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Abstract

Tolerance graphs model interval relations in such a way that intervals can tolerate a certain
amount of overlap without being in conflict. In one of the most natural generalizations of
tolerance graphs with direct applications in the comparison of DNA sequences from different
organisms, namely multitolerance graphs, two tolerances are allowed for each interval — one
from the left and one from the right side. Several efficient algorithms for optimization problems
that are NP-hard in general graphs have been designed for tolerance and multitolerance graphs.
In spite of this progress, the complexity status of some fundamental algorithmic problems on
tolerance and multitolerance graphs, such as the dominating set problem, remained unresolved
until now, three decades after the introduction of tolerance graphs. In this article we introduce
two new geometric representations for tolerance and multitolerance graphs, given by points and
line segments in the plane. Apart from being important on their own, these new representations
prove to be a powerful tool for deriving both hardness results and polynomial time algorithms.
Using them, we surprisingly prove that the dominating set problem can be solved in polynomial
time on tolerance graphs and that it is APX-hard on multitolerance graphs, solving thus a
longstanding open problem. This problem is the first one that has been discovered with a
different complexity status in these two graph classes.

Keywords: Tolerance graph, multitolerance graph, geometric representation, dominating set
problem, polynomial time algorithm, APX-hard.
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1 Introduction

A graph G = (V, E) on n vertices is a tolerance graph if there exists a collection I = {[,, | v € V'}
of intervals on the real line and a set t = {t,, | v € V'} of positive numbers (the tolerances), such
that for any two vertices u,v € V, uv € E if and only if |1, N I,| > min{t,, t,}, where |I| denotes
the length of the interval I. The pair (I,t) is called a tolerance representation of G. If G has
a tolerance representation (I,t), such that t, <|I,| for every v € V, then G is called a bounded
tolerance graph.

If we replace in the above definition “min” by “max”, we obtain the class of maz-tolerance
graphs. Both tolerance and max-tolerance graphs have attracted many research efforts [2,4,7,9,10,
12//14-17] as they find numerous applications, especially in bioinformatics, among others [10,/12}[14];
for a more detailed account see the book on tolerance graphs [11]. One of their major applications
is in the comparison of DNA sequences from different organisms or individuals by making use of a
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software tool like BLAST [1]. However, at some parts of the above genomic sequences in BLAST,
we may want to be more tolerant than at other parts, since for example some of them may be
biologically less significant or we have less confidence in the exact sequence due to sequencing errors
in more error prone genomic regions. This concept leads naturally to the notion of multitolerance
graphs which generalize tolerance graphs [11,|15,/19]. The main idea is to allow two different
tolerances for each interval, one to each of its sides. Then, every interval tolerates in its interior
part the intersection with other intervals by an amount that is a convex combination of these two
border-tolerances.

Formally, let I = [l,r] be an interval on the real line and l;,7; € I be two numbers between [
and r, called tolerant points. For every A € [0, 1], we define the interval Ij, ., (X) = [l + (ry — 1),
lt + (r — l;)A], which is the convex combination of [l,l;] and [r,r]. Furthermore, we define the set
I(1, 1) = {10, (N) | A €]0,1]} of intervals. That is, Z(1,l;, ;) is the set of all intervals that we
obtain when we linearly transform [l, ;] into [r¢, r]. For an interval I, the set of tolerance-intervals T
of I is defined either as 7 = Z(I,l;,r;) for some values I,y € I (the case of a bounded vertex),
or as 7 = {R} (the case of an unbounded vertex). A graph G = (V, E) is a multitolerance graph
if there exists a collection I = {I,, | v € V'} of intervals and a family ¢t = {7, | v € V'} of sets of
tolerance-intervals, such that: for any two vertices u,v € V, uwv € FE if and only if Q, C I, for some
Quy € Ty, or Q, C I, for some @, € 7,. Then, the pair (I,t) is called a multitolerance representation
of G. If G has a multitolerance representation with only bounded vertices, i.e., with 7, # {R} for
every vertex v, then G is called a bounded multitolerance graph.

For several optimization problems that are NP-hard in general graphs, such as the coloring,
clique, and independent set problems, efficient algorithms are known for tolerance and multitoler-
ance graphs. However, only few of them have been derived using the (multi)tolerance representation
(e.g. |10,19]), while most of these algorithms appeared as a consequence of the containment of toler-
ance and multitolerance graphs to weakly chordal (and thus also to perfect) graphs [20]. To design
efficient algorithms for (multi)tolerance graphs, it seems to be essential to assume that a suitable
representation of the graph is given along with the input, as it has been recently proved that the
recognition of tolerance graphs is NP-complete |17]. Recently two new geometric intersection models
in the 3-dimensional space have been introduced for both tolerance graphs (the parallelepiped rep-
resentation [16]) and multitolerance graphs (the trapezoepiped representation [15]), which enabled
the design of very efficient algorithms for such problems, in most cases with (optimal) O(nlogn)
running time [15,/16]. In spite of this, the complexity status of some algorithmic problems on toler-
ance and multitolerance graphs still remains open, three decades after the introduction of tolerance
graphs in [8]. Arguably the two most famous and intriguing examples of such problems are the
minimum dominating set problem and the Hamilton cycle problem (see e.g. |20, page 314]). Both
these problems are known to be NP-complete on the greater class of weakly chordal graphs [3}/18]
but solvable in polynomial time in the smaller classes of bounded tolerance and bounded multitoler-
ance (i.e., trapezoid) graphs [6,13]. The reason that these problems resisted solution attempts over
the years seems to be that the existing representations for (multi)tolerance graphs do not provide
enough insight to deal with these problems.

Our contribution. In this article we introduce a new geometric representation for multitolerance
graphs, which we call the shadow representation, given by a set of line segments and points in the
plane. In the case of tolerance graphs, this representation takes a very special form, in which all
line segments are horizontal, and therefore we call it the horizontal shadow representation. Note
that both the shadow and the horizontal shadow representations are not intersection models for
multitolerance graphs and for tolerance graphs, respectively, in the sense that two line segments
may not intersect in the representation although the corresponding vertices are adjacent. However,
the main advantage of these two new representations is that they provide substantially new insight
for tolerance and multitolerance graphs and they can be used to interpret optimization problems



(such as the dominating set problem and its variants) using computational geometry terms.

Apart from being important on their own, these new representations enable us to establish the
complexity of the minimum dominating set problem on both tolerance and multitolerance graphs,
thus solving a longstanding open problem. Given a horizontal shadow representation of a tolerance
graph G, we present an algorithm that computes a minimum dominating set in polynomial time.
On the other hand, using the shadow representation, we prove that the minimum dominating set
problem is APX-hard on multitolerance graphs by providing a reduction from a special case of
the set cover problem. That is, there exists no Polynomial Time Approximation Scheme (PTAS)
for this problem unless P=NP. This is the first problem that has been discovered with a different
complexity status in these two graph classes. Therefore, given the (seemingly) small difference
between the definition of tolerance and multitolerance graphs, this dichotomy result appears to be
surprising.

Organization of the paper. In Section [2]we briefly revise the 3-dimensional intersection models
for tolerance graphs |16] and multitolerance graphs [15], which are needed in order to present our
new geometric representations. In Section [3| we introduce our new geometric representation for
multitolerance graphs (the shadow representation) and its special case for tolerance graphs (the
horizontal shadow representation). In Section We prove that DOMINATING SET on multitolerance
graphs is APX-hard. Then, in Sections we present our polynomial algorithm for the dominating
set problem on tolerance graphs, using the horizontal shadow representation (cf. Algorithms
and . In particular, we first present Algorithm (1| in Section |5 which solves a variation of the
dominating set problem on tolerance graphs, called BOUNDED DOMINATING SET. Then we present
Algorithm [2] in Section [6], which uses Algorithm [I] as a subroutine in order to solve a slightly mod-
ified version of BOUNDED DOMINATING SET on tolerance graphs, namely RESTRICTED BOUNDED
DOMINATING SET. In Section m we present our main algorithm (Algorithm [3|) which solves Dom-
INATING SET on tolerance graphs in polynomial time, using Algorithms [I] and [2] as subroutines.
Finally, in Section 8| we discuss the presented results and some interesting further research questions.

Notation. In this article we consider simple undirected graphs with no loops or multiple edges.
In an undirected graph G the edge between two vertices v and v is denoted by uwv, and in this case
u and v are said to be adjacent in G. We denote by N(u) = {v € V : uv € E} the set of neighbors
of a vertex v in G, and N[u] = N(u) U {u}. Given a graph G = (V, E) and a subset S C V, G[5]
denotes the induced subgraph of G on the vertices in S. A subset S C V is a dominating set
of G if every vertex v € V \ S has at least one neighbor in S. Finally, given a set X C R? of
points in the plane, we denote by Hconvex(X) the conver hull defined by the points of X, and
by X = R?\ X the complement of X in R2 For simplicity of the presentation we make the
following notational convention throughout the paper: whenever we need to compute a set S with
the smallest cardinality among a family S of sets, we write S = min{S}.

2 Tolerance and multitolerance graphs

In this section we briefly revise the 3-dimensional intersection model for tolerance graphs [16] and
its generalization to multitolerance graphs [15], together with some useful properties of these models
that are needed for the remainder of the paper. Since the intersection model of [16] for tolerance
graphs is a special case of the intersection model of [15] for multitolerance graphs, we mainly focus
below on the more general model for multitolerance graphs.

Consider a multitolerance graph G = (V, E) that is given along with a multitolerance rep-
resentation R. Let Vg and Vi denote the set of bounded and unbounded vertices of G in this
representation, respectively. Consider now two parallel lines L; and Lo in the plane. For every
vertex v € V = Vg U Vyy, we appropriately construct a trapezoid T, with its parallel lines on L1
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Figure 1: The trapezoid T, corresponds to the bounded vertex u € Vg, while the line segment T,
corresponds to the unbounded vertex v € V.

and Lo, respectively (for details of this construction of the trapezoids we refer to [15]). According
to this construction, for every unbounded vertex v € Vi; the trapezoid T, is trivial, i.e., a line [15].
For every vertex v € V = Vg U Vi we denote by ay, by, ¢y, d,, the lower left, upper right, upper left,
and lower right endpoints of the trapezoid T, respectively. Note that for every unbounded vertex
v € V7 we have a, = d, and ¢, = by, since T, is just a line segment. An example is depicted
in Figure [1, where T, corresponds to a bounded vertex u and T, corresponds to an unbounded
vertex v.

We now define the left and right angles of these trapezoids. For every angle ¢, the values
tan¢ and cot ¢ = —— denote the tangent and the cotangent of ¢, respectively. Furthermore,

tan ¢
¢ = arccot x is the angle ¢, for which cot ¢ = z.

Definition 1 ([15]) For every vertex v € V. = Vg U Vy, the values ¢,1 = arccot (¢, — ay) and
¢uv2 = arccot (b, —d,) are the left angle and the right angle of T, respectively. Moreover, for
every unbounded vertex v € V7, ¢ = ¢pp1 = ¢y 2 is the angle of T,.

Note here that, if G is given along with a tolerance representation R (i.e., if G is a tolerance
graph), then for every bounded vertex u we have that ¢, 1 = ¢y 2, and thus the corresponding
trapezoid T, always becomes a parallelogram [15] (see also [16]).

Without loss of generality we can assume that all endpoints and angles of the trapezoids are
distinct, i.e., {ay, by, cu, dy }N{ay, by, ¢y, dy} = 0 and {¢y 1, Pu 2}t {Pv 1, dv2} = 0 for every u,v € V
with u # v, as well as that 0 < ¢, 1, ¢y2 < § for all angles ¢y1, ¢y 2 [15]. It is important to note
here that this set of trapezoids {T', : v € V. = Vg U V7 } is not an intersection model for the graph
G, as two trapezoids T, T, may have a non-empty intersection although vw ¢ E. However the
subset of trapezoids {T, : v € Vp} that corresponds to the bounded vertices (i.e., to the vertices of
Vp) is an intersection model of the induced subgraph G[V3z].

In order to construct an intersection model for the whole graph G (i.e., including also the set
Vi of the unbounded vertices), we exploit the third dimension as follows. Let A = max{b, :
v € V} —min{a, : u € V} (where we consider the endpoints b, and a, as real numbers
on the lines L; and Lg, respectively). First, for every unbounded vertex v € Vi we con-
struct the line segment T, = {(z,y,2) : (z,y) € Ty,2 = A —cot ¢,}. For every bounded vertex
v € Vp, denote by Tv,l and TUQ the left and the right line segment of the trapezoid T\, re-
spectively. We construct two line segments T, 1 = {(2,9,2) : (z,y) € Typ1,2 = A — cot ¢ 1} and
To2={(z,y,2): (x,y) € Tp2,2=A —cot¢y2}. Then, for every v € Vp, we construct the 3-
dimensional object T, as the convex hull Hconvex(Tv,Tm,Tv,Q); this 3-dimensional object T, is
called the trapezoepiped of vertex v € V. The resulting set {T, : v € V = Vg U Vy} of objects in
the 3-dimensional space is called the trapezoepiped representation of the multitolerance graph G [15].
This is an intersection model of G, i.e., two vertices v, w are adjacent if and only if T,, Ty, # (). For
a proof of this fact and for more details about the trapezoepiped representation of multitolerance
graphs we refer to [15].
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Figure 2: (a) A multitolerance graph G and (b) a trapezoepiped representation R of G. Here,
hy; j = A — cot ¢y, ; for every bounded vertex v; € Vp and j € {1,2}, while h,, = A — cot ¢,, for
every unbounded vertex v; € V7.

Recall that, if G is a tolerance graph, given along with a tolerance representation R, then
Gu,1 = ¢u2 for every bounded vertex u. Therefore, in the above construction, for every bounded
vertex u the trapezoepiped T, becomes a parallelepiped, and in this case the resulting trapezoepiped
representation is called a parallelepiped representation |15/16].

An example of the construction of a trapezoepiped representation is given in Figure A
multitolerance graph G with six vertices {v1,vg,...,vg} is depicted in Figure while the trape-
zoepiped representation of G is illustrated in Figure The set of bounded and unbounded
vertices in this representation are Vg = {vs, v4,v6} and Viy = {v1, va, v5}, respectively.

Definition 2 ([15]) An unbounded vertex v € Vi is inevitable if replacing T, by H convez(Ty, To)
creates a new edge wv in G; then u is a hovering vertex of v and the set H(v) of all hovering
vertices of v is the hovering set of v. A trapezoepiped representation of a multitolerance graph G is
called canonical if every unbounded vertex is inevitable.

In the example of Figure [2] vo and v5 are inevitable unbounded vertices, v; and v4 are hovering
vertices of vo and vs, respectively, while v; is not an inevitable unbounded vertex. Therefore, this
representation is not canonical for the graph G. However, if we replace Ty, by Heonvex(Tv; s Guy s Coy ),
we get a canonical representation for G in which vertex v; is bounded.

Lemma 1 ([15]) Let v € Viy be an inevitable unbounded vertex of a multitolerance graph G. Then
N(v) C N(u) for every hovering vertex u € H(v) of v.

Lemma 2 ([15]) Let R be a canonical representation of a multitolerance graph G and v € Vi be
an (inevitable) unbounded vertex of G. Then there exists a hovering vertex u of v, which is bounded.

Recall that {T, : v € Vg} is an intersection model of the induced subgraph G[Vp] on the
bounded vertices of G, i.e., uv € E if and only if T, N T, # 0 where u,v € Vg. Furthermore,
although {T, : v € V.= Vg U Vy} is not an intersection model of G, it still provides the whole
information about the adjacencies of the vertices of G, cf. Lemma |3 For Lemma [3| we need the
next definition of the angles ¢, (x), where u € Vi and a, < x < d,, cf. Figure [l| for an illustration.



Definition 3 ([15]) Let u € Vi be a bounded vertexr and ay,by,cy,d, be the endpoints of the
trapezoid Ty. Let x € [ay,dy] and y € [cy,by] be two points on the lines Ly and Ly, respectively,
such that © = Aay + (1 — N)dy and y = Aey, + (1 — N)by for the same value A € [0,1]. Then ¢, (x)
is the angle of the line segment with endpoints x and y on the lines Lo and L1, respectively.

Lemma 3 ([15]) Let u € Vg and v € Vi in a trapezoepiped representation of a multitolerance
graph G = (V, E). Let ay, d,, and a, = d,, be the endpoints of T, and T, respectively, on Lo. Then:

e ifa, < ay, thenuwv € E if and only if T,NT, # 0,
o ifay < ay, <dy, then uwv € E if and only if ¢, < du(ay),

e ifd, < ay, thenuv ¢ E.

