H(p)NL # () and consider a line segment Ly € H (p) N L.
We will prove that the set D' = (D \ {p}) U {Ly} is a minimum dominating set of G.
First, note that p is dominated by « € D\ {p} C D’. Furthermore, N(p) C N(Ly) by
Observation 8, since Ly € H(p). This implies that N(p) is dominated by Ly in D’.
Thus, since |D’| = | D, it follows that D’ is a minimum dominating set of G.

Suppose now that z € D for some =z € H(p), i.e., H(p) N D # 0. Since G is
assumed to be connected, it follows that N(p) # 0. Let Ly € N(p). We will prove
that the set D' = (D \ {p}) U {Lx} is a minimum dominating set of G. First, note
that p is dominated by Ly € D’. Recall by Observation 8 that N(p) C N(x). This
implies that N(p) is dominated by x in D’. Thus, since |D’| = |D|, it follows that D’
is a minimum dominating set of G.

To finish the proof of the lemma, note that |[D' NP| = |D NP| — 1 follows from
the construction of D', as we always replace in D’ the point p € P by a line segment
Ly e L. O

Define now the subset P* C P of points as follows:
(10) P ={peP:p¢ H(p) for every point p' € P\ {p}}.

Equivalently, P* contains all points p € P such that p ¢ S, for every other point
p’ € P\ {p}. Note by the definition of the set P* that for every p1,ps € P* we have
p1 ¢ Sp, UF,,. Furthermore, recall that the points of P = {p1,p2, ..., p;p|} have been
assumed to be ordered increasingly with respect to their xz-coordinates. Therefore,
since P* C P, the points of P* are also ordered increasingly with respect to their
z-coordinates.

DEFINITION 38. Let (P, L) be a horizontal shadow representation. A dominating
set D of (P, L) is normalized if
1. (N(p)UH(p))ND =0 whenever p e DNP, and
2. DNP CP*.

LEMMA 39. Let (P, L) be a canonical horizontal shadow representation of a con-
nected tolerance graph G. Then there exists a minimum dominating set D of (P, L)
that is normalized.

Proof. Let D be a minimum dominating set of G that contains the smallest pos-
sible number of points from the set P. That is, |[DNP| < |D'NP| for every minimum
dominating set D’ of G. Let p € DN P.

First, assume that (N(p) U H(p)) N D # 0. Then Lemma 37 implies that there
exists another minimum dominating set D’ of G such that |[D'NP|=|DNP|-1<
|DNP|, which is a contradiction to the choice of D. Therefore, (N(p)UH (p))ND =0
for every p e DN P.

Now assume that p € (P \ P*) N D. Then, by the definition of the set P*, there
exists a point p’ € P such that p € H(p'). Note by Observation 8 that N(p') C N(p).
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Suppose that p’ € D. Then since p € H(p’), Lemma 37 implies that there exists a
minimum dominating set D’ such that |D'NP| = |DNP|—1< |DNP|, which is a
contradiction to the choice of D. Therefore, p’ ¢ D. Thus since D is a dominating set
of G and p’ ¢ D, there must exist an Ly € N(p') such that Ly € D. Therefore, since
N(p') € N(p), it follows that Ly € N(p) N D. Then Lemma 37 implies that there
exists a minimum dominating set D’ of G such that |[D'NP|=|DNP|—-1< |DNP|,
which is again a contradiction to the choice of D. This implies that (P\P*)ND =10
and therefore D NP C P*. Thus the dominating set D is normalized. O

In the remainder of this section, whenever we refer to a minimum dominating set
D of a connected tolerance graph G that is given by a canonical horizontal shadow
representation (P, £), we will always assume (due to Lemma 39) that D is normalized.
Moreover, given such a canonical horizontal shadow representation (P, £), where P =
{p1,p2,...,pp|} and L = {L1, Lo, ..., L}, we add two dummy line segments Lo and
Lyz|+1 (with endpoints lo, 7 and I|z|41,7|z|+1, respectively) such that all elements of
P U L are contained in A, and in By, ,,. Denote L' = LU{Lo, L|¢|41}. Furthermore,
we add one dummy point p;pj41 such that all elements of P U L' are contained in
By p,.,- Denote P' =P U {pp|11}-

