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Abstract

Tolerance graphs model interval relations in such a way that intervals can tolerate a certain
amount of overlap without being in conflict. In one of the most natural generalizations of
tolerance graphs with direct applications in the comparison of DNA sequences from different
organisms, namely multitolerance graphs, two tolerances are allowed for each interval – one
from the left and one from the right side. Several efficient algorithms for optimization problems
that are NP-hard in general graphs have been designed for tolerance and multitolerance graphs.
In spite of this progress, the complexity status of some fundamental algorithmic problems on
tolerance and multitolerance graphs, such as the dominating set problem, remained unresolved
until now, three decades after the introduction of tolerance graphs. In this article we introduce
two new geometric representations for tolerance and multitolerance graphs, given by points and
line segments in the plane. Apart from being important on their own, these new representations
prove to be a powerful tool for deriving both hardness results and polynomial time algorithms.
Using them, we surprisingly prove that the dominating set problem can be solved in polynomial
time on tolerance graphs and that it is APX-hard on multitolerance graphs, solving thus a
longstanding open problem. This problem is the first one that has been discovered with a
different complexity status in these two graph classes.
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1 Introduction

A graph G = (V,E) on n vertices is a tolerance graph if there exists a collection I = {Iv | v ∈ V }
of intervals on the real line and a set t = {tv | v ∈ V } of positive numbers (the tolerances), such
that for any two vertices u, v ∈ V , uv ∈ E if and only if |Iu ∩ Iv| ≥ min{tu, tv}, where |I| denotes
the length of the interval I. The pair 〈I, t〉 is called a tolerance representation of G. If G has
a tolerance representation 〈I, t〉, such that tv ≤ |Iv| for every v ∈ V , then G is called a bounded
tolerance graph.

If we replace in the above definition “min” by “max”, we obtain the class of max-tolerance
graphs. Both tolerance and max-tolerance graphs have attracted many research efforts [2,4,7,9,10,
12,14–17] as they find numerous applications, especially in bioinformatics, among others [10,12,14];
for a more detailed account see the book on tolerance graphs [11]. One of their major applications
is in the comparison of DNA sequences from different organisms or individuals by making use of a
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software tool like BLAST [1]. However, at some parts of the above genomic sequences in BLAST,
we may want to be more tolerant than at other parts, since for example some of them may be
biologically less significant or we have less confidence in the exact sequence due to sequencing errors
in more error prone genomic regions. This concept leads naturally to the notion of multitolerance
graphs which generalize tolerance graphs [11, 15, 19]. The main idea is to allow two different
tolerances for each interval, one to each of its sides. Then, every interval tolerates in its interior
part the intersection with other intervals by an amount that is a convex combination of these two
border-tolerances.

Formally, let I = [l, r] be an interval on the real line and lt, rt ∈ I be two numbers between l
and r, called tolerant points. For every λ ∈ [0, 1], we define the interval Ilt,rt(λ) = [l + (rt − l)λ,
lt + (r − lt)λ], which is the convex combination of [l, lt] and [rt, r]. Furthermore, we define the set
I(I, lt, rt) = {Ilt,rt(λ) | λ ∈ [0, 1]} of intervals. That is, I(I, lt, rt) is the set of all intervals that we
obtain when we linearly transform [l, lt] into [rt, r]. For an interval I, the set of tolerance-intervals τ
of I is defined either as τ = I(I, lt, rt) for some values lt, rt ∈ I (the case of a bounded vertex),
or as τ = {R} (the case of an unbounded vertex). A graph G = (V,E) is a multitolerance graph
if there exists a collection I = {Iv | v ∈ V } of intervals and a family t = {τv | v ∈ V } of sets of
tolerance-intervals, such that: for any two vertices u, v ∈ V , uv ∈ E if and only if Qu ⊆ Iv for some
Qu ∈ τu, or Qv ⊆ Iu for some Qv ∈ τv. Then, the pair 〈I, t〉 is called a multitolerance representation
of G. If G has a multitolerance representation with only bounded vertices, i.e., with τv 6= {R} for
every vertex v, then G is called a bounded multitolerance graph.

For several optimization problems that are NP-hard in general graphs, such as the coloring,
clique, and independent set problems, efficient algorithms are known for tolerance and multitoler-
ance graphs. However, only few of them have been derived using the (multi)tolerance representation
(e.g. [10,19]), while most of these algorithms appeared as a consequence of the containment of toler-
ance and multitolerance graphs to weakly chordal (and thus also to perfect) graphs [20]. To design
efficient algorithms for (multi)tolerance graphs, it seems to be essential to assume that a suitable
representation of the graph is given along with the input, as it has been recently proved that the
recognition of tolerance graphs is NP-complete [17]. Recently two new geometric intersection models
in the 3-dimensional space have been introduced for both tolerance graphs (the parallelepiped rep-
resentation [16]) and multitolerance graphs (the trapezoepiped representation [15]), which enabled
the design of very efficient algorithms for such problems, in most cases with (optimal) O(n log n)
running time [15,16]. In spite of this, the complexity status of some algorithmic problems on toler-
ance and multitolerance graphs still remains open, three decades after the introduction of tolerance
graphs in [8]. Arguably the two most famous and intriguing examples of such problems are the
minimum dominating set problem and the Hamilton cycle problem (see e.g. [20, page 314]). Both
these problems are known to be NP-complete on the greater class of weakly chordal graphs [3, 18]
but solvable in polynomial time in the smaller classes of bounded tolerance and bounded multitoler-
ance (i.e., trapezoid) graphs [6,13]. The reason that these problems resisted solution attempts over
the years seems to be that the existing representations for (multi)tolerance graphs do not provide
enough insight to deal with these problems.

Our contribution. In this article we introduce a new geometric representation for multitolerance
graphs, which we call the shadow representation, given by a set of line segments and points in the
plane. In the case of tolerance graphs, this representation takes a very special form, in which all
line segments are horizontal, and therefore we call it the horizontal shadow representation. Note
that both the shadow and the horizontal shadow representations are not intersection models for
multitolerance graphs and for tolerance graphs, respectively, in the sense that two line segments
may not intersect in the representation although the corresponding vertices are adjacent. However,
the main advantage of these two new representations is that they provide substantially new insight
for tolerance and multitolerance graphs and they can be used to interpret optimization problems
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(such as the dominating set problem and its variants) using computational geometry terms.
Apart from being important on their own, these new representations enable us to establish the

complexity of the minimum dominating set problem on both tolerance and multitolerance graphs,
thus solving a longstanding open problem. Given a horizontal shadow representation of a tolerance
graph G, we present an algorithm that computes a minimum dominating set in polynomial time.
On the other hand, using the shadow representation, we prove that the minimum dominating set
problem is APX-hard on multitolerance graphs by providing a reduction from a special case of
the set cover problem. That is, there exists no Polynomial Time Approximation Scheme (PTAS)
for this problem unless P=NP. This is the first problem that has been discovered with a different
complexity status in these two graph classes. Therefore, given the (seemingly) small difference
between the definition of tolerance and multitolerance graphs, this dichotomy result appears to be
surprising.

Organization of the paper. In Section 2 we briefly revise the 3-dimensional intersection models
for tolerance graphs [16] and multitolerance graphs [15], which are needed in order to present our
new geometric representations. In Section 3 we introduce our new geometric representation for
multitolerance graphs (the shadow representation) and its special case for tolerance graphs (the
horizontal shadow representation). In Section 4 we prove that Dominating Set on multitolerance
graphs is APX-hard. Then, in Sections 5-7 we present our polynomial algorithm for the dominating
set problem on tolerance graphs, using the horizontal shadow representation (cf. Algorithms 1, 2,
and 3). In particular, we first present Algorithm 1 in Section 5, which solves a variation of the
dominating set problem on tolerance graphs, called Bounded Dominating Set. Then we present
Algorithm 2 in Section 6, which uses Algorithm 1 as a subroutine in order to solve a slightly mod-
ified version of Bounded Dominating Set on tolerance graphs, namely Restricted Bounded
Dominating Set. In Section 7 we present our main algorithm (Algorithm 3) which solves Dom-
inating Set on tolerance graphs in polynomial time, using Algorithms 1 and 2 as subroutines.
Finally, in Section 8 we discuss the presented results and some interesting further research questions.

Notation. In this article we consider simple undirected graphs with no loops or multiple edges.
In an undirected graph G the edge between two vertices u and v is denoted by uv, and in this case
u and v are said to be adjacent in G. We denote by N(u) = {v ∈ V : uv ∈ E} the set of neighbors
of a vertex u in G, and N [u] = N(u) ∪ {u}. Given a graph G = (V,E) and a subset S ⊆ V , G[S]
denotes the induced subgraph of G on the vertices in S. A subset S ⊆ V is a dominating set
of G if every vertex v ∈ V \ S has at least one neighbor in S. Finally, given a set X ⊆ R2 of
points in the plane, we denote by Hconvex(X) the convex hull defined by the points of X, and
by X = R2 \ X the complement of X in R2. For simplicity of the presentation we make the
following notational convention throughout the paper: whenever we need to compute a set S with
the smallest cardinality among a family S of sets, we write S = min{S}.

2 Tolerance and multitolerance graphs

In this section we briefly revise the 3-dimensional intersection model for tolerance graphs [16] and
its generalization to multitolerance graphs [15], together with some useful properties of these models
that are needed for the remainder of the paper. Since the intersection model of [16] for tolerance
graphs is a special case of the intersection model of [15] for multitolerance graphs, we mainly focus
below on the more general model for multitolerance graphs.

Consider a multitolerance graph G = (V,E) that is given along with a multitolerance rep-
resentation R. Let VB and VU denote the set of bounded and unbounded vertices of G in this
representation, respectively. Consider now two parallel lines L1 and L2 in the plane. For every
vertex v ∈ V = VB ∪ VU , we appropriately construct a trapezoid T v with its parallel lines on L1
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Figure 1: The trapezoid T u corresponds to the bounded vertex u ∈ VB, while the line segment T v
corresponds to the unbounded vertex v ∈ VU .

and L2, respectively (for details of this construction of the trapezoids we refer to [15]). According
to this construction, for every unbounded vertex v ∈ VU the trapezoid T v is trivial, i.e., a line [15].
For every vertex v ∈ V = VB ∪ VU we denote by av, bv, cv, dv the lower left, upper right, upper left,
and lower right endpoints of the trapezoid T v, respectively. Note that for every unbounded vertex
v ∈ VU we have av = dv and cv = bv, since T v is just a line segment. An example is depicted
in Figure 1, where T u corresponds to a bounded vertex u and T v corresponds to an unbounded
vertex v.

We now define the left and right angles of these trapezoids. For every angle φ, the values
tanφ and cotφ = 1

tanφ denote the tangent and the cotangent of φ, respectively. Furthermore,
φ = arc cotx is the angle φ, for which cotφ = x.

Definition 1 ([15]) For every vertex v ∈ V = VB ∪ VU , the values φv,1 = arc cot (cv − av) and
φv,2 = arc cot (bv − dv) are the left angle and the right angle of T v, respectively. Moreover, for
every unbounded vertex v ∈ VU , φv = φv,1 = φv,2 is the angle of T v.

Note here that, if G is given along with a tolerance representation R (i.e., if G is a tolerance
graph), then for every bounded vertex u we have that φu,1 = φu,2, and thus the corresponding
trapezoid T u always becomes a parallelogram [15] (see also [16]).

Without loss of generality we can assume that all endpoints and angles of the trapezoids are
distinct, i.e., {au, bu, cu, du}∩{av, bv, cv, dv} = ∅ and {φu,1, φu,2}∩{φv,1, φv,2} = ∅ for every u, v ∈ V
with u 6= v, as well as that 0 < φv,1, φv,2 <

π
2 for all angles φv,1, φv,2 [15]. It is important to note

here that this set of trapezoids {T v : v ∈ V = VB ∪ VU} is not an intersection model for the graph
G, as two trapezoids T v, Tw may have a non-empty intersection although vw /∈ E. However the
subset of trapezoids {T v : v ∈ VB} that corresponds to the bounded vertices (i.e., to the vertices of
VB) is an intersection model of the induced subgraph G[VB].

In order to construct an intersection model for the whole graph G (i.e., including also the set
VU of the unbounded vertices), we exploit the third dimension as follows. Let ∆ = max{bv :
v ∈ V } − min{au : u ∈ V } (where we consider the endpoints bv and au as real numbers
on the lines L1 and L2, respectively). First, for every unbounded vertex v ∈ VU we con-
struct the line segment Tv = {(x, y, z) : (x, y) ∈ T v, z = ∆− cotφv}. For every bounded vertex
v ∈ VB, denote by T v,1 and T v,2 the left and the right line segment of the trapezoid T v, re-
spectively. We construct two line segments Tv,1 = {(x, y, z) : (x, y) ∈ T v,1, z = ∆− cotφv,1} and
Tv,2 = {(x, y, z) : (x, y) ∈ T v,2, z = ∆− cotφv,2}. Then, for every v ∈ VB, we construct the 3-
dimensional object Tv as the convex hull Hconvex(T v, Tv,1, Tv,2); this 3-dimensional object Tv is
called the trapezoepiped of vertex v ∈ VB. The resulting set {Tv : v ∈ V = VB ∪ VU} of objects in
the 3-dimensional space is called the trapezoepiped representation of the multitolerance graph G [15].
This is an intersection model of G, i.e., two vertices v, w are adjacent if and only if Tv∩Tw 6= ∅. For
a proof of this fact and for more details about the trapezoepiped representation of multitolerance
graphs we refer to [15].
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Figure 2: (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here,
hvi,j = ∆− cotφvi,j for every bounded vertex vi ∈ VB and j ∈ {1, 2}, while hvi = ∆− cotφvi for
every unbounded vertex vi ∈ VU .

Recall that, if G is a tolerance graph, given along with a tolerance representation R, then
φu,1 = φu,2 for every bounded vertex u. Therefore, in the above construction, for every bounded
vertex u the trapezoepiped Tu becomes a parallelepiped, and in this case the resulting trapezoepiped
representation is called a parallelepiped representation [15, 16].

An example of the construction of a trapezoepiped representation is given in Figure 2. A
multitolerance graph G with six vertices {v1, v2, . . . , v6} is depicted in Figure 2(a), while the trape-
zoepiped representation of G is illustrated in Figure 2(b). The set of bounded and unbounded
vertices in this representation are VB = {v3, v4, v6} and VU = {v1, v2, v5}, respectively.

Definition 2 ([15]) An unbounded vertex v ∈ VU is inevitable if replacing Tv by Hconvex(Tv, T v)
creates a new edge uv in G; then u is a hovering vertex of v and the set H(v) of all hovering
vertices of v is the hovering set of v. A trapezoepiped representation of a multitolerance graph G is
called canonical if every unbounded vertex is inevitable.

In the example of Figure 2, v2 and v5 are inevitable unbounded vertices, v1 and v4 are hovering
vertices of v2 and v5, respectively, while v1 is not an inevitable unbounded vertex. Therefore, this
representation is not canonical for the graph G. However, if we replace Tv1 by Hconvex(Tv1 , av1 , cv1),
we get a canonical representation for G in which vertex v1 is bounded.

Lemma 1 ([15]) Let v ∈ VU be an inevitable unbounded vertex of a multitolerance graph G. Then
N(v) ⊆ N(u) for every hovering vertex u ∈ H(v) of v.

Lemma 2 ([15]) Let R be a canonical representation of a multitolerance graph G and v ∈ VU be
an (inevitable) unbounded vertex of G. Then there exists a hovering vertex u of v, which is bounded.

Recall that {T v : v ∈ VB} is an intersection model of the induced subgraph G[VB] on the
bounded vertices of G, i.e., uv ∈ E if and only if T u ∩ T v 6= ∅ where u, v ∈ VB. Furthermore,
although {T v : v ∈ V = VB ∪ VU} is not an intersection model of G, it still provides the whole
information about the adjacencies of the vertices of G, cf. Lemma 3. For Lemma 3 we need the
next definition of the angles φu(x), where u ∈ VB and au ≤ x ≤ du, cf. Figure 1 for an illustration.
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Definition 3 ([15]) Let u ∈ VB be a bounded vertex and au, bu, cu, du be the endpoints of the
trapezoid T u. Let x ∈ [au, du] and y ∈ [cu, bu] be two points on the lines L2 and L1, respectively,
such that x = λau + (1 − λ)du and y = λcu + (1 − λ)bu for the same value λ ∈ [0, 1]. Then φu(x)
is the angle of the line segment with endpoints x and y on the lines L2 and L1, respectively.

Lemma 3 ([15]) Let u ∈ VB and v ∈ VU in a trapezoepiped representation of a multitolerance
graph G = (V,E). Let au, du, and av = dv be the endpoints of T u and T v, respectively, on L2. Then:

• if av < au, then uv ∈ E if and only if T u ∩ T v 6= ∅,

• if au < av < du, then uv ∈ E if and only if φv ≤ φu(av),

• if du < av, then uv /∈ E.

3 The new geometric representations

In this section we introduce new geometric representations on the plane for both tolerance and
multitolerance graphs. The new representation of tolerance graphs is called the horizontal shadow
representation, which is given by a set of points and horizontal line segments in the plane. The hor-
izontal shadow representation can be naturally extended to general multitolerance graphs, in which
case the line segments are not necessarily horizontal; we call this representation of multitolerance
graphs the shadow representation. In the remainder of this section, we present the shadow repre-
sentation of general multitolerance graphs, since the horizontal shadow representation of tolerance
graphs is just the special case, in which every line segment is horizontal.

Definition 4 (shadow representation) Let G = (V,E) be a multitolerance graph, R be a trape-
zoepiped representation of G, and VB, VU be the sets of bounded and unbounded vertices of G in R,
respectively. We associate the vertices of G with points and line segments in the plane as follows:

• for every v ∈ VB, the points pv,1 = (av,∆− cotφv,1) and pv,2 = (dv,∆− cotφv,2) and the line
segment Lv = (pv,1, pv,2),

• for every v ∈ VU , the point pv = (av,∆− cotφv).

The tuple (P,L), where L = {Lv : v ∈ VB} and P = {pv : v ∈ VU}, is the shadow representation
of G. If φv,1 = φv,2 for every v ∈ VB, then (P,L) is the horizontal shadow representation of the
tolerance graph G. Furthermore, the representation (P,L) is canonical if the initial trapezoepiped
representation R is also canonical.

Note by Definition 4 that, given a trapezoepiped (resp. parallelepiped) representation of a
multitolerance (resp. tolerance) graph G with n vertices, we can compute a shadow (resp. horizontal
shadow) representation of G in O(n) time. As an example for Definition 4, we illustrate in Figure 3
the shadow representation (P,L) of the multitolerance graph G of Figure 2.

Observation 1 In Definition 4, Lv = {(x,∆− cotφv(x)) : av ≤ x ≤ dv} for every bounded vertex
v ∈ VB of the multitolerance graph G.

Now we introduce the notions of the shadow and the reverse shadow of points and of line
segments in the plane; an example is illustrated in Figure 4.