3 The new geometric representations

In this section we introduce new geometric representations on the plane for both tolerance and
multitolerance graphs. The new representation of tolerance graphs is called the horizontal shadow
representation, which is given by a set of points and horizontal line segments in the plane. The hor-
izontal shadow representation can be naturally extended to general multitolerance graphs, in which
case the line segments are not necessarily horizontal; we call this representation of multitolerance
graphs the shadow representation. In the remainder of this section, we present the shadow repre-
sentation of general multitolerance graphs, since the horizontal shadow representation of tolerance
graphs is just the special case, in which every line segment is horizontal.

Definition 4 (shadow representation) Let G = (V, E) be a multitolerance graph, R be a trape-
zoepiped representation of G, and Vg, Vi be the sets of bounded and unbounded vertices of G in R,
respectively. We associate the vertices of G with points and line segments in the plane as follows:

o for every v € Vg, the points py1 = (ay, A —cot ¢, 1) and py2 = (dy, A —cot ¢, 2) and the line
Segment LU = (pv,lapv,Z);

e for every v € Viy, the point p, = (ay, A — cot ¢y).

The tuple (P, L), where L ={L, :v € Vg} and P = {p, : v € Vi7}, is the shadow representation
of G. If ¢pp1 = ¢y for every v € Vg, then (P, L) is the horizontal shadow representation of the
tolerance graph G. Furthermore, the representation (P, L) is canonical if the initial trapezoepiped
representation R is also canonical.

Note by Definition 4| that, given a trapezoepiped (resp. parallelepiped) representation of a
multitolerance (resp. tolerance) graph G with n vertices, we can compute a shadow (resp. horizontal
shadow) representation of G in O(n) time. As an example for Definition |4} we illustrate in Figure
the shadow representation (P, £) of the multitolerance graph G of Figure

Observation 1 In Definition |, L, = {(z, A — cot ¢,(z)) : ay, < x < dy} for every bounded vertex
v € Vp of the multitolerance graph G.

Now we introduce the notions of the shadow and the reverse shadow of points and of line
segments in the plane; an example is illustrated in Figure [4]

Definition 5 (shadow) For an arbitrary point t = (t;,t,) € R? the shadow of t is the region
Sy ={(z,y) e R? 1z < ty, y—x < t,—t,}. Furthermore, for every line segment L., where u € Vg,
the shadow of Ly is the region Sy = ey, St-
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Figure 3: The shadow representation (P,L) of the multitolerance graph G of Figure The
unbounded vertices Viy = {v1,v2,v5} and the bounded vertices Vg = {vs3,v4,v6} are associated
with the points P = {py, , Dv,, Pvs } and with the line segments £ = {L,,, Ly,, L., }, respectively.

Definition 6 (reverse shadow) For an arbitrary point t = (t,,t,) € R? the reverse shadow of ¢
is the region Fy = {(z,y) € R : 2 > t,, y —x > t, — t,}. Furthermore, for every line segment L;,
where u € Vg, the reverse shadow of L; is the region F; = UteLi F;.
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Figure 4: The shadow and the reverse shadow of (a) a point ¢ € R? and (b) a line segment L,.

Lemma 4 Let G be a multitolerance graph and (P, L) be a shadow representation of G. Letu € Vp
be a bounded vertex of G such that the corresponding line segment L, is not trivial, i.e., L, is not
a single point. Then the angle of the line segment L, with a horizontal line (i.e., parallel to the
z-azis) is at most % and at least —7.

Proof. The two endpoints of L, are the points (a,, A — cot¢y,1) and (dy, A — cot ¢y 2). For
the purposes of the proof, denote by 1 the angle of the line segment L, with a horizontal line
(i.e., parallel to the z-axis). To prove that ¢» > —7 it suffices to observe that a, < d, (cf. Figure .
To prove that ¢ < 7 it suffices to show that (A —cot ¢y,2) — (A —cot ¢y,1) < dy —ay, or equivalently
to show that (A — (by — dy)) — (A — (¢ — ay)) < dy — ay. The latter inequality is equivalent to
by > ¢y, which is always true (cf. Figure[l). m

Recall now that two unbounded vertices u,v € Vi are never adjacent. The connection between
a multitolerance graph G and a shadow representation of it is the following. Two bounded vertices
u,v € Vg are adjacent if and only if L, NS, # () or L, NS, # (0, cf. Lemma [5| A bounded vertex
u € Vp and an unbounded vertex v € Vi are adjacent if and only if p, € Sy, cf. Lemma [6]

Lemma 5 Let (P, L) be a shadow representation of a multitolerance graph G. Let u,v € Vg be
two bounded vertices of G. Then wv € E if and only if L, NSy, # 0 or L, NS, # 0.



Proof. Let R be the trapezoepiped representation of G, from which the shadow representation
(P, L) is constructed, cf. Definition

(=) Let uv € E. Assume first that the intervals [a,, d,]| and [a,, d,] of the x-axis share at least
one common point, say tg. If ¢, (t) < ¢y (ts), then the point (t;, A —cot ¢, (t;)) of the line segment
L, belongs to the shadow S, of the line segment Ly, i.e., L, NS, # (. Otherwise, symmetrically,
if ¢y (t) > ¢y (t) then L, NS, # 0.

Assume now that [a,,d,| and [a,, d,] are disjoint, i.e., either d,, < a, or d, < a,. Without loss
of generality we may assume that d, < a,, as the other case is symmetric. Then, as uv € F by
assumption, it follows that T, NT, # () in the trapezoepiped representation R of G. Thus b, > c,,,
since we assumed that d,, < a,. Therefore cot ¢,, = by, — dy, > ¢, — dy, = cot ¢y 1 + (ay — dy,). That
is, (A —cot ¢y 2) —dy < (A —cot ¢y 1) —ay, and thus the point (dy,, A —cot ¢, 2) of the line segment
L,, belongs to the shadow S; of the point ¢t = (a,, A — cot ¢y,1) of the line segment L,. Therefore
L,NS, #0.

(<) Let L,NS, # 0 or L, NS, # (. Assume first that the intervals [a,,d,] and [ay,d,] of
the z-axis share at least one common point, say t,. Then t, € [ay,dy] N [ay,d,], and thus the
trapezoids T, and T, in the trapezoepiped representation R have a common point on the line Lo,
ie.,, T,NT, # (. Therefore, since both u and v are bounded vertices, it follows that uv € E.

Assume now that [a,,d,| and [a,, d,] are disjoint, i.e., either d,, < a,, or d, < a,,. Without loss
of generality we may assume that d, < a,, as the other case is symmetric. Then L, N S, = ), and
thus L, NS, # 0. Therefore, by Lemma (4] it follows that the point ¢t = (dy, A — cot ¢y 2) of L,
must belong to S,. In particular, this point ¢ of L, must belong to the shadow Sy of the point
t" = (ay, A — cot ¢y,1) of L. That is, (A — cot ¢y 2) — dy, < (A — cot ¢y,1) — ay. It follows that
(by — dy) = cot ¢y2 > cot puy1 + (ay — dy) = (¢y — ay) + (ay — dy), and thus b, > ¢,. Therefore,
since d, < ay, it follows that T, NT, # (), and thus uv € E. m

Lemma 6 Let (P, L) be a shadow representation of a multitolerance graph G. Let v € Vi and
u € Vg be two vertices of G. Then uwv € E if and only if p, € Sy.

Proof. Let R be the trapezoepiped representation of GG, from which the shadow representation
(P, L) is constructed, cf. Definition[4] Furthermore recall that p, = (ay, A —cot ¢,) by Definition [4]

(=) Let wv € E. If dy, < ay, then uv ¢ E by Lemma 3| which is a contradiction. Therefore
a, < d,. Assume first that a, < a, < d,,. Then Lemmaimplies that ¢, < ¢y (ay). Thus it follows
by Observationthat Py € Sy. Assume now that a, < a,. Then Lemmaimplies that T,NT, # 0.
Thus b, > ¢, since a,, < a,,. Therefore cot ¢, = (by—ay) > (ay—ay)+(cy—ay) = (ay—ay)+cot ¢y 1.
That is, (A — cot ¢y) — ay < (A — cot ¢y, 1) — ay, and thus the point p, = (a,, A — cot ¢,,) belongs
to the shadow S, where t = (ay, A — cot ¢y,1) € Ly, i.e., py € Sy.

(<) Let p, € Sy. Then clearly a, < d,,. Assume first that a, < a, < d,. Then, since p, € Sy,
it follows by Observation |1| that A — cot ¢, < A — cot ¢y (ay), and thus ¢, < ¢y (ay). Therefore
Lemma [3] implies that uv € E.

Assume now that a, < a,. Then, since p, € S, it follows that p, € S;, where t = (a,, A —
cot ¢y1) € Ly. Thus (A — cot¢y) —ay < (A —cotegy1) — ay. That is, (b, — a,) = coteg, >
(y, — ay) + cot ¢y 1 = (ay — ay) + (¢y — @), and thus b, > ¢,. Therefore, since a, < ay, it follows
that T, NT, # (), and thus uv € E by Lemma ]

Lemmas 5| and [ show how adjacencies between vertices can be seen in a shadow representation
(P, L) of a multitolerance graph G. The next lemma describes how the hovering vertices of an
unbounded vertex v € Vi; (cf. Definition [2)) can be seen in a shadow representation (P, L).

Lemma 7 Let (P, L) be a shadow representation of a multitolerance graph G. Let v € Vi be an
unbounded vertex of G and u € V' \ {v} be another arbitrary vertez. If u € Vg (resp. uw € Vi), then
w is a hovering vertex of v if and only if L, NS, # 0 (resp. p, € Sy).



Proof. Let G = (V, E) and R be the trapezoepiped representation of G, from which the shadow
representation (P, L) is constructed, cf. Definition

(<) Let u be a hovering vertex of v. That is, if we replace in the trapezoepiped representation
R the line segment T, by Heonvex(Ty, T) (i.e., if we make v a bounded vertex) then the vertices u
and v become adjacent in the resulting trapezoepiped representation R’. Denote the new graph by
G = (V,EU{uv}), i.e.,, R is a trapezoepiped representation of G’. Note here that, since both T,
and T, are line segments, Heonvex (T, Tv) is a degenerate trapezoepiped which is 2-dimensional.

Consider the shadow representation (P’,L’) of G’ that is obtained by this new trapezoepiped
representation R'. Note that P’ = P\ {p,} and L' = LU {L,}, where L, is a trivial line segment
that consists of only one point p,. Assume first that v € V7. Then, since v is bounded and v is
adjacent to u in G’, Lemma [6] implies that p, € S,. Assume now that u € V. Then, since v is
bounded and v is adjacent to v in G’, Lemma [5| implies that L, NS, # @ or L, NS, # (). That is,
py € Sy or L, NS, # 0, since L, = {p,}. If p, € Sy then u and v are adjacent in G, by Lemma@
which is a contradiction. Therefore L, N S, # 0.

(=) Consider the shadow representation (P’, L") that is obtained by the shadow representation
(P, L) of G, such that P’ = P\ {p,} and L' = LU {L,}, where L, is a trivial line segment that
consists of only one point p,. Then (P’,£’) is a shadow representation of some multitolerance
graph G’, where the bounded vertices V}; of G’ correspond to the line segments of £ and the
unbounded vertices V{; of G’ correspond to the points of P’. Furthermore note that Vj, = Vg U {v}
and V, = Vi \ {v}.

Assume first that u € V and L, NS, # (). Then, since both u,v € V}, Lemma |5 implies that
u and v are adjacent in G’. Thus, since u is not adjacent to v in G, it follows that u is a hovering
vertex of v. Assume now that u € V; and p, € S,. Then, since both v € V}, Lemma [f] implies
that u and v are adjacent in G’. Thus, similarly, u is a hovering vertex of v. =

In the example of Figure |3 the shadows of the points in P and of the line segments in £ are
shown with dotted lines. For instance, p,, € Sy, and p,, ¢ Sy,, and thus the unbounded vertex v
is adjacent to the bounded vertex v but not to the bounded vertex v4. Furthermore L,, NS, # 0,
and thus v and vy are adjacent. On the other hand, L,, NSy, = Ly, NSy, = 0, and thus vz and vy
are not adjacent. Finally p,, € S,, and L,, N S,, # 0, and thus v; is a hovering vertex of ve and
vg is a hovering vertex of vs. These facts can be also checked in the trapezoepiped representation
of the same multitolerance graph G in Figure

4 Dominating set is APX-hard on multitolerance graphs

In this section we prove that the dominating set problem on multitolerance graphs is APX-hard.
Let us first recall that an optimization problem P is L-reducible to an optimization problem Ps [21]
if there exist two functions f and g, which are computable in polynomial time, and two constants
a, 8 > 0 such that:

e for any instance Z of Py, f(Z) is an instance of P, and OPT(f(Z)) < a- OPT(Z), and

e for any feasible solution D of f(Z), g(D) is a feasible solution of Z, and it holds that |c¢(g(D))—
OPT(Z)| < B-le(D) —OPT(f(Z))|, where ¢(D) and ¢(g(D)) denote the costs of the solutions
D and g(D), respectively.

Let us now define a special case of the unweighted set cover problem, namely the SPECIAL
3-SET COVER (S3SC) problem [5].

Theorem 1 ([5]) SPECIAL 3-SET COVER is APX-hard.



SPECIAL 3-SET COVER

Input: A pair (U, S) consisting of a universe { = AUW UXUY UZ, and a family S of subsets
of U such that:

o thesets A, W, X, Y, Z are disjoint,

e A={a;:ien]}, W={w, :ie€m]}, X ={x; :i € [m]},) Y ={y; : i € [ml]},
7Z ={zi:i€[ml]},

e 2n = 3m,

e for all ¢ € [n], the element a; belongs to exactly two sets of S, and

S has 5m sets; for every t € [m] there exist integers 1 < i < j < k < n such that S
contains the sets {aiv wt}7 {wta xt}v {aj7 T, yt}7 {yta Zt}, {a’k7 Zt}'

Output: A subset Sy C S of minimum size such that every element in U belongs to at least
one set of Sp.

Theorem 2 DOMINATING SET is APX-hard on Multitolerance Graphs.

Proof. From Theorem [l] it is enough to prove that SPECIAL 3-SET COVER is L-reducible to
DOMINATING SET on Multitolerance Graphs

Given an instance Z = (U, S) of SPECIAL 3-SET COVER as above we construct a multitolerance
graph f(Z) = (P,L), where P and L are the sets of points and line segments in the shadow
representation of f(Z), as follows. For every element a; € A, we create the point p,, of P on the
line {(z,—2) : z > 0}. Furthermore, for every element ¢ € WU X UY U Z, we create the point p,
of P on the line {(¢,tan(§)t) : t < 0}, such that for every i € [m] the points that correspond to
the elements w;, x;, y;, and z; appear consecutively on this line (cf. Figure . Then, since every
set of S contains at most one element of A and at most two elements of WU X UY U Z, it can be
easily verified that we can construct for every set Q; € S, j € [5m], a line segment L; such that the
points of P that are contained within its shadow S; are exactly the points of P that correspond
to the elements of Q; (cf. Figure . Furthermore we construct an additional line segment L5, 1,
with left endpoint l5,,+1 and right endpoint 75,1, respectively, such that ls,, 1 (resp. r5m+1) lies
below and to the left (resp. below and to the right) of every endpoint of P U {Li, Lo, ..., Lsny}.
Then note that the line segment Ls,,+1 corresponds to a hovering vertex of every point p € P in
the multitolerance graph f(Z), cf. Lemma Moreover the line segment Ls,,+1 is a neighbor to all
other line segments {L1, Lo, ..., L5, } in the multitolerance graph f(Z), cf. Lemma [5| Finally we
add the line segment Ls;, 12 such that Ls,,41 is its only neighbor, cf. Figure 5} This concludes the
construction of the new instance f(Z).

Claim 1 OPT(f(Z)) < OPT(I)+ 1, and thus OPT(f(Z)) <2- OPT(Z).

Proof of Claim Let So € S be an optimum solution of an instance Z to SPECIAL 3-SET
CoVER and let D be the subset of £ in the instance f(Z) of DOMINATING SET, where a line
segment L of f(Z) belongs to D if and only if the corresponding set of Z belongs to S. Let now
D" = DU{Lspm+1}. As S is an optimum solution of Z it follows that all the elements of & belong to
some set of S and from the construction of f(Z) it follows that all points of P are contained inside
the shadows of the line segments in D. Thus, every point of P has a neighbor in D. Notice also
that from the construction of Ls,,11 all line segments of £ have Ls,,11 as a neighbor. Therefore,

“This proof is inspired by the proof of Theorem 1.1(C5) in [5].
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Figure 5: The construction of the shadow representation in Theorem

as |D| = |S| and Lspmi1 ¢ D, D' = D U{Lsm+1} is a solution to f(Z) of size OPT(Z) + 1. As
DOMINATING SET is a minimization problem we obtain that OPT(f(Z)) < |D'| = OPT(Z) + 1. O

We now define the function g which, given a feasible solution D of f(Z), returns a feasible
solution g(D) of Z. Let D be a feasible solution of f(Z).