Note that (P’, L') is a horizontal shadow representation of some tolerance graph
G’, where the bounded vertices V} of G’ correspond to the line segments of £’, and
the unbounded vertices V{; of G’ correspond to the points of P’. Furthermore, note
that although G is connected, G’ is not connected, as it contains the three isolated
vertices that correspond to Lo, Liz|4+1, and pjpy1. However, since there exists by
Lemma 39 a minimum dominating set D of G that is normalized, it is easy to verify
that G’ also admits a normalized minimum dominating set. Therefore, whenever we
refer to a minimum dominating set D’ of the augmented tolerance graph G’, we will
always assume that D’ is normalized.

For simplicity of presentation, in the following we refer to the augmented sets P’
and L’ of points and horizontal line segments as P and L, respectively. In the re-
mainder of this section we will write P = {p1,p2,...,pp|} and L = {L1, Lo, ..., Lz},
with the understanding that the last point p;p| of P, as well as the first and last line
segments L; and Lz of £, are dummy. Note that the last point p;p| (i.e., the new
dummy point) belongs to the set P*. Furthermore, we will refer to the augmented
tolerance graph G’ as G. For every p;,p; € P* with i < j, we denote
(11) Gj:{xEPUE:ngpj\F;jrt}7
(12) G(i,j) ={reGj:xC Ay}
that is, G; is the set of elements of P U L that are entirely contained in the region
By, \ Iy, and G(i, j) is the subset of G that contains the elements of P U L that
are entirely contained in the region A,,. Note that p; ¢ G; and p; ¢ G(3, j).

DEFINITION 40. Let p; € P* and (i,i') be a right-crossing pair in G;. Then
D(j,i,1") is a minimum normalized dominating set of G; whose end-pair is (i,4). If
there exists no dominating set Z of G; whose end-pair is (i, 1), we define D(j,i,i")=L.

Observation 9. D(j,4,i") # L if and only if Eief,t is a dominating set of G;.

Observation 10. If X(ry,p;) is not dominated by the set {L;,L;}, then
D(j,i,i) = L. Furthermore, if there exists a point p € P N G, such that
p € R, (DY), then D(j,i,i') = L.

Due to Observation 9, without loss of generality we assume below (in Lemmas 41
and 42) that D(j,4,7") # L. Before we provide our recursive computation for D(j,,")
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FiG. 9. The recursion for Case 2 of Lemma 42, where pq,p1,p2,pq € P*.

in Lemma 42 (cf. (14)), we first prove in the next lemma that the upper part of the
right-hand side of (14) is indeed a normalized dominating set of G;, in which (4,¢') is
its end-pair.

LEMMA 41. Let G be a tolerance graph, let (P, L) be a canonical representation of
G, pj € P*, and let (i,i") be a right-crossing pair of G;. Assume that D(j,1,4") # L.
Let q,q', 2,2, w,w' such that
. Py € P*, where 1 < ¢’ < j;
- Li,Ly ¢ N(pq’) U H(pq’);
. (w,w’) is a left-crossing pair of G(¢',j);
. (2,7') is a right-crossing pair of Gy ;
- q=min{l <k < ¢ :py € P*, pr € Ac}, where ¢ =T3¢ N Frdj,“-‘];
- (H(pg) UH(py)) \ (Uy<p<q N(pr)) are dominated by the line segments
{Lz7 Lz ) Lwa Lw’}
7. G(q,q') is dominated by {py € P* q<k<dq}.
If D(q,2,2") # L and RDg(q ;)(w,w',i,i") # L, then the set

O UL W N~

D(q,z,2")U{pr € P*: ¢ <k < ¢} URDg(q j(w,w',i,i")
is a normalized dominating set of G;, in which (i,i") is its end-pair.

Proof. The choices of ¢,q¢’,z,2',w,w’,i,i, as described in the assumptions of
the lemma, are illustrated in Figure 9. Assume that D(q,z,2’) # L and that
RD¢(q jy(w,w',i,i") # L. We denote for simplicity D = Dy U Dy U D3, where

Dl :D(Q7Z72l)7
(13) Dy={p €P* :q<k<q'},
Dg = RDG(Q/J)(U),U}I,Z.JI).