Definition 5 (shadow) For an arbitrary point t = (tx, ty) ∈ R2 the shadow of t is the region
St = {(x, y) ∈ R2 : x ≤ tx, y−x ≤ ty− tx}. Furthermore, for every line segment Lu, where u ∈ VB,
the shadow of Lu is the region Su =

⋃
t∈Lu

St.
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Figure 3: The shadow representation (P,L) of the multitolerance graph G of Figure 2. The
unbounded vertices VU = {v1, v2, v5} and the bounded vertices VB = {v3, v4, v6} are associated
with the points P = {pv1 , pv2 , pv5} and with the line segments L = {Lv1 , Lv2 , Lv5}, respectively.

Definition 6 (reverse shadow) For an arbitrary point t = (tx, ty) ∈ R2 the reverse shadow of t
is the region Ft = {(x, y) ∈ R2 : x ≥ tx, y − x ≥ ty − tx}. Furthermore, for every line segment Li,
where u ∈ VB, the reverse shadow of Li is the region Fi =

⋃
t∈Li

Ft.

St

Ft

t

(a)

pu,1

Su
pu,2

Fu

(b)

Figure 4: The shadow and the reverse shadow of (a) a point t ∈ R2 and (b) a line segment Lu.

Lemma 4 Let G be a multitolerance graph and (P,L) be a shadow representation of G. Let u ∈ VB
be a bounded vertex of G such that the corresponding line segment Lu is not trivial, i.e., Lu is not
a single point. Then the angle of the line segment Lu with a horizontal line (i.e., parallel to the
x-axis) is at most π

4 and at least −π
2 .

Proof. The two endpoints of Lu are the points (au,∆ − cotφu,1) and (du,∆ − cotφu,2). For
the purposes of the proof, denote by ψ the angle of the line segment Lu with a horizontal line
(i.e., parallel to the x-axis). To prove that ψ ≥ −π

2 it suffices to observe that au ≤ du (cf. Figure 1).
To prove that ψ ≤ π

4 it suffices to show that (∆−cotφu,2)−(∆−cotφu,1) ≤ du−au, or equivalently
to show that (∆ − (bu − du)) − (∆ − (cu − au)) ≤ du − au. The latter inequality is equivalent to
bu ≥ cu, which is always true (cf. Figure 1).

Recall now that two unbounded vertices u, v ∈ VU are never adjacent. The connection between
a multitolerance graph G and a shadow representation of it is the following. Two bounded vertices
u, v ∈ VB are adjacent if and only if Lu ∩ Sv 6= ∅ or Lv ∩ Su 6= ∅, cf. Lemma 5. A bounded vertex
u ∈ VB and an unbounded vertex v ∈ VU are adjacent if and only if pv ∈ Su, cf. Lemma 6.

Lemma 5 Let (P,L) be a shadow representation of a multitolerance graph G. Let u, v ∈ VB be
two bounded vertices of G. Then uv ∈ E if and only if Lv ∩ Su 6= ∅ or Lu ∩ Sv 6= ∅.
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Proof. Let R be the trapezoepiped representation of G, from which the shadow representation
(P,L) is constructed, cf. Definition 4.

(⇒) Let uv ∈ E. Assume first that the intervals [au, du] and [av, dv] of the x-axis share at least
one common point, say tx. If φv(tx) ≤ φu(tx), then the point (tx,∆−cotφv(tx)) of the line segment
Lv belongs to the shadow Su of the line segment Lu, i.e., Lv ∩ Su 6= ∅. Otherwise, symmetrically,
if φv(t) > φu(t) then Lu ∩ Sv 6= ∅.

Assume now that [au, du] and [av, dv] are disjoint, i.e., either du < av or dv < au. Without loss
of generality we may assume that du < av, as the other case is symmetric. Then, as uv ∈ E by
assumption, it follows that T u ∩ T v 6= ∅ in the trapezoepiped representation R of G. Thus bu ≥ cv,
since we assumed that du < av. Therefore cotφu = bu − du ≥ cv − du = cotφv,1 + (av − du). That
is, (∆−cotφu,2)−du ≤ (∆−cotφv,1)−av, and thus the point (du,∆−cotφu,2) of the line segment
Lu belongs to the shadow St of the point t = (av,∆ − cotφv,1) of the line segment Lv. Therefore
Lu ∩ Sv 6= ∅.

(⇐) Let Lv ∩ Su 6= ∅ or Lu ∩ Sv 6= ∅. Assume first that the intervals [au, du] and [av, dv] of
the x-axis share at least one common point, say tx. Then tx ∈ [au, du] ∩ [av, dv], and thus the
trapezoids T u and T v in the trapezoepiped representation R have a common point on the line L2,
i.e., T u ∩ T v 6= ∅. Therefore, since both u and v are bounded vertices, it follows that uv ∈ E.

Assume now that [au, du] and [av, dv] are disjoint, i.e., either dv < au or du < av. Without loss
of generality we may assume that dv < au, as the other case is symmetric. Then Lu ∩ Sv = ∅, and
thus Lv ∩ Su 6= ∅. Therefore, by Lemma 4, it follows that the point t = (dv,∆ − cotφv,2) of Lv
must belong to Su. In particular, this point t of Lv must belong to the shadow St′ of the point
t′ = (au,∆ − cotφu,1) of Lu. That is, (∆ − cotφv,2) − dv ≤ (∆ − cotφu,1) − au. It follows that
(bv − dv) = cotφv,2 ≥ cotφu,1 + (au − dv) = (cu − au) + (au − dv), and thus bv ≥ cu. Therefore,
since dv < au, it follows that T u ∩ T v 6= ∅, and thus uv ∈ E.

Lemma 6 Let (P,L) be a shadow representation of a multitolerance graph G. Let v ∈ VU and
u ∈ VB be two vertices of G. Then uv ∈ E if and only if pv ∈ Su.

Proof. Let R be the trapezoepiped representation of G, from which the shadow representation
(P,L) is constructed, cf. Definition 4. Furthermore recall that pv = (av,∆−cotφv) by Definition 4.

(⇒) Let uv ∈ E. If du < av, then uv /∈ E by Lemma 3, which is a contradiction. Therefore
av < du. Assume first that au < av < du. Then Lemma 3 implies that φv ≤ φu(av). Thus it follows
by Observation 1 that pv ∈ Su. Assume now that av < au. Then Lemma 3 implies that T u∩T v 6= ∅.
Thus bv ≥ cu, since av < au. Therefore cotφv = (bv−av) ≥ (au−av)+(cu−au) = (au−av)+cotφu,1.
That is, (∆− cotφv)− av ≤ (∆− cotφu,1)− au, and thus the point pv = (av,∆− cotφv) belongs
to the shadow St, where t = (au,∆− cotφu,1) ∈ Lu, i.e., pv ∈ Su.

(⇐) Let pv ∈ Su. Then clearly av ≤ du. Assume first that au ≤ av ≤ du. Then, since pv ∈ Su,
it follows by Observation 1 that ∆ − cotφv ≤ ∆ − cotφu(av), and thus φv ≤ φu(av). Therefore
Lemma 3 implies that uv ∈ E.

Assume now that av < au. Then, since pv ∈ Su, it follows that pv ∈ St, where t = (au,∆ −
cotφu,1) ∈ Lu. Thus (∆ − cotφv) − av ≤ (∆ − cotφu,1) − au. That is, (bv − av) = cotφv ≥
(au − av) + cotφu,1 = (au − av) + (cu − au), and thus bv ≥ cu. Therefore, since av < au, it follows
that T u ∩ T v 6= ∅, and thus uv ∈ E by Lemma 3.

Lemmas 5 and 6 show how adjacencies between vertices can be seen in a shadow representation
(P,L) of a multitolerance graph G. The next lemma describes how the hovering vertices of an
unbounded vertex v ∈ VU (cf. Definition 2) can be seen in a shadow representation (P,L).

Lemma 7 Let (P,L) be a shadow representation of a multitolerance graph G. Let v ∈ VU be an
unbounded vertex of G and u ∈ V \ {v} be another arbitrary vertex. If u ∈ VB (resp. u ∈ VU ), then
u is a hovering vertex of v if and only if Lu ∩ Sv 6= ∅ (resp. pu ∈ Sv).
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Proof. Let G = (V,E) and R be the trapezoepiped representation of G, from which the shadow
representation (P,L) is constructed, cf. Definition 4.

(⇐) Let u be a hovering vertex of v. That is, if we replace in the trapezoepiped representation
R the line segment Tv by Hconvex(Tv, T v) (i.e., if we make v a bounded vertex) then the vertices u
and v become adjacent in the resulting trapezoepiped representation R′. Denote the new graph by
G′ = (V,E ∪ {uv}), i.e., R′ is a trapezoepiped representation of G′. Note here that, since both Tv
and T v are line segments, Hconvex(Tv, T v) is a degenerate trapezoepiped which is 2-dimensional.

Consider the shadow representation (P ′,L′) of G′ that is obtained by this new trapezoepiped
representation R′. Note that P ′ = P \ {pv} and L′ = L ∪ {Lv}, where Lv is a trivial line segment
that consists of only one point pv. Assume first that u ∈ VU . Then, since v is bounded and v is
adjacent to u in G′, Lemma 6 implies that pu ∈ Sv. Assume now that u ∈ VB. Then, since v is
bounded and v is adjacent to u in G′, Lemma 5 implies that Lv ∩ Su 6= ∅ or Lu ∩ Sv 6= ∅. That is,
pv ∈ Su or Lu ∩ Sv 6= ∅, since Lv = {pv}. If pv ∈ Su then u and v are adjacent in G, by Lemma 6,
which is a contradiction. Therefore Lu ∩ Sv 6= ∅.

(⇒) Consider the shadow representation (P ′,L′) that is obtained by the shadow representation
(P,L) of G, such that P ′ = P \ {pv} and L′ = L ∪ {Lv}, where Lv is a trivial line segment that
consists of only one point pv. Then (P ′,L′) is a shadow representation of some multitolerance
graph G′, where the bounded vertices V ′B of G′ correspond to the line segments of L′ and the
unbounded vertices V ′U of G′ correspond to the points of P ′. Furthermore note that V ′B = VB ∪{v}
and V ′U = VU \ {v}.

Assume first that u ∈ V ′B and Lu ∩ Sv 6= ∅. Then, since both u, v ∈ V ′B, Lemma 5 implies that
u and v are adjacent in G′. Thus, since u is not adjacent to v in G, it follows that u is a hovering
vertex of v. Assume now that u ∈ V ′U and pu ∈ Sv. Then, since both v ∈ V ′B, Lemma 6 implies
that u and v are adjacent in G′. Thus, similarly, u is a hovering vertex of v.

In the example of Figure 3 the shadows of the points in P and of the line segments in L are
shown with dotted lines. For instance, pv2 ∈ Sv3 and pv2 /∈ Sv4 , and thus the unbounded vertex v2
is adjacent to the bounded vertex v3 but not to the bounded vertex v4. Furthermore Lv3 ∩Sv4 6= ∅,
and thus v3 and v4 are adjacent. On the other hand, Lv3 ∩Sv6 = Lv6 ∩Sv3 = ∅, and thus v3 and v4
are not adjacent. Finally pv1 ∈ Sv2 and Lv4 ∩ Sv5 6= ∅, and thus v1 is a hovering vertex of v2 and
v4 is a hovering vertex of v5. These facts can be also checked in the trapezoepiped representation
of the same multitolerance graph G in Figure 2(b).

4 Dominating set is APX-hard on multitolerance graphs

In this section we prove that the dominating set problem on multitolerance graphs is APX-hard.
Let us first recall that an optimization problem P1 is L-reducible to an optimization problem P2 [21]
if there exist two functions f and g, which are computable in polynomial time, and two constants
α, β > 0 such that:

• for any instance I of P1, f(I) is an instance of P2 and OPT(f(I)) ≤ α ·OPT(I), and

• for any feasible solution D of f(I), g(D) is a feasible solution of I, and it holds that |c(g(D))−
OPT(I)| ≤ β · |c(D)−OPT(f(I))|, where c(D) and c(g(D)) denote the costs of the solutions
D and g(D), respectively.

Let us now define a special case of the unweighted set cover problem, namely the Special
3-Set Cover (S3SC) problem [5].

Theorem 1 ([5]) Special 3-Set Cover is APX-hard.
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Special 3-Set Cover

Input: A pair (U ,S) consisting of a universe U = A∪W ∪X ∪Y ∪Z, and a family S of subsets
of U such that:

• the sets A, W , X, Y , Z are disjoint,

• A = {ai : i ∈ [n]}, W = {wi : i ∈ [m]}, X = {xi : i ∈ [m]}, Y = {yi : i ∈ [m]},
Z = {zi : i ∈ [m]},

• 2n = 3m,

• for all t ∈ [n], the element at belongs to exactly two sets of S, and

• S has 5m sets; for every t ∈ [m] there exist integers 1 ≤ i < j < k < n such that S
contains the sets {ai, wt}, {wt, xt}, {aj , xt, yt}, {yt, zt}, {ak, zt}.

Output: A subset S0 ⊆ S of minimum size such that every element in U belongs to at least
one set of S0.

Theorem 2 Dominating Set is APX-hard on Multitolerance Graphs.

Proof. From Theorem 1 it is enough to prove that Special 3-Set Cover is L-reducible to
Dominating Set on Multitolerance Graphs.*

Given an instance I = (U ,S) of Special 3-Set Cover as above we construct a multitolerance
graph f(I) = (P,L), where P and L are the sets of points and line segments in the shadow
representation of f(I), as follows. For every element ai ∈ A, we create the point pai of P on the
line {(z,−z) : z > 0}. Furthermore, for every element q ∈ W ∪X ∪ Y ∪ Z, we create the point pq
of P on the line {(t, tan(π6 )t) : t < 0}, such that for every i ∈ [m] the points that correspond to
the elements wi, xi, yi, and zi appear consecutively on this line (cf. Figure 5). Then, since every
set of S contains at most one element of A and at most two elements of W ∪X ∪ Y ∪ Z, it can be
easily verified that we can construct for every set Qj ∈ S, j ∈ [5m], a line segment Lj such that the
points of P that are contained within its shadow Sj are exactly the points of P that correspond
to the elements of Qj (cf. Figure 5). Furthermore we construct an additional line segment L5m+1,
with left endpoint l5m+1 and right endpoint r5m+1, respectively, such that l5m+1 (resp. r5m+1) lies
below and to the left (resp. below and to the right) of every endpoint of P ∪ {L1, L2, . . . , L5m}.
Then note that the line segment L5m+1 corresponds to a hovering vertex of every point p ∈ P in
the multitolerance graph f(I), cf. Lemma 7. Moreover the line segment L5m+1 is a neighbor to all
other line segments {L1, L2, . . . , L5m} in the multitolerance graph f(I), cf. Lemma 5. Finally we
add the line segment L5m+2 such that L5m+1 is its only neighbor, cf. Figure 5. This concludes the
construction of the new instance f(I).

Claim 1 OPT(f(I)) ≤ OPT(I) + 1, and thus OPT(f(I)) ≤ 2 ·OPT(I).

Proof of Claim 1. Let S0 ⊆ S be an optimum solution of an instance I to Special 3-Set
Cover and let D be the subset of L in the instance f(I) of Dominating Set, where a line
segment L of f(I) belongs to D if and only if the corresponding set of I belongs to S. Let now
D′ = D∪{L5m+1}. As S is an optimum solution of I it follows that all the elements of U belong to
some set of S and from the construction of f(I) it follows that all points of P are contained inside
the shadows of the line segments in D. Thus, every point of P has a neighbor in D. Notice also
that from the construction of L5m+1 all line segments of L have L5m+1 as a neighbor. Therefore,

*This proof is inspired by the proof of Theorem 1.1(C5) in [5].
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Figure 5: The construction of the shadow representation in Theorem 2.

as |D| = |S| and L5m+1 /∈ D, D′ = D ∪ {L5m+1} is a solution to f(I) of size OPT(I) + 1. As
Dominating Set is a minimization problem we obtain that OPT(f(I)) ≤ |D′| = OPT(I) + 1. �

We now define the function g which, given a feasible solution D of f(I), returns a feasible
solution g(D) of I. Let D be a feasible solution of f(I).

If L5m+1 does not belong to D then L5m+2 belongs to D, since L5m+1 the only neighbor of
L5m+2. By replacing L5m+2 by L5m+1 we obtain a solution of f(I) of the same size. Thus, without
loss of generality we may assume that L5m+1 belongs to D. Furthermore, by the minimality of
D it follows that D does not contain L5m+2. Recall that all line segments {L1, L2, . . . , L5m} have
L5m+1 as a neighbor in D and that every point p of f(I) is contained in the shadow of some line
segment Lp ∈ {L1, L2, . . . , L5m} in f(I). Thus, for every point p ∈ P ∩D, the set (D \ {p})∪ {Lp}
is also a solution of f(I) and has size at most |D|. Therefore, without loss of generality we may
also assume that D only contains line segments. As L5m+1 ∈ D is not a neighbor of any point of
P in f(I), the set D \ {L5m+1} contains all neighbors of the points of f(I). Let S0 ⊆ S contain all
sets from S that correspond to the line segments of D \ {L5m+1}. From the construction of f(I)
we obtain that each element of U in I belongs to at least one set of S0. We define g(D) to be that
set S0. Finally, notice that |S0| ≤ |D| − 1. This implies the following simple observation.

Observation 2 If D is a solution of f(I), then g(D) is a solution of I and c(g(D)) ≤ c(D)− 1.

Claim 2 OPT(f(I)) = OPT(I) + 1.

Proof of Claim 2. Let D be an optimum solution of f(I). From Observation 2, we obtain
that there exists a solution S of I such that |S| ≤ OPT(f(I)) − 1. As Special 3-Set Cover is
a minimization problem it follows that OPT(I) ≤ |S| ≤ OPT(f(I)) − 1 and thus, OPT(I) + 1 ≤
OPT(f(I)). We now obtain the desired result from Claim 1. �

We finally prove that c(g(D)) − OPT(I) ≤ c(D) − OPT(f(I)). Notice that this is enough to
prove the reduction for α = 2 (Claim 1) and β = 1. Claim 2 yields that c(g(D)) − OPT(I) =
c(g(D))−OPT(f(I)) + 1, and thus it follows by Observation 2 that

c(g(D))−OPT(f(I)) + 1 ≤ c(D)− 1−OPT(f(I)) + 1 = c(D)−OPT(f(I)).

This completes the proof of the theorem.