If Lsy+1 does not belong to D then Lsp,10 belongs to D, since Lg;,+1 the only neighbor of
Lsm+2. By replacing Lsy,+2 by Ls,4+1 we obtain a solution of f(Z) of the same size. Thus, without
loss of generality we may assume that Ls,;,+1 belongs to D. Furthermore, by the minimality of
D it follows that D does not contain Lg, 2. Recall that all line segments {L1, Lo, ..., Lsy, } have
Lsm+1 as a neighbor in D and that every point p of f(Z) is contained in the shadow of some line
segment L, € {L1, Lo, ..., L5y} in f(Z). Thus, for every point p € PN D, the set (D \ {p}) U{L,}
is also a solution of f(Z) and has size at most |D|. Therefore, without loss of generality we may
also assume that D only contains line segments. As Ls,,+1 € D is not a neighbor of any point of
P in f(Z), the set D\ {Lsm+1} contains all neighbors of the points of f(Z). Let So C S contain all
sets from S that correspond to the line segments of D \ {Lsp,41}. From the construction of f(Z)
we obtain that each element of U/ in 7 belongs to at least one set of Sp. We define g(D) to be that
set Sp. Finally, notice that |Sp| < |D| — 1. This implies the following simple observation.

Observation 2 If D is a solution of f(I), then g(D) is a solution of T and c¢(g(D)) < ¢(D) — 1.
Claim 2 OPT(f(Z)) = OPT(Z) + 1.

Proof of Claim Let D be an optimum solution of f(Z). From Observation [2 we obtain
that there exists a solution S of Z such that |S| < OPT(f(Z)) — 1. As SPECIAL 3-SET COVER is
a minimization problem it follows that OPT(Z) < |S| < OPT(f(Z)) — 1 and thus, OPT(Z) + 1 <
OPT(f(Z)). We now obtain the desired result from Claim |1} [J

We finally prove that c¢(g(D)) — OPT(Z) < ¢(D) — OPT(f(Z)). Notice that this is enough to
prove the reduction for @ = 2 (Claim 1) and g = 1. Claim [2| yields that ¢(g(D)) — OPT(Z) =
c(g(D)) — OPT(f(Z)) + 1, and thus it follows by Observation [2| that

c(9(D)) = OPT(f(Z)) +1 < ¢(D) =1 - OPT(f(Z)) + 1 = (D) — OPT(f(Z)).

This completes the proof of the theorem. m

5 Bounded dominating set on tolerance graphs

In this section we use the horizontal shadow representation of tolerance graphs (cf. Section
to provide a polynomial time algorithm for a variation of the minimum dominating set problem
on tolerance graphs, namely BOUNDED DOMINATING SET, formally defined below. This problem
variation may be interesting on its own, but we use our algorithm for BOUNDED DOMINATING SET
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as a subroutine in our algorithm for the minimum dominating set problem on tolerance graphs,
cf. Sections |§| and Note that, given a horizontal shadow representation (P, L) of a tolerance
graph G = (V, E), the representation (P, L) defines a partition of the vertex set V into the set Vp
of bounded vertices and the set Vy of unbounded vertices. Indeed, every point of P corresponds
to an unbounded vertex in Vi and every line segment of £ corresponds to a bounded vertex of Vp.
We denote P = {p1,p2,...,pp} and L ={L1, Ly, ..., Lz}, where |P| 4 |L| = [Vy| + |VB| = |V].
In this section we only deal with tolerance graphs and their horizontal shadow representations.
Thus, from now on, all line segments {L; : 1 < i < |£|} will be assumed to be horizontal. Fur-
thermore, with a slight abuse of notation, for any two elements z1,x2 € P U L, we may say in the
following that x; is adjacent with xo (or z1 is a neighbor of z5) if the vertices that correspond to
x1 and xo are adjacent in the graph GG. Moreover, whenever P; C Py C P and £ C Ly C L, we
may say in the following that the set P; U L1 dominates Po U Lo if the vertices that correspond to
P1UL; are a dominating set of the subgraph of G induced by the vertices corresponding to PaU Ls.

BOUNDED DOMINATING SET on Tolerance Graphs

Input: A horizontal shadow representation (P, L) of a tolerance graph G.
Output: A set Z C L of minimum size that dominates (P, L), or the announcement that £
does not dominate (P, L).

Before we proceed with our polynomial time algorithm for BOUNDED DOMINATING SET on
tolerance graphs, we first provide some necessary notation and terminology.

5.1 Notation and terminology

For an arbitrary point ¢ = (¢,,t,) € R? we define two (infinite) lines passing through ¢:

e the vertical line T}** = {(¢,,s) € R? : s € R}, i.e., the line that is parallel to the y-axis, and

e the diagonal line F?iag = {(s,s+ (t; —tz)) € R? : s € R}, i.e., the line that is parallel to the
main diagonal {(s,s) € R?: s € R}.

The lines I'}*"* and F?iag are illustrated in Figure (see also Figure . For every point
t = (tyty) € R?, each of the lines I‘Zert,l“?lag separates R? into two regions. With respect to
the line T} we define the regions Ry (TY"") = {(z,y) € R* : o < t,} and Ry, (T}*") =
{(z,y) € R? : & > t,} of points to the left and to the right of I'}*, respectively. Similarly,
with respect to the line T{*8 we define the regions R2 (I8%) = {(z,y) € R2 1y — & > t, — t,,}
and Rfight(l“?lag) = {(z,y) €R?:y—z <t, —t,} of points to the left and to the right of I'{'"*%,
respectively.

Furthermore, for an arbitrary point ¢ = (t,,t,) € R? we define the region A; (resp. B;) that
contains all points that are both to the right (resp. to the left) of I'}*"* and to the right (resp. to

the left) of I'{"®8. That is,

e di
Ay = R?ight(r‘ze N R?ight(rt ),

Y di
By = R%eft(rtert)ﬂRlzeft(Ftlag)-

An example of the regions A; and By is given in Figure where A; (resp. By) is the shaded
region of R? that is to the right (resp. to the left) of the point ¢. Consider an arbitrary horizontal
line segment L; € L. We denote by [; and r; its left and its right endpoint, respectively; note that
possibly ; = r;. Denote by A = {l;,r; : 1 < i < |L]} the set of all endpoints of all line segments
of £. Furthermore denote by B = {F?iag NTY . ¢t € A} the set of all intersection points of the
vertical and the diagonal lines that pass from points of A. Note that A C B.
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Figure 6: (a) The regions A;, By and the lines F;’C“,Ffiag. (b) A left-crossing pair (4, '), where
L3,p1 € E;lf,ht and Ly, Lo, ps ¢ E;lf,}lt. (c) A right-crossing pair (i), where Ls,ps € L and
Ly, Le,ps ¢ LY.

Given a horizontal shadow representation (P, £) we always assume that the points p1, pa, . . ., PPl
are ordered increasingly with respect to their z-coordinates. Similarly we assume that the horizontal
line segments L1, La, ..., Lz are ordered increasingly with respect to the z-coordinates of their
endpoint ;. That is, if i < j then p; € R (T") and 7; € Ri (IY"). Notice that, without loss
of generality, we may assume that all points of P and all endpoints of the horizontal line segments
in £ have different x-coordinates.

Definition 7 Let L;, Ly, € L and let Lj, Ly € L, where possibly " =i and possibly j' = j. The
pair (j,7") is a left-crossing pair if [; € Si,,- Furthermore the pair (i,1') is a right-crossing pair if
ri € Sy,. For every left-crossing pair (j,j') we define

E;’;?ﬁt ={zePUL:x C A, wheret= Fl”jm N I‘fl_i,ag}
, J

and for every right-crossing pair (i,i") we define

Ll —fr e PUL:x C By, where t = ryertn Fg:,ag}-

Qi

Finally, for every line segment L, € L we define

Ly ={w e PUL:w C R, (I},

Examples of left-crossing and right-crossing pairs (cf. Definition 7)) are illustrated in Figure @

Definition 8 Let S C P UL be an arbitrary set. Let (i,i') be a right-crossing pair and (j,j') be a
left-crossing pair. If L;, Ly € S and S C Eﬁezf,t, then (i,i") is the end-pair of the set S. If Lj,Lj € S
and S C E;ijg,m, then (j,j') is the start-pair of the set S.

Definition 9 Let S C PUL be an arbitrary set. The line segment L, € S is the diagonally leftmost
line segment in S if there exists a line segment Lj € LN S such that (j,q) is the start-pair of S.

Observation 3 Fvery non-empty set S C L has a unique end-pair, a unique start-pair, and a
unique diagonally leftmost line segment.
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5.2 The algorithm

In this section we present our algorithm for BOUNDED DOMINATING SET on tolerance graphs,
cf. Algorithm |1} Given a horizontal shadow representation (P, L) of a tolerance graph G, we first
add two dummy line segments Lo and L;z4; (with endpoints lo, 7o and 2|41, 7|41, Tespectively)
such that all elements of P UL are contained in 4, and in By, . Let £ = LU {Lo, Ligj11}-
Note that (P, L’) is a horizontal shadow representation of some tolerance graph G’, where the
bounded vertices V}; of G’ correspond to the line segments of £" and the unbounded vertices V{;
of G’ correspond to the points of P. Furthermore note that Vi = Vg U {vo,v|z41} and Vi, = Vi,
where vg and vjz1; are the (isolated) bounded vertices of G’ that correspond to the line segments
Lo and Ljg)41, respectively. Finally observe now that the set V[, dominates the augmented graph
G’ if and only if the set Vg dominates the graph G; moreover, a set S C Vg dominates G if and
only if S'U {vo,v|z|4+1} dominates G'.

For simplicity of the presentation, we refer in the following to the augmented set £’ of horizontal
line segments by £. In the remainder of this section we will write £ = {L1, Lo, ..., Lz} with the
understanding that the first and the last line segments Ly and L. of £ are dummy. Furthermore,
we will refer to the augmented tolerance graph G’ by G. .

For every pair of points (a,b) € A x B such that b € R?ight(Fglag), define X(a,b) to be the set
of all points of P and all line segments of £ that are contained in the region By \ I} and to the
right of the line ngag, cf. Figure 7] That is,

R(a7 b) = (Bb \ Fgert) N ]Rfight (ngag)7 (1)
X(a,b) = {zePUL:xC R(a,b)}. (2)
: ‘."F((zhag

Fbvert

Figure 7: The shaded region contains the points of R(a,b) C R?, where (a,b) € A x B. The set
X (a,b) contains all elements of P U L that lie within R(a,b). In this example, L1, p; € X (a,b) and
L27 L37p2 ¢ X(a7 b)

Now we present the main definition of this section, namely the quantity BD(p r)(a, b, q, 1, i') for
the BOUNDED DOMINATING SET problem on tolerance graphs.

Definition 10 Let (a,b) € A x B be a pair of points such that b € R%ight(ngag). Let (i,4") be a

right-crossing pair and Lq be a line segment such that L, € Eﬁt and L;, Ly € E(Zight. Furthermore
letb e R%eﬁ(F;’f”). Then BD(p ry(a,b,q,i,1') is a dominating set Z C L of X (a,b) with the smallest
size, such that:

o (i,1") is the end-pair of Z and

o L, is the diagonally leftmost line segment of Z.

If such a dominating set Z C L of X(a,b) does not erist, we define BDp r)(a,b,q,i,i") = L
and |BDp r(a,b,q,i,4')| = oc.
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Note that always Ly, L;, Ly € BD('])7£)(CL, b,q,i,i"). Furthermore some of the line segments
Ly, L;, Ly may coincide, i.e., the set {L,, L;, Ly } may have one, two, or three distinct elements. How-
ever, since b € R (T¥"") in Deﬁnition it follows that L; ¢ B, \I'}", and thus L; ¢ X (a,b). For
simplicity of the presentation we may refer to the set BDp r)(a,b,q,,i") as BDg(a, b, q,14,i"), where
(P, L) is the horizontal shadow representation of the tolerance graph G, or just as BD(a,b, q,i,1)
whenever the horizontal shadow representation (P, £) is clear from the context.

Observation 4 BD(a,b,q,i,i") # L if and only if LN L’gightﬂﬁﬁeﬁ is a dominating set of X (a,b).
Observation 5 BD(a,b,q,i,i') = {Lq, L;, Ly} if and only if {Ly, Li, Ly} dominates X (a,b).
Observation 6 If R(a,b) C S; then BD(a,b,q,4,1') = {Lq, Li, Ly }.

Due to Observations without loss of generality we assume below (in Lemmas that
BD(a,b,q,i,i) # L and that BD(a,b,q,4,i") # {Lq, L;, Ly}, and thus also R(a,b) € S; (cf. Ob-
servation @ We provide our recursive computations for BD(a, b, ¢,4,4") in Lemmas and
In Lemma |8 we consider the case where b € S;;, and in Lemmas and we consider the case
where b ¢ 5,

Lemma 8 Suppose that BD(a,b,q,i,7') # L and that BD(a,b,q,i,7') # {Lg,Li, Ly}, where
R(a,b) € S;. If b€ S, then

BD(a,b,q,i,i') = BD(a,b*, q,i,i’), (3)
where b* =Ty N I‘ldimg.

Proof. Define the point b* = T} N I* of the plane. If a € S, then R(a,b) C S;, which
is a contradiction. Thus a ¢ S, and therefore R(a,b*) C R(a,b). Consider now an element
x € X(a,b)\ X(a,b*). Then £NS; # 0, and thus z is dominated by the line segment L;. Therefore,
for every set Z of line segments such that L; € Z, we have that Z dominates the set X (a,b) if and

only if Z dominates the set X (a, b*). Therefore BD(a,b,q,i,i') = BD(a,b*,q,i,i'). m

Due to Lemma |8, without loss of generality we may assume in the following (in Lemmas
that b ¢ S;,. In order to provide our second recursive computation for BD(a,b, q,,i’) in Lemma
(cf. Eq. (), we first prove in the next lemma that the set at the right hand side of Eq. is indeed
a dominating set of X(a,b), in which L, is the diagonally leftmost line segment and (i,4’) is the
end-pair.

Lemma 9 Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i') # {Lg,L;, Ly}, where
R(a,b) ¢ S; and b ¢ S),. Let c € R* and Ly, L;j, Ly € L such that:

igh I
1. Ly € (L7 L)\ (L,
2. (4,4") is a right-crossing pair of (E(Tght N L’ﬁ?ﬁt) \ {L;}, where j' =i’ whenever i # i,
left ight
3. Ly € L% and L, Ly € £,
4. c= I‘}Zj’"t N Fgmg if rj € Rfeﬁ(f‘gm), and ¢ = b otherwise, and
5. the set X(a,b) \ X(a,c) is dominated by {L;, L; }.

If BD(a,c,q',j,5") # L then{Lq, Li} UBD(a,c, ¢, j,j') is a dominating set of X (a,b), in which
L, is the diagonally leftmost line segment and (i,4") is the end-pair.
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Proof. Assume that BD(a,c,q,j,j") # L. Since X (a,b)\ X (a, ¢) is dominated by {L;, L;} by the
assumptions of the lemma, it follows that {L,, L;} U BD(a,c,q, j,j') is a dominating set of X (a,b).
We now prove that (i,i') is the end-pair of {L,,L;} U BD(a,c,q’,j,j’). First recall by the
assumptions of the lemma that L;, Ly € £N L'ief/t and note that E;eﬁt, C £1elf,t Therefore, since
BD(a,c,q,j,7) C Eﬂﬁ%ﬁ by definition, it follows that BD(a,c,¢’,j,7") C L ﬁ/jief,t Let first
i' = i. Then clearly L; = Ly € {Ly,L;} U BD(a,c,¢,j,5) C [,ﬂ/ilfift, and thus in this case
(¢,7") = (i,4) is the end-pair of {L4, L;} U BD(a,c,q¢,j,5'). Let now i’ # i. Then j' = i’ by the
assumptions of the lemma, and thus BD(a, ¢, ¢',j,5') = BD(a,c,q’, j,7). Then L;, Ly € {Lq, L;} U
BD(a,c,q,j,7) C LN Eﬁt, and thus again (¢,4’) is the end-pair of {L4, L;} U BD(a,c,q, j,j’).