First, we prove that D is a dominating set of G; and that (¢,4’) is the end-pair
of D. Since D; # L and D3 # L, note that the set G4 is dominated by D; and that
the set G(¢', ) is dominated by Ds. Furthermore, by condition 7 of the lemma, the
set G(q,q’) is dominated by Ds. It remains to prove that if z ¢ D is an element of
Gj such that x N Fp, # 0, or x N F, , # 0, or 2N Sy, #0, or xSy, # 0, then z is
dominated by some element of D.

Assume that = ¢ D is an element of G such that NS, # 0 or z NS, , # 0.
Then =z € H(p,) U H(py) by Lemma 13. If z € Uycreqg N(pk), then z is clearly
dominated by Dy; cf. (13). Otherwise z € (H(pgy) U H(pq N\ (U <k<q N(pr)), and
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thus = is dominated by the line segments {L,, L./, L, L, } by condition 6 of the
lemma.

Now assume that = ¢ D is an element of G; such that xNF,, # 0 or xNF, , # 0.
Suppose that © € P, ie, x € F, orz € Fp ,. If v € F), , then p; € S;, and thus
pg € H(z) by Lemma 13. This is a contradiction, since p, € P* by condition 5 of the
lemma; cf. the definition of P* in (10). Similarly, if « € F),, then we arrive again at
a contradiction, since py € P* by condition 1 of the lemma. Therefore, z ¢ P, i.e.,
x € L. Let x = L. Since Ly, N Fp, # 0 or Ly N Fy, # 0, it follows that p, € Sy or
py € Sk, and thus ¢ = Ly € N(p,) U N(py ). That is, x is dominated by {pq, g }-
Therefore, D is a dominating set of G;. Furthermore, since (4,7') is the end-pair of
D3, it follows that (4,4") is also the end-pair of D = Dy U Dy U Ds.

We now prove that D is normalized. First, note that Dy = D(q, 2, 2’) is normal-
ized by Definition 40 and that D5 is normalized, as it contains only elements of P*;
cf. Definition 38. Moreover, due to Definition 38, D3 is normalized, as it contains
only elements of £; cf. Definition 34 in section 6. That is, each of Dy, Dy, and Dj is
normalized. Furthermore, note that due to conditions 2, 3, and 4 of the lemma, for
any two elements x,x’ that belong to different sets among D1, Ds, D3, no point of
belongs to the shadow of x’. Therefore, the whole set D is normalized. Summarizing,
D is a normalized dominating set of G;, whose end-pair is (z,7’). a

Given the statement of Lemma 41, we are now ready to provide our recursive
computation of the sets D(j,1,).

LEMMA 42. Let G be a tolerance graph, let (P,L) be a canonical representation
of G, pj € P*, and let (i,1") be a right-crossing pair of G; such that D(j,i,i") # L.
Then
(14)
D(],Z,Z/) _ min {D(q,Z,Z/)U{]?k.E P q< k< q/}URDG(q/,j)(waw/7i7i,)a
¢z ww' | BDg,(l1,b,1,4,1'), where b =Ty N o,

where the minimum is taken over all ¢',z, 2/, w,w' that satisfy? conditions 1-7 of
Lemma 41.

Proof. Let Z be a normalized dominating set of G; such that (i,') is its end-pair
and Z = |D(j,14,4")|. We distinguish the following two cases.

Case 1. ZNP* =0, ie, Z C L. Denote b = I'}** N I‘d‘ag and observe that
X(li,b) € Gj. Therefore, since Z is a dominating set of GJ7 it follows that Z is
also a domlnatlng set of X (l1,b). Moreover, recall that Ly is a dummy isolated line
segment, and thus Ly € Z. In particular, Ly is the diagonally leftmost line segment
of Z. Therefore, |BDg,(l1,b,1,i,1")| < |Z], since Z C L and (i,7') is the end-pair of
Z by assumption.