5 Bounded dominating set on tolerance graphs

In this section we use the horizontal shadow representation of tolerance graphs (cf. Section 3)
to provide a polynomial time algorithm for a variation of the minimum dominating set problem
on tolerance graphs, namely Bounded Dominating Set, formally defined below. This problem
variation may be interesting on its own, but we use our algorithm for Bounded Dominating Set
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as a subroutine in our algorithm for the minimum dominating set problem on tolerance graphs,
cf. Sections 6 and 7. Note that, given a horizontal shadow representation (P,L) of a tolerance
graph G = (V,E), the representation (P,L) defines a partition of the vertex set V into the set VB
of bounded vertices and the set VU of unbounded vertices. Indeed, every point of P corresponds
to an unbounded vertex in VU and every line segment of L corresponds to a bounded vertex of VB.
We denote P = {p1, p2, . . . , p|P|} and L ={L1, L2, . . . , L|L|}, where |P|+ |L| = |VU |+ |VB| = |V |.

In this section we only deal with tolerance graphs and their horizontal shadow representations.
Thus, from now on, all line segments {Li : 1 ≤ i ≤ |L|} will be assumed to be horizontal. Fur-
thermore, with a slight abuse of notation, for any two elements x1, x2 ∈ P ∪ L, we may say in the
following that x1 is adjacent with x2 (or x1 is a neighbor of x2) if the vertices that correspond to
x1 and x2 are adjacent in the graph G. Moreover, whenever P1 ⊆ P2 ⊆ P and L1 ⊆ L2 ⊆ L, we
may say in the following that the set P1 ∪ L1 dominates P2 ∪ L2 if the vertices that correspond to
P1∪L1 are a dominating set of the subgraph of G induced by the vertices corresponding to P2∪L2.

Bounded Dominating Set on Tolerance Graphs

Input: A horizontal shadow representation (P,L) of a tolerance graph G.
Output: A set Z ⊆ L of minimum size that dominates (P,L), or the announcement that L
does not dominate (P,L).

Before we proceed with our polynomial time algorithm for Bounded Dominating Set on
tolerance graphs, we first provide some necessary notation and terminology.

5.1 Notation and terminology

For an arbitrary point t = (tx, ty) ∈ R2 we define two (infinite) lines passing through t:

• the vertical line Γvert
t = {(tx, s) ∈ R2 : s ∈ R}, i.e., the line that is parallel to the y-axis, and

• the diagonal line Γdiag
t = {(s, s+ (ty − tx)) ∈ R2 : s ∈ R}, i.e., the line that is parallel to the

main diagonal {(s, s) ∈ R2 : s ∈ R}.

The lines Γvert
t and Γdiag

t are illustrated in Figure 6(a) (see also Figure 4(a)). For every point

t = (tx, ty) ∈ R2, each of the lines Γvert
t ,Γdiag

t separates R2 into two regions. With respect to
the line Γvert

t we define the regions R2
left(Γ

vert
t ) = {(x, y) ∈ R2 : x ≤ tx} and R2

right(Γ
vert
t ) =

{(x, y) ∈ R2 : x ≥ tx} of points to the left and to the right of Γvert
t , respectively. Similarly,

with respect to the line Γdiag
t , we define the regions R2

left(Γ
diag
t ) = {(x, y) ∈ R2 : y − x ≥ ty − tx}

and R2
right(Γ

diag
t ) = {(x, y) ∈ R2 : y − x ≤ ty − tx} of points to the left and to the right of Γdiag

t ,
respectively.

Furthermore, for an arbitrary point t = (tx, ty) ∈ R2 we define the region At (resp. Bt) that
contains all points that are both to the right (resp. to the left) of Γvert

t and to the right (resp. to

the left) of Γdiag
t . That is,

At = R2
right(Γ

vert
t ) ∩ R2

right(Γ
diag
t ),

Bt = R2
left(Γ

vert
t ) ∩ R2

left(Γ
diag
t ).

An example of the regions At and Bt is given in Figure 6(a), where At (resp. Bt) is the shaded
region of R2 that is to the right (resp. to the left) of the point t. Consider an arbitrary horizontal
line segment Li ∈ L. We denote by li and ri its left and its right endpoint, respectively; note that
possibly li = ri. Denote by A = {li, ri : 1 ≤ i ≤ |L|} the set of all endpoints of all line segments

of L. Furthermore denote by B = {Γdiag
t ∩ Γvert

t′ : t, t′ ∈ A} the set of all intersection points of the
vertical and the diagonal lines that pass from points of A. Note that A ⊆ B.
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diag

Bt
t
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Γt Γt
vert

(a)

t

L1

L3

p1p2

lj′

lj

At

Lj′

Lj

L2

(b)

ri

Li′

Li

t

ri′

Bt

L4

L5

L6

p3

p4

(c)

Figure 6: (a) The regions At, Bt and the lines Γvert
t ,Γdiag

t . (b) A left-crossing pair (j, j′), where

L3, p1 ∈ Lrightj,j′ and L1, L2, p2 /∈ Lrightj,j′ . (c) A right-crossing pair (i, i′), where L5, p3 ∈ Llefti,i′ and

L4, L6, p4 /∈ Llefti,i′ .

Given a horizontal shadow representation (P,L) we always assume that the points p1, p2, . . . , p|P|
are ordered increasingly with respect to their x-coordinates. Similarly we assume that the horizontal
line segments L1, L2, . . . , L|L| are ordered increasingly with respect to the x-coordinates of their
endpoint ri. That is, if i < j then pi ∈ R2

left(Γ
vert
pj ) and ri ∈ R2

left(Γ
vert
rj ). Notice that, without loss

of generality, we may assume that all points of P and all endpoints of the horizontal line segments
in L have different x-coordinates.

Definition 7 Let Li, Li′ ,∈ L and let Lj , Lj′ ∈ L, where possibly i′ = i and possibly j′ = j. The
pair (j, j′) is a left-crossing pair if lj ∈ Slj′ . Furthermore the pair (i, i′) is a right-crossing pair if

ri′ ∈ Sri. For every left-crossing pair (j, j′) we define

Lrightj,j′ = {x ∈ P ∪ L : x ⊆ At, where t = Γvert
lj
∩ Γdiag

lj′
}

and for every right-crossing pair (i, i′) we define

Llefti,i′ = {x ∈ P ∪ L : x ⊆ Bt, where t = Γvert
ri ∩ Γdiag

ri′
}.

Finally, for every line segment Lq ∈ L we define

Lrightq = {x ∈ P ∪ L : x ⊆ R2
right(Γ

diag
lq

)}.

Examples of left-crossing and right-crossing pairs (cf. Definition 7) are illustrated in Figure 6.

Definition 8 Let S ⊆ P ∪ L be an arbitrary set. Let (i, i′) be a right-crossing pair and (j, j′) be a

left-crossing pair. If Li, Li′ ∈ S and S ⊆ Llefti,i′ , then (i, i′) is the end-pair of the set S. If Lj , Lj′ ∈ S
and S ⊆ Lrightj,j′ , then (j, j′) is the start-pair of the set S.

Definition 9 Let S ⊆ P∪L be an arbitrary set. The line segment Lq ∈ S is the diagonally leftmost
line segment in S if there exists a line segment Lj ∈ L ∩ S such that (j, q) is the start-pair of S.

Observation 3 Every non-empty set S ⊆ L has a unique end-pair, a unique start-pair, and a
unique diagonally leftmost line segment.
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5.2 The algorithm

In this section we present our algorithm for Bounded Dominating Set on tolerance graphs,
cf. Algorithm 1. Given a horizontal shadow representation (P,L) of a tolerance graph G, we first
add two dummy line segments L0 and L|L|+1 (with endpoints l0, r0 and l|L|+1, r|L|+1, respectively)
such that all elements of P ∪ L are contained in Ar0 and in Bl|L|+1

. Let L′ = L ∪ {L0, L|L|+1}.
Note that (P,L′) is a horizontal shadow representation of some tolerance graph G′, where the
bounded vertices V ′B of G′ correspond to the line segments of L′ and the unbounded vertices V ′U
of G′ correspond to the points of P. Furthermore note that V ′B = VB ∪ {v0, v|L|+1} and V ′U = VU ,
where v0 and v|L|+1 are the (isolated) bounded vertices of G′ that correspond to the line segments
L0 and L|L|+1, respectively. Finally observe now that the set V ′B dominates the augmented graph
G′ if and only if the set VB dominates the graph G; moreover, a set S ⊆ VB dominates G if and
only if S ∪ {v0, v|L|+1} dominates G′.

For simplicity of the presentation, we refer in the following to the augmented set L′ of horizontal
line segments by L. In the remainder of this section we will write L = {L1, L2, . . . , L|L|} with the
understanding that the first and the last line segments L1 and L|L| of L are dummy. Furthermore,
we will refer to the augmented tolerance graph G′ by G.

For every pair of points (a, b) ∈ A × B such that b ∈ R2
right(Γ

diag
a ), define X(a, b) to be the set

of all points of P and all line segments of L that are contained in the region Bb \ Γvert
b and to the

right of the line Γdiag
a , cf. Figure 7. That is,

R(a, b) =
(
Bb \ Γvert

b

)
∩ R2

right(Γ
diag
a ), (1)

X(a, b) = {x ∈ P ∪ L : x ⊆ R(a, b)}. (2)

b

a

L1

L2

L3

p1

p2

R(a, b)

vertΓb

diagΓa

Figure 7: The shaded region contains the points of R(a, b) ⊆ R2, where (a, b) ∈ A × B. The set
X(a, b) contains all elements of P ∪L that lie within R(a, b). In this example, L1, p1 ∈ X(a, b) and
L2, L3, p2 /∈ X(a, b).

Now we present the main definition of this section, namely the quantity BD(P,L)(a, b, q, i, i
′) for

the Bounded Dominating Set problem on tolerance graphs.

Definition 10 Let (a, b) ∈ A × B be a pair of points such that b ∈ R2
right(Γ

diag
a ). Let (i, i′) be a

right-crossing pair and Lq be a line segment such that Lq ∈ Llefti,i′ and Li, Li′ ∈ Lrightq . Furthermore

let b ∈ R2
left(Γ

vert
ri ). Then BD(P,L)(a, b, q, i, i

′) is a dominating set Z ⊆ L of X(a, b) with the smallest
size, such that:

• (i, i′) is the end-pair of Z and

• Lq is the diagonally leftmost line segment of Z.

If such a dominating set Z ⊆ L of X(a, b) does not exist, we define BD(P,L)(a, b, q, i, i
′) = ⊥

and |BD(P,L)(a, b, q, i, i
′)| =∞.
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Note that always Lq, Li, Li′ ∈ BD(P,L)(a, b, q, i, i
′). Furthermore some of the line segments

Lq, Li, Li′ may coincide, i.e., the set {Lq, Li, Li′}may have one, two, or three distinct elements. How-
ever, since b ∈ R2

left(Γ
vert
ri ) in Definition 10, it follows that Li * Bb\Γvert

b , and thus Li /∈ X(a, b). For
simplicity of the presentation we may refer to the set BD(P,L)(a, b, q, i, i

′) as BDG(a, b, q, i, i′), where
(P,L) is the horizontal shadow representation of the tolerance graph G, or just as BD(a, b, q, i, i′)
whenever the horizontal shadow representation (P,L) is clear from the context.

Observation 4 BD(a, b, q, i, i′) 6= ⊥ if and only if L ∩ Lrightq ∩Llefti,i′ is a dominating set of X(a, b).

Observation 5 BD(a, b, q, i, i′) = {Lq, Li, Li′} if and only if {Lq, Li, Li′} dominates X(a, b).

Observation 6 If R(a, b) ⊆ Si then BD(a, b, q, i, i′) = {Lq, Li, Li′}.

Due to Observations 4-6, without loss of generality we assume below (in Lemmas 8-13) that
BD(a, b, q, i, i′) 6= ⊥ and that BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, and thus also R(a, b) * Si (cf. Ob-
servation 6). We provide our recursive computations for BD(a, b, q, i, i′) in Lemmas 8, 10, and 13.
In Lemma 8 we consider the case where b ∈ Sli and in Lemmas 10 and 13 we consider the case
where b /∈ Sli .

Lemma 8 Suppose that BD(a, b, q, i, i′) 6= ⊥ and that BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, where
R(a, b) * Si. If b ∈ Sli then

BD(a, b, q, i, i′) = BD(a, b∗, q, i, i′), (3)

where b∗ = Γvert
b ∩ Γdiag

li
.

Proof. Define the point b∗ = Γvert
b ∩ Γdiag

li
of the plane. If a ∈ Sli then R(a, b) ⊆ Si, which

is a contradiction. Thus a /∈ Sli , and therefore R(a, b∗) ⊆ R(a, b). Consider now an element
x ∈ X(a, b)\X(a, b∗). Then x∩Si 6= ∅, and thus x is dominated by the line segment Li. Therefore,
for every set Z of line segments such that Li ∈ Z, we have that Z dominates the set X(a, b) if and
only if Z dominates the set X(a, b∗). Therefore BD(a, b, q, i, i′) = BD(a, b∗, q, i, i′).

Due to Lemma 8, without loss of generality we may assume in the following (in Lemmas 9-13)
that b /∈ Sli . In order to provide our second recursive computation for BD(a, b, q, i, i′) in Lemma 10
(cf. Eq. (4)), we first prove in the next lemma that the set at the right hand side of Eq. (4) is indeed
a dominating set of X(a, b), in which Lq is the diagonally leftmost line segment and (i, i′) is the
end-pair.

Lemma 9 Suppose that BD(a, b, q, i, i′) 6= ⊥ and that BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, where
R(a, b) * Si and b /∈ Sli. Let c ∈ R2 and Lq′ , Lj , Lj′ ∈ L such that:

1. Lq′ ∈
(
Lrightq ∩ Llefti,i′

)
\ {Li},

2. (j, j′) is a right-crossing pair of
(
Lrightq ∩ Llefti,i′

)
\ {Li}, where j′ = i′ whenever i 6= i′,

3. Lq′ ∈ Lleftj,j′ and Lj , Lj′ ∈ Lrightq′ ,

4. c = Γvert
rj ∩ Γdiag

b if rj ∈ R2
left(Γ

vert
b ), and c = b otherwise, and

5. the set X(a, b) \X(a, c) is dominated by {Lj , Lj′}.

If BD(a, c, q′, j, j′) 6= ⊥ then {Lq, Li}∪BD(a, c, q′, j, j′) is a dominating set of X(a, b), in which
Lq is the diagonally leftmost line segment and (i, i′) is the end-pair.
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Proof. Assume that BD(a, c, q′, j, j′) 6= ⊥. Since X(a, b)\X(a, c) is dominated by {Lj , Lj′} by the
assumptions of the lemma, it follows that {Lq, Li} ∪BD(a, c, q′, j, j′) is a dominating set of X(a, b).

We now prove that (i, i′) is the end-pair of {Lq, Li} ∪ BD(a, c, q′, j, j′). First recall by the
assumptions of the lemma that Lj , Lj′ ∈ L ∩ Llefti,i′ and note that Lleftj,j′ ⊆ Llefti,i′ . Therefore, since

BD(a, c, q′, j, j′) ⊆ L ∩ Lleftj,j′ by definition, it follows that BD(a, c, q′, j, j′) ⊆ L ∩ Llefti,i′ . Let first

i′ = i. Then clearly Li = Li′ ∈ {Lq, Li} ∪ BD(a, c, q′, j, j′) ⊆ L ∩ Llefti,i , and thus in this case
(i, i′) = (i, i) is the end-pair of {Lq, Li} ∪ BD(a, c, q′, j, j′). Let now i′ 6= i. Then j′ = i′ by the
assumptions of the lemma, and thus BD(a, c, q′, j, j′) = BD(a, c, q′, j, i′). Then Li, Li′ ∈ {Lq, Li}∪
BD(a, c, q′, j, j′) ⊆ L ∩ Llefti,i′ , and thus again (i, i′) is the end-pair of {Lq, Li} ∪BD(a, c, q′, j, j′).

Finally, since Lq′ ∈
(
Lrightq ∩ Llefti,i′

)
\ {Li} by the assumptions of the lemma, it follows that

Lq′ ⊆ R2
right(Γ

diag
lq

), cf. Definition 7. Therefore, since Lq′ is by definition the diagonally leftmost line

segment of BD(a, c, q′, j, j′), it follows that Lq is the diagonally leftmost line segment of {Lq, Li}∪
BD(a, c, q′, j, j′). This completes the proof of the lemma.

Given the statement of Lemma 9, we are now ready to provide our second recursive computation
for BD(a, b, q, i, i′) in the next lemma.

Lemma 10 Suppose that BD(a, b, q, i, i′) 6= ⊥ and that BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, where
R(a, b) * Si and b /∈ Sli. If BD(a, b, q, i, i′) \ Li dominates all elements of {x ∈ X(a, b) : x ∩ (Si ∪
Fi) 6= ∅} then

BD(a, b, q, i, i′) = {Lq, Li} ∪ min
c,q′,j,j′

{BD(a, c, q′, j, j′)}, (4)

where the minimum is taken over all c, q′, j, j′ that satisfy the Conditions 1-5 of Lemma 9.

Proof. Let Z ⊆ L ∩ Lrightq ∩Llefti,i′ be a dominating set of X(a, b) such that Lq is the diagonally
leftmost line segment of Z and (i, i′) is the end-pair of Z. Suppose that |Z| = |BD(a, b, q, i, i′)|
and that all elements of {x ∈ X(a, b) : x ∩ (Si ∪ Fi) 6= ∅} are dominated by Z \ Li. Recall that
Li /∈ X(a, b). Thus, Z \ {Li} is a dominating set of X(a, b). Let (j, j′) denote the end-pair of
Z \ {Li}. Then all elements of X(a, b) that are contained in R2

right(Γ
vert
rj ) must be dominated by

{Lj , Lj′}. Define

c =

{
Γvert
rj ∩ Γdiag

b , if rj ∈ R2
left(Γ

vert
b )

b, otherwise
.

That is, the set X(a, b) \X(a, c) is dominated by {Lj , Lj′}. Let Lq′ denote the diagonally leftmost
line segment of Z \ {Li}. Note that, if Lq 6= Li then Lq′ = Lq. Furthermore note that Lq′ ∈ Lleftj,j′

and Lj , Lj′ ∈ Lrightq′ . Since Z ⊆ L ∩ Lrightq ∩Llefti,i′ , it follows that (j, j′) is a right-crossing pair of(
Lrightq ∩ Llefti,i′

)
\{Li} and that Lq′ ∈

(
Lrightq ∩ Llefti,i′

)
\{Li}. Furthermore, if i 6= i′ then Li′ ∈ Z\{Li},

and thus, by the choice of the right-crossing pair (j, j′) as the end-pair of Z \ {Li}, it follows that
j′ = i′.

Since Lj , Lj′ ∈ Llefti,i′ \ {Li}, note that Li /∈ BD(a, b, q′, j, j′). Moreover note that X(a, c) ⊆
X(a, b), and thus Z \{Li} is also a dominating set of X(a, c). Therefore, since (j, j′) is the end-pair
of Z \ {Li}, it follows that

|{Lq} ∪BD(a, c, q′, j, j′)| = |BD(a, c, q′, j, j′)| ≤ |Z \ {Li}|, if Lq 6= Li

and that
|BD(a, c, q′, j, j′)| ≤ |Z \ {Li}|, if Lq = Li.