Finally, since Ly € (ﬁ;ight N E%eif,t> \ {L;} by the assumptions of the lemma, it follows that

Ly C Rfight (I‘ijag), cf. Deﬁnition Therefore, since L, is by definition the diagonally leftmost line
segment of BD(a,c,q',7,j'), it follows that L, is the diagonally leftmost line segment of {L,, L; }U

BD(a,¢c,q',j,7"). This completes the proof of the lemma. m

Given the statement of Lemmal9] we are now ready to provide our second recursive computation
for BD(a,b,q,i,4') in the next lemma.

Lemma 10 Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,7') # {Lgq, L;, Ly}, where
R(a,b) € S; and b ¢ S;,. If BD(a,b,q,%,i') \ L; dominates all elements of {x € X(a,b) : x N (S; U
F;) # 0} then

BD(CL, b,q,1, i,) = {LQ7 Ll} U II/IIH/{BD(CL, G, q/ajaj,)}v (4)

(= SRV E)

where the minimum is taken over all ¢,q', j, 7' that satisfy the Conditions 1-5 of Lemma @

Proof. Let Z C LN Ef]ightﬂﬁ}if’f/t be a dominating set of X(a,b) such that L, is the diagonally
leftmost line segment of Z and (i,4") is the end-pair of Z. Suppose that |Z| = |BD(a,b,q,i,i')]
and that all elements of {x € X(a,b) : z N (S; U F;) # 0} are dominated by Z \ L;. Recall that
L; ¢ X(a,b). Thus, Z \ {L;} is a dominating set of X(a,b). Let (j,j’) denote the end-pair of
Z \{L;}. Then all elements of X (a,b) that are contained in Rfight(FXfrt) must be dominated by
{Lj, Lj}. Define

[T s € R
b, otherwise

That is, the set X (a,b) \ X(a,c) is dominated by {L;, L }. Let Ly, denote the diagonally leftmost
line segment of Z \ {L;}. Note that, if Ly # L; then Ly = L,. Furthermore note that Ly € E;ejft,

and Lj, L € E;i,ght. Since Z C LN Egightﬁﬁfif/t, it follows that (j,;') is a right-crossing pair of
(cglght N cfif,t) \{Li} and that L, € (Lf;ght N cgff,t) \{L;}. Furthermore, if i # i then Ly € Z\{L:},
and thus, by the choice of the right-crossing pair (4, ) as the end-pair of Z \ {L;}, it follows that
-/ -/
j=1i.

Since Lj, Ly € L%\ {L;}, note that L; ¢ BD(a,b,q,j,j'). Moreover note that X(a,c) C
X(a,b), and thus Z\ {L;} is also a dominating set of X (a, ¢). Therefore, since (7, j') is the end-pair
of Z\ {L;}, it follows that

{Lq} U BD(a,c,¢,j,i")| = |BD(a,c.q',j,j")| < |Z\{Li}|, if Lq # L
and that
‘BD(CL,C, q/7j7j/)’ S ’Z \ {L’L}‘7 lf Lq = LZ
That is, in both cases where L, # L; or L, = L;, we have that
|{an Ll} U BD(CL, b7 q/hj?j/)’ = 1+ ‘({Lq} U BD(G, ¢, q/7j7j/)) \ {LZ}‘
= 1+ ‘BD(G, &) q/7j7jl)
1+ |Z\{Li}| = |Z| = |BD(a,b, q,i,i")].

A
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Finally Lemma [J] implies that, if BD(a,c,q,j,j') # L, then {Ly, L;}U BD(a,c,q,j,§') is a
dominating set of X (a,b), in which L, is the diagonally leftmost line segment and (¢,4) is the
end-pair. Therefore |BD(a,b,q,i,7")| < |{Lq, L;} UBD(a,b,q . j,j")|, and thus it follows by Eq.
that |[BD(a,b,q,4,7")| = |{Lgq, Li} UBD(a,b,q,j,j')| m

In order to provide our third recursive computation for BD(a, b, q,i,i") in Lemma (cf. Eq. (]E[))7
we first prove in Lemmas and that the set at the right hand side of Eq. @ is indeed a

dominating set of X (a,b), in which L, is the diagonally leftmost line segment and (¢,4) is the
end-pair.

Lemma 11 Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i") # {Lq, Li, Ly}, where
R(a,b) € S; and b ¢ Sy,. Let ¢ € R? such that:

1. c€ BN R(a,b) and c € R}, (T}") \ Fi,,

2. PNX(a,b)NF.NEF;=0.

If BD(a,c,q,i,i'") # L and BD(c,b,q,i,i") # L, then BD(a,c,q,i,i") U BD(¢,b,q,i,i") is a
dominating set of X (a,b), in which Ly is the diagonally leftmost line segment and (i,i') is the
end-pair.

Proof. Assume that BD(a,c,q,i,i') # L and BD(c,b,q,i,i') # L. First note that, since ¢ €
R(a, b) by assumption, it follows that X (a,c)UX (c,b) C X(a,b), cf. Eq. (2). Furthermore, since ¢ €
R(a,b) C By and c € Rfight (T}e")\ F; by the assumption, it follows that also b € Rfight (T})\ ;.
Now recall that b € R (I'y*") by Definition and thus also ¢ € R, (Ty"). Therefore, since
c € Rfight(l“ Zert) \ Fj, by the assumption, it follows that S. N ngag C S; U F;. Moreover, since
¢ € R%,, (T7") and b € R (T)"*), it follows that F. N R(a,b) C S; U F}.

The line segments of £ N X (a,b) can be partitioned into the following sets:

Ly = LNX(a,c)
Ly = LNX(cb)
Ls = {LpeLnX(a,
Ly = {LpeLnX(a,

b) Ly NF, # @}
b) : L, N S NTE £ (0}

Since BD(a,c,q,i,i') # L and BD(c,b,q,i,i') # L by assumption, it follows that the line
segments of £ are all dominated by BD(a, ¢, q,i,1') and the line segments of Lo are all dominated
by BD(c,b,q,i,i"). Furthermore, since F. N R(a,b) C S; U F; as we proved above, it follows
that all line segments of £3 are dominated by the line segment L;. Moreover, since S, N ngag -
S; U F; as we proved above, it follows that all line segments of £, are dominated also by the line
segment L;. That is, all line segments of £ N X(a,b) = £ U Lo U L3 U L4 are dominated by
BD(a,c,q,i,i") U BD(c,b,q,i,4").

Since PN X (a,b) N F.N F; = () by the assumption, the points of P N X (a, b) can be partitioned
into the following sets:

P = PnX(a,c)

Py = PNX(cb)

Ps = PNX(a,b)NF.NS;
It is easy to see that the points of P; are all dominated by BD(a,c,q,i,i') and that the points of
Py are all dominated by BD(c,b,q,4,4"). Furthermore the points of P3 are dominated by the line

segment L;. Thus all points of P N X (a,b) = Py U Py U P3 are dominated by BD(a,c,q,i,i) U
BD(¢,b,q,4,4"). Summarizing, BD(a,c,q,i,i) U BD(c,b,q,i,4') is a dominating set of X (a,b).
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Furthermore, since (4,4’) is the end-pair of both BD(a,¢,q,1,i') and BD(c,b,q,1i,4), it follows
that (¢,4) is also the end-pair of BD(a,c,q,i,i') U BD(c,b,q,%,t'). Similarly, since L, is the diag-
onally leftmost line segment of both BD(a, ¢, q,4,4") and BD(c, b, q,14,7'), it follows that L, is also
the diagonally leftmost line segment of BD(a,c,q,i,i') U BD(c,b,q,i,i'). This completes the proof
of the lemma. m

Lemma 12 Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i") # {Lq, Li, Ly}, where
R(a,b) € S; and b ¢ S;,. Let ¢ € R? and Ly € L such that:

1. d € BN R(a,b) and ' € Fy,,

2. Li,Ly € L™,

3. Ly € LM LY and 1y € F,
4. c € Flii/“g orc € Fgmg, and

5. PN X(a,b) N Fy = 0.

If BD(a,d,q,i,i) # L and BD(¢,b,q',i,i') # L then BD(a,d,q,i,i') U BD(c,b,q ,i,4) is
a dominating set of X(a,b), in which Ly is the diagonally leftmost line segment and (i,i") is the
end-pair.

Proof. Assume that BD(a,d,q,i,i') # 1 and BD(c,b,q',i,i') # L. First note that, since
¢ € R(a,b) by assumption, it follows that X (a,c’) U X(c/,b) C X(a,b), cf. Eq. (). Since ¢ € F,
by assumption, it follows that F.» C F;, C S; U F;. Moreover, if ¢ € Fii,ag then S. N Ff,iag C F;Lifg,
and thus Sy NTY* C S, U Fy.

Similarly to the proof of Lemma the line segments of £N X (a, b) can be partitioned into the
following sets:

L1 = LNX(aCd),

Ly = LNX(d,b),

Ls = {LpeLnX(ab): LyNFys #0},

Ly = {LyeLnX(a,b): LyN Sy NTI* £ ).

Since BD(a,d,q,i,i') # L and BD(c,b,q ,i,i') # L by assumption, it follows that the line
segments of £y are all dominated by BD(a,c,q,i,i') and that the line segments of Lo are all
dominated by BD(c/,b, ¢ ,i,i"). Furthermore, since F, C S;UF; as we proved above, it follows that
all line segments of L3 are dominated by the line segment L;. If ¢ € ngag then £4 = (). Suppose
that ¢’ € Fii/ag . Then, since Sc/ﬂl“f,iag C Sy UF, as we proved above, it follows that all line segments
of £4 are dominated by the line segment L, . That is, in both cases where ¢ € deiag orc € F?i/ag, all
line segments of LN X (a,b) = L1UL2UL3ULy are dominated by BD(a,c, ¢,4,i)UBD(c, b, qg, i,i).

Since ¢’ € Fj, and PNX (a,b)NF, = () by the assumption, it follows that the points of PNX (a, b)
can be partitioned into the following sets:

P = PnX(acd),
Py = PNX(d,0b).
It is easy to see that the points of P; are all dominated by BD(a,c,q,4,i") and that the points

of Py are all dominated by BD(c,b,q',i,i). Summarizing, BD(a,c, q,i,i') U BD(d,b,q¢ ,i,i') is a
dominating set of X (a,b).
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Since (i,1") is the end-pair of both BD(a, ¢, q,i,i') and BD(c,b,q ,i,4), it follows that (4,4') is
also the end-pair of BD(a,c,q,1,9)UBD(c,b,q’,i,1"). Now note that L, is the diagonally leftmost
line segment of BD(a,c’,q,14,7') and Ly is the diagonally leftmost line segment of BD(c,b,¢',,7').
Therefore, since Ly € ﬁf;ght ﬂﬁi.eif,t by assumption, it follows that L, remains the diagonally leftmost
line segment of BD(a,c,q,1, i’)7U BD(d,b,q ,i,4'). This completes the proof of the lemma. =

Given the statements of Lemmas and we are now ready to provide our third recursive
computation for BD(a,b, q,i,i') in the next lemma.

Lemma 13 Suppose that BD(a,b,q,i,i') # L and that BD(a,b,q,i,i") # {Lq, Li, Ly}, where
R(a,b) € S; and b ¢ S;,. If BD(a,b,q,i,7') \ L; does not dominate all elements of {z € X(a,b) :
x N (Sl U FZ) #* @} then

BD(a,b,q,i,i) = min

YAy
c,Chq

{BD(a, ¢,q,i,i')UBD(c,b,q,i,4) ©)

BD(a,d,q,i,i)UBD(c,b,q,i,i)

where the minimum is taken over all c,c,q’ that satisfy the Conditions of Lemmas and i.e.,

~

. ¢,d € BNR(a,b),

2. c € RZ, (TP \ By, and ¢ € Fy,

3. Li, Ly € LT,
b Ly € LGN LE and 1y € B,
5 c ¢ Fldilag orc € Fgmg, and
q
6. PNX(a,b)NF.NF;=0 and PN X(a,b) N F = .

Proof. Assume that BD(a,b,q,i,i)\ L; does not dominate all elements of {x € X (a,b) : 2N (S; U
F;) # 0}. Recall that b € R, (I'"") by Definition First we prove that also b € R%, (T}*").
Assume otherwise that b ¢ Rfight(f‘z’frt). Then, since b ¢ S;, by the assumption of the lemma,
it follows that b € B;,. Thus (S;UF;) N By, = 0, i.e., L; does not dominate any element of
X(a,b), cf. Eq. . Therefore, since BD(a, b, q,i,4') \ L; does not dominate all elements of {x €
X(a,b) : xN(S;UF;) # 0} by assumption, it follows that BD(a, b, q,1,i') does also not dominate all
elements of X (a,b), which is a contradiction to the assumption that BD(a, b, q,i,i") # L. Therefore
be Ry (Tjer).

Let x9 € X (a,b) be such that 2o N (S; UF;) # 0 and zg is not dominated by BD(a, b, q,4,i")\ L;.
Letalso Z C LN E;ightﬁﬁfif,t be an arbitrary dominating set of X (a, b) such that L, is the diagonally
leftmost line segment of Z and (4,4’) is the end-pair of Z. Suppose that |Z| = |BD(a,b,q,i,i)| and
that o is dominated by L; but not by Z\ L;. Note that such a dominating set Z always exists due
to our assumption on BD(a,b,q,1,i"). We distinguish now two cases.

Case 1. x9N Rfight(Fiiag) # 0. Let t € R® be an arbitrary point of zg N R, (T iiag). Since
z0 € X(a,b) and b € RZ (Tve) by Definition [10] it follows that ¢t € S; U Fy. If t € S; then
let t* € R(a,b) be an arbitrary point on the intersection of the line segment L; with the reverse
shadow F; of the point ¢, i.e., t* € R(a,b) N L; N F;. Note that t* always exists, since zg € X (a,b),

R(a,b) € S; by the assumption of the lemma, and b € Rfight(l“z’iert) as we proved above. Otherwise,

if t € F;, then we define t* = ¢. Since t € Rfight(Fiiag) by assumption, note that in both cases where
t € S; and t € F;, we have that ¢t € Si+ and that either t* € L; or t* € F; \ L;.
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Suppose that there exists a line segment Ly € Z \ L; such that t* € S;. Then, since t € Sy, it
follows that also ¢ € Sg. Thus the element z¢p € X (a,b) is dominated by Lj € Z \ L;, which is a
contradiction. Therefore t* ¢ Sy for every line segment Ly € Z \ L;.

Let j be the greatest index such that for the line segment L; € Z\ L; we have r; € Rleft (Tyert).
That is, for every other line segment Ly € Z \ L; with rs € Rleft(Fvert) we have ry € RZ, (I‘Vjert). If
rj € REy (L)) then we define ¢y = ;. If r; ¢ RZp, (T}"") then we define ¢; = ;. Furthermore, if
such a line segment L; does not exist in Z \ L; (i.e., if ry ¢ R, (I} for every Ly € Z \ L;), then
we define again t; = l

Let Ly € Z\ L; be a line segment such that [; € ]erght(l“dlag) and that, for every other line

segment L, € Z \ L; with I, € R2,, (T'2"), we have [, € R (rd‘ag) If I; € R2,, (T*8) then we

define to = lj. If Iy ¢ RZ, (T dlag) then we define ¢ = b. Furthermore, if such a line segment L

does not exist in Z \ L (ie., if I, ¢ R2 (D) for every Ly € Z \ L;), then we define again ty = b.
Now we define

right

right
_ Fvert N Fdiag
c=1TY ty -

It is easy to check by the above definition of ¢; and ¢2 that ¢ € BN R(a,b) and that ¢ € nght (TN
Fy,.

Assume that there exists at least one point pr € P N X(a,b) N F. N F;. Then, since
BD(a,b,q,i,i") # L by assumption, there must be a line segment Ly € Z \ L; such that Ly
dominates pg. Since py, € F. by assumption, it follows that Ly N F, # 0. If 7y € R, (T}) then
r € R, (P by the above definition of ¢, and thus the line segment Lj does not dominate

the point pg, which is a contradiction. Therefore ry ¢ R (Ty"). If Iy € R, (T ') then
ly € Rnght(Fdlag) by the above definition of ¢, and thus the line segment Ly does not dominate
the point pg, which is a contradiction. Therefore I}/ ¢ nght (Fdlag) Summarizing, ry ¢ RZ,, (T}e)

and [ ¢ Rnght( dlag), and thus Ly N Fy« # (). That is, t* € Sy for some Ly € Z \ L;, which is a
contradiction as we proved above. Thus there does not exist such a point pg, i.e.,

PNX(a,b)NF.NF; =0.