Since D(j,i,i") # L by assumption, it follows by Observation 10 that there are
no points p € P N G; such that p € Rnght(f“r’f”), and that X (r;,p;) is dominated
by L; and L; Therefore BDg,(l1,b,1,i,i") is a dominating set of G that has (i,1")
as its end—pair. Moreover, due to Deﬁnition 38, BDg;(l1,b,1,1,4") is normalized,
as it contains only elements of £ (cf. Definition 19 in section 5.2). Thus, |Z| <
|BDg,(l1,b,1,4,i")|. That is, |Z| = |BDg,(l1,b,1,4,4")|.

Case 2. ZNP* # 0. Let ¢ = max{k < j : pp € P* N Z}; cf. Figure 9. From the
assumption that Z is normalized, it follows that for every line segment Ly € Z N L,

2Note that the value of ¢ is uniquely determined by the value of ¢’ and by the pair (z,2’);
cf. condition 5 of Lemma 41.
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either L; C By, or L C qu,. Therefore, the set Z N L can be partitioned into two
sets Z,1 and Z. 2, where

ZL,I = {Lk eZNL: Ly C qu/},
Lo = {Lk e ZNL: Ly gqu,}.

In particular, note that L;, Ly, ¢ N(py) U H(py). Now we prove that L;, Ly €
Zr,2. Assume that otherwise L; € Z. 1, ie., L; C qu,. Then r; € qu,, and thus
Py € RZy (T)). This is a contradiction by Observation 10, since D(j,,7') # L
by assumption. Now assume that Ly € Z, 1, ie., Ly C By, Then r; € B, ,, and
thus py € RE,p, (Ffj?g). This is a contradiction to the assumption that (4,4') is the
end-pair of D(j,,i'). Summarizing, L;, Ly € Z 5.

Notice that Z; o C £ is a bounded dominating set of G(¢’,j) with (4,4') as its
end-pair, and thus Z, 5 # (). Since Z, 5 C £, Observation 3 implies that Z, 5 contains
a unique start-pair. Let (w,w’) be the left-crossing pair of G(¢’, j) which is the start-

pair of Z, 9. Then
(15) |RDG(q/,j)(w,w',i,i’)| S ‘Z£,2|,

and thus RDg(y jy(w,w’,i,4") # L.

Recall that G; contains the isolated (dummy) line segment Lq, and thus L, €
Zr1. Therefore, Zy 1 # (. Since Zr.1 € L, Observation 3 implies that Z, ; contains
a unique end-pair. Let (z,2’) be the right-crossing pair of G¢/, which is the end-pair
of Zr 1. Denote ¢ = IV NT¢28; f. Figure 9.

Consider now an arbitrar;' point p € P* N Z. We will prove that p ¢ Fr U S¢.
Assume otherwise that p € F¢. Then p € RZ,, (T¥™"), and thus also p € RZ,, (L))
Moreover, p € R, (I'd#8). This implies that p € F,,. That is, r,» € S,, and thus
Lemma 13 implies that L., € H (p). This is a contradiction to the assumption that
Z is normalized, since both p, L, € Z. Thus p ¢ F,. Now assume that p € S,.
Then p € Rfight (Ffi‘f”g), and thus also p € Rfight (Idi28). Furthermore, p € RZ, (TV").
This implies that p € S,._, and thus L, € N(p). This is again a contradiction to the
assumption that Z is normalized, since both p, L. € Z. Thus p ¢ S¢. Summarizing,
for every p € P*NZ we have that p ¢ F:US¢, i.e., either p € A; or p € B. Therefore,
the set P* N Z can be partitioned into two sets Zp«; and Zp- 5, where

Zp«1={p€P"NZ:pe€ B},
Zp*ygz{pGP*QZ:peAc}.