That is, in both cases where Lq 6= Li or Lq = Li, we have that

|{Lq, Li} ∪BD(a, b, q′, j, j′)| = 1 +
∣∣({Lq} ∪BD(a, c, q′, j, j′)

)
\ {Li}

∣∣
= 1 +

∣∣BD(a, c, q′, j, j′)
∣∣ (5)

≤ 1 + |Z \ {Li}| = |Z| = |BD(a, b, q, i, i′)|.
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Finally Lemma 9 implies that, if BD(a, c, q′, j, j′) 6= ⊥, then {Lq, Li}∪ BD(a, c, q′, j, j′) is a
dominating set of X(a, b), in which Lq is the diagonally leftmost line segment and (i, i′) is the
end-pair. Therefore |BD(a, b, q, i, i′)| ≤ |{Lq, Li} ∪BD(a, b, q′, j, j′)|, and thus it follows by Eq. (5)
that |BD(a, b, q, i, i′)| = |{Lq, Li} ∪BD(a, b, q′, j, j′)|

In order to provide our third recursive computation forBD(a, b, q, i, i′) in Lemma 13 (cf. Eq. (6)),
we first prove in Lemmas 11 and 12 that the set at the right hand side of Eq. (6) is indeed a
dominating set of X(a, b), in which Lq is the diagonally leftmost line segment and (i, i′) is the
end-pair.

Lemma 11 Suppose that BD(a, b, q, i, i′) 6= ⊥ and that BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, where
R(a, b) * Si and b /∈ Sli. Let c ∈ R2 such that:

1. c ∈ B ∩R(a, b) and c ∈ R2
right(Γ

vert
li

) \ Fli,

2. P ∩X(a, b) ∩ Fc ∩ Fi = ∅.

If BD(a, c, q, i, i′) 6= ⊥ and BD(c, b, q, i, i′) 6= ⊥, then BD(a, c, q, i, i′) ∪ BD(c, b, q, i, i′) is a
dominating set of X(a, b), in which Lq is the diagonally leftmost line segment and (i, i′) is the
end-pair.

Proof. Assume that BD(a, c, q, i, i′) 6= ⊥ and BD(c, b, q, i, i′) 6= ⊥. First note that, since c ∈
R(a, b) by assumption, it follows that X(a, c)∪X(c, b) ⊆ X(a, b), cf. Eq. (2). Furthermore, since c ∈
R(a, b) ⊆ Bb and c ∈ R2

right(Γ
vert
li

) \Fli by the assumption, it follows that also b ∈ R2
right(Γ

vert
li

) \Fli .
Now recall that b ∈ R2

left(Γ
vert
ri ) by Definition 10, and thus also c ∈ R2

left(Γ
vert
ri ). Therefore, since

c ∈ R2
right(Γ

vert
li

) \ Fli by the assumption, it follows that Sc ∩ Γdiag
c ⊆ Si ∪ Fi. Moreover, since

c ∈ R2
right(Γ

vert
li

) and b ∈ R2
left(Γ

vert
ri ), it follows that Fc ∩R(a, b) ⊆ Si ∪ Fi.

The line segments of L ∩X(a, b) can be partitioned into the following sets:

L1 = L ∩X(a, c)

L2 = L ∩X(c, b)

L3 = {Lk ∈ L ∩X(a, b) : Lk ∩ Fc 6= ∅}
L4 = {Lk ∈ L ∩X(a, b) : Lk ∩ Sc ∩ Γdiag

c 6= ∅}

Since BD(a, c, q, i, i′) 6= ⊥ and BD(c, b, q, i, i′) 6= ⊥ by assumption, it follows that the line
segments of L1 are all dominated by BD(a, c, q, i, i′) and the line segments of L2 are all dominated
by BD(c, b, q, i, i′). Furthermore, since Fc ∩ R(a, b) ⊆ Si ∪ Fi as we proved above, it follows

that all line segments of L3 are dominated by the line segment Li. Moreover, since Sc ∩ Γdiag
c ⊆

Si ∪ Fi as we proved above, it follows that all line segments of L4 are dominated also by the line
segment Li. That is, all line segments of L ∩ X(a, b) = L1 ∪ L2 ∪ L3 ∪ L4 are dominated by
BD(a, c, q, i, i′) ∪BD(c, b, q, i, i′).

Since P ∩X(a, b)∩Fc ∩Fi = ∅ by the assumption, the points of P ∩X(a, b) can be partitioned
into the following sets:

P1 = P ∩X(a, c)

P2 = P ∩X(c, b)

P3 = P ∩X(a, b) ∩ Fc ∩ Si

It is easy to see that the points of P1 are all dominated by BD(a, c, q, i, i′) and that the points of
P2 are all dominated by BD(c, b, q, i, i′). Furthermore the points of P3 are dominated by the line
segment Li. Thus all points of P ∩ X(a, b) = P1 ∪ P2 ∪ P3 are dominated by BD(a, c, q, i, i′) ∪
BD(c, b, q, i, i′). Summarizing, BD(a, c, q, i, i′) ∪BD(c, b, q, i, i′) is a dominating set of X(a, b).
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Furthermore, since (i, i′) is the end-pair of both BD(a, c, q, i, i′) and BD(c, b, q, i, i′), it follows
that (i, i′) is also the end-pair of BD(a, c, q, i, i′) ∪ BD(c, b, q, i, i′). Similarly, since Lq is the diag-
onally leftmost line segment of both BD(a, c, q, i, i′) and BD(c, b, q, i, i′), it follows that Lq is also
the diagonally leftmost line segment of BD(a, c, q, i, i′)∪BD(c, b, q, i, i′). This completes the proof
of the lemma.

Lemma 12 Suppose that BD(a, b, q, i, i′) 6= ⊥ and that BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, where
R(a, b) * Si and b /∈ Sli. Let c′ ∈ R2 and Lq′ ∈ L such that:

1. c′ ∈ B ∩R(a, b) and c′ ∈ Fli,

2. Li, Li′ ∈ Lrightq′ ,

3. Lq′ ∈ Lrightq ∩ Llefti,i′ and lq′ ∈ Fli,

4. c′ ∈ Γdiag
lq′

or c′ ∈ Γdiag
b , and

5. P ∩X(a, b) ∩ Fc′ = ∅.

If BD(a, c′, q, i, i′) 6= ⊥ and BD(c′, b, q′, i, i′) 6= ⊥ then BD(a, c′, q, i, i′) ∪ BD(c′, b, q′, i, i′) is
a dominating set of X(a, b), in which Lq is the diagonally leftmost line segment and (i, i′) is the
end-pair.

Proof. Assume that BD(a, c′, q, i, i′) 6= ⊥ and BD(c′, b, q′, i, i′) 6= ⊥. First note that, since
c′ ∈ R(a, b) by assumption, it follows that X(a, c′) ∪X(c′, b) ⊆ X(a, b), cf. Eq. (2). Since c′ ∈ Fli
by assumption, it follows that Fc′ ⊆ Fli ⊆ Si ∪ Fi. Moreover, if c′ ∈ Γdiag

lq′
then Sc′ ∩ Γdiag

c′ ⊆ Γdiag
lq′

,

and thus Sc′ ∩ Γdiag
c′ ⊆ Sq′ ∪ Fq′ .

Similarly to the proof of Lemma 11, the line segments of L∩X(a, b) can be partitioned into the
following sets:

L1 = L ∩X(a, c′),

L2 = L ∩X(c′, b),

L3 = {Lk ∈ L ∩X(a, b) : Lk ∩ Fc′ 6= ∅},
L4 = {Lk ∈ L ∩X(a, b) : Lk ∩ Sc′ ∩ Γdiag

c′ 6= ∅}.

Since BD(a, c′, q, i, i′) 6= ⊥ and BD(c′, b, q′, i, i′) 6= ⊥ by assumption, it follows that the line
segments of L1 are all dominated by BD(a, c′, q, i, i′) and that the line segments of L2 are all
dominated by BD(c′, b, q′, i, i′). Furthermore, since Fc′ ⊆ Si∪Fi as we proved above, it follows that

all line segments of L3 are dominated by the line segment Li. If c′ ∈ Γdiag
b then L4 = ∅. Suppose

that c′ ∈ Γdiag
lq′

. Then, since Sc′∩Γdiag
c′ ⊆ Sq′∪Fq′ as we proved above, it follows that all line segments

of L4 are dominated by the line segment Lq′ . That is, in both cases where c′ ∈ Γdiag
b or c′ ∈ Γdiag

lq′
, all

line segments of L∩X(a, b) = L1∪L2∪L3∪L4 are dominated by BD(a, c′, q, i, i′)∪BD(c′, b, q′, i, i′).
Since c′ ∈ Fli and P∩X(a, b)∩Fc′ = ∅ by the assumption, it follows that the points of P∩X(a, b)

can be partitioned into the following sets:

P1 = P ∩X(a, c′),

P2 = P ∩X(c′, b).

It is easy to see that the points of P1 are all dominated by BD(a, c′, q, i, i′) and that the points
of P2 are all dominated by BD(c′, b, q′, i, i′). Summarizing, BD(a, c′, q, i, i′) ∪BD(c′, b, q′, i, i′) is a
dominating set of X(a, b).
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Since (i, i′) is the end-pair of both BD(a, c′, q, i, i′) and BD(c′, b, q′, i, i′), it follows that (i, i′) is
also the end-pair of BD(a, c′, q, i, i′)∪BD(c′, b, q′, i, i′). Now note that Lq is the diagonally leftmost
line segment of BD(a, c′, q, i, i′) and Lq′ is the diagonally leftmost line segment of BD(c′, b, q′, i, i′).

Therefore, since Lq′ ∈ Lrightq ∩Llefti,i′ by assumption, it follows that Lq remains the diagonally leftmost
line segment of BD(a, c′, q, i, i′) ∪BD(c′, b, q′, i, i′). This completes the proof of the lemma.

Given the statements of Lemmas 11 and 12, we are now ready to provide our third recursive
computation for BD(a, b, q, i, i′) in the next lemma.

Lemma 13 Suppose that BD(a, b, q, i, i′) 6= ⊥ and that BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, where
R(a, b) * Si and b /∈ Sli. If BD(a, b, q, i, i′) \ Li does not dominate all elements of {x ∈ X(a, b) :
x ∩ (Si ∪ Fi) 6= ∅} then

BD(a, b, q, i, i′) = min
c,c′,q′

{
BD(a, c, q, i, i′) ∪BD(c, b, q, i, i′)

BD(a, c′, q, i, i′) ∪BD(c′, b, q′, i, i′)
, (6)

where the minimum is taken over all c, c′, q′ that satisfy the Conditions of Lemmas 11 and 12, i.e.,

1. c, c′ ∈ B ∩R(a, b),

2. c ∈ R2
right(Γ

vert
li

) \ Fli and c′ ∈ Fli,

3. Li, Li′ ∈ Lrightq′ ,

4. Lq′ ∈ Lrightq ∩ Llefti,i′ and lq′ ∈ Fli,

5. c′ ∈ Γdiag
lq′

or c′ ∈ Γdiag
b , and

6. P ∩X(a, b) ∩ Fc ∩ Fi = ∅ and P ∩X(a, b) ∩ Fc′ = ∅.

Proof. Assume that BD(a, b, q, i, i′) \Li does not dominate all elements of {x ∈ X(a, b) : x∩ (Si ∪
Fi) 6= ∅}. Recall that b ∈ R2

left(Γ
vert
ri ) by Definition 10. First we prove that also b ∈ R2

right(Γ
vert
li

).

Assume otherwise that b /∈ R2
right(Γ

vert
li

). Then, since b /∈ Sli by the assumption of the lemma,
it follows that b ∈ Bli . Thus (Si ∪ Fi) ∩ Bb = ∅, i.e., Li does not dominate any element of
X(a, b), cf. Eq. (2). Therefore, since BD(a, b, q, i, i′) \ Li does not dominate all elements of {x ∈
X(a, b) : x∩ (Si∪Fi) 6= ∅} by assumption, it follows that BD(a, b, q, i, i′) does also not dominate all
elements of X(a, b), which is a contradiction to the assumption that BD(a, b, q, i, i′) 6= ⊥. Therefore
b ∈ R2

right(Γ
vert
li

).
Let x0 ∈ X(a, b) be such that x0∩ (Si∪Fi) 6= ∅ and x0 is not dominated by BD(a, b, q, i, i′)\Li.

Let also Z ⊆ L ∩ Lrightq ∩Llefti,i′ be an arbitrary dominating set of X(a, b) such that Lq is the diagonally
leftmost line segment of Z and (i, i′) is the end-pair of Z. Suppose that |Z| = |BD(a, b, q, i, i′)| and
that x0 is dominated by Li but not by Z \Li. Note that such a dominating set Z always exists due
to our assumption on BD(a, b, q, i, i′). We distinguish now two cases.

Case 1. x0 ∩ R2
right(Γ

diag
li

) 6= ∅. Let t ∈ R2 be an arbitrary point of x0 ∩ R2
right(Γ

diag
li

). Since

x0 ∈ X(a, b) and b ∈ R2
left(Γ

vert
ri ) by Definition 10, it follows that t ∈ Si ∪ Fi. If t ∈ Si then

let t∗ ∈ R(a, b) be an arbitrary point on the intersection of the line segment Li with the reverse
shadow Ft of the point t, i.e., t∗ ∈ R(a, b) ∩ Li ∩ Ft. Note that t∗ always exists, since x0 ∈ X(a, b),
R(a, b) * Si by the assumption of the lemma, and b ∈ R2

right(Γ
vert
li

) as we proved above. Otherwise,

if t ∈ Fi, then we define t∗ = t. Since t ∈ R2
right(Γ

diag
li

) by assumption, note that in both cases where
t ∈ Si and t ∈ Fi, we have that t ∈ St∗ and that either t∗ ∈ Li or t∗ ∈ Fi \ Li.
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Suppose that there exists a line segment Lk ∈ Z \ Li such that t∗ ∈ Sk. Then, since t ∈ St∗ , it
follows that also t ∈ Sk. Thus the element x0 ∈ X(a, b) is dominated by Lk ∈ Z \ Li, which is a
contradiction. Therefore t∗ /∈ Sk for every line segment Lk ∈ Z \ Li.

Let j be the greatest index such that for the line segment Lj ∈ Z \Li we have rj ∈ R2
left(Γ

vert
t∗ ).

That is, for every other line segment Ls ∈ Z \Li with rs ∈ R2
left(Γ

vert
t∗ ), we have rs ∈ R2

left(Γ
vert
lj

). If

rj ∈ R2
right(Γ

vert
li

) then we define t1 = rj . If rj /∈ R2
right(Γ

vert
li

) then we define t1 = li. Furthermore, if

such a line segment Lj does not exist in Z \Li (i.e., if rs /∈ R2
left(Γ

vert
t∗ ) for every Ls ∈ Z \Li), then

we define again t1 = li.
Let Lj′ ∈ Z \ Li be a line segment such that lj′ ∈ R2

right(Γ
diag
t∗ ) and that, for every other line

segment Ls ∈ Z \ Li with ls ∈ R2
right(Γ

diag
t∗ ), we have ls ∈ R2

right(Γ
diag
lj′

). If lj′ ∈ R2
left(Γ

diag
b ) then we

define t2 = lj′ . If lj′ /∈ R2
left(Γ

diag
b ) then we define t2 = b. Furthermore, if such a line segment Lj′

does not exist in Z \Li (i.e., if ls /∈ R2
right(Γ

diag
t∗ ) for every Ls ∈ Z \Li), then we define again t2 = b.

Now we define
c = Γvert

t1 ∩ Γdiag
t2

.

It is easy to check by the above definition of t1 and t2 that c ∈ B∩R(a, b) and that c ∈ R2
right(Γ

vert
li

)\
Fli .

Assume that there exists at least one point pk ∈ P ∩ X(a, b) ∩ Fc ∩ Fi. Then, since
BD(a, b, q, i, i′) 6= ⊥ by assumption, there must be a line segment Lk′ ∈ Z \ Li such that Lk′

dominates pk. Since pk ∈ Fc by assumption, it follows that Lk′ ∩ Fc 6= ∅. If rk′ ∈ R2
left(Γ

vert
t∗ ) then

rk′ ∈ R2
left(Γ

vert
c ) by the above definition of c, and thus the line segment Lk′ does not dominate

the point pk, which is a contradiction. Therefore rk′ /∈ R2
left(Γ

vert
t∗ ). If lk′ ∈ R2

right(Γ
diag
t∗ ) then

lk′ ∈ R2
right(Γ

diag
c ) by the above definition of c, and thus the line segment Lk′ does not dominate

the point pk, which is a contradiction. Therefore lk′ /∈ R2
right(Γ

diag
t∗ ). Summarizing, rk′ /∈ R2

left(Γ
vert
t∗ )

and lk′ /∈ R2
right(Γ

diag
t∗ ), and thus Lk′ ∩ Ft∗ 6= ∅. That is, t∗ ∈ Sk′ for some Lk′ ∈ Z \ Li, which is a

contradiction as we proved above. Thus there does not exist such a point pk, i.e.,

P ∩X(a, b) ∩ Fc ∩ Fi = ∅.

Assume that t∗ ∈ Li. Then, since t∗ /∈ Sk for every line segment Lk ∈ Z \ Li as we proved
above, we can partition the set Z \ {Lq, Li, Li′} into the sets Zbelow, Zleft, and Zright as follows:

Zbelow = {Lk ∈ Z \ {Lq, Li, Li′} : Lk ∩ Si 6= ∅},
Zleft = {Lk ∈ Z \ {Lq, Li, Li′} : Lk ∩ Si = ∅, Lk ⊆ R2

left(Γ
vert
t∗ )}, (7)

Zright = {Lk ∈ Z \ {Lq, Li, Li′} : Lk ∩ Si = ∅, Lk ⊆ R2
right(Γ

diag
t∗ )}.

Assume now that t∗ ∈ Fi\Li; then t∗ = t is a point of x0. Note that all points of P∩X(a, b)∩Fi
are dominated by Z\Li, since they are not dominated by Li and BD(a, b, q, i, i′) 6= ⊥ by assumption.
Therefore x0 is a line segment, i.e., x0 ∈ L. Assume that there exists a line segment Lk ∈ Z \ Li
such that Lk ∩ (St∗ ∪ Ft∗) 6= ∅. Then x0 is dominated by Lk ∈ Z \ Li, which is a contradiction.
Therefore Lk ∩ (St∗ ∪ Ft∗) = ∅ for every line segment Lk ∈ Z \Li. That is, for every Lk ∈ Z \Li we
have that either Lk ⊆ Bt∗ or Lk ⊆ At∗ . Therefore, in the case where t∗ ∈ Fi \ Li, we can partition
the set Z \ {Lq, Li, Li′} into the sets Zbelow, Zleft, and Zright as follows:

Zbelow = ∅,
Zleft = {Lk ∈ Z \ {Lq, Li, Li′} : Lk ⊆ Bt∗}, (8)

Zright = {Lk ∈ Z \ {Lq, Li, Li′} : Lk ⊆ At∗}.