Assume that t* € L;. Then, since t* ¢ S} for every line segment Ly € Z \ L; as we proved
above, we can partition the set Z \ {Lg, L;, Ly} into the sets Zpciow, Ziefs, and Zyight as follows:

Zbelow = {Lk € Z\{anLivLi’} : LkmSZ 7&@}7
Ziet = {Lx € Z\{Ly, Liy Ly} : LN S; = 0, Ly, € REg (T, (7)
Zyigt = {Li € Z\{Lq, Li, Ly} : Ly N S; = 0, Ly, C RZ,, (T3}

Assume now that t* € F;\ L;; then t* = ¢ is a point of zg. Note that all points of PN X (a,b)NF;
are dominated by Z\ L;, since they are not dominated by L; and BD(a, b, q,4,4') # L by assumption.
Therefore xq is a line segment, i.e., z9 € L. Assume that there exists a line segment Ly € Z \ L;
such that Ly N (S U Fi«) # (. Then zg is dominated by Ly € Z \ L;, which is a contradiction.
Therefore Ly N (Sg+ U Fy+) = ) for every line segment Ly € Z\ L;. That is, for every Ly € Z\ L; we
have that either Ly C By or Ly C As;«. Therefore, in the case where t* € F; \ L;, we can partition
the set Z \ {Lg, L;, Ly} into the sets Zpelow, Ziefs, and Zyight as follows:

Zbelow = ®7
Zety = {Lr € Z\{Lg,Li, Ly} : Ly, C By}, (8)
Zvight = {Lk € Z\{Lq, Li, Ly} : L, € A}

Notice that, in both cases where t* € L; and t* € F;\ L;, the set Z1 = Zpelow U Ziett U{ Lq, Li, L' }
is a dominating set of X(a,c). Furthermore the set Zy = Zygne U {Lg, L;, Ly} is a dominating
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set of X(c,b). Moreover, L, is the diagonally leftmost line segment and (¢,7') is the end-pair
of both Z; and Z3. Therefore |BD(a,c,q,i,i)| < |Z1| and |BD(c,b,q,i,7')| < |Zs|. Now, since
{Lq,L;i, Ly} € BD(a,c,q,i,i") N BD(c,b,q,1,1), we have that

|BD(a,c,q,i,i') UBD(c,b,q,i,7)] |BD(a,c,q,i,i)| + |BD(c,b,q,i,i")| — {Lgq, Li, Lis }|
| Z1| + [ Z2| = {Lg, Li; L }|

| Zbelow U Zieft U {Lq, Li, Lir }|

+|Zright U {Lq’ Li, Li’}| - |{Lq7Li> Li’}|

= | Zvelow| + | Zieft| 4 | Zrigne| + [{Lqs Li, Ly }|

= |Z| =|BD(a,b,q,i,i)|.

VARVAY

Finally Lemma implies that, if BD(a,c,q,i,i') # L and BD(c,b,q,i,i') # L1, then
BD(a,c,q,i,7") U BD(c,b,q,4,7') is a dominating set of X(a,b), in which L, is the diagonally
leftmost line segment and (i,4’) is the end-pair. Therefore

|BD(a,b,q,i,7)| < |BD(a,c,q,i,i') UBD(c,b,q,i,i)|.
It follows that |BD(a,b,q,i,i)| = |BD(a,c,q,i,i') U BD(c,b,q,1,i")|.

Case 2. x9N erght(Fdlag) = (). Then, since zo N (S; U F;) # @ by the initial assumption on x,
it follows that zo N F; # (. Note that all points in P N X (a,b) N F; are dominated by Z \ {L;},
since they are not dominated by L; and BD(a,b,q,i,i') # L by assumption. Therefore zo € L.
Let t* € R? be an arbitrary point of zg N Fj.

Ifi' #iand Iy € RZ, (leag) then Ly € Z\{L;} and Ly dominates x¢, which is a contradiction.
Therefore, if i’ # i then l; ¢ R, (T dlag). Furthermore, it follows that if L, # L; then also Ly # L.

Assume that there exists a line segment Ly € Z \ L; such that Ly N (Sp U Fyx) # 0. Then zq is
dominated by Ly € Z\ L;, which is a contradiction. Therefore Ly N (S U Fy=) = () for every line
segment Ly € Z \ L;. That is, for every Ly € Z \ L; we have that either Ly C B« or Ly C A.
Therefore, similarly to Eq. in Case 1, we can partition the set Z\ {L,, L;, L; } into the sets Zjeg
and Zygp; as follows:

Ziety = {Lr € Z\{Lq,Li,Lyr} : Ly, C By},
Zright = {Lk cZ \ {Lq, Lz’7 Lz’} : Lk g At*}. (9)
Similarly to Case 1, let j be the greatest index such that for the line segment L; € Z \ L; we

have r; € RZ . (T}e). That is, for every other line segment Ly € Z \ L; with rg € Rleft(Fz’frt), we
have r, € Rleft(F;’f”) Ifrj e erght(Fvert) then we define t; = ;. If r; ¢ Rnght (T}er*) then we define

t; = ;. Furthermore, if such a line segment L; does not exist in Z \ L; (i.e., if ry ¢ RZ (T}Y) for
every Ly € Z \ L;), then we define again t; = l
Let Ly € Z\ L; be a line segment such that [; € Rnght

segment Ls € Z \ L; with Iy € R2 . (T%*8) we have [, € R2

(Fdlag) and that, for every other line
(Fd‘ag) If ;i € RE, (T)°%) then we

right right
define Ly = Lj. If l;y ¢ RE, (T dlag) then we define Ly = L;. Furthermore, if such a line segment
Lj does not ex1st in Z\ L; (ie., if I5 ¢ Rnght(f‘ffag) for every Ly € Z \ L;), then we define again
Ly = Li.
Thus, in both cases where Ly = Ly and Ly = L;, it follows that Ly € Enght N Elef,t and that

ly € Fy;. Note that it can be elther L # Lqor Ly = L. Furtherrnore recall that, 1f i' # i, then
liy ¢ RZ. (T dlag) as we proved above. Therefore L;, L; € Emght

Now we define the point 5 as follows. If [, € RZ,, (Fdlag) then we define to = ly. Otherwise, if
o & R (728) then we define to = b. Furthermore we define

! __ pvert diag
c =T N,
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Therefore, due to the above definition of ¢; and to, it follows that ¢/ € T ;h/ag or c € deiag. Further-
q

more note that ¢’ € Si=. It is easy to check by the definition of ¢; and t2 that ¢ € BN R(a,b) and
that ¢ € Fj,. Since ¢ € Fy,, note that F,, C F;, and thus F.s N F; = F,y. Thus, similarly to Case 1,
we can prove that

PNX(a,b)NFa = 0.

Now recall the partition of the set Z \ {Lg, L;, Ly} into the sets Ziegy and Zyight, cf. Eq. @
Notice that the set Z; = Zjesy U {Lq, L;, Ly} is a dominating set of X (a,c’) and that the set Z; =
Zyight U{Ly, L;, Ly} is a dominating set of X (¢/,b). Furthermore, L, is the diagonally leftmost line
segment of Z and (i,4’) is the end-pair of Z;. Similarly, Ly is the diagonally leftmost line segment of
Zy and (i,4’) is the end-pair of Zy. Therefore |BD(a,c,q,i,i')| < |Zi1| and |BD(¢,b, ¢, 4,i")| < | Za|.

Let first Ly = Ly. Then, since {Ly, L;, Ly} € BD(a,c,q,i,7')UBD(c,b,q¢,i,7'), it follows that

|BD(a,d,q,i,i") U BD(c',b,q,i,i")| < |BD(a,c,q,i,i')|+|BD(c,b,q",i,i")| — |{Lq, Li, L }|
< |2l + 12| = [{Lq, Li, Lir}|
| Z1et U{Lq, Li, Lir }| + | Zright U{ L', Li, Lir }| — [{Lq, Li, Ly }|
= |Ziett| + [Zrignt| + {Lq Li, Li }|
= |Z|=|BD(a,b, q,i,i/)‘.

Let now Ly # Ly. Then Iy € ]Rfight (F?qiag), since Ly € Ef;ght as we proved above. Furthermore,

since [y € ]R%eft(f‘iiag) by definition of ¢/, it follows that L, # L;. Therefore also L, # Ly, as
we proved above. Moreover, if Ly # L; then Ly = Lj by the above definition of ¢/, and thus
Ly € Zigne. Therefore, in both cases where Ly = L; and Ly # L;, we have Zs = Zgns U
{Ly,Li,Lir} = Zyight U {L;, Liy}. Thus, since {L;,Ly} € BD(a,c,q,i,i") N BD(c,b,¢,4,7'), it
follows that

|BD(a,c,q,i,i') U BD(c,b,q ,i,i)| |BD(a,c,q,i,i')| +|BD(c,b,q ,i,i')| — |{Ls, Ly }|
|Z1| + [ Z2| = {Li, L }|

| Z1ete U{Lqs Li; Lt} + | Zrignt U {Li, L'} — [{Ls, Lir }|
= | Ziett U{Lg}| + | Zuigns| + [{Li, Lir}|

= |Ziett| + | Zvigne| + [{Lqg}| + [{Ls, Lir }|

= |Z| =|BD(a,b, q,i,i,)|.

IN A

Finally Lemma implies that, if BD(a,d,q,i,i) # 1 and BD(d,b,q',i,i') # L then
BD(a,d,q,i,i") U BD(d,b,q¢,i,i) is a dominating set of X (a,b), in which L, is the diagonally
leftmost line segment and (4,4’) is the end-pair. Therefore

|BD(a7 b7Q>i7i/)| < |BD(a7 CI7Q7i7i/) U BD(C/> b7 q,a ia Z/)‘

It follows that |BD(a,b,q,1,i)| = |BD(a,d,q,i,i') U BD(c,b,q ,i,4")|.

Summarizing Case 1 and Case 2, it follows that the value of BD(a,b,q,i,i) can be computed
by Eq. @, where the minimum is taken over all values of ¢, c, ¢/, as stated in the lemma. m

Using the recursive computations of Lemmas and [13] we are now ready to present Algo-
rithm [1] for computing BOUNDED DOMINATING SET on tolerance graphs in polynomial time.

Theorem 3 Given a horizontal shadow representation (P, L) of a tolerance graph G with n ver-
tices, Algom'thm solves BOUNDED DOMINATING SET in O(n?) time.
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Algorithm 1 BOUNDED DOMINATING SET on Tolerance Graphs

Input: A horizontal shadow representation (P,L), where P = {p1,p2,...,pp|} and
L= {Ll,LQ,. . ,L|£|}

Output: A set Z C £ of minimum size that dominates (P, £), or the announcement that £ does
not dominate (P, L)

1: Add two dummy line segments Lo and Lz, completely to the left and to the right of P U L,
respectively
2 L+ LU{Lo,Ligj41}; denote £ = {Ly,La,..., Lz}, where now Ly and L are dummy

3 A {lyri:1<i<|L]}; B {TfEnTyert . ¢t e A}

4: for every pair of points (a,b) € A x B such that b € Rfight(ngag) do {initialization}
5. X(a,b) « {z € PUL: 2z C (B, \T}) NRE,,, (T47%)}

6: for every q,i,7' € {1,2,...,|£|} do

7 if ry € Sy, then {(,7') is a right-crossing pair}

8: if Lye LI Li, Ly € £4%", and b€ R, (I7) then

9: Ll « {z € PUL:z C By, where t = [}t N2}

10: Ly« {zePUL:aC Rfight(rj‘;ag)}

11: if £n .Cf]ightﬁﬁff,t does not dominate all elements of X (a,b) then
12: BD(a,b,q,i,i") + L

13: else if {L,, L;, Ly} dominates all elements of X (a,b) then

14: BD(a,b,q,i,i’) — {Lq,Li,Li/}

15: else

16: BD(a,b,q,i,i) + LN LINLEY {initialization}

17: for every pair of points (a,b) € A x B such that b € Rfight(rgiag) do

18:  for every q,i,i' € {1,2,...,|L|} do

19: if r € S, then {(4,7') is a right-crossing pair}

20: if Lye LI, Li,Ly € £4%", and b€ R, (I7") then

21: Compute the solutions Z1, Z,, Z3 by Lemmas and respectively
22: for k =1to 3 do

23: if |Zx| < |BD(a,b,q,i,i)| then BD(a,b,q,i,i") < Zy

24: if BD(ly,7z,1,|L|,|£|) = L then return £ does not dominate (P, £)
25:  else return BD(l1,rc, 1, |L],[£]) \ {L1, Lz}

Proof. In the first line, Algorithm (1| augments the horizontal shadow representation (P, L) by
adding to £ the two dummy line segments Lo and L1 (with endpoints lo,70 and 241, 7|2)41,
respectively) such that all elements of P U £ are contained in 4,, and in Bl‘ L4t In the second line
the algorithm renumbers the elements of the set £ such that £ = {L1, La, ..., Lz}, where in this
new enumeration the line segments L; and L)) are dummy. Furthermore, in line (3, the algorithm
computes the point sets A and B (cf. Section .

In lines [4H16] the algorithm performs all initializations. In particular, first in line 5| the algorithm
computes the sets X (a,b) C P UL for all feasible pairs (a,b) € A x B (cf. Eq. (2))). Then the algo-
rithm iteratively executes linesfor all values of ¢,4,4" € {1,2,...,|L]|} for which BD(a,b, q,i,1)
can be defined (these conditions on ¢, i, are tested in lines cf. Definition . For all such val-
ues of g, 1,4, the algorithm computes an initial value for BD(a, b, q,1,i’) in lines In particular,
in lines[12] and [14]it computes the values of BD(a, b, q, i, i) which can be computed directly (cf. Ob-
servationsand . In the case where BD(a, b, q,i,7') # L and BD(a,b,q,i,i") # {Lgq, L;, Ly}, the
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set LN L’;ightﬂﬁlfif,t is a feasible (but not necessarily optimal) solution (cf. Definition , therefore
in this case the algorithm initializes in line [16| the value of BD(a,b,q,,i) to LN /J;ig tﬂﬁ}ff,t.

The main computations of the algorithm are performed in lines In particular, the algo-
rithm iteratively executes lines for all values of a,b,q,i,i for which BD(a,b,q,1,i') can be
defined (these conditions on a,b,q, 1,4 are tested in lines cf. Definition . In line [21| the al-
gorithm computes all the necessary values that are the candidates for the value BD(a, b, q,,i’) and
in lines the algorithm computes BD(a, b, q,i,i") from these candidate values. The correctness
of this computation of BD(a,b,q,1,i) follows by Lemmas and respectively.

Finally, the algorithm computes the final output in lines Indeed, since in the (aug-
mented) horizontal shadow representation (P, L) the two dummy horizontal line segments are
isolated (i.e., the line segments L; and Lz in the augmented representation, cf. lines of
the algorithm), they must be included in every minimum bounded dominating set of the (aug-
mented) tolerance graph. Therefore the algorithm correctly returns in line the computed
set BD(ly, 7z, 1, [L],1£]) \ {L1, Lz}, as long as BD(ly, 7z, 1, |£],|£]) # L. Furthermore, if
BD(l1,7z), 1,|£],|£]) = L then the whole (augmented) set £ does not dominate all elements
of the (augmented) set P U L, and thus in this case the algorithm correctly returns a negative
announcement in line 241

Regarding the running time of Algorithm (1} first recall that the sets A and B have O(n)
and O(n?) elements, respectively. Thus the first three lines of the algorithm can be implemented
in O(n?) time. Due to the for-loop of line {4} the lines are executed at most O(n?) times.
Recall by Eq. and that, for every pair (a,b) € A x B, the region R(a,b) can be specified
in constant time (cf. the shaded region in Figure 7)) and the vertex set X (a,b) can be computed
in O(n) time. That is, line [5 of the algorithm can be executed in O(n) time. For every fixed pair
(a,b), the lines are executed at most O(n?) times, due to the for-loop of line @ Furthermore
the if-statements of lines [7] and |8 can be executed in constant time, while the computations of Cflff
and L5E" in lines |§| and |10 can be computed in O(n) time each. The if-statement of line [11| can
be executed in O(n?) time, since in the worst case we check adjacency between each element of
LN E;ight N Lief,t and each element of X (a,b). Moreover, each of the lines 16 can be trivially
executed in at most O(n) time. Therefore the total execution time of lines [4fi16/is O(n®).