Note that p; € Zp« . Furthermore, since (z,2’) is the end-pair of Z. 1, note
that all line segments of Z, ; are contained in B¢. Therefore, all elements of the set
Zy = Zp1 U Zp« ;1 are contained in Be, and thus (z, ') is the end-pair of Z;. Define
now ¢ = min{l < k < ¢ : pr € P*, pr € Ac}; cf. Figure 9. Recall that p, ¢ Gg;
cf. (11). It is easy to check that no line segment of Z, o dominates any element of G ;
cf. Figure 9. Similarly, no point of Zp- » dominates any element of GG,. Thus, the set
7y is a dominating set of G;. Furthermore, Z; is normalized, since Z; C Z and Z
is normalized by assumption. That is, Z; is a normalized dominating set of G, with
(z,2') as its end-pair. Therefore,

(16) |D(q,Z,ZI)| g |Zl|7

and thus D(q, z,2") # L.
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We now prove that Zp« o = {py € P*: ¢ < k < ¢'}. Clearly Zp- o C {pr, € P*:
q < k < ¢’} by the definition of the index ¢ and of the set Zp« 5. Recall that for every
line segment L, € Z, either Ly € Zpor Ly € Zpo. If Ly € Z 1, then Ly C B C By,
Denote ¢ = F"frt ﬂFdlag cf. Figure 9. If Ly € Z 2, then Ly C A. C A, ,, since (w, w )
is the start-pair of ZL 2. Thus, for every line segment L; € Z, cither L, C By, or
Ly C Ap,. Therefore, N(py) N Z = 0 for every k € {g,¢ + 1,...,¢'}, and thus all
points p; € 77*, where ¢ < k < ¢/, must belong to Z. That is, {pr € P*: ¢ < k <
q'} C Zp+« 5. Therefore,

(17) Zpeo={preP :q<k<q}.

Recall that for every line segment Ly € Z, either Ly C B, or Ly C qu,, as we
proved above. Therefore, G(g,q’) must be dominated by Zp+ o. Furthermore, due to
(17), Zp~ 2 clearly dominates the set | J g<k<qg NV (pr). Moreover, every hovering vertex
of p, and of p, must be dominated by Zp- 2 or by the set {L,, L./, L,,, Ly, }. There-
fore, {L., L./, Ly, Ly } must dominate the set (H(pg) U H(pg')) \ (U <<y N(0k))-

Now note that the sets D(q, 2,2"), Zp~ 2, and RDg(q ;) (w,w’,i,i") are mutually
disjoint. Furthermore, it follows by (15) and (16) that

‘D(qazvz/)l + |Z7’*,2‘ + |RDG(q/,j)(w7wl’i7i/)’ < |Zl| + |Z7’*72| + ‘Zﬁ,Ql

(18) =|Zp1UZps 1|+ |Zp~ 2| + 22 2]
=1Z| = |D(j,i,7)].
Therefore, |D(q,2,2")U Zp-2U RDg(q, ' ‘ < |D(j,,4')|. On the other

(
hand, since Zp«o2 = {px € P* : ¢ S S q'} by (17), Lemma 41 implies
that if D(q,2,2") # L and RDg(y J)(w,w ,1,1") 7é 1, then D(q,2,2") U Zp« o U
RD¢(q j)(w,w',i,i") is a normalized dominating set of Gj, in which (¢,4') is its end-

pair. Therefore,
(19) |D(]7 ia Zl)| < |D(Q5 2, Z/) U Z’P*,Q U RDG(q’,j)(w7 ’U.)/, ia Z/)| .
The lemma follows by (18) and (19). |

We are now ready to present Algorithm 3 which, given a canonical horizontal
shadow representation (P, L) of a connected tolerance graph G, computes a (normal-
ized) minimum dominating set D of G. The correctness of Algorithm 3 is proved in
Theorem 43.

THEOREM 43. Given a canonical horizontal shadow representation (P,L) of a
connected tolerance graph G with n vertices, Algorithm 3 computes in O(n'®) time a
(normalized) minimum dominating set D of G.

Proof. In the first line, Algorithm 3 augments the given canonical horizontal
shadow representation (P, £) by adding to £ the dummy line segments Lo and Ljz|41
(with endpoints Iy, ro and Lei+1>m12) 415 respectively) such that all elements of P U L
are contained in A,, and By, ,,. Furthermore, in the second line, the algorithm
augments the set of points P by adding to it the dummy point p;p|4; such that
all elements of P UL’ are contained in Bp sy~ In lines 3 and 4, the algorithm
renumbers the elements of the sets P and £ such that P = {p1,p2,...,p;p} and £ =
{L1,Ls, ..., Lz}, where in this new enumeration the point p;p| is dummy and the
line segments Ly and Lz are dummy as well. In lines 5-9 the algorithm computes the
subset P* C P (cf. (10)), all feasible subsets X (a,b) C P UL (cf. (2) in section 5.2),
and all sets G, where p; € P* (cf. (11)).
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Algorithm 3 DOMINATING SET on tolerance graphs.