Notice that, in both cases where t∗ ∈ Li and t∗ ∈ Fi\Li, the set Z1 = Zbelow∪Zleft∪{Lq, Li, Li′}
is a dominating set of X(a, c). Furthermore the set Z2 = Zright ∪ {Lq, Li, Li′} is a dominating
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set of X(c, b). Moreover, Lq is the diagonally leftmost line segment and (i, i′) is the end-pair
of both Z1 and Z2. Therefore |BD(a, c, q, i, i′)| ≤ |Z1| and |BD(c, b, q, i, i′)| ≤ |Z2|. Now, since
{Lq, Li, Li′} ⊆ BD(a, c, q, i, i′) ∩BD(c, b, q, i, i′), we have that

|BD(a, c, q, i, i′) ∪BD(c, b, q, i, i′)| ≤ |BD(a, c, q, i, i′)|+ |BD(c, b, q, i, i′)| − |{Lq, Li, Li′}|
≤ |Z1|+ |Z2| − |{Lq, Li, Li′}|
= |Zbelow ∪ Zleft ∪ {Lq, Li, Li′}|

+|Zright ∪ {Lq, Li, Li′}| − |{Lq, Li, Li′}|
= |Zbelow|+ |Zleft|+ |Zright|+ |{Lq, Li, Li′}|
= |Z| = |BD(a, b, q, i, i′)|.

Finally Lemma 11 implies that, if BD(a, c, q, i, i′) 6= ⊥ and BD(c, b, q, i, i′) 6= ⊥, then
BD(a, c, q, i, i′) ∪ BD(c, b, q, i, i′) is a dominating set of X(a, b), in which Lq is the diagonally
leftmost line segment and (i, i′) is the end-pair. Therefore

|BD(a, b, q, i, i′)| ≤ |BD(a, c, q, i, i′) ∪BD(c, b, q, i, i′)|.

It follows that |BD(a, b, q, i, i′)| = |BD(a, c, q, i, i′) ∪BD(c, b, q, i, i′)|.
Case 2. x0 ∩ R2

right(Γ
diag
li

) = ∅. Then, since x0 ∩ (Si ∪ Fi) 6= ∅ by the initial assumption on x0,
it follows that x0 ∩ Fi 6= ∅. Note that all points in P ∩ X(a, b) ∩ Fi are dominated by Z \ {Li},
since they are not dominated by Li and BD(a, b, q, i, i′) 6= ⊥ by assumption. Therefore x0 ∈ L.
Let t∗ ∈ R2 be an arbitrary point of x0 ∩ Fi.

If i′ 6= i and li′ ∈ R2
left(Γ

diag
li

), then Li′ ∈ Z \{Li} and Li′ dominates x0, which is a contradiction.

Therefore, if i′ 6= i then li′ /∈ R2
left(Γ

diag
li

). Furthermore, it follows that if Lq 6= Li then also Lq 6= Li′ .
Assume that there exists a line segment Lk ∈ Z \Li such that Lk ∩ (St∗ ∪ Ft∗) 6= ∅. Then x0 is

dominated by Lk ∈ Z \ Li, which is a contradiction. Therefore Lk ∩ (St∗ ∪ Ft∗) = ∅ for every line
segment Lk ∈ Z \ Li. That is, for every Lk ∈ Z \ Li we have that either Lk ⊆ Bt∗ or Lk ⊆ At∗ .
Therefore, similarly to Eq. (8) in Case 1, we can partition the set Z \{Lq, Li, Li′} into the sets Zleft

and Zright as follows:

Zleft = {Lk ∈ Z \ {Lq, Li, Li′} : Lk ⊆ Bt∗},
Zright = {Lk ∈ Z \ {Lq, Li, Li′} : Lk ⊆ At∗}. (9)

Similarly to Case 1, let j be the greatest index such that for the line segment Lj ∈ Z \ Li we
have rj ∈ R2

left(Γ
vert
t∗ ). That is, for every other line segment Ls ∈ Z \ Li with rs ∈ R2

left(Γ
vert
t∗ ), we

have rs ∈ R2
left(Γ

vert
lj

). If rj ∈ R2
right(Γ

vert
li

) then we define t1 = rj . If rj /∈ R2
right(Γ

vert
li

) then we define

t1 = li. Furthermore, if such a line segment Lj does not exist in Z \ Li (i.e., if rs /∈ R2
left(Γ

vert
t∗ ) for

every Ls ∈ Z \ Li), then we define again t1 = li.

Let Lj′ ∈ Z \ Li be a line segment such that lj′ ∈ R2
right(Γ

diag
t∗ ) and that, for every other line

segment Ls ∈ Z \ Li with ls ∈ R2
right(Γ

diag
t∗ ), we have ls ∈ R2

right(Γ
diag
lj′

). If lj′ ∈ R2
left(Γ

diag
li

) then we

define Lq′ = Lj′ . If lj′ /∈ R2
left(Γ

diag
li

) then we define Lq′ = Li. Furthermore, if such a line segment

Lj′ does not exist in Z \ Li (i.e., if ls /∈ R2
right(Γ

diag
t∗ ) for every Ls ∈ Z \ Li), then we define again

Lq′ = Li.

Thus, in both cases where Lq′ = Lj′ and Lq′ = Li, it follows that Lq′ ∈ Lrightq ∩ Llefti,i′ and that
lq′ ∈ Fli . Note that it can be either Lq′ 6= Lq or Lq′ = Lq. Furthermore recall that, if i′ 6= i, then

li′ /∈ R2
left(Γ

diag
li

) as we proved above. Therefore Li, Li′ ∈ Lrightq′ .

Now we define the point t2 as follows. If lq′ ∈ R2
left(Γ

diag
b ) then we define t2 = lq′ . Otherwise, if

lq′ /∈ R2
left(Γ

diag
b ) then we define t2 = b. Furthermore we define

c′ = Γvert
t1 ∩ Γdiag

t2
.
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Therefore, due to the above definition of t1 and t2, it follows that c′ ∈ Γdiag
lq′

or c′ ∈ Γdiag
b . Further-

more note that c′ ∈ St∗ . It is easy to check by the definition of t1 and t2 that c′ ∈ B ∩R(a, b) and
that c′ ∈ Fli . Since c′ ∈ Fli , note that Fc′ ⊆ Fi, and thus Fc′ ∩ Fi = Fc′ . Thus, similarly to Case 1,
we can prove that

P ∩X(a, b) ∩ Fc′ = ∅.
Now recall the partition of the set Z \ {Lq, Li, Li′} into the sets Zleft and Zright, cf. Eq. (9).

Notice that the set Z1 = Zleft ∪ {Lq, Li, Li′} is a dominating set of X(a, c′) and that the set Z2 =
Zright∪{Lq′ , Li, Li′} is a dominating set of X(c′, b). Furthermore, Lq is the diagonally leftmost line
segment of Z1 and (i, i′) is the end-pair of Z1. Similarly, Lq′ is the diagonally leftmost line segment of
Z2 and (i, i′) is the end-pair of Z2. Therefore |BD(a, c′, q, i, i′)| ≤ |Z1| and |BD(c′, b, q′, i, i′)| ≤ |Z2|.

Let first Lq = Lq′ . Then, since {Lq, Li, Li′} ⊆ BD(a, c′, q, i, i′)∪BD(c′, b, q′, i, i′), it follows that

|BD(a, c′, q, i, i′) ∪BD(c′, b, q′, i, i′)| ≤ |BD(a, c′, q, i, i′)|+ |BD(c′, b, q′, i, i′)| − |{Lq, Li, Li′}|
≤ |Z1|+ |Z2| − |{Lq, Li, Li′}|
= |Zleft ∪ {Lq, Li, Li′}|+ |Zright ∪ {Lq′ , Li, Li′}| − |{Lq, Li, Li′}|
= |Zleft|+ |Zright|+ |{Lq, Li, Li′}|
= |Z| = |BD(a, b, q, i, i′)|.

Let now Lq 6= Lq′ . Then lq′ ∈ R2
right(Γ

diag
lq

), since Lq′ ∈ Lrightq as we proved above. Furthermore,

since lq′ ∈ R2
left(Γ

diag
li

) by definition of q′, it follows that Lq 6= Li. Therefore also Lq 6= Li′ , as
we proved above. Moreover, if Lq′ 6= Li then Lq′ = Lj′ by the above definition of q′, and thus
Lq′ ∈ Zright. Therefore, in both cases where Lq′ = Li and Lq′ 6= Li, we have Z2 = Zright ∪
{Lq′ , Li, Li′} = Zright ∪ {Li, Li′}. Thus, since {Li, Li′} ⊆ BD(a, c′, q, i, i′) ∩ BD(c′, b, q′, i, i′), it
follows that

|BD(a, c′, q, i, i′) ∪BD(c′, b, q′, i, i′)| ≤ |BD(a, c′, q, i, i′)|+ |BD(c′, b, q′, i, i′)| − |{Li, Li′}|
≤ |Z1|+ |Z2| − |{Li, Li′}|
= |Zleft ∪ {Lq, Li, Li′}|+ |Zright ∪ {Li, Li′}| − |{Li, Li′}|
= |Zleft ∪ {Lq}|+ |Zright|+ |{Li, Li′}|
= |Zleft|+ |Zright|+ |{Lq}|+ |{Li, Li′}|
= |Z| = |BD(a, b, q, i, i′)|.

Finally Lemma 12 implies that, if BD(a, c′, q, i, i′) 6= ⊥ and BD(c′, b, q′, i, i′) 6= ⊥ then
BD(a, c′, q, i, i′) ∪ BD(c′, b, q′, i, i′) is a dominating set of X(a, b), in which Lq is the diagonally
leftmost line segment and (i, i′) is the end-pair. Therefore

|BD(a, b, q, i, i′)| ≤ |BD(a, c′, q, i, i′) ∪BD(c′, b, q′, i, i′)|.

It follows that |BD(a, b, q, i, i′)| = |BD(a, c′, q, i, i′) ∪BD(c′, b, q′, i, i′)|.
Summarizing Case 1 and Case 2, it follows that the value of BD(a, b, q, i, i′) can be computed

by Eq. (6), where the minimum is taken over all values of c, c′, q′, as stated in the lemma.

Using the recursive computations of Lemmas 8, 10, and 13, we are now ready to present Algo-
rithm 1 for computing Bounded Dominating Set on tolerance graphs in polynomial time.

Theorem 3 Given a horizontal shadow representation (P,L) of a tolerance graph G with n ver-
tices, Algorithm 1 solves Bounded Dominating Set in O(n9) time.
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Algorithm 1 Bounded Dominating Set on Tolerance Graphs

Input: A horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|} and
L = {L1, L2, . . . , L|L|}

Output: A set Z ⊆ L of minimum size that dominates (P,L), or the announcement that L does
not dominate (P,L)

1: Add two dummy line segments L0 and L|L|+1 completely to the left and to the right of P ∪ L,
respectively

2: L ← L ∪ {L0, L|L|+1}; denote L = {L1, L2, . . . , L|L|}, where now L1 and L|L| are dummy

3: A ← {li, ri : 1 ≤ i ≤ |L|}; B ← {Γdiag
t ∩ Γvert

t′ : t, t′ ∈ A}
4: for every pair of points (a, b) ∈ A× B such that b ∈ R2

right(Γ
diag
a ) do {initialization}

5: X(a, b)← {x ∈ P ∪ L : x ⊆
(
Bb \ Γvert

b

)
∩ R2

right(Γ
diag
a )}

6: for every q, i, i′ ∈ {1, 2, . . . , |L|} do
7: if ri′ ∈ Sri then {(i, i′) is a right-crossing pair}
8: if Lq ∈ Llefti,i′ , Li, Li′ ∈ Lrightq , and b ∈ R2

left(Γ
vert
ri ) then

9: Llefti,i′ ← {x ∈ P ∪ L : x ⊆ Bt, where t = Γvert
ri ∩ Γdiag

ri′ }
10: Lrightq ← {x ∈ P ∪ L : x ⊆ R2

right(Γ
diag
lq

)}
11: if L ∩ Lrightq ∩Llefti,i′ does not dominate all elements of X(a, b) then
12: BD(a, b, q, i, i′)← ⊥
13: else if {Lq, Li, Li′} dominates all elements of X(a, b) then
14: BD(a, b, q, i, i′)← {Lq, Li, Li′}
15: else
16: BD(a, b, q, i, i′)← L∩ Lrightq ∩Llefti,i′ {initialization}

17: for every pair of points (a, b) ∈ A× B such that b ∈ R2
right(Γ

diag
a ) do

18: for every q, i, i′ ∈ {1, 2, . . . , |L|} do
19: if ri′ ∈ Sri then {(i, i′) is a right-crossing pair}
20: if Lq ∈ Llefti,i′ , Li, Li′ ∈ Lrightq , and b ∈ R2

left(Γ
vert
ri ) then

21: Compute the solutions Z1, Z2, Z3 by Lemmas 8, 10, and 13, respectively
22: for k = 1 to 3 do
23: if |Zk| < |BD(a, b, q, i, i′)| then BD(a, b, q, i, i′)← Zk

24: if BD(l1, rL, 1, |L|, |L|) = ⊥ then return L does not dominate (P,L)
25: else return BD(l1, rL, 1, |L|, |L|) \ {L1, L|L|}

Proof. In the first line, Algorithm 1 augments the horizontal shadow representation (P,L) by
adding to L the two dummy line segments L0 and L|L|+1 (with endpoints l0, r0 and l|L|+1, r|L|+1,
respectively) such that all elements of P ∪ L are contained in Ar0 and in Bl|L|+1

. In the second line
the algorithm renumbers the elements of the set L such that L = {L1, L2, . . . , L|L|}, where in this
new enumeration the line segments L1 and L|L| are dummy. Furthermore, in line 3, the algorithm
computes the point sets A and B (cf. Section 5.1).

In lines 4-16 the algorithm performs all initializations. In particular, first in line 5 the algorithm
computes the sets X(a, b) ⊆ P ∪L for all feasible pairs (a, b) ∈ A× B (cf. Eq. (2)). Then the algo-
rithm iteratively executes lines 9-16 for all values of q, i, i′ ∈ {1, 2, . . . , |L|} for which BD(a, b, q, i, i′)
can be defined (these conditions on q, i, i′ are tested in lines 6-8, cf. Definition 10). For all such val-
ues of q, i, i′, the algorithm computes an initial value for BD(a, b, q, i, i′) in lines 9-16. In particular,
in lines 12 and 14 it computes the values of BD(a, b, q, i, i′) which can be computed directly (cf. Ob-
servations 4 and 5). In the case where BD(a, b, q, i, i′) 6= ⊥ and BD(a, b, q, i, i′) 6= {Lq, Li, Li′}, the
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set L ∩ Lrightq ∩Llefti,i′ is a feasible (but not necessarily optimal) solution (cf. Definition 10), therefore

in this case the algorithm initializes in line 16 the value of BD(a, b, q, i, i′) to L ∩ Lrightq ∩Llefti,i′ .
The main computations of the algorithm are performed in lines 17-23. In particular, the algo-

rithm iteratively executes lines 21-23 for all values of a, b, q, i, i′ for which BD(a, b, q, i, i′) can be
defined (these conditions on a, b, q, i, i′ are tested in lines 17-20, cf. Definition 10). In line 21 the al-
gorithm computes all the necessary values that are the candidates for the value BD(a, b, q, i, i′) and
in lines 22-23 the algorithm computes BD(a, b, q, i, i′) from these candidate values. The correctness
of this computation of BD(a, b, q, i, i′) follows by Lemmas 8, 10, and 13, respectively.

Finally, the algorithm computes the final output in lines 24-25. Indeed, since in the (aug-
mented) horizontal shadow representation (P,L) the two dummy horizontal line segments are
isolated (i.e., the line segments L1 and L|L| in the augmented representation, cf. lines 1-2 of
the algorithm), they must be included in every minimum bounded dominating set of the (aug-
mented) tolerance graph. Therefore the algorithm correctly returns in line 25 the computed
set BD(l1, r|L|, 1, |L|, |L|) \ {L1, L|L|}, as long as BD(l1, r|L|, 1, |L|, |L|) 6= ⊥. Furthermore, if
BD(l1, r|L|, 1, |L|, |L|) = ⊥ then the whole (augmented) set L does not dominate all elements
of the (augmented) set P ∪ L, and thus in this case the algorithm correctly returns a negative
announcement in line 24.

Regarding the running time of Algorithm 1, first recall that the sets A and B have O(n)
and O(n2) elements, respectively. Thus the first three lines of the algorithm can be implemented
in O(n2) time. Due to the for-loop of line 4, the lines 5-16 are executed at most O(n3) times.
Recall by Eq. (1) and (2) that, for every pair (a, b) ∈ A × B, the region R(a, b) can be specified
in constant time (cf. the shaded region in Figure 7) and the vertex set X(a, b) can be computed
in O(n) time. That is, line 5 of the algorithm can be executed in O(n) time. For every fixed pair
(a, b), the lines 7-16 are executed at most O(n3) times, due to the for-loop of line 6. Furthermore
the if-statements of lines 7 and 8 can be executed in constant time, while the computations of Llefti,i′

and Lrightq in lines 9 and 10 can be computed in O(n) time each. The if-statement of line 11 can
be executed in O(n2) time, since in the worst case we check adjacency between each element of
L ∩ Lrightq ∩ Llefti,i′ and each element of X(a, b). Moreover, each of the lines 12-16 can be trivially

executed in at most O(n) time. Therefore the total execution time of lines 4-16 is O(n8).
Due to the for-loop of lines 17 and 18, the lines 19-23 are executed at most O(n6) times,

since there exist at most O(n3) pairs (a, b) and at most O(n3) triples {q, i, i′}. Furthermore,
since each of the lines 19 and 20 can be executed in constant time, the execution time of the
lines 19-23 is dominated by the execution time of line 21, i.e., by the recursive computation of the
set BD(a, b, q, i, i′) from Lemmas 8, 10, and 13. Note that we have already computed in lines 12
and 14 of the algorithm whether BD(a, b, q, i, i′) 6= ⊥ and BD(a, b, q, i, i′) 6= {Lq, Li, Li′}. Moreover
it can also be checked in constant time whether R(a, b) * Si and whether b ∈ Sli , and thus we can
decide in constant time in line 21 whether Lemmas 8, 10, and 13 can be applied. If Lemma 8 can
be applied, the corresponding candidate for BD(a, b, q, i, i′) can be computed in constant time by
a previously computed value (cf. Eq. (3)).