Due to the for-loop of lines and , the lines are executed at most O(n%) times,
since there exist at most O(n3) pairs (a,b) and at most O(n3) triples {q,i,i'}. Furthermore,
since each of the lines and can be executed in constant time, the execution time of the
lines is dominated by the execution time of line i.e., by the recursive computation of the
set BD(a,b,q,i,i") from Lemmas and Note that we have already computed in lines
and [14] of the algorithm whether BD(a, b, q,i,i’') # L and BD(a,b, q,i,7') # {Lq, Li, Ly}. Moreover
it can also be checked in constant time whether R(a,b) € S; and whether b € S;,, and thus we can
decide in constant time in line 21] whether Lemmas and [13] can be applied. If Lemma [§] can
be applied, the corresponding candidate for BD(a,b,q,i,i’) can be computed in constant time by
a previously computed value (cf. Eq. )

Assume now that Lemma can be applied. Then the corresponding candidate for
BD(a,b,q,i,i) is computed by the right-hand side of Eq. (), for all values of ¢, ¢, j,j’ that sat-
isfy the conditions of Lemma [9] Note by Condition 2 of Lemma [9] that, if i # i, then j' = i’.
Therefore every feasible quadruple (7,7, 7, ') is either (i,4,7,j') or (i,7,7,7), i.e., there exist at
most O(n?) feasible quadruples (i,7, §, j/). Thus, since we already considered O(n?) iterations for
all pairs (¢,7') in line [18| of the algorithm, we only need to consider another O(n) iterations (multi-
plicatively) in line [21| for all feasible pairs (j,j’) in the execution of Lemma Furthermore there
are at most O(n) feasible values of ¢’ by Conditions 1 and 3 of Lemma [9] Moreover the value of ¢
is uniquely determined (in constant time) by the values of j and b (cf. Condition 4 of Lemma E[);
once ¢ has been computed, we also need O(n) additional time to check Condition 5 of Lemma @
Therefore, Lemma |10 can be applied in O(n?) time in line 21| of the algorithm.
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Assume finally that Lemma can be applied. Then the corresponding candidate for
BD(a,b,q,i,i") is computed by the right-hand side of Eq. @, for all values of ¢,c,q" that sat-
isfy the conditions of Lemma Note that there exist O(n?) feasible values for ¢, cf. Conditions 1
and 2 of Lemma Furthermore, once the value of ¢ has been chosen, we need O(n) additional
time to check Condition 6 of Lemma Thus, the upper part of the right-hand side of Eq. @
can be computed in O(n?) time. On the other hand, there exist O(n) feasible values for ¢/, cf.
Conditions 3 and 4 of Lemma For every value of ¢ there exist O(n) feasible values for ¢,
cf. Condition 5 of Lemma once the value of ¢ has been chosen, we need O(n) additional time
to check Condition 6 of Lemma Thus, the lower part of the right-hand side of Eq. (6) can be
also computed in O(n?) time. That is, Lemma [13| can be applied in O(n?) time in line of the
algorithm.

Summarizing, the total execution time of the lines is O(n?). Therefore, since the execution
time of lines is O(n®), the total running time of Algorithm [l|is O(n?). =

6 Restricted bounded dominating set on tolerance graphs

In this section we use Algorithm [1| of Section [5| to provide a polynomial time algorithm (cf. Algo-
rithm |2)) for a slightly modified version of BOUNDED DOMINATING SET on tolerance graphs, which
we call RESTRICTED BOUNDED DOMINATING SET, formally defined below.

RESTRICTED BOUNDED DOMINATING SET on Tolerance Graphs

Input: A 6-tuple Z = (P, L, j,j’,i,i"), where (P, L) is a horizontal shadow representation of a
tolerance graph G, (j,7) is a left-crossing pair of G, and (i,4') is a right-crossing pair of G.

Output: A set Z C £ of minimum size that dominates (P, £), where (7, j') is the start-pair and
(i,4") is the end-pair of Z, or the announcement that [ﬂﬁ“ght NLEY does not dominate (P, £).

In order to present Algorithm [2| for RESTRICTED BOUNDED DOMINATING SET on toler-
ance graphs, we first reduce this problem to BOUNDED DOMINATING SET on tolerance graphs,
cf. Lemma Before we present this reduction to BOUNDED DOMINATING SET, we first need
to prove some properties in the following auxiliary Lemmas These properties will motivate
the definition of bad and irrelevant points p € P and of bad and irrelevant line segments L; € L,
cf. Definition The main idea behind Definition [11|is the following. If an instance contains a
bad point p € P or a bad line segment L; € £, then £N Enght N Eleft does not dominate (P, L).
On the other hand, if an instance contains an irrelevant pomt pE 77 or an irrelevant line segment
L; € L, we can safely ignore p (resp. Ly).

Lemma 14 Let Z = (P,L,j,j',i,i') be an instance of RESTRICTED BOUNDED DOMINATING SET
on tolerance graphs. Let | = I‘”?” N Ff_zlag and r = TPt N ng,ag. If there exists a point p € P such
J

that p € R? oL diag) or p e R”ght(f‘;’m), then £N E;Z?,ht N Eﬁeﬁ does not dominate (P, L).

Proof. Assume otherwise that Z C L is a solution of Z. First suppose that there exists a point
p € P such that p € RZ ft(Fdlag), where [ = F"ert N Fdlag. Then, by Lemma|§|, there must exist a
line segment L € Z such that p € S;. Thus lk eRZ, (I‘dlag) which is a contradiction to the fact

that (4, 7') is the start-pair of Z.
Now suppose that there exists a point p € P such that p € erght (Tye'*), where r = Iy N 1“?;? 8,
Then, by Lemma |§|, there must exist a line segment Ly € Z such that p € Sg. Thus r, €

Rflght(FXfrt), which is a contradiction to the fact that (i,4’) is the end-pair of Z. m

Lemma 15 LetZ = (P,L,j,5',i,i') be an instance of RESTRICTED BOUNDED DOMINATING SET
on tolerance graphs. Let | = F”m N deg and r = F”m N deg If there exists a point p € P such

that p € S; U S, then at least one of the line segments {Lj, L;} is a neighbor of p.
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Proof. Recall by Deﬁnitionin Sectionthat l; € Sl],, and ry € S, since (j,j') is a left-crossing
pair and (i,4’) is a right-crossing pair. Therefore, since [ = F;’f“ N F?_i/ag and r = F}ffrt N ng,a & by the
assumptions of the lemma, it follows that [ € Slj, and r € S,,. ’

If p € 5; then also p € Sl , (since [ € Sl], as we proved above), and thus Lj; is a neighbor of p
by Lemma @ Similarly, if p E Sy then also p € S,, (since r € S, as we proved above), and thus L;
is a neighbor of p by Lemma (6 m

Lemma 16 LetZ = (P,L,j,j',i,i') be an instance of RESTRICTED BOUNDED DOMINATING SET
on tolerance graphs. Let | = F”e”ﬂfdm‘q andr = I‘”e”ﬁfdwg If there exists a line segment Ly € L

such that Ly C By or Ly C A,, then ,C N E;l;/ht N ,Cﬁel.f/t does not dominate (P, L).

Proof. Assume otherwise that Z C L is a solution of Z. First suppose that there exists a line
segment L; € £ such that L; C B;, where | = F"ert N Fdlag. Then, by Lemma there must exist a

line segment L € Z such that L;NSy # 0 or LkﬂSt # (/) If L;NSk # 0 then [, € RE, (T dlag) which
]

is a contradiction to the fact that (j,j') is the start-pair of Z. If Ly NSy # 0 then [} € Rleft(ljlvje“)7
which is again a contradiction to the fact that (j,j’) is the start-pair of Z.

Now suppose that there exists a line segment L; € £ such that L, C A,, where r = I} ﬂFfj,a 8,
Then, by Lemma [f] there exists a line segment Ly € Z such that L; NSk # 0 or Ly, N S; # 0. If
Li NSy # (0 then r € Rnght(Fvert), which is a contradiction to the fact that (i,¢') is the end-pair
of Z. If LN S; # () then 1, € R
the end-pair of Z. =

rlght(l“dlag), which is again a contradiction to the fact that (i,7') is

Lemma 17 LetZ = (P,L,j,5',i,i') be an instance of RESTRICTED BOUNDED DOMINATING SET

on tolerance graphs. Letl = I‘ff”ﬂffﬁag and r = Fﬁf’"tﬂfgj,ag . If there exists a line segment Ly € L
J —_ -

with one of its endpoints in By U A, and one point (not necessarily an endpoint) in B; N A, then

at least one of the line segments {L;, Ly, L;, Ly } is a neighbor of Ly. Moreover, L; does not belong
to any optimum solution Z of RESTRICTED BOUNDED DOMINATING SET.

Proof. Let Z be an optimum solution of RESTRICTED BOUNDED DOMINATING SET. Let L; € L
be a line segment with one of its endpoints in B; U A, and one point (not necessarily an endpoint)
in B; N A,. Notice that r, € A, or l; € B;. Let first 7, € A,.. Since L; has also a point in B; N A4,,
it follows that L; has a point in (S; U F;) U (Sy U Fyr). Therefore L; is a neighbor of L; or L; by
Lemma, . Let now l; € B;. Since L; has also a point in B; N A,, it follows that L; has a point in
(S; UF;)U(Sjy UFj). Therefore L; is a neighbor of L; or Ly by Lemma [5, Finally, since r; € A,

or l; € By, it follows that r; € Rnght(f‘,‘ffrt) or l; € Rleft(FZ-ert)- Therefore L; ¢ E;f,ht or L; ¢ Ei‘jzf,t
Thus, since Z C LN E;lf,ht Ll it follows that Ly ¢ Z. =

Lemma 18 LetZ = (P,L,j,5',i,i') be an instance of RESTRICTED BOUNDED DOMINATING SET

on tolerance graphs. Letl = I‘ff“ﬂfldiag and r = Fﬁf’"tﬂfgj,ag . If there exists a line segment Ly € L
)

such that Ly C BN A, and L; ¢ E;ngﬁtﬁﬁﬁeﬁ then at least one of the line segments {Lj, L;/, L;, Ly}

is a neighbor of L;. Moreover, Ly does mot belong to any optimum solution Z of RESTRICTED

BOUNDED DOMINATING SET.

Proof. Suppose first that L; ¢ Enght Then [; € Rleft(Fz’J?rt) orl; € R%eft(FZi,ag). We first consider
the case where [; € ]Rleft(f“’ert). Then, since I; € B; N A, by assumption, it follows that [; €
B2,
where [, € RZ, (T ilag). Then, since l; € B; N A, by assumption, it follows that I, € erght(FE;?rt).

This implies that [; € F};, and thus L; is a neighbor of L;.

(Fdlag) This implies that I, € Sj/, and thus L/ is a neighbor of L;. We now consider the case
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The case where L; ¢ E%eif,t can be dealt with in exactly the same way, implying that, in this case,
L; or L; is a neighbor of ;. m

From Lemmas [14] and [16] we define now the notions of a bad point p € P and a bad line segment
L; € L, respectively. Moreover, from Lemmas and [I§] we define the notions of an irrelevant
point p € P and of an irrelevant line segment L; € L, as follows.

Definition 11 Let Z = (P, L, j,7',i,7') be an instance of RESTRICTED BOUNDED DOMINATING
SET on tolerance graphs. Let | = Fff” N Fld_zlag and r = F;Jf” N Ff:flg. A point p € P is a bad point
J

if p € Rlzeﬂ(Fl‘ii“g) orp € ]Rzight(l“;‘fm). A point p € P is an irrelevant point if p € S;U S,. A line
segment Ly € L is a bad line segment if Ly C By or Ly C A,.. Finally a line segment Ly € L is
an irrelevant line segment if either Ly C By N A, and L; ¢ LRt Eﬁt , or Ly has an endpoint in

cuther L 4.
B; U A, and another point in B; N A,..

The next lemma will enable us to reduce RESTRICTED BOUNDED DOMINATING SET to
BOUNDED DOMINATING SET on tolerance graphs, cf. Lemma

Lemma 19 Let Z = (P, L,j,7,i,7') be an instance of RESTRICTED BOUNDED DOMINATING SET
on tolerance graphs, which has no bad or irrelevant points p € P and no bad or irrelevant line
segments L € L. Then we can add a new line segment L; 1 to the set P UL such that L; is the only
neighbor of Lj 1.

Proof. Since there are no bad or irrelevant points p € P and no bad or irrelevant line segments

L € L by assumption, there exists a point z € R? such that, for every p € P and for every

L; € £\ {L;}, we have that p, L; € R?ight(F‘;ert). That is, no element of P U (£ \ {L;}) has any

point in the interior of the region Ry = R2 (Iye) NRE,, (T3, Furthermore we define the region

R} C Ry, where R} = R1 N R%eft(F??,ag). This region R is illustrated in Figure E for the case where
J

j' # j; the case where j' = j is similar. Now we add to £ a new line segment L; ; arbitrarily within
the interior of the region R], cf. Figure |8 By the definition of R) it is easy to verify that L;; is
adjacent only to L;. m

vert vert i
ry Iy riee

Figure 8: The addition of the line segment L; 1, in the case where j' # j.

In the following we denote by [;1 the left endpoint of the new line segment L; ;. Similarly to
Definition in Section we present in the next definition the quantity RDp r)(], 4’y i,4") for
the RESTRICTED BOUNDED DOMINATING SET problem on tolerance graphs.

Definition 12 Let Z = (P,L,3j,j',i,i') be an instance of RESTRICTED BOUNDED DOMINAT-
ING SET on tolerance graphs. Then RDp r)(j,j',4,7') is a dominating set Z C LN E;g’,ht N Eieﬁ
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of (P,L) with the smallest size, in which (4,j') and (i,i") are the start-pair and the end-pair,
respectively. If such a dominating set Z does not exist, we define RD(pvﬁ)(j,j/,'l.,'I:,) =1 and
\RDp r)(4,5',i,i)| = o0

Observation 7 RD(p r)(j,j',i,i') # L if and only if Lj, Ly € LY, Li,Ly € L9, and
LN ‘C;if,ht N Eéi{t is a dominating set of (P, L).

For simplicity of the presentation we may refer to the set RDp r)(4,5',4,4") as RDg(j, j',i,1'),
where (P, L) is the horizontal shadow representation of the tolerance graph G. In the next lemma
we reduce the computation of RD(p ry(j, j',i,1") to the computation of an appropriate value for
the bounded dominating set problem (cf. Section [f)).

Lemma 20 LetZ = (P,L,j,5,i,i') be an instance of RESTRICTED BOUNDED DOMINATING SET
on tolerance graphs, which has mo bad or irrelevant points p € P and no bad or irrelevant line
segments L € L. Let (P, E) be the augmented representation that is obtained from (P, E) by adding
the line segment Lj1 as in Lemma! Furthermore let r = va N deg If RDp (4,5, 4,4") # L
then RDp £y(j,j',4,1") = BD(P,Z)(ZJJ’ r, gy i, 1),

Proof. Let [ = F"ert N Fdlag and r =T} N Fdlag Then, since by assumption there are no bad or

irrelevant points p € P or line segments L € £ in the instance Z = (P, L, j, j',i,4"), it follows that
all elements of P U L are entirely contained in the region A;N BT of R?, cf. Definition Therefore
all elements of P U £ belong to the set {L;} U X(L,r), cf. Eq. (2) in Section [5.2} Now recall from
the construction of the augmented representation (P, L) from (7D L) in the proof of Lemma
that L;1 is the only element of P U L that does not belong to the set {L;} U X(I,r), cf. Figure @
Furthermore, it is easy to check that the set of elements of PU L is exactly the set {L;i}UX(la,r).

Since RDp r)(j,4',i,i") # L by assumption, it follows by Observation ﬁ that L;, L € [’E:th

and L;, Ly € E;lfht as well as that Eﬂﬁ;}?ht NLEY is a dominating set of (P,L). Further-

more, since L; is the only neighbor of L;; in the augmented representation (P,Z), it follows

that £ N E;i?ht N Eiezf,t is also a dominating set of (P, £). Moreover, since Eright - Eright (cf. Defini-

tion |7/in Sect1on , it follows that also £ N E;ight N LEH is a dominating set of (73 L). Therefore
BD(P@(ZJ 1,7,7',1,1") # L by Observation I That is, BD( )(lLl,T,j ,i,4") is a dominating set
Z C L of X(lj1,r) with the smallest size, in which (4,7") is its end-pair and Lj is its diago-
nally leftmost line segment (cf. Definition in Section . Since Lj is the diagonally left-
most line segment of B-D(']D7Z)(lj,17 r,j'i,i"), it follows that L, ¢ BD(Pf)(lj;\l’ r,j',4,4"). Therefore
L; € BD(Pvz)(ljJ,r,j’,i,i’), since L; is the only neighbor of Lj; in (P,L£). Thus (j,;') is the
start-pair of BD(P,E) (lj1,7,7',4,7"). Finally, since also PUL = {L;} UX(l;1,7) as we proved above,
it follows that RD(p r(j,j',1,1") = BD(P,E)(ZJ'J’ r,j,i,4). =

We are now ready to present Algorithm [2| which, given an instance Z = (P,L,j,j',i,7)
of RESTRICTED BOUNDED DOMINATING SET on tolerance graphs, either outputs a set Z C
Eﬂﬁn;ght Cle of minimum size that dominates all elements of (P, L), or it announces that
such a set Z does not exist. Algorithm [2 uses Algorithm [1] (which solves BOUNDED DOMINATING
SET on tolerance graphs, cf. Section ' as a subroutine.