Input: A canonical horizontal —shadow  representation (P, L), where

P = {pl,pg, N ,p‘p‘} and £ = {Ll,LQ, N 7L|£|}.
Output: A set D C LU P of minimum size that dominates (P, £).

1: Add two dummy line segments Lo (resp., Ljg|+1) completely to the left
(resp., right) of PU L
2: Add a dummy point pp|;; completely to the right of Lz
3: P« PU{ppi+1}; L LU{Lo,Lig+1}
Denote P = {p1,p2;...,pjp} and L = {Ly, Lo, ..., Lz}, where now pjp|, L1, and
L) are dummy
P*={peP:p¢ H(p) for every point p’ € P\ {p}}
for every pair of points (a,b) € A x B such that b € RZ,, (T'5*¢) do
X(a,b) +{zePUL:x C (B, \I}"") N Rfight(rgiag)}
for every p; € P* do
Gj+—{z€PUL:xC B, \T}"}
10:  for every i,7' € {1,2,...,|£|} do

=

11: if L;, Ly € G; and ryy € S,, then {(¢,7’) is a right-crossing pair of G}
12: if L} does not dominate all elements of G; then D(j,i,i') < L
13: else Compute D(j,,i") by Lemma 42 {by calling Algorithms 1 and 2}

14: return D(|P|,|L]|,|L£]) \ {L1, Lz}

The main computations of the algorithm are performed in lines 12-13, which are
executed for every point p; € P* and for every right-crossing pair (i,i') of the set
G;. In line 12 the algorithm checks whether Eief/t dominates all elements of G;. If
it is not the case, it correctly computes D(j,4,7') = L by Observation 9. Otherwise,
if Eief,t is a dominating set of G, then the algorithm computes in line 13 the value
of D(j,4,4") with the recursive formula of Lemma 42. Note that to compute all the
necessary values for this recursive formula, Algorithm 3 needs to call Algorithms 1
and 2 as subroutines; cf. Lemma 42.

Once all values D(j,4,4') have been computed, the set D(|P|,|L[,|£|) is a min-
imum normalized dominating set of G|p|, whose end-pair is (|£],|L]); cf. Defini-
tion 40. Recall that pjp| ¢ Gp|, i.e., Gip| = (P \ {pp|}) U L. Therefore, since
the two dummy line segments are isolated, they must belong to the dominating set
D(|P|,|£],|£]|) of Gp|. Thus, the algorithm correctly returns in line 14 the value
D(|P|, L], |£]) \ {L1, Lz} as a minimum normalized dominating set for the input
tolerance graph G.

Regarding the running time of Algorithm 3, first note that the execution time of
lines 1-5 is dominated by the computation of the set P* in line 5; this can be done
in at most O(n?) time, since we check in the worst case for every two points p,p’ € P
whether p € H(p’). Due to the for-loop of line 6, line 7 is executed at most O(n?)
times. Furthermore, recall by (1) and (2) that for every pair (a,b) € A x B, the vertex
set X (a,b) can be computed in O(n) time. Therefore, lines 6-7 are executed in O(n?)
time. Due to the for-loop of line 8, lines 9-13 are executed O(n) times, since there
are at most O(n) points in the set P*. For every fixed p; € P*, line 9 can be trivially
executed in O(n) time. For every fixed p; € P*, lines 11-13 are executed O(n?) times,
due to the for-loop of line 10. Furthermore, for every fixed triple (j,,4’), line 11 can
be executed in constant time and line 12 can be easily executed in O(n?) time.
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It remains to upper bound the execution time of line 13 using Lemma 42. Before
we execute line 13 for the first time, we perform two preprocessing steps. In the first
preprocessing step we compute, for each of the O(n) possible values for j, the graph G;
in O(n) time (cf. (11)), and then we compute by Algorithm 1 in O(n?) time the values
BDg,(l1,b,1,i,i") for every feasible pair (i,i'); cf. Theorem 26 in section 5. That is,
we compute in the first preprocessing step the values BDg; (l1,b,1,1,i’) for every triple
(4,4,4") in O(n'?) time. In the second preprocessing step we compute, for each of the
O(n") possible values for ¢/, j,w,w’,i,i’, the graph G(¢,7) in O(n) time (cf. (12)),
and then we compute by Algorithm 2 in O(n?) time the values RDg (g ) (w, w',i,');
cf. Theorem 36 in section 6. That is, we compute in the second preprocessing step all
values RD¢(qr jy(w,w’,,7) in O(n'®) time.