Assume now that Lemma 10 can be applied. Then the corresponding candidate for
BD(a, b, q, i, i′) is computed by the right-hand side of Eq. (4), for all values of c, q′, j, j′ that sat-
isfy the conditions of Lemma 9. Note by Condition 2 of Lemma 9 that, if i 6= i′, then j′ = i′.
Therefore every feasible quadruple (i, i′, j, j′) is either (i, i, j, j′) or (i, i′, j, i′), i.e., there exist at
most O(n3) feasible quadruples (i, i′, j, j′). Thus, since we already considered O(n2) iterations for
all pairs (i, i′) in line 18 of the algorithm, we only need to consider another O(n) iterations (multi-
plicatively) in line 21 for all feasible pairs (j, j′) in the execution of Lemma 10. Furthermore there
are at most O(n) feasible values of q′ by Conditions 1 and 3 of Lemma 9. Moreover the value of c
is uniquely determined (in constant time) by the values of j and b (cf. Condition 4 of Lemma 9);
once c has been computed, we also need O(n) additional time to check Condition 5 of Lemma 9.
Therefore, Lemma 10 can be applied in O(n3) time in line 21 of the algorithm.
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Assume finally that Lemma 13 can be applied. Then the corresponding candidate for
BD(a, b, q, i, i′) is computed by the right-hand side of Eq. (6), for all values of c, c′, q′ that sat-
isfy the conditions of Lemma 13. Note that there exist O(n2) feasible values for c, cf. Conditions 1
and 2 of Lemma 13. Furthermore, once the value of c has been chosen, we need O(n) additional
time to check Condition 6 of Lemma 13. Thus, the upper part of the right-hand side of Eq. (6)
can be computed in O(n3) time. On the other hand, there exist O(n) feasible values for q′, cf.
Conditions 3 and 4 of Lemma 13. For every value of q′ there exist O(n) feasible values for c′,
cf. Condition 5 of Lemma 13; once the value of c′ has been chosen, we need O(n) additional time
to check Condition 6 of Lemma 13. Thus, the lower part of the right-hand side of Eq. (6) can be
also computed in O(n3) time. That is, Lemma 13 can be applied in O(n3) time in line 21 of the
algorithm.

Summarizing, the total execution time of the lines 17-23 is O(n9). Therefore, since the execution
time of lines 4-16 is O(n8), the total running time of Algorithm 1 is O(n9).

6 Restricted bounded dominating set on tolerance graphs

In this section we use Algorithm 1 of Section 5 to provide a polynomial time algorithm (cf. Algo-
rithm 2) for a slightly modified version of Bounded Dominating Set on tolerance graphs, which
we call Restricted Bounded Dominating Set, formally defined below.

Restricted Bounded Dominating Set on Tolerance Graphs

Input: A 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow representation of a
tolerance graph G, (j, j′) is a left-crossing pair of G, and (i, i′) is a right-crossing pair of G.
Output: A set Z ⊆ L of minimum size that dominates (P,L), where (j, j′) is the start-pair and

(i, i′) is the end-pair of Z, or the announcement that L∩Lrightj,j′ ∩Llefti,i′ does not dominate (P,L).

In order to present Algorithm 2 for Restricted Bounded Dominating Set on toler-
ance graphs, we first reduce this problem to Bounded Dominating Set on tolerance graphs,
cf. Lemma 20. Before we present this reduction to Bounded Dominating Set, we first need
to prove some properties in the following auxiliary Lemmas 14-18. These properties will motivate
the definition of bad and irrelevant points p ∈ P and of bad and irrelevant line segments Lt ∈ L,
cf. Definition 11. The main idea behind Definition 11 is the following. If an instance contains a
bad point p ∈ P or a bad line segment Lt ∈ L, then L ∩ Lrightj,j′ ∩ Llefti,i′ does not dominate (P,L).
On the other hand, if an instance contains an irrelevant point p ∈ P or an irrelevant line segment
Lt ∈ L, we can safely ignore p (resp. Lt).

Lemma 14 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating Set

on tolerance graphs. Let l = Γvert
lj
∩ Γdiag

lj′
and r = Γvert

ri ∩ Γdiag
ri′ . If there exists a point p ∈ P such

that p ∈ R2
left(Γ

diag
l ) or p ∈ R2

right(Γ
vert
r ), then L ∩ Lrightj,j′ ∩ L

left
i,i′ does not dominate (P,L).

Proof. Assume otherwise that Z ⊆ L is a solution of I. First suppose that there exists a point
p ∈ P such that p ∈ R2

left(Γ
diag
l ), where l = Γvert

lj
∩ Γdiag

lj′
. Then, by Lemma 6, there must exist a

line segment Lk ∈ Z such that p ∈ Sk. Thus lk ∈ R2
left(Γ

diag
lj′

), which is a contradiction to the fact

that (j, j′) is the start-pair of Z.

Now suppose that there exists a point p ∈ P such that p ∈ R2
right(Γ

vert
r ), where r = Γvert

ri ∩Γdiag
ri′ .

Then, by Lemma 6, there must exist a line segment Lk ∈ Z such that p ∈ Sk. Thus rk ∈
R2
right(Γ

vert
ri ), which is a contradiction to the fact that (i, i′) is the end-pair of Z.

Lemma 15 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating Set

on tolerance graphs. Let l = Γvert
lj
∩ Γdiag

lj′
and r = Γvert

ri ∩ Γdiag
ri′ . If there exists a point p ∈ P such

that p ∈ Sl ∪ Sr then at least one of the line segments {Lj′ , Li} is a neighbor of p.
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Proof. Recall by Definition 7 in Section 5.1 that lj ∈ Slj′ and ri′ ∈ Sri , since (j, j′) is a left-crossing

pair and (i, i′) is a right-crossing pair. Therefore, since l = Γvert
lj
∩Γdiag

lj′
and r = Γvert

ri ∩Γdiag
ri′ by the

assumptions of the lemma, it follows that l ∈ Slj′ and r ∈ Sri .
If p ∈ Sl then also p ∈ Slj′ (since l ∈ Slj′ as we proved above), and thus Lj′ is a neighbor of p

by Lemma 6. Similarly, if p ∈ Sr then also p ∈ Sri (since r ∈ Sri as we proved above), and thus Li
is a neighbor of p by Lemma 6.

Lemma 16 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating Set

on tolerance graphs. Let l = Γvert
lj
∩Γdiag

lj′
and r = Γvert

ri ∩Γdiag
ri′ . If there exists a line segment Lt ∈ L

such that Lt ⊆ Bl or Lt ⊆ Ar, then L ∩ Lrightj,j′ ∩ L
left
i,i′ does not dominate (P,L).

Proof. Assume otherwise that Z ⊆ L is a solution of I. First suppose that there exists a line
segment Lt ∈ L such that Lt ⊆ Bl, where l = Γvert

lj
∩ Γdiag

lj′
. Then, by Lemma 5, there must exist a

line segment Lk ∈ Z such that Lt∩Sk 6= ∅ or Lk∩St 6= ∅. If Lt∩Sk 6= ∅ then lk ∈ R2
left(Γ

diag
lj′

), which

is a contradiction to the fact that (j, j′) is the start-pair of Z. If Lk ∩ St 6= ∅ then lk ∈ R2
left(Γ

vert
lj

),

which is again a contradiction to the fact that (j, j′) is the start-pair of Z.

Now suppose that there exists a line segment Lt ∈ L such that Lt ⊆ Ar, where r = Γvert
ri ∩Γdiag

ri′ .
Then, by Lemma 5, there exists a line segment Lk ∈ Z such that Lt ∩ Sk 6= ∅ or Lk ∩ St 6= ∅. If
Lt ∩ Sk 6= ∅ then rk ∈ R2

right(Γ
vert
ri ), which is a contradiction to the fact that (i, i′) is the end-pair

of Z. If Lk ∩ St 6= ∅ then rk ∈ R2
right(Γ

diag
ri′ ), which is again a contradiction to the fact that (i, i′) is

the end-pair of Z.

Lemma 17 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating Set

on tolerance graphs. Let l = Γvert
lj
∩Γdiag

lj′
and r = Γvert

ri ∩Γdiag
ri′ . If there exists a line segment Lt ∈ L

with one of its endpoints in Bl ∪ Ar and one point (not necessarily an endpoint) in Bl ∩ Ar, then
at least one of the line segments {Lj , Lj′ , Li, Li′} is a neighbor of Lt. Moreover, Lt does not belong
to any optimum solution Z of Restricted Bounded Dominating Set.

Proof. Let Z be an optimum solution of Restricted Bounded Dominating Set. Let Lt ∈ L
be a line segment with one of its endpoints in Bl ∪Ar and one point (not necessarily an endpoint)
in Bl ∩ Ar. Notice that rt ∈ Ar or lt ∈ Bl. Let first rt ∈ Ar. Since Lt has also a point in Bl ∩ Ar,
it follows that Lt has a point in (Si ∪ Fi) ∪ (Si′ ∪ Fi′). Therefore Lt is a neighbor of Li or Li′ by
Lemma 5. Let now lt ∈ Bl. Since Lt has also a point in Bl ∩ Ar, it follows that Lt has a point in
(Sj ∪ Fj) ∪ (Sj′ ∪ Fj′). Therefore Lt is a neighbor of Li or Li′ by Lemma 5. Finally, since rt ∈ Ar
or lt ∈ Bl, it follows that rt ∈ R2

right(Γ
vert
ri ) or lt ∈ R2

left(Γ
vert
lj

). Therefore Lt /∈ Lrightj,j′ or Lt /∈ Llefti,i′ .

Thus, since Z ⊆ L ∩ Lrightj,j′ ∩ Llefti,i′ , it follows that Lt /∈ Z.

Lemma 18 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating Set

on tolerance graphs. Let l = Γvert
lj
∩Γdiag

lj′
and r = Γvert

ri ∩Γdiag
ri′ . If there exists a line segment Lt ∈ L

such that Lt ⊆ Bl ∩Ar and Lt /∈ Lrightj,j′ ∩L
left
i,i′ then at least one of the line segments {Lj , Lj′ , Li, Li′}

is a neighbor of Lt. Moreover, Lt does not belong to any optimum solution Z of Restricted
Bounded Dominating Set.

Proof. Suppose first that Lt /∈ Lrightj,j′ . Then lt ∈ R2
left(Γ

vert
lj

) or lt ∈ R2
left(Γ

diag
lj′

). We first consider

the case where lt ∈ R2
left(Γ

vert
lj

). Then, since lt ∈ Bl ∩ Ar by assumption, it follows that lt ∈
R2
right(Γ

diag
li′

). This implies that lt ∈ Sj′ , and thus Lj′ is a neighbor of Lt. We now consider the case

where lt ∈ R2
left(Γ

diag
lj′

). Then, since lt ∈ Bl ∩ Ar by assumption, it follows that lt ∈ R2
right(Γ

vert
lj

).

This implies that lt ∈ Fj , and thus Lj is a neighbor of Lt.
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The case where Lt /∈ Llefti,i′ can be dealt with in exactly the same way, implying that, in this case,
Li or Li′ is a neighbor of Lt.

From Lemmas 14 and 16 we define now the notions of a bad point p ∈ P and a bad line segment
Lt ∈ L, respectively. Moreover, from Lemmas 15, 17, and 18 we define the notions of an irrelevant
point p ∈ P and of an irrelevant line segment Lt ∈ L, as follows.

Definition 11 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating

Set on tolerance graphs. Let l = Γvert
lj
∩ Γdiag

lj′
and r = Γvert

ri ∩ Γdiag
ri′ . A point p ∈ P is a bad point

if p ∈ R2
left(Γ

diag
l ) or p ∈ R2

right(Γ
vert
r ). A point p ∈ P is an irrelevant point if p ∈ Sl ∪ Sr. A line

segment Lt ∈ L is a bad line segment if Lt ⊆ Bl or Lt ⊆ Ar. Finally a line segment Lt ∈ L is
an irrelevant line segment if either Lt ⊆ Bl ∩ Ar and Lt /∈ Lrightj,j′ ∩ L

left
i,i′ , or Lt has an endpoint in

Bl ∪Ar and another point in Bl ∩Ar.

The next lemma will enable us to reduce Restricted Bounded Dominating Set to
Bounded Dominating Set on tolerance graphs, cf. Lemma 20.

Lemma 19 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating Set
on tolerance graphs, which has no bad or irrelevant points p ∈ P and no bad or irrelevant line
segments L ∈ L. Then we can add a new line segment Lj,1 to the set P ∪L such that Lj is the only
neighbor of Lj,1.

Proof. Since there are no bad or irrelevant points p ∈ P and no bad or irrelevant line segments
L ∈ L by assumption, there exists a point x ∈ R2 such that, for every p ∈ P and for every
Lt ∈ L \ {Lj}, we have that p, Lt ∈ R2

right(Γ
vert
x ). That is, no element of P ∪ (L \ {Lj}) has any

point in the interior of the region R1 = R2
right(Γ

vert
lj

)∩R2
left(Γ

vert
x ). Furthermore we define the region

R′1 ⊆ R1, where R′1 = R1 ∩R2
left(Γ

diag
lj′

). This region R′1 is illustrated in Figure 8 for the case where

j′ 6= j; the case where j′ = j is similar. Now we add to L a new line segment Lj,1 arbitrarily within
the interior of the region R′1, cf. Figure 8. By the definition of R′1 it is easy to verify that Lj,1 is
adjacent only to Lj .

x

lj′

Lj′

lj

Lj

R′1
Lj,1

Γx
vertvertΓlj

diagΓlj′

Figure 8: The addition of the line segment Lj,1, in the case where j′ 6= j.

In the following we denote by lj,1 the left endpoint of the new line segment Lj,1. Similarly to
Definition 10 in Section 5.2, we present in the next definition the quantity RD(P,L)(j, j

′, i, i′) for
the Restricted Bounded Dominating Set problem on tolerance graphs.

Definition 12 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominat-

ing Set on tolerance graphs. Then RD(P,L)(j, j
′, i, i′) is a dominating set Z ⊆ L ∩ Lrightj,j′ ∩ L

left
i,i′
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of (P,L) with the smallest size, in which (j, j′) and (i, i′) are the start-pair and the end-pair,
respectively. If such a dominating set Z does not exist, we define RD(P,L)(j, j

′, i, i′) = ⊥ and∣∣RD(P,L)(j, j
′, i, i′)

∣∣=∞.

Observation 7 RD(P,L)(j, j
′, i, i′) 6= ⊥ if and only if Lj , Lj′ ∈ Llefti,i′ , Li, Li′ ∈ Lrightj,j′ , and

L ∩ Lrightj,j′ ∩ L
left
i,i′ is a dominating set of (P,L).

For simplicity of the presentation we may refer to the set RD(P,L)(j, j
′, i, i′) as RDG(j, j′, i, i′),

where (P,L) is the horizontal shadow representation of the tolerance graph G. In the next lemma
we reduce the computation of RD(P,L)(j, j

′, i, i′) to the computation of an appropriate value for
the bounded dominating set problem (cf. Section 5).

Lemma 20 Let I = (P,L, j, j′, i, i′) be an instance of Restricted Bounded Dominating Set
on tolerance graphs, which has no bad or irrelevant points p ∈ P and no bad or irrelevant line
segments L ∈ L. Let (P, L̂) be the augmented representation that is obtained from (P,L) by adding

the line segment Lj,1 as in Lemma 19. Furthermore let r = Γvert
ri ∩ Γdiag

ri′ . If RD(P,L)(j, j
′, i, i′) 6= ⊥

then RD(P,L)(j, j
′, i, i′) = BD

(P,L̂)(lj,1, r, j
′, i, i′).

Proof. Let l = Γvert
lj
∩ Γdiag

lj′
and r = Γvert

ri ∩ Γdiag
ri′ . Then, since by assumption there are no bad or

irrelevant points p ∈ P or line segments L ∈ L in the instance I = (P,L, j, j′, i, i′), it follows that
all elements of P ∪L are entirely contained in the region Al ∩Br of R2, cf. Definition 11. Therefore
all elements of P ∪ L belong to the set {Li} ∪X(l, r), cf. Eq. (2) in Section 5.2. Now recall from
the construction of the augmented representation (P, L̂) from (P,L) in the proof of Lemma 19
that Lj,1 is the only element of P ∪ L̂ that does not belong to the set {Li} ∪X(l, r), cf. Figure 8.

Furthermore, it is easy to check that the set of elements of P ∪L̂ is exactly the set {Li}∪X(lj,1, r).
Since RD(P,L)(j, j

′, i, i′) 6= ⊥ by assumption, it follows by Observation 7 that Lj , Lj′ ∈ Llefti,i′

and Li, Li′ ∈ Lrightj,j′ as well as that L ∩ Lrightj,j′ ∩ Llefti,i′ is a dominating set of (P,L). Further-

more, since Lj is the only neighbor of Lj,1 in the augmented representation (P, L̂), it follows

that L ∩ Lrightj,j′ ∩ Llefti,i′ is also a dominating set of (P, L̂). Moreover, since Lrightj,j′ ⊆ L
right
j′ (cf. Defini-

tion 7 in Section 5.1), it follows that also L ∩ Lrightj′ ∩ Llefti,i′ is a dominating set of (P, L̂). Therefore
BD

(P,L̂)(lj,1, r, j
′, i, i′) 6= ⊥ by Observation 4. That is, BD

(P,L̂)(lj,1, r, j
′, i, i′) is a dominating set

Z ⊆ L̂ of X(lj,1, r) with the smallest size, in which (i, i′) is its end-pair and Lj′ is its diago-
nally leftmost line segment (cf. Definition 10 in Section 5.2). Since Lj′ is the diagonally left-
most line segment of BD

(P,L̂)(lj,1, r, j
′i, i′), it follows that Lj,1 /∈ BD(P,L̂)(lj,1, r, j

′, i, i′). Therefore

Lj ∈ BD
(P,L̂)(lj,1, r, j

′, i, i′), since Lj is the only neighbor of Lj,1 in (P, L̂). Thus (j, j′) is the

start-pair of BD
(P,L̂)(lj,1, r, j

′, i, i′). Finally, since also P∪L̂ = {Li}∪X(lj,1, r) as we proved above,

it follows that RD(P,L)(j, j
′, i, i′) = BD

(P,L̂)(lj,1, r, j
′, i, i′).

We are now ready to present Algorithm 2 which, given an instance I = (P,L, j, j′, i, i′)
of Restricted Bounded Dominating Set on tolerance graphs, either outputs a set Z ⊆
L ∩ Lrightj,j′ ∩ Llefti,i′ of minimum size that dominates all elements of (P,L), or it announces that
such a set Z does not exist. Algorithm 2 uses Algorithm 1 (which solves Bounded Dominating
Set on tolerance graphs, cf. Section 5) as a subroutine.

Theorem 4 Given a 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow representa-
tion of a tolerance graph G with n vertices, (j, j′) is a left-crossing pair and (i, i′) is a right-crossing
pair of (P,L), Algorithm 2 computes Restricted Bounded Dominating Set in O(n9) time.
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Algorithm 2 Restricted Bounded Dominating Set on Tolerance Graphs

Input: A 6-tuple I = (P,L, j, j′, i, i′), where (P,L) is a horizontal shadow representation of a
tolerance graph G, (j, j′) is a left-crossing pair and (i, i′) is a right-crossing pair of (P,L).

Output: A set Z ⊆ L of minimum size that dominates (P,L), where (j, j′) is the start-pair and
(i, i′) is the end-pair of Z, or the value ⊥.