Theorem 4 Given a 6-tuple T = (P, L, j,5',i,i), where (P, L) is a horizontal shadow representa-

tion of a tolerance graph G with n vertices, (j,7') is a left-crossing pair and (i,4) is a right-crossing
pair of (P, L), Algarithm@ computes RESTRICTED BOUNDED DOMINATING SET in O(n?) time.
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Algorithm 2 RESTRICTED BOUNDED DOMINATING SET on Tolerance Graphs

Input: A 6-tuple Z = (P,L,j,5,i,i), where (P, L) is a horizontal shadow representation of a
tolerance graph G, (j,7) is a left-crossing pair and (i,4) is a right-crossing pair of (P, L).

Output: A set Z C L of minimum size that dominates (P, L), where (7, j') is the start-pair and
(i,1') is the end-pair of Z, or the value L.

1. if (P, L) contains a bad point p € P or a bad line segment Ly € £ (cf. Definition then

2 return |

3. if Ly, Ljr € Eiezf,t, L;, Ly € E;lf,ht, and £ N E”ght N Ele is a dominating set of (P, L) then

4:  Compute the sets P; € P and L1 C L of 1rrelevant points and line segments (cf. Deﬁnition
5. P P\Pi; L4 L\Ly; 7 DytnIee

6: L+« LU {L;j1} (cf. Lemma

7.  return BD(P,E) (lj1,m,7',4,1) {by calling Algorithm

8: else return L

Proof. If the horizontal shadow representation (P, L) contains at least one bad point p € P or
at least one bad line segment Ly € L (cf. Definition ) then £N E“fht N Eleft does not dominate
(P, L) by Lemmas [14] E and |16} Thus, in the case where such a bad point or bad line segment exists
in (P, L), Algorithm [2] correctly returns L, cf. lines [I2] Furthermore, due to Observation [7] the
algorithm correctly returns L in line [§] if at least one of the conditions checked in line [3| is not
satisfied.

Assume now that all conditions that are checked in line [l are satisfied. Then
RDp )(4,5'54,1") # L by Observation Let P1 CP and L1 C L be the set of all irrelevant
points and line segments, respectively (cf. Definition . Then, by Lemmas and every
point p € P; and every line segment L, € £ is dominated by at least one of the line segments
{Lj, Ly, L;, Ly }. Furthermore, by Lemmas |17 and no line segment L; € £, is contained in any
optimum solution Z of RESTRICTED BOUNDED DOMINATING SET. Thus Algorithm [2] correctly
removes the sets P; and £ of the irrelevant points and line segments from the instance, cf. lines
of the algorithm.

In line |§| the algorithm augments the set £ of line segments to the set L by adding to it the line
segment L; as in Lemma Then the algorithm returns in line 7] the value BD 5 2 (L, r, j'hi,1)
by calling Algorithm 1| as a subroutine (cf. Section |5)). The correctness of this computation in line
follows immediately by Lemma

Regarding the running time of Algorithm [2| note by Definition [L1|that we can check in constant
time whether a given point p € P (resp. a given line segment L; € L) is bad or irrelevant. Therefore
each of the lines and [4] of the algorithm can be executed in O(n) time. The execution time
of the if-statement of line [3| is dominated by the O(n?) time that is needed to check whether
LN E;f,ht Elef,t is a dominating set of (P, L£). Furthermore lines can be executed trivially in
total O(n) time. Finally, line |7 I can be executed in O(n?) time by Theorem [3| and thus the total
running time of Algorithm I is O(n?). m

7 Dominating set on tolerance graphs

In this section we present our main algorithm of the paper (cf. Algorithm [3)) which computes in
polynomial time a minimum dominating set of a tolerance graph G, given by a horizontal shadow
representation (P, £). Algorithm [3| uses as subroutines Algorithms [I{ and [2) which solve BOUNDED
DOMINATING SET and RESTRICTED BOUNDED DOMINATING SET on tolerance graphs, respectively
(cf. Sections [5[ and @ Throughout this section we assume without loss of generality that the
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given tolerance graph G is connected and that G is given with a canonical horizontal shadow
representation (P, L). It is important to note here that, in contrast to Algorithms (1| and [2| the
minimum dominating set D that is computed by Algorithm [3| can also contain unbounded vertices.
Thus always D # L, since in the worst case D contains the whole set P U L.

For every p € P we denote by N(p) ={Ly € L:p€ S} and H(p) ={z € PUL : 2N S, # 0}.
Note that, due to Lemmas |§| and |7} N(p) is the set of neighbors of p and H(p) is the set of hovering
vertices of p. Furthermore, for every Ly € £ we denote by N(Ly) ={p € P :p€ S} U{L; € L:
LiN Sy # 0 or L NSy # 0}. Note that, due to Lemmas [5| and @ N(Lyg) is the set of neighbors
of Lk.

Observation 8 Let (P, L) be a canonical representation of a connected tolerance graph G, and
let p € P. Then N(p) C N(z) for every x € H(p) by Lemma [l Furthermore H(p) N L # O by
Lemma [2.

Lemma 21 Let (P,L) be a canonical horizontal shadow representation of a connected tolerance
graph G and let D be a minimum dominating set of (P,L). If there exists a point p € P such
that p € D and (N(p) U H(p)) N D # 0, then there exists a dominating set D' of (P, L) such that
|D'| =|D| and |D'NP|=|DNP|-1.

Proof. We may assume without loss of generality that P # () and £ # ). Indeed, if P = () then
we can just solve the problem BOUNDED DOMINATING SET (see Section ; furthermore, if £ = (),
then the graph G is an independent set. Consider a point p € P such that p € D. Suppose first
that z € D for some x € N(p), i.e., N(p) N D # (). Recall by Observation 8| that H(p) N L # ()
and consider a line segment Ly € H(p) N L. We will prove that the set D' = (D \ {p}) U{L} is a
minimum dominating set of G. First note that p is dominated by € D\ {p} C D’. Furthermore
N(p) € N(Lj) by Observation |8 since L € H(p). This implies that N(p) is dominated by Ly, in
D'. Thus, since |D'| = |D|, it follows that D’ is a minimum dominating set of G.

Suppose now that x € D for some x € H(p), i.e., H(p) N D # (. Since G is assumed to be
connected, it follows that N(p) # 0. Let Ly € N(p). We will prove that the set D' = (D\{p})U{ Ly}
is a minimum dominating set of G. First note that p is dominated by L, € D’. Recall by
Observation |8 that N(p) C N(z). This implies that N(p) is dominated by x in D’. Thus, since
|D'| = |D|, it follows that D’ is a minimum dominating set of G.

To finish the proof of the lemma, note that |[D'NP| = |[DNP|— 1 follows from the construction
of D', as we always replace in D’ the point p € P by a line segment Ly € £. m

Define now the subset P* C P of points as follows:
P*={peP:p¢g H(p) for every point p' € P\ {p}}. (10)

Equivalently, P* contains all points p € P such that p ¢ S,y for every other point p’ € P\ {p}. Note
by the definition of the set P* that for every p1, p2 € P* we have p; ¢ Sy, U F),. Furthermore recall
that the points of P = {p1,p2,..., p|p‘} have been assumed to be ordered increasingly with respect
to their z-coordinates. Therefore, since P* C P, the points of P* are also ordered increasingly with
respect to their z-coordinates.

Definition 13 Let (P, L) be a horizontal shadow representation. A dominating set D of (P, L) is
normalized if:

1. (N(p)UH(p)) N D =0 whenever p € DN'P, and
2. DNP C P~

Lemma 22 Let (P,L) be a canonical horizontal shadow representation of a connected tolerance
graph G. Then there exists a minimum dominating set D of (P, L) that is normalized.
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Proof. Let D be a minimum dominating set of G’ that contains the smallest possible number of
points from the set P. That is, [DNP| < |D'NP| for every minimum dominating set D’ of G. Let
pe DNP.

First assume that (N(p) U H(p)) N D # (. Then Lemma [21| implies that there exists another
minimum dominating set D" of G such that |D'NP| = |[DNP|—1 < |DNP|, which is a contradiction
to the choice of D. Therefore (N(p) U H(p)) N D = () for every p € DNP.

Now assume that p € (P \ P*) N D. Then, by the definition of the set P*, there exists a point
p' € P such that p € H(p'). Note by Observation [§ that N(p') € N(p). Suppose that p’ € D.
Then, since p € H(p'), Lemma 21| implies that there exists a minimum dominating set D’ such that
|ID'NP|=|DNP|—1< |DNP|, which is a contradiction to the choice of D. Therefore p' ¢ D.
Thus, since D is a dominating set of G and p’ ¢ D, there must exist an Ly € N(p') such that
Ly € D. Therefore, since N(p') € N(p), it follows that Ly € N(p) N D. Then Lemma [21] implies
that there exists a minimum dominating set D’ of G such that |[D'NP|=|DNP|—-1<|DNP|,
which is again a contradiction to the choice of D. This implies that (P \ P*)N D = () and therefore
D NP CP*. Thus the dominating set D is normalized. m

In the remainder of this section, whenever we refer to a minimum dominating set D of a
connected tolerance graph G that is given by a canonical horizontal shadow representation (P, £),
we will always assume (due to Lemma that D is normalized. Moreover, given such a canonical
horizontal shadow representation (P, L), where P = {p1,pa,...,pp} and £ = {L1, La, ..., Lz},
we add two dummy line segments Lo and Lz (with endpoints lo, 7 and | 2|41, 7|41, Tespectively)
such that all elements of P U £ are contained in A,, and in By, ,,. Denote £ = LU {Lo, L)1}
Furthermore we add one dummy point pp4; such that all elements of P U L' are contained in
Byp.,- Denote P' =P U {p;p|11}-

Note that (P’,L’) is a horizontal shadow representation of some tolerance graph G’, where
the bounded vertices Vj; of G’ correspond to the line segments of £ and the unbounded vertices
V[; of G’ correspond to the points of P’. Furthermore note that, although G is connected, G’ is
not connected as it contains the three isolated vertices that correspond to Lo, Liz|41, and pip|41-
However, since there exists by Lemma [22] a minimum dominating set D of G that is normalized, it
is easy to verify that G’ also admits a normalized minimum dominating set. Therefore, whenever
we refer to a minimum dominating set D’ of the augmented tolerance graph G’, we will always
assume that D’ is normalized.

For simplicity of the presentation, we refer in the following to the augmented sets P’ and L’ of
points and horizontal line segments by P and L, respectively. In the remainder of this section we
will write P = {p1,p2,...,pjp|} and £ = {L1, Lo, ..., Lz} with the understanding that the last
point pjp| of P, as well as the first and the last line segments L; and Lz of £, are dummy. Note
that the last point pp| (i.e., the new dummy point) belongs to the set P*. Furthermore, we will
refer to the augmented tolerance graph G’ by G. For every p;, p; € P* with ¢ < j, we denote by

G; = {xePUL‘:ngpj\F;jirt, (11)
G(i,j) = {zeGj:zC Ay} (12)

that is, G is set of elements of P U L that are entirely contained in the region B, \F;jrt, and
G(i,7) is the subset of G; that contains the elements of P U L that are entirely contained in the

region A,,. Note that p; ¢ G; and p; ¢ G(i,j).
Definition 14 Let p; € P* and (i,i") be a right-crossing pair in Gj. Then D(j,1,4') is a minimum
normalized dominating set of G; whose end-pair is (i,i"). If there exists no dominating set Z of

G whose end-pair is (i,1"), we define D(j,i,7") = L.

Observation 9 D(j,4,i") # L if and only if Eﬁt is a dominating set of G;.
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Observation 10 If X(ry,p;) is not dominated by the set {L;, Ly} then D(j,i,7') = L. Further-

more, if there exists a point p € P NG, such that p € erght(F;’frt) then D(j,i,i") = L.

Due to Observation |§|, without loss of generality we assume below (in Lemmas and
that D(j,4,i') # L. Before we provide our recursive computation for D(j,4,7") in Lemma
(cf. Eq. ), we first prove in the next lemma that the upper part of the right hand side of
Eq. is indeed a normalized dominating set of G, in which (7,4) is its end-pair.

Lemma 23 Let G be a tolerance graph, (P, L) be a canonical representation of G, p; € P*, and
(i,4") be a a right-crossing pair of G;. Assume that D(j,4,i') # L. Let q,q',z,2',w,w’ such that:

~

. Py € P*, where 1 < ¢ <7,
Li, Ly & N(pg) U H(pg),
(w,w") is a left-crossing pair of G(¢',7),

(2,2') is a right-crossing pair of Gy,

Cro o

g=min{l <k <q:pp€P*, pr € Ac}, where ¢ = Ty MY,

S

(H(pg) UH(pg)) \ (Uqgkgq' N(pk)) are dominated by the line segments {L, L./, Ly, Ly},
7. G(q,q) is dominated by {pr, € P*:q <k < {'}.
If D(q,2,2") # L and RD¢(y j)(w,w',4,3") # L then the set
D(q,2,2)U{pr € P*:q <k < ¢} URDg(y jy(w,w',i,7)
is a normalized dominating set of G, in which (i,1') is its end-pair.

Proof. The choices of q,q', 2,2/, w,w’,i,7, as described in the assumptions of the lemma, are
illustrated in Figure@ Assume that D(q,2,2') # L and that RDg(g ;) (w,w',i,i") # L. We denote
for simplicity D = D1 U Dy U D3, where

Dl = D(Qazazl)a
Dy = {preP :q<k<{}, (13)
D3 = RDgy j(w,w',i,7).

First we prove that D is a dominating set of G; and that (i,7') is the end-pair of D. Since
D; # 1 and D3 # L, note that the set G, is dominated by D; and that the set G(¢,j) is
dominated by Ds. Furthermore, by Condition [7|of the lemma, the set G(q, ¢') is dominated by Ds.
It remains to prove that, if ¢ D is an element of G; such that z N F, # 0, or 2 N qu, # (), or
xSy, #0,0r xN Sp, # (), then z is dominated by some element of D.

Assume that o ¢ D is an element of G; such that z NSy, # 0 or NSy, # 0. Then z €
H(pg) U H(py) by Lemmal|7] If z € |J, <<, N(px) then z is clearly dominated by Ds, cf. Eq. (13)).

Otherwise z € (H(pg) U H(py)) \ (Uqgkgq/ N(pk)), and thus z is dominated by the line segments
{L.,L., Ly, Ly} by Condition [f] of the lemma.

Now assume that = ¢ D is an element of Gj such that zNF, # 0 or x ﬂFp , £ 0. Suppose that
x € P, ie,x €k, or:BEFp, If z € F), thenpqESm,andthuquEH byLemm ThlS
is a contradlctlon smce Dq € 73* by Condltlon of the lemma, cf. the definition of P* in
Similarly, if z € Fy, then we arrive again to a contradiction, since p, € P* by Condition I of the
lemma. Therefore x ¢ P, i.e., x € L. Let x = L. Since Ly N Fp, # 0 or L; N Fy., # (), it follows
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that p, € Sy, or py € S, and thus @ = L € N(pg) U N(py). That is,  is dominated by {pg, py }-
Therefore D is a dominating set of G;. Furthermore, since (¢,4’) is the end-pair of Ds, it follows
that (i,4") is also the end-pair of D = D; U Dy U Ds.

We now prove that D is normalized. First note that D; = D(q, z, 2’) is normalized by Defini-
tion [14] and that D is normalized as it only contains elements of P*, cf. Definition Moreover,
due to Definition[I3] D3 is normalized as it contains only elements of £, cf. Definition[12]in Section [6]
That is, each of D, Do, and Dj is normalized. Furthermore note that, due to the Conditions
and 4] of the lemma, for any two elements x, z’ that belong to different sets among D1, D2, D3, no
point of x belongs to the shadow of z’. Therefore the whole set D is normalized. Summarizing, D
is a normalized dominating set of G; whose end-pair is (¢,7'). ®

Given the statement of Lemma 23] we are now ready to provide our recursive computation of
the sets D(j,1,1').