Consider a fixed value for the triple (j,,¢"). Then there exist O(n) feasible values
for ¢'; cf. conditions 1 and 2 of Lemma 41. Furthermore, there exist O(n?) feasible
values for the pair (z,2’); cf. condition 4 of Lemma 41. Once the values of ¢, z,2’
have been chosen, we can compute in O(n) time the value of ¢; cf. conditions 5 and 6
of Lemma 41. Furthermore, once the values of ¢’ and ¢ have been chosen, we can
check condition 7 of Lemma 41 in O(n?) time. Thus, given a fixed value for the triple
(4,1,4"), we can compute in O(n®) time the sets D(q,2,2") U {pr € P*:q <k <q'}
for all feasible values of the triples (g, z,2’). Moreover, for each of the O(n?) feasible
pairs (w,w’) (cf. condition 3 of Lemma 41) we can compute in O(n) time the set
D(q,2,2")U{pr € P*:q <k <¢}URDg g j(w,w',i,i); cf. Lemma 41. That is, for
a fixed value of the triple (j,i,4’), we can compute all these sets in O(n®) time, and
thus we can compute all values of D(j,,4") in O(n'!) time.

Summarizing, the running time of the algorithm is dominated by the two
preprocessing steps for computing in advance all values BDg,(l1,b,1,4,4") and
RD¢(y j)(w,w’,4,4'), and thus the running time of Algorithm 3 is O(n'?). O

8. Concluding remarks. In this paper we introduced two new geometric rep-
resentations for tolerance and multitolerance graphs, called the horizontal shadow
representation and the shadow representation, respectively. Using these new repre-
sentations, we first proved that the dominating set problem is APX-hard on multi-
tolerance graphs, and then we provided a polynomial time algorithm for this problem
on tolerance graphs, thus answering a longstanding open question. Therefore, given
the (seemingly) small difference between the definition of tolerance and multitolerance
graphs, this dichotomy result appears to be surprising.

These two new representations have the potential for further exploitation via
sweep line algorithms. For example, using the shadow representation, it is not very
difficult to design a polynomial sweep line algorithm for the independent dominating
set problem, even on the larger class of multitolerance graphs. In particular, although
the complexity of the dominating set problem has been established in this paper for
both tolerance and multitolerance graphs, an interesting research direction would be to
use these new representations also for other related problems, e.g., for the connected
dominating set problem. A major open problem in tolerance and multitolerance
graphs is to establish the computational complexity of the Hamiltonicity problems.
We hope that these two new geometric representations provide new insights for these
problems.

Our algorithm for tolerance graphs is highly nontrivial and its running time is
upper-bounded by O(n'?), where n is the number of vertices in the input tolerance
graph. Using more sophisticated data structures, our algorithm could run slightly
faster. As our main aim in this paper was to establish the first polynomial time

© 2016 STAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 09/08/16 to 129.234.252.65. Redistribution subject to CCBY license

DOMINATION ON TOLERANCE AND MULTITOLERANCE GRAPHS 1725

algorithm for this problem, rather than finding an optimized efficient algorithm, an
interesting research direction is to explore to what extent the running time can be
reduced. The existence of a practically efficient polynomial time algorithm for the
dominating set problem on tolerance graphs remains wide open.
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