1: if (P,L) contains a bad point p ∈ P or a bad line segment Lk ∈ L (cf. Definition 11) then

2: return ⊥
3: if Lj , Lj′ ∈ Llefti,i′ , Li, Li′ ∈ Lrightj,j′ , and L ∩ Lrightj,j′ ∩ Llefti,i′ is a dominating set of (P,L) then

4: Compute the sets P1 ⊆ P and L1 ⊆ L of irrelevant points and line segments (cf. Definition 11)

5: P ← P \ P1; L ← L \ L1; r ← Γvert
ri ∩ Γdiag

ri′

6: L̂ ← L ∪ {Lj,1} (cf. Lemma 19)

7: return BD
(P,L̂)(lj,1, r, j

′, i, i′) {by calling Algorithm 1}
8: else return ⊥

Proof. If the horizontal shadow representation (P,L) contains at least one bad point p ∈ P or

at least one bad line segment Lk ∈ L (cf. Definition 11) then L ∩ Lrightj,j′ ∩ Llefti,i′ does not dominate
(P,L) by Lemmas 14 and 16. Thus, in the case where such a bad point or bad line segment exists
in (P,L), Algorithm 2 correctly returns ⊥, cf. lines 1-2. Furthermore, due to Observation 7, the
algorithm correctly returns ⊥ in line 8 if at least one of the conditions checked in line 3 is not
satisfied.

Assume now that all conditions that are checked in line 3 are satisfied. Then
RD(P,L)(j, j

′, i, i′) 6= ⊥ by Observation 7. Let P1 ⊆ P and L1 ⊆ L be the set of all irrelevant
points and line segments, respectively (cf. Definition 11). Then, by Lemmas 15, 17, and 18, every
point p ∈ P1 and every line segment Lt ∈ L1 is dominated by at least one of the line segments
{Lj , Lj′ , Li, Li′}. Furthermore, by Lemmas 17 and 18, no line segment Lt ∈ L1 is contained in any
optimum solution Z of Restricted Bounded Dominating Set. Thus Algorithm 2 correctly
removes the sets P1 and L1 of the irrelevant points and line segments from the instance, cf. lines 4-5
of the algorithm.

In line 6 the algorithm augments the set L of line segments to the set L̂ by adding to it the line
segment Lj,1 as in Lemma 19. Then the algorithm returns in line 7 the value BD

(P,L̂)(lj,1, r, j
′, i, i′)

by calling Algorithm 1 as a subroutine (cf. Section 5). The correctness of this computation in line 7
follows immediately by Lemma 20.

Regarding the running time of Algorithm 2, note by Definition 11 that we can check in constant
time whether a given point p ∈ P (resp. a given line segment Lt ∈ L) is bad or irrelevant. Therefore
each of the lines 1, 2, and 4 of the algorithm can be executed in O(n) time. The execution time
of the if-statement of line 3 is dominated by the O(n2) time that is needed to check whether

L ∩ Lrightj,j′ ∩ Llefti,i′ is a dominating set of (P,L). Furthermore lines 5-6 can be executed trivially in

total O(n) time. Finally, line 7 can be executed in O(n9) time by Theorem 3, and thus the total
running time of Algorithm 2 is O(n9).

7 Dominating set on tolerance graphs

In this section we present our main algorithm of the paper (cf. Algorithm 3) which computes in
polynomial time a minimum dominating set of a tolerance graph G, given by a horizontal shadow
representation (P,L). Algorithm 3 uses as subroutines Algorithms 1 and 2, which solve Bounded
Dominating Set and Restricted Bounded Dominating Set on tolerance graphs, respectively
(cf. Sections 5 and 6). Throughout this section we assume without loss of generality that the
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given tolerance graph G is connected and that G is given with a canonical horizontal shadow
representation (P,L). It is important to note here that, in contrast to Algorithms 1 and 2, the
minimum dominating set D that is computed by Algorithm 3 can also contain unbounded vertices.
Thus always D 6= ⊥, since in the worst case D contains the whole set P ∪ L.

For every p ∈ P we denote by N(p) = {Lk ∈ L : p ∈ Sk} and H(p) = {x ∈ P ∪ L : x ∩ Sp 6= ∅}.
Note that, due to Lemmas 6 and 7, N(p) is the set of neighbors of p and H(p) is the set of hovering
vertices of p. Furthermore, for every Lk ∈ L we denote by N(Lk) = {p ∈ P : p ∈ Sk} ∪ {Lt ∈ L :
Lt ∩ Sk 6= ∅ or Lk ∩ St 6= ∅}. Note that, due to Lemmas 5 and 6, N(Lk) is the set of neighbors
of Lk.

Observation 8 Let (P,L) be a canonical representation of a connected tolerance graph G, and
let p ∈ P. Then N(p) ⊆ N(x) for every x ∈ H(p) by Lemma 1. Furthermore H(p) ∩ L 6= ∅ by
Lemma 2.

Lemma 21 Let (P,L) be a canonical horizontal shadow representation of a connected tolerance
graph G and let D be a minimum dominating set of (P,L). If there exists a point p ∈ P such
that p ∈ D and (N(p) ∪H(p)) ∩D 6= ∅, then there exists a dominating set D′ of (P,L) such that
|D′| = |D| and |D′ ∩ P| = |D ∩ P| − 1.

Proof. We may assume without loss of generality that P 6= ∅ and L 6= ∅. Indeed, if P = ∅ then
we can just solve the problem Bounded Dominating Set (see Section 5); furthermore, if L = ∅,
then the graph G is an independent set. Consider a point p ∈ P such that p ∈ D. Suppose first
that x ∈ D for some x ∈ N(p), i.e., N(p) ∩ D 6= ∅. Recall by Observation 8 that H(p) ∩ L 6= ∅
and consider a line segment Lk ∈ H(p) ∩ L. We will prove that the set D′ = (D \ {p}) ∪ {Lk} is a
minimum dominating set of G. First note that p is dominated by x ∈ D \ {p} ⊆ D′. Furthermore
N(p) ⊆ N(Lk) by Observation 8, since Lk ∈ H(p). This implies that N(p) is dominated by Lk in
D′. Thus, since |D′| = |D|, it follows that D′ is a minimum dominating set of G.

Suppose now that x ∈ D for some x ∈ H(p), i.e., H(p) ∩ D 6= ∅. Since G is assumed to be
connected, it follows that N(p) 6= ∅. Let Lk ∈ N(p). We will prove that the set D′ = (D\{p})∪{Lk}
is a minimum dominating set of G. First note that p is dominated by Lk ∈ D′. Recall by
Observation 8 that N(p) ⊆ N(x). This implies that N(p) is dominated by x in D′. Thus, since
|D′| = |D|, it follows that D′ is a minimum dominating set of G.

To finish the proof of the lemma, note that |D′∩P| = |D∩P|− 1 follows from the construction
of D′, as we always replace in D′ the point p ∈ P by a line segment Lk ∈ L.

Define now the subset P∗ ⊆ P of points as follows:

P∗ = {p ∈ P : p /∈ H(p′) for every point p′ ∈ P \ {p}}. (10)

Equivalently, P∗ contains all points p ∈ P such that p /∈ Sp′ for every other point p′ ∈ P \{p}. Note
by the definition of the set P∗ that for every p1, p2 ∈ P∗ we have p1 /∈ Sp2 ∪Fp2 . Furthermore recall
that the points of P = {p1, p2, . . . , p|P|} have been assumed to be ordered increasingly with respect
to their x-coordinates. Therefore, since P∗ ⊆ P, the points of P∗ are also ordered increasingly with
respect to their x-coordinates.

Definition 13 Let (P,L) be a horizontal shadow representation. A dominating set D of (P,L) is
normalized if:

1. (N(p) ∪H(p)) ∩D = ∅ whenever p ∈ D ∩ P, and

2. D ∩ P ⊆ P∗.

Lemma 22 Let (P,L) be a canonical horizontal shadow representation of a connected tolerance
graph G. Then there exists a minimum dominating set D of (P,L) that is normalized.

30



Proof. Let D be a minimum dominating set of G that contains the smallest possible number of
points from the set P. That is, |D ∩P| ≤ |D′ ∩P| for every minimum dominating set D′ of G. Let
p ∈ D ∩ P.

First assume that (N(p) ∪ H(p)) ∩ D 6= ∅. Then Lemma 21 implies that there exists another
minimum dominating set D′ of G such that |D′∩P| = |D∩P|−1 < |D∩P|, which is a contradiction
to the choice of D. Therefore (N(p) ∪H(p)) ∩D = ∅ for every p ∈ D ∩ P.

Now assume that p ∈ (P \ P∗) ∩D. Then, by the definition of the set P∗, there exists a point
p′ ∈ P such that p ∈ H(p′). Note by Observation 8 that N(p′) ⊆ N(p). Suppose that p′ ∈ D.
Then, since p ∈ H(p′), Lemma 21 implies that there exists a minimum dominating set D′ such that
|D′ ∩ P| = |D ∩ P| − 1 < |D ∩ P|, which is a contradiction to the choice of D. Therefore p′ /∈ D.
Thus, since D is a dominating set of G and p′ /∈ D, there must exist an Lk ∈ N(p′) such that
Lk ∈ D. Therefore, since N(p′) ⊆ N(p), it follows that Lk ∈ N(p) ∩D. Then Lemma 21 implies
that there exists a minimum dominating set D′ of G such that |D′ ∩ P| = |D ∩ P| − 1 < |D ∩ P|,
which is again a contradiction to the choice of D. This implies that (P \P∗)∩D = ∅ and therefore
D ∩ P ⊆ P∗. Thus the dominating set D is normalized.

In the remainder of this section, whenever we refer to a minimum dominating set D of a
connected tolerance graph G that is given by a canonical horizontal shadow representation (P,L),
we will always assume (due to Lemma 22) that D is normalized. Moreover, given such a canonical
horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|} and L = {L1, L2, . . . , L|L|},
we add two dummy line segments L0 and L|L|+1 (with endpoints l0, r0 and l|L|+1, r|L|+1, respectively)
such that all elements of P ∪ L are contained in Ar0 and in Bl|L|+1

. Denote L′ = L ∪ {L0, L|L|+1}.
Furthermore we add one dummy point p|P|+1 such that all elements of P ∪ L′ are contained in
Bp|P|+1

. Denote P ′ = P ∪ {p|P|+1}.
Note that (P ′,L′) is a horizontal shadow representation of some tolerance graph G′, where

the bounded vertices V ′B of G′ correspond to the line segments of L′ and the unbounded vertices
V ′U of G′ correspond to the points of P ′. Furthermore note that, although G is connected, G′ is
not connected as it contains the three isolated vertices that correspond to L0, L|L|+1, and p|P|+1.
However, since there exists by Lemma 22 a minimum dominating set D of G that is normalized, it
is easy to verify that G′ also admits a normalized minimum dominating set. Therefore, whenever
we refer to a minimum dominating set D′ of the augmented tolerance graph G′, we will always
assume that D′ is normalized.

For simplicity of the presentation, we refer in the following to the augmented sets P ′ and L′ of
points and horizontal line segments by P and L, respectively. In the remainder of this section we
will write P = {p1, p2, . . . , p|P|} and L = {L1, L2, . . . , L|L|} with the understanding that the last
point p|P| of P, as well as the first and the last line segments L1 and L|L| of L, are dummy. Note
that the last point p|P| (i.e., the new dummy point) belongs to the set P∗. Furthermore, we will
refer to the augmented tolerance graph G′ by G. For every pi, pj ∈ P∗ with i < j, we denote by

Gj = {x ∈ P ∪ L : x ⊆ Bpj \ Γvert
pj }, (11)

G(i, j) = {x ∈ Gj : x ⊆ Api}. (12)

that is, Gj is set of elements of P ∪ L that are entirely contained in the region Bpj \ Γvert
pj , and

G(i, j) is the subset of Gj that contains the elements of P ∪ L that are entirely contained in the
region Api . Note that pj /∈ Gj and pj /∈ G(i, j).

Definition 14 Let pj ∈ P∗ and (i, i′) be a right-crossing pair in Gj. Then D(j, i, i′) is a minimum
normalized dominating set of Gj whose end-pair is (i, i′). If there exists no dominating set Z of
Gj whose end-pair is (i, i′), we define D(j, i, i′) = ⊥.

Observation 9 D(j, i, i′) 6= ⊥ if and only if Llefti,i′ is a dominating set of Gj.
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Observation 10 If X(ri′ , pj) is not dominated by the set {Li, Li′} then D(j, i, i′) = ⊥. Further-
more, if there exists a point p ∈ P ∩Gj such that p ∈ R2

right(Γ
vert
ri ) then D(j, i, i′) = ⊥.

Due to Observation 9, without loss of generality we assume below (in Lemmas 23 and 24)
that D(j, i, i′) 6= ⊥. Before we provide our recursive computation for D(j, i, i′) in Lemma 24
(cf. Eq. (14)), we first prove in the next lemma that the upper part of the right hand side of
Eq. (14) is indeed a normalized dominating set of Gj , in which (i, i′) is its end-pair.

Lemma 23 Let G be a tolerance graph, (P,L) be a canonical representation of G, pj ∈ P∗, and
(i, i′) be a a right-crossing pair of Gj. Assume that D(j, i, i′) 6= ⊥. Let q, q′, z, z′, w, w′ such that:

1. pq′ ∈ P∗, where 1 ≤ q′ < j,

2. Li, Li′ /∈ N(pq′) ∪H(pq′),

3. (w,w′) is a left-crossing pair of G(q′, j),

4. (z, z′) is a right-crossing pair of Gq′,

5. q = min{1 ≤ k ≤ q′ : pk ∈ P∗, pk ∈ Aζ}, where ζ = Γvert
rz ∩ Γdiag

rz′ ,

6.
(
H(pq) ∪H(pq′)

)
\
(⋃

q≤k≤q′ N(pk)
)

are dominated by the line segments {Lz, Lz′ , Lw, Lw′},

7. G(q, q′) is dominated by {pk ∈ P∗ : q ≤ k ≤ q′}.

If D(q, z, z′) 6= ⊥ and RDG(q′,j)(w,w
′, i, i′) 6= ⊥ then the set

D(q, z, z′) ∪
{
pk ∈ P∗ : q ≤ k ≤ q′

}
∪RDG(q′,j)(w,w

′, i, i′)

is a normalized dominating set of Gj, in which (i, i′) is its end-pair.

Proof. The choices of q, q′, z, z′, w, w′, i, i′, as described in the assumptions of the lemma, are
illustrated in Figure 9. Assume that D(q, z, z′) 6= ⊥ and that RDG(q′,j)(w,w

′, i, i′) 6= ⊥. We denote
for simplicity D = D1 ∪D2 ∪D3, where

D1 = D(q, z, z′),

D2 =
{
pk ∈ P∗ : q ≤ k ≤ q′

}
, (13)

D3 = RDG(q′,j)(w,w
′, i, i′).

First we prove that D is a dominating set of Gj and that (i, i′) is the end-pair of D. Since
D1 6= ⊥ and D3 6= ⊥, note that the set Gq is dominated by D1 and that the set G(q′, j) is
dominated by D3. Furthermore, by Condition 7 of the lemma, the set G(q, q′) is dominated by D2.
It remains to prove that, if x /∈ D is an element of Gj such that x ∩ Fpq 6= ∅, or x ∩ Fpq′ 6= ∅, or
x ∩ Spq 6= ∅, or x ∩ Spq′ 6= ∅, then x is dominated by some element of D.

Assume that x /∈ D is an element of Gj such that x ∩ Spq 6= ∅ or x ∩ Spq′ 6= ∅. Then x ∈
H(pq)∪H(pq′) by Lemma 7. If x ∈ ⋃q≤k≤q′ N(pk) then x is clearly dominated by D2, cf. Eq. (13).

Otherwise x ∈
(
H(pq) ∪H(pq′)

)
\
(⋃

q≤k≤q′ N(pk)
)

, and thus x is dominated by the line segments

{Lz, Lz′ , Lw, Lw′} by Condition 6 of the lemma.
Now assume that x /∈ D is an element of Gj such that x∩Fpq 6= ∅ or x∩Fpq′ 6= ∅. Suppose that

x ∈ P, i.e., x ∈ Fpq or x ∈ Fpq′ . If x ∈ Fpq then pq ∈ Sx, and thus pq ∈ H(x) by Lemma 7. This
is a contradiction, since pq ∈ P∗ by Condition 5 of the lemma, cf. the definition of P∗ in Eq. (10).
Similarly, if x ∈ Fpq′ then we arrive again to a contradiction, since pq′ ∈ P∗ by Condition 1 of the
lemma. Therefore x /∈ P, i.e., x ∈ L. Let x = Lk. Since Lk ∩ Fpq 6= ∅ or Lk ∩ Fpq′ 6= ∅, it follows
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that pq ∈ Sk or pq′ ∈ Sk, and thus x = Lk ∈ N(pq) ∪N(pq′). That is, x is dominated by {pq, pq′}.
Therefore D is a dominating set of Gj . Furthermore, since (i, i′) is the end-pair of D3, it follows
that (i, i′) is also the end-pair of D = D1 ∪D2 ∪D3.

We now prove that D is normalized. First note that D1 = D(q, z, z′) is normalized by Defini-
tion 14 and that D2 is normalized as it only contains elements of P∗, cf. Definition 13. Moreover,
due to Definition 13, D3 is normalized as it contains only elements of L, cf. Definition 12 in Section 6.
That is, each of D1, D2, and D3 is normalized. Furthermore note that, due to the Conditions 2, 3,
and 4 of the lemma, for any two elements x, x′ that belong to different sets among D1, D2, D3, no
point of x belongs to the shadow of x′. Therefore the whole set D is normalized. Summarizing, D
is a normalized dominating set of Gj whose end-pair is (i, i′).

Given the statement of Lemma 23, we are now ready to provide our recursive computation of
the sets D(j, i, i′).

Lemma 24 Let G be a tolerance graph, (P,L) be a canonical representation of G, pj ∈ P∗, and
(i, i′) be a a right-crossing pair of Gj such that D(j, i, i′) 6= ⊥. Then

D(j, i, i′) = min
q′,z,z′,w,w′

{
D(q, z, z′) ∪ {pk ∈ P∗ : q ≤ k ≤ q′} ∪RDG(q′,j)(w,w

′, i, i′)

BDGj (l1, b, 1, i, i
′), where b = Γvert

ri ∩ Γdiag
ri′

. (14)

where the minimum is taken over all q′, z, z′, w, w′ that satisfy* the Conditions 1-7 of Lemma 23.

Proof. Let Z be a normalized dominating set of Gj such that (i, i′) is its end-pair and Z =
|D(j, i, i′)|. We distinguish the following two cases.