Lemma 24 Let G be a tolerance graph, (P, L) be a canonical representation of G, p; € P*, and
(,7") be a a right-crossing pair of Gj such that D(j,i,1') # L. Then

D(q,2,2")U{pr € P*: ¢ <k < ¢} URDgy j(w,w',i,i)

D(j,i,i) = min - 14
(4, 7) qf,z,z',w,w'{BDGj(zl,b,l,z',z"), where b= LYot O D09 (14)

where the minimum is taken over all ¢, z,2', w,w’" that satisfyﬂ the Conditions of Lemma .

Proof. Let Z be a normalized dominating set of G; such that (4,7') is its end-pair and Z =
|D(j,4,4")|. We distinguish the following two cases.

Case 1. ZNP* =0, ie, Z C L. Denote b = Iy N ngif"g and observe that X (l;,b) C Gj.
Therefore, since Z is a dominating set of G}, it follows that Z is also a dominating set of X (l1,0).
Moreover recall that L is a dummy isolated line segment, and thus L1 € Z. In particular, L; is
the diagonally leftmost line segment of Z. Therefore |BDg,(I1,b,1,4,i")| < |Z|, since Z C L and
(i,7') is the end-pair of Z by assumption.

Since D(j,4,i') # L by assumption, it follows by Observation that there are no points
p € PN Gj such that p € Rfight(F}’frt), and that X (ry,p;) is dominated by L; and Ly. Therefore
BDg;(l1,b,1,i,4") is a dominating set of G that has (i,i') as its end-pair. Moreover, due to
Definition BDg,(l1,b,1,1, i') is normalized as it contains only elements of £ (cf. Definition
in Section [5.2). Thus |Z| < |BDg;(l1,b,1,4,7')|. That is, |Z| = |BDg;(l1,b,1,1,7")].

Case 2. ZNP* # 0. Let ¢ = max{k < j : p € P* N Z}, cf. Figure[J] From the assumption that
Z is normalized, it follows that for every line segment Ly € Z N L, either Ly C qu, or L C qu,.
Therefore the set Z N L can be partitioned into two sets Z, 1 and Z o, where

Zﬁ,l = {LkEZﬂﬁiLkngq,},
Zro = {LkGZQEILkgqu,}.

In particular, note that L;, Ly ¢ N(py) U H(py). Now we prove that L;, Ly € Zgo. Assume
otherwise L; € Z. 1, ie., Ly C By, Then r; € By, and thus py € Rfight(FXfrt). This is a
contradiction by Observation since D(j,1,7") # L by assumption. Now assume that Ly € Z 1,
ie, Ly C By,. Then ry € B, ,, and thus py € Rfight(f‘gjf’“g). This is a contradiction to the
assumption that (¢,4") is the end-pair of D(j,¢,4'). Summarizing, L;, Ly € Z 5.

Notice that Zzo C L is a bounded dominating set of G(¢’, j) with (¢,4") as its end-pair, and
thus Zz o # 0. Since Zg o C £, Observation [3| implies that Z, o contains a unique start-pair. Let

(w,w’) be the left-crossing pair of G(¢, j) which is the start-pair of Z 9. Then
|RDG(q’7j)(waw/7i>i,)| < |Z[,,2|7 (15)

“Note that the value of ¢ is uniquely determined by the value of ¢’ and by the pair (2,2'), cf. Condition 5 of

Lemma @
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Figure 9: The recursion for Case 2 of Lemma [24] where py, p1, p2, py € P*.

and thus RDg(y ;) (w,w',4,4") # L.

Recall that G contains the isolated (dummy) line segment L, and thus Ly € Z. ;. Therefore
Zra # 0. Since Z£71 C L, Observation [3| implies that Z,; contains a unique end-pair. Let (z,2’)
be the right-crossing pair of G which is the end-pair of Z. ;. Denote ¢ = I’y ﬁFg?g, cf. Figure@

Consider now an arbitrary point p € P*NZ. We will prove that p ¢ FrUS;. Assume otherwise
that p € Fr. Then p € Rnght(F vert), and thus also p € erght(I‘Ze,rt). Moreover p € Rleft(l“dlag).
This implies that p € F,.,. That is, r.» € S, and thus Lemma mzimphes that L, € H(p). This
is a contradiction to the assumption that Z is normalized, since both p, L, € Z. Thus p ¢ Fr.
Now assume that p € Sc. Then p € nght(I‘dlag), and thus also p € erght(l“dlag). Furthermore
p € R, (Iye""). This implies that p € S,_, and thus L, € N(p). This is again a contradiction to
the assumption that Z is normalized, since both p, L, € Z. Thus p ¢ S;. Summarizing, for every
p € P*N Z we have that p ¢ Fr U S, i.e., either p € A or p € By. Therefore the set P* N Z can
be partitioned into two sets Zp« 1 and Zp« 2, where

Zp<1 = {pGP*ﬂZ:pGBC},
Ipxoy = {pEP*ﬂZ:pGAc}.

Note that p; € Zp-2. Furthermore, since (z,2’) is the end-pair of Z.;, note that all line
segments of Z, 1 are contained in B¢. Therefore all elements of the set Z1 = Z, 1 U Zp+ 1 are
contained in B¢, and thus (z,2’) is the end-pair of Z;. Define now ¢ = min{l < k < ¢ : p; €
P*, pr € A¢}, cf. Figure @ Recall that p, ¢ Gy, cf. Eq. . It is easy to check that no line
segment of Z, o dominates any element of Gy, cf. Figure @ Similarly, no point of Zp« 5 dominates
any element of G;. Thus the set Z; is a dominating set of G;. Furthermore Z; is normalized, since
Z1 € Z and Z is normalized by assumption. That is, Z; is a normalized dominating set of G, with
(z,2') as its end-pair. Therefore,

1D(q,2,2")| <121l (16)
and thus D(q, z,2") # L.

We now prove that Zp-9 = {pr, € P*: ¢ < k < ¢'}. Clearly Zp«o C {pp € P*: ¢ <k < ('}
by the definition of the index ¢ and of the set Zp« 2. Recall that for every line segment L; € Z,
either L; € Zgy or Ly € Zgo. If Ly € Zgy then Ly € Be C B,,. Denote ¢ = I}t 0 (¥,
cf. Figure @ If Ly € Zgo then Ly € A, C qu,, since (w,w’) is the start-pair of Z, . Thus,wfor
every line segment Ly € Z, either Ly C By, or Ly C qu,. Therefore N(pg) N Z = (), for every
ke{qq+1,...,4}, and thus all points p; € P*, where ¢ < k < ¢/, must belong to Z. That is,
{pr € P*: ¢ <k < ¢} C Zp« 5. Therefore,

Zpeo={pr € P :q<k<q} (17)

Recall that for every line segment L, € Z, either Ly C B, or L C Ap ,, as we proved
above. Therefore G(g,q’) must be dominated by Zp«o. Furthermore, due to Eq. ., Zp+ 2
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Algorithm 3 DOMINATING SET on Tolerance Graphs

Input: A canonical horizontal shadow representation (P,L), where P = {p1,p2,...,pp/} and
L= {Ll,LQ, R ,L|£|}

Output: A set D C LU P of minimum size that dominates (P, L).

Add two dummy line segments Lo (resp. Lz41) completely to the left (resp. right) of PU L
Add a dummy point pyp|4; completely to the right of Lz,

P—PU {p‘pH_l}; L+ LU {LQ, L|£|+1}

Denote P = {p1,p2,...,pip} and L = {L1,La,..., Lz}, where now pip|, L1, and Lz are
dummy

5 P*={peP:p¢ H(p) for every point p' € P\ {p}}

6: for every pair of points (a,b) € A x B such that b € Rfight(ngag) do

7 X(ab) « {z€PUL: 2 C (By\T}) NRZ, (T67%)}

8: for every p; € P* do

9: Gje{wEPUE:xQBpj\I‘;?rt}

10:  for every i,¢ € {1,2,...,|L|} do

11: if L;, Ly € G; and ryy € S,, then {(i,7') is a right-crossing pair of G}

12: if LI does not dominate all elements of G; then D(j,i,i') « L

13: else Compute D(j,i,i) by Lemma [24] {by calling Algorithms [1| and

14: return D(|P|,|L]|,|L]) \ {L1, Lz}

clearly dominates the set J a<k<qg N (pk). Moreover every hovering vertex of p, and of py must be
dominated by Zp« o or by the set {L., L., Ly, Ly }. Therefore {L,, L., Ly, L,y } must dominate
the set (H(pg) U H () \ (Uperey No1))-

Now note that the sets D(q, 2, 2'), Zp« 2, and RD¢(y j)(w,w',4,4") are mutually disjoint. Fur-
thermore, it follows by Eq. and that

|D(q,2,2")| + | Zp+ 2| + |RDgg jy(w,w',i,i')| < |Z1| + | Zp- o] + | Ze 2]
= |Zg1UZpa| + | Zpeo| + 1202 (18)
= 1Z| =|D(j,4,1)].

Therefore |D(q,z,2") U Zp+ 3 U RDg(y jy(w,w',i,7')| < |D(j,i,i)]. On the other hand, since
Zp«y =A{pr € P* : q <k < ¢} by Eq. , Lemma [23| implies that, if D(q,z2,2') # L and
RDg¢(q j)(w,w',i,i") # L, then D(q, z,2') U Zp« 2 U RD¢(y j)(w,w',4,4") is a normalized dominat-
ing set of G;, in which (i,4’) is its end-pair. Therefore

|D(]>Z72/)| < }D(% 2y Z/) U Z'P*,2 U RDG(q’,j)(wvw,a i, Z/)‘ . (19)

The lemma follows by Eq. and . ]

We are now ready to present Algorithm [3| which, given a canonical horizontal shadow represen-
tation (P, L) of a connected tolerance graph G, computes a (normalized) minimum dominating set
D of G. The correctness of Algorithm [3]is proved in Theorem

Theorem 5 Given a canonical horizontal shadow representation (P,L) of a connected tolerance
graph G with n vertices, Algom'thm@ computes in O(n'®) time a (normalized) minimum dominating

set D of G.

Proof. In the first line, Algorithm [3] augments the given canonical horizontal shadow represen-
tation (P, L) by adding to £ the dummy line segments Ly and Ligj1 (with endpoints Iy, ro and
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Uejs1 g1 respectively) such that all elements of P UL are contained in A,, and in Bl\am'
Furthermore, in the second line, the algorithm further augments the set of points P by adding to
it the dummy point p;p|4; such that all elements of P U L' are contained in Bppiiy - In lines
and |4 the algorithm renumbers the elements of the sets P and £ such that P = {p1,po,... , D|P)
and £ = {L1, La, ..., Lz}, where in this new enumeration the point pp| is dummy and the line
segments Ly and Lz are dummy as well. In lines [5{9 the algorithm computes the subset P* C P
(cf. Eq. (10)), all feasible subsets X (a,b) € P U L (cf. Eq. (2) in Section[5.2)), and all sets G;, where
pj € P* (cf. Eq. )

The main computations of the algorithm are performed in lines which are executed for
every point p; € P* and for every right-crossing pair (7,7") of the set G;. In line [12] the algorithm
checks whether Ciezf,t dominates all elements of G;. If it is not the case, it correctly computes

D(j,i,i") = L by Observation |9, Otherwise, if Eiezf,t is a dominating set of G, then the algorithm
computes in line (13| the value of D(j,4,4") with the recursive formula of Lemma Note that, to
compute all the necessary values for this recursive formula, Algorithm [3] needs to call Algorithms
and [2 as subroutines, cf. Lemma

Once all values D(j,1,7") have been computed, the set D(|P|,|L],|L£]) is a minimum normalized
dominating set of Gp| whose end-pair is (|£], |£[), cf. Definition Recall that pjp| ¢ Gp, ie.,
Gp| = (P\{pp|})UL. Therefore, since the two dummy line segments are isolated, they must belong
to the dominating set D(|P|, |L[,|L]) of G|p|. Thus the algorithm correctly returns in line [14] the
value D(|P|,[L],|£]) \ {L1, Lz} as a minimum normalized dominating set for the input tolerance
graph G.

Regarding the running time of Algorithm [3] first note that the execution time of lines is
dominated by the computation of the set P* in line [5} this can be done in at most O(n?) time,
since we check in the worst case for every two points p,p’ € P whether p € H(p'). Due to the
for-loop of line @, line @ is executed at most O(n3) times. Furthermore recall by Eq. and
that, for every pair (a,b) € A x B, the vertex set X (a,b) can be computed in O(n) time. Therefore,
lines are executed in O(n?*) time. Due to the for-loop of line|8] the lines [9{13| are executed O(n)
times, since there are at most O(n) points in the set P*. For every fixed p; € P*, line |§| can be
trivially executed in O(n) time. For every fixed p; € P*, the lines are executed O(n?) times,
due to the for-loop of line Furthermore, for every fixed triple (4,4,4’), line [L1] can be executed
in constant time and line an be easily executed in O(n?) time.

It remains to upper bound the execution time of line [L3| using Lemma Before we execute
line for the first time, we perform two preprocessing steps. In the first preprocessing step we
compute, for each of the O(n) possible values for j, the graph G; in O(n) time (cf. Eq. ) and
then we compute by Algorithm n O(n?) time the values BDg,(l1,b,1,1, i') for every feasible pair
(i,1"), cf. Theorem [3| in Section [5} That is, we compute in the first preprocessing step the values
BDg,(l1,b,1,i,4") for every triple (j,i,i') in O(n'%) time. In the second preprocessing step we
compute, for each of the O(n%) possible values for ¢/, j,w,w’, 4,4, the graph G(¢’,5) in O(n) time
(cf. Eq. ) and then we compute by Algorithm [2{in O(n?) time the values RDg(y ) (w, w', i,i'),
cf. Theorem [ in Section [6] That is, we compute in the second preprocessing step all values
RD¢(y jy(w,w',4,7') in O(n'®) time.

Consider a fixed value for the triple (j,4,4"). Then there exist O(n) feasible values for ¢/,
cf. Conditions 1 and 2 of Lemma Furthermore there exist O(n?) feasible values for the pair
(z,2'), cf. Condition 4 of Lemma Once the values of ¢, z, 2/ have been chosen, we can compute
in O(n) time the value of ¢, cf. Conditions 5 and 6 of Lemma Furthermore, once the values
of ¢ and ¢ have been chosen, we can check Condition 7 of Lemma in O(n?) time. Thus,
given a fixed value for the triple (j,4,i'), we can compute in O(n®) time the sets D(q,z,2') U
{pr € P*:q <k < '}, for all feasible values of the triples (q,z,2’). Moreover, for each of the
O(n?) feasible pairs (w,w’) (cf. Condition 3 of Lemma we can compute in O(n) time the set
D(q,2z,2")U{pr € P*: q <k < ¢} URDgy j)(w,w',i,i’), cf, Lemma That is, for a fixed value
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of the triple (j,4,i'), we can compute all these sets in O(n®) time, and thus we can compute all
values of D(j,,4') in O(n'!) time.

Summarizing, the running time of the algorithm is dominated by the two preprocessing steps for
computing in advance all values BDg;(l1,b,1,4,i") and RD¢ gy jy(w,w’,4,i"), and thus the running
time of Algorithm [3|is O(n'®). =

8 Concluding Remarks

In this paper we introduced two new geometric representations for tolerance and multitolerance
graphs, called the horizontal shadow representation and the shadow representation, respectively.
Using these new representations we first proved that the dominating set problem is APX-hard
on multitolerance graphs and then we provided a polynomial time algorithm for this problem on
tolerance graphs, thus answering to a longstanding open question. Therefore, given the (seemingly)
small difference between the definition of tolerance and multitolerance graphs, this dichotomy result
appears to be surprising.

The two new representations have the potential for further exploitation via sweep line algo-
rithms. For example, using the shadow representation, it is not very difficult to design a polyno-
mial sweep line algorithm for the independent dominating set problem, even on the larger class of
multitolerance graphs. In particular, although the complexity of the dominating set problem has
been established in this paper for both tolerance and multitolerance graphs, an interesting research
direction would be to use these new representations also for other related problems, e.g., for the
connected dominating set problem. A major open problem in tolerance and multitolerance graphs
is to establish the computational complexity of the Hamiltonicity problems. We hope that the two
new geometric representations can provide new insights also for these problems.

Our algorithm for tolerance graphs is highly non-trivial and its running time is upper-bounded
by O(n'?), where n is the number of vertices in the input tolerance graph. Using more sophisticated
data structures our algorithm could run slightly faster. As our main aim in this paper was to estab-
lish the first polynomial-time algorithm for this problem, rather than finding an optimized efficient
algorithm, an interesting research direction is to explore to what extend the running time can be
reduced. The existence of a practically efficient polynomial-time algorithm for the dominating set
problem on tolerance graphs remains widely open.

Acknowledgments. The second author wishes to thank Steven Chaplick for insightful initial
discussions.
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