Case 1. Z ∩ P∗ = ∅, i.e., Z ⊆ L. Denote b = Γvert
ri ∩ Γdiag

ri′ and observe that X(l1, b) ⊆ Gj .
Therefore, since Z is a dominating set of Gj , it follows that Z is also a dominating set of X(l1, b).
Moreover recall that L1 is a dummy isolated line segment, and thus L1 ∈ Z. In particular, L1 is
the diagonally leftmost line segment of Z. Therefore |BDGj (l1, b, 1, i, i

′)| ≤ |Z|, since Z ⊆ L and
(i, i′) is the end-pair of Z by assumption.

Since D(j, i, i′) 6= ⊥ by assumption, it follows by Observation 10 that there are no points
p ∈ P ∩ Gj such that p ∈ R2

right(Γ
vert
ri ), and that X(ri′ , pj) is dominated by Li and Li′ . Therefore

BDGj (l1, b, 1, i, i
′) is a dominating set of Gj that has (i, i′) as its end-pair. Moreover, due to

Definition 13, BDGj (l1, b, 1, i, i
′) is normalized as it contains only elements of L (cf. Definition 10

in Section 5.2). Thus |Z| ≤ |BDGj (l1, b, 1, i, i
′)|. That is, |Z| = |BDGj (l1, b, 1, i, i

′)|.
Case 2. Z ∩ P∗ 6= ∅. Let q′ = max{k < j : pk ∈ P∗ ∩ Z}, cf. Figure 9. From the assumption that
Z is normalized, it follows that for every line segment Lk ∈ Z ∩ L, either Lk ⊆ Bpq′ or Lk ⊆ Apq′ .
Therefore the set Z ∩ L can be partitioned into two sets ZL,1 and ZL,2, where

ZL,1 = {Lk ∈ Z ∩ L : Lk ⊆ Bpq′},
ZL,2 = {Lk ∈ Z ∩ L : Lk ⊆ Apq′}.

In particular, note that Li, Li′ /∈ N(pq′) ∪ H(pq′). Now we prove that Li, Li′ ∈ ZL,2. Assume
otherwise Li ∈ ZL,1, i.e., Li ⊆ Bpq′ . Then ri ∈ Bpq′ , and thus pq′ ∈ R2

right(Γ
vert
ri ). This is a

contradiction by Observation 10, since D(j, i, i′) 6= ⊥ by assumption. Now assume that Li′ ∈ ZL,1,
i.e., Li′ ⊆ Bpq′ . Then ri′ ∈ Bpq′ , and thus pq′ ∈ R2

right(Γ
diag
ri′ ). This is a contradiction to the

assumption that (i, i′) is the end-pair of D(j, i, i′). Summarizing, Li, Li′ ∈ ZL,2.
Notice that ZL,2 ⊆ L is a bounded dominating set of G(q′, j) with (i, i′) as its end-pair, and

thus ZL,2 6= ∅. Since ZL,2 ⊆ L, Observation 3 implies that ZL,2 contains a unique start-pair. Let
(w,w′) be the left-crossing pair of G(q′, j) which is the start-pair of ZL,2. Then

|RDG(q′,j)(w,w
′, i, i′)| ≤ |ZL,2|, (15)

*Note that the value of q is uniquely determined by the value of q′ and by the pair (z, z′), cf. Condition 5 of
Lemma 23.
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Figure 9: The recursion for Case 2 of Lemma 24, where pq, p1, p2, pq′ ∈ P ∗.

and thus RDG(q′,j)(w,w
′, i, i′) 6= ⊥.

Recall that Gj contains the isolated (dummy) line segment L1, and thus L1 ∈ ZL,1. Therefore
ZL,1 6= ∅. Since ZL,1 ⊆ L, Observation 3 implies that ZL,1 contains a unique end-pair. Let (z, z′)

be the right-crossing pair of Gq′ which is the end-pair of ZL,1. Denote ζ = Γvert
rz ∩Γdiag

rz′ , cf. Figure 9.
Consider now an arbitrary point p ∈ P∗∩Z. We will prove that p /∈ Fζ ∪Sζ . Assume otherwise

that p ∈ Fζ . Then p ∈ R2
right(Γ

vert
rz ), and thus also p ∈ R2

right(Γ
vert
rz′

). Moreover p ∈ R2
left(Γ

diag
rz′ ).

This implies that p ∈ Frz′ . That is, rz′ ∈ Sp, and thus Lemma 7 implies that Lz′ ∈ H(p). This
is a contradiction to the assumption that Z is normalized, since both p, Lz′ ∈ Z. Thus p /∈ Fζ .

Now assume that p ∈ Sζ . Then p ∈ R2
right(Γ

diag
rz′ ), and thus also p ∈ R2

right(Γ
diag
rz ). Furthermore

p ∈ R2
left(Γ

vert
rz ). This implies that p ∈ Srz , and thus Lz ∈ N(p). This is again a contradiction to

the assumption that Z is normalized, since both p, Lz ∈ Z. Thus p /∈ Sζ . Summarizing, for every
p ∈ P ∗ ∩ Z we have that p /∈ Fζ ∪ Sζ , i.e., either p ∈ Aζ or p ∈ Bζ . Therefore the set P ∗ ∩ Z can
be partitioned into two sets ZP∗,1 and ZP∗,2, where

ZP∗,1 = {p ∈ P ∗ ∩ Z : p ∈ Bζ},
ZP∗,2 = {p ∈ P ∗ ∩ Z : p ∈ Aζ}.

Note that pq ∈ ZP∗,2. Furthermore, since (z, z′) is the end-pair of ZL,1, note that all line
segments of ZL,1 are contained in Bζ . Therefore all elements of the set Z1 = ZL,1 ∪ ZP∗,1 are
contained in Bζ , and thus (z, z′) is the end-pair of Z1. Define now q = min{1 ≤ k ≤ q′ : pk ∈
P∗, pk ∈ Aζ}, cf. Figure 9. Recall that pq /∈ Gq, cf. Eq. (11). It is easy to check that no line
segment of ZL,2 dominates any element of Gq, cf. Figure 9. Similarly, no point of ZP∗,2 dominates
any element of Gq. Thus the set Z1 is a dominating set of Gq. Furthermore Z1 is normalized, since
Z1 ⊆ Z and Z is normalized by assumption. That is, Z1 is a normalized dominating set of Gq with
(z, z′) as its end-pair. Therefore,

|D(q, z, z′)| ≤ |Z1|, (16)

and thus D(q, z, z′) 6= ⊥.
We now prove that ZP∗,2 = {pk ∈ P∗ : q ≤ k ≤ q′}. Clearly ZP∗,2 ⊆ {pk ∈ P∗ : q ≤ k ≤ q′}

by the definition of the index q and of the set ZP∗,2. Recall that for every line segment Lt ∈ Z,

either Lt ∈ ZL,1 or Lt ∈ ZL,2. If Lt ∈ ZL,1 then Lt ⊆ Bζ ⊆ Bpq . Denote c = Γvert
lw
∩ Γdiag

lw′
,

cf. Figure 9. If Lt ∈ ZL,2 then Lt ⊆ Ac ⊆ Apq′ , since (w,w′) is the start-pair of ZL,2. Thus, for
every line segment Lt ∈ Z, either Lt ⊆ Bpq or Lt ⊆ Apq′ . Therefore N(pk) ∩ Z = ∅, for every
k ∈ {q, q + 1, . . . , q′}, and thus all points pk ∈ P∗, where q ≤ k ≤ q′, must belong to Z. That is,
{pk ∈ P∗ : q ≤ k ≤ q′} ⊆ ZP∗,2. Therefore,

ZP∗,2 = {pk ∈ P∗ : q ≤ k ≤ q′}. (17)

Recall that for every line segment Lk ∈ Z, either Lk ⊆ Bpq or Lk ⊆ Apq′ , as we proved
above. Therefore G(q, q′) must be dominated by ZP∗,2. Furthermore, due to Eq. (17), ZP∗,2
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Algorithm 3 Dominating Set on Tolerance Graphs

Input: A canonical horizontal shadow representation (P,L), where P = {p1, p2, . . . , p|P|} and
L = {L1, L2, . . . , L|L|}.

Output: A set D ⊆ L ∪ P of minimum size that dominates (P,L).

1: Add two dummy line segments L0 (resp. L|L|+1) completely to the left (resp. right) of P ∪ L
2: Add a dummy point p|P|+1 completely to the right of L|L|+1

3: P ← P ∪ {p|P|+1}; L ← L ∪ {L0, L|L|+1}
4: Denote P = {p1, p2, . . . , p|P|} and L = {L1, L2, . . . , L|L|}, where now p|P|, L1, and L|L| are

dummy

5: P∗ = {p ∈ P : p /∈ H(p′) for every point p′ ∈ P \ {p}}
6: for every pair of points (a, b) ∈ A× B such that b ∈ R2

right(Γ
diag
a ) do

7: X(a, b)← {x ∈ P ∪ L : x ⊆
(
Bb \ Γvert

b

)
∩ R2

right(Γ
diag
a )}

8: for every pj ∈ P∗ do
9: Gj ← {x ∈ P ∪ L : x ⊆ Bpj \ Γvert

pj }
10: for every i, i′ ∈ {1, 2, . . . , |L|} do

11: if Li, Li′ ∈ Gj and ri′ ∈ Sri then {(i, i′) is a right-crossing pair of Gj}
12: if Llefti,i′ does not dominate all elements of Gj then D(j, i, i′)← ⊥
13: else Compute D(j, i, i′) by Lemma 24 {by calling Algorithms 1 and 2}
14: return D(|P|, |L|, |L|) \ {L1, LL}

clearly dominates the set
⋃
q≤k≤q′ N(pk). Moreover every hovering vertex of pq and of pq′ must be

dominated by ZP∗,2 or by the set {Lz, Lz′ , Lw, Lw′}. Therefore {Lz, Lz′ , Lw, Lw′} must dominate

the set (H(pq) ∪H(pq′)) \
(⋃

q≤k≤q′ N(pk)
)

.

Now note that the sets D(q, z, z′), ZP∗,2, and RDG(q′,j)(w,w
′, i, i′) are mutually disjoint. Fur-

thermore, it follows by Eq. (15) and (16) that∣∣D(q, z, z′)
∣∣+ |ZP∗,2|+

∣∣RDG(q′,j)(w,w
′, i, i′)

∣∣ ≤ |Z1|+ |ZP∗,2|+ |ZL,2|
= |ZL,1 ∪ ZP∗,1|+ |ZP∗,2|+ |ZL,2| (18)

= |Z| = |D(j, i, i′)|.

Therefore
∣∣D(q, z, z′) ∪ ZP∗,2 ∪RDG(q′,j)(w,w

′, i, i′)
∣∣ ≤ |D(j, i, i′)|. On the other hand, since

ZP∗,2 = {pk ∈ P∗ : q ≤ k ≤ q′} by Eq. (17), Lemma 23 implies that, if D(q, z, z′) 6= ⊥ and
RDG(q′,j)(w,w

′, i, i′) 6= ⊥, then D(q, z, z′) ∪ ZP∗,2 ∪ RDG(q′,j)(w,w
′, i, i′) is a normalized dominat-

ing set of Gj , in which (i, i′) is its end-pair. Therefore

|D(j, i, i′)| ≤
∣∣D(q, z, z′) ∪ ZP∗,2 ∪RDG(q′,j)(w,w

′, i, i′)
∣∣ . (19)

The lemma follows by Eq. (18) and (19).

We are now ready to present Algorithm 3 which, given a canonical horizontal shadow represen-
tation (P,L) of a connected tolerance graph G, computes a (normalized) minimum dominating set
D of G. The correctness of Algorithm 3 is proved in Theorem 5.

Theorem 5 Given a canonical horizontal shadow representation (P,L) of a connected tolerance
graph G with n vertices, Algorithm 3 computes in O(n15) time a (normalized) minimum dominating
set D of G.

Proof. In the first line, Algorithm 3 augments the given canonical horizontal shadow represen-
tation (P,L) by adding to L the dummy line segments L0 and L|L|+1 (with endpoints l0, r0 and
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l|L|+1, r|L|+1, respectively) such that all elements of P ∪ L are contained in Ar0 and in Bl|L|+1
.

Furthermore, in the second line, the algorithm further augments the set of points P by adding to
it the dummy point p|P|+1 such that all elements of P ∪ L′ are contained in Bp|P|+1

. In lines 3
and 4 the algorithm renumbers the elements of the sets P and L such that P = {p1, p2, . . . , p|P|}
and L = {L1, L2, . . . , L|L|}, where in this new enumeration the point p|P| is dummy and the line
segments L1 and L|L| are dummy as well. In lines 5-9 the algorithm computes the subset P∗ ⊆ P
(cf. Eq. (10)), all feasible subsets X(a, b) ⊆ P ∪ L (cf. Eq. (2) in Section 5.2), and all sets Gj , where
pj ∈ P∗ (cf. Eq. (11)).

The main computations of the algorithm are performed in lines 12-13, which are executed for
every point pj ∈ P∗ and for every right-crossing pair (i, i′) of the set Gj . In line 12 the algorithm
checks whether Llefti,i′ dominates all elements of Gj . If it is not the case, it correctly computes

D(j, i, i′) = ⊥ by Observation 9. Otherwise, if Llefti,i′ is a dominating set of Gj , then the algorithm
computes in line 13 the value of D(j, i, i′) with the recursive formula of Lemma 24. Note that, to
compute all the necessary values for this recursive formula, Algorithm 3 needs to call Algorithms 1
and 2 as subroutines, cf. Lemma 24.

Once all values D(j, i, i′) have been computed, the set D(|P|, |L|, |L|) is a minimum normalized
dominating set of G|P| whose end-pair is (|L|, |L|), cf. Definition 14. Recall that p|P| /∈ G|P|, i.e.,
G|P| = (P\{p|P|})∪L. Therefore, since the two dummy line segments are isolated, they must belong
to the dominating set D(|P|, |L|, |L|) of G|P|. Thus the algorithm correctly returns in line 14 the
value D(|P|, |L|, |L|) \ {L1, L|L|} as a minimum normalized dominating set for the input tolerance
graph G.

Regarding the running time of Algorithm 3, first note that the execution time of lines 1-5 is
dominated by the computation of the set P∗ in line 5; this can be done in at most O(n2) time,
since we check in the worst case for every two points p, p′ ∈ P whether p ∈ H(p′). Due to the
for-loop of line 6, line 7 is executed at most O(n3) times. Furthermore recall by Eq. (1) and (2)
that, for every pair (a, b) ∈ A×B, the vertex set X(a, b) can be computed in O(n) time. Therefore,
lines 6-7 are executed in O(n4) time. Due to the for-loop of line 8, the lines 9-13 are executed O(n)
times, since there are at most O(n) points in the set P∗. For every fixed pj ∈ P∗, line 9 can be
trivially executed in O(n) time. For every fixed pj ∈ P∗, the lines 11-13 are executed O(n2) times,
due to the for-loop of line 10. Furthermore, for every fixed triple (j, i, i′), line 11 can be executed
in constant time and line 12 can be easily executed in O(n2) time.

It remains to upper bound the execution time of line 13 using Lemma 24. Before we execute
line 13 for the first time, we perform two preprocessing steps. In the first preprocessing step we
compute, for each of the O(n) possible values for j, the graph Gj in O(n) time (cf. Eq. (11)) and
then we compute by Algorithm 1 in O(n9) time the values BDGj (l1, b, 1, i, i

′) for every feasible pair
(i, i′), cf. Theorem 3 in Section 5. That is, we compute in the first preprocessing step the values
BDGj (l1, b, 1, i, i

′) for every triple (j, i, i′) in O(n10) time. In the second preprocessing step we
compute, for each of the O(n6) possible values for q′, j, w, w′, i, i′, the graph G(q′, j) in O(n) time
(cf. Eq. (12)) and then we compute by Algorithm 2 in O(n9) time the values RDG(q′,j)(w,w

′, i, i′),
cf. Theorem 4 in Section 6. That is, we compute in the second preprocessing step all values
RDG(q′,j)(w,w

′, i, i′) in O(n15) time.
Consider a fixed value for the triple (j, i, i′). Then there exist O(n) feasible values for q′,

cf. Conditions 1 and 2 of Lemma 23. Furthermore there exist O(n2) feasible values for the pair
(z, z′), cf. Condition 4 of Lemma 23. Once the values of q, z, z′ have been chosen, we can compute
in O(n) time the value of q, cf. Conditions 5 and 6 of Lemma 23. Furthermore, once the values
of q′ and q have been chosen, we can check Condition 7 of Lemma 23 in O(n2) time. Thus,
given a fixed value for the triple (j, i, i′), we can compute in O(n5) time the sets D(q, z, z′) ∪
{pk ∈ P∗ : q ≤ k ≤ q′}, for all feasible values of the triples (q, z, z′). Moreover, for each of the
O(n2) feasible pairs (w,w′) (cf. Condition 3 of Lemma 23) we can compute in O(n) time the set
D(q, z, z′) ∪ {pk ∈ P∗ : q ≤ k ≤ q′} ∪RDG(q′,j)(w,w

′, i, i′), cf. Lemma 23. That is, for a fixed value
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of the triple (j, i, i′), we can compute all these sets in O(n8) time, and thus we can compute all
values of D(j, i, i′) in O(n11) time.

Summarizing, the running time of the algorithm is dominated by the two preprocessing steps for
computing in advance all values BDGj (l1, b, 1, i, i

′) and RDG(q′,j)(w,w
′, i, i′), and thus the running

time of Algorithm 3 is O(n15).

8 Concluding Remarks

In this paper we introduced two new geometric representations for tolerance and multitolerance
graphs, called the horizontal shadow representation and the shadow representation, respectively.
Using these new representations we first proved that the dominating set problem is APX-hard
on multitolerance graphs and then we provided a polynomial time algorithm for this problem on
tolerance graphs, thus answering to a longstanding open question. Therefore, given the (seemingly)
small difference between the definition of tolerance and multitolerance graphs, this dichotomy result
appears to be surprising.

The two new representations have the potential for further exploitation via sweep line algo-
rithms. For example, using the shadow representation, it is not very difficult to design a polyno-
mial sweep line algorithm for the independent dominating set problem, even on the larger class of
multitolerance graphs. In particular, although the complexity of the dominating set problem has
been established in this paper for both tolerance and multitolerance graphs, an interesting research
direction would be to use these new representations also for other related problems, e.g., for the
connected dominating set problem. A major open problem in tolerance and multitolerance graphs
is to establish the computational complexity of the Hamiltonicity problems. We hope that the two
new geometric representations can provide new insights also for these problems.

Our algorithm for tolerance graphs is highly non-trivial and its running time is upper-bounded
by O(n15), where n is the number of vertices in the input tolerance graph. Using more sophisticated
data structures our algorithm could run slightly faster. As our main aim in this paper was to estab-
lish the first polynomial-time algorithm for this problem, rather than finding an optimized efficient
algorithm, an interesting research direction is to explore to what extend the running time can be
reduced. The existence of a practically efficient polynomial-time algorithm for the dominating set
problem on tolerance graphs remains widely open.

Acknowledgments. The second author wishes to thank Steven Chaplick for insightful initial
discussions.
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