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Abstract. A graph is H-free if it has no induced subgraph isomorphic
to H. We continue a study into the boundedness of clique-width of
subclasses of perfect graphs. We identify five new classes of H-free split
graphs whose clique-width is bounded. Our main result, obtained by
combining new and known results, provides a classification of all but
two stubborn cases, that is, with two potential exceptions we determine
all graphs H for which the class of H-free split graphs has bounded
clique-width.
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1 Introduction

Clique-width is a well-studied graph parameter; see for example the surveys of
Gurski [25] and Kamiński, Lozin and Milanič [27]. A graph class is said to be of
bounded clique-width if there is a constant c such that the clique-width of every
graph in the class is at most c. Much research has been done identifying whether
or not various classes have bounded clique-width [1–3,5–11,15–19,23,29–32]. For
instance, the Information System on Graph Classes and their Inclusions [20]
maintains a record of graph classes for which this is known. In a recent series of
papers [3,16,19] the clique-width of graph classes characterized by two forbidden
induced subgraphs was investigated. In particular we refer to [19] for details
? An extended abstract of this paper appeared in the proceedings of EuroComb 2015 [4].
The research in this paper was supported by EPSRC (EP/K025090/1). The third
author is grateful for the generous support of the Graduate (International) Research
Travel Award from Simon Fraser University and Dr. Pavol Hell’s NSERC Discovery
Grant.



on how new results can be combined with known results to give a classification
for all but 13 open cases (up to an equivalence relation). Similar studies have
been performed for variants of clique-width, such as linear clique-width [26] and
power-bounded clique-width [2]. Moreover, the (un)boundedness of the clique-
width of a graph class seems to be related to the computational complexity of
the Graph Isomorphism problem, which has in particular been investigated
for graph classes defined by two forbidden induced subgraphs [28,33]. Indeed, a
common technique (see e.g. [27]) for showing that a class of graphs has unbounded
clique-width relies on showing that it contains simple path encodings of walls or
of graphs in some other specific graph class known to have unbounded clique-
width. Furthermore, Grohe and Schweitzer [24] recently proved that Graph
Isomorphism is polynomial-time solvable on graphs of bounded clique-width.

In this paper we continue a study into the boundedness of clique-width of
subclasses of perfect graphs. Clique-width is still a very difficult graph parameter
to deal with. For instance, deciding whether or not a graph has clique-width at
most c for some fixed constant c is only known to be polynomial-time solvable if
c ≤ 3 [13], but is a long-standing open problem for c ≥ 4. Our long-term goal
is to increase our understanding of clique-width. To this end we aim to identify
new classes of bounded clique-width. In order to explain some previously known
results, along with our new ones, we first give some terminology.

Terminology. For two vertex-disjoint graphs G and H, the disjoint union
(V (G) ∪ V (H), E(G) ∪ E(H)) is denoted by G+H and the disjoint union of r
copies of G is denoted by rG. The complement of a graph G, denoted by G, has
vertex set V (G) = V (G) and an edge between two distinct vertices if and only if
these vertices are not adjacent in G. If G = V,E) is a graph then for a subset
S ⊆ V , we let G[S] denote the induced subgraph of G, which has vertex set S
and edge set {uv | u, v ∈ S, uv ∈ E}. For two graphs G and H we write H ⊆i G
to indicate that H is an induced subgraph of G. The graphs Cr,Kr,K1,r−1
and Pr denote the cycle, complete graph, star and path on r vertices, respectively.
The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is the
tree that has only one vertex x of degree 3 and exactly three leaves, which are
of distance h, i and j from x, respectively. For a set of graphs {H1, . . . ,Hp},
a graph G is (H1, . . . ,Hp)-free if it has no induced subgraph isomorphic to a
graph in {H1, . . . ,Hp}. The bull is the graph with vertices a, b, c, d, e and edges
ab, bc, ca, ad, be; the dart is the graph obtained from the bull by adding the edge bd
(see Fig. 1).

A graph G is perfect if, for every induced subgraph H ⊆i G, the chromatic
number of H equals its clique number. By the Strong Perfect Graph Theorem [12],
a graph G is perfect if and only if both G and G are (C5, C7, C9, . . .)-free. A
graph G is chordal if it is (C4, C5, . . .)-free and weakly chordal if both G and G
are (C5, C6, . . .)-free. Every split graph is chordal, every chordal graph is weakly
chordal and every weakly chordal graph is perfect.

Known Results on Subclasses of Perfect Graphs. We start off with the
following known theorem, which shows that the restriction of H-free graphs to
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bull dart

Fig. 1. The bull and the dart.

H-free weakly chordal graphs does not yield any new graph classes of bounded
clique-width, as both classifications are exactly the same.

Theorem 1 ([3,19]). Let H be a graph. The class of H-free (weakly chordal)
graphs has bounded clique-width if and only if H is an induced subgraph of P4.

Motivated by Theorem 1 we investigated classes of H-free chordal graphs in
an attempt to identify new classes of bounded clique-width and as a (successful)
means to find reductions to solve more cases in our classification for (H1, H2)-free
graphs. This classification for classes of H-free chordal graphs is almost complete
except for two cases, which we call F1 and F2 (see Fig. 2 for a definition).

Theorem 2 ([3]). Let H be a graph not in {F1, F2}. The class of H-free chordal
graphs has bounded clique-width if and only if

• H = Kr for some r ≥ 1;
• H ⊆i bull;
• H ⊆i P1 + P4;
• H ⊆i P1 + P4;
• H ⊆i K1,3 + 2P1;
• H ⊆i P1 + P1 + P3;
• H ⊆i P1 + 2P1 + P2 or
• H ⊆i S1,1,2.

In contrast to chordal graphs, the classification for bipartite graphs, another
class of perfect graphs, is complete. This classification was used in the proof of
Theorem 2 and it is similar to a characterization of Lozin and Volz [31] for a
different variant of the notion of H-freeness in bipartite graphs (see [18] for an
explanation of the difference between H-free bipartite graphs and the so-called
strongly H-free bipartite graphs considered in [31]).

Theorem 3 ([18]). Let H be a graph. The class of H-free bipartite graphs has
bounded clique-width if and only if

• H = sP1 for some s ≥ 1;
• H ⊆i K1,3 + 3P1;
• H ⊆i K1,3 + P2;
• H ⊆i P1 + S1,1,3 or
• H ⊆i S1,2,3.
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Our Results. We consider subclasses of split graphs. A graph G = (V,E) is a
split graph if it has a split partition, that is, a partition of V into two (possibly
empty) sets K and I, where K is a clique and I is an independent set. The class of
split graphs coincides with the class of (2K2, C4, C5)-free graphs [22] and is known
to have unbounded clique-width [32]. As with the previous graph classes, we
forbid one additional induced subgraph H. We aim to classify the boundedness of
clique-width for H-free split graphs and to identify new graph classes of bounded
clique-width along the way. Theorem 2 also provides motivation, as it would be
useful to know whether or not the clique-width of H-free split graphs is bounded
when H = F1 or H = F2 (the two missing cases for chordal graphs; recall that
chordal graphs form a superclass of split graphs). We give affirmative answers
for both of these cases. It should be noted that, for any graph H the class of
H-free split graphs has bounded clique-width if and only if the class of H-free
split graphs has bounded clique-width (see also Lemma 5). As such our main
result shows that there are only two open cases (see Figs. 2 and 3 for illustrations
of the graphs referred to in the theorem).

Theorem 4. Let H be a graph such that neither H nor H is in {F4, F5}. The
class of H-free split graphs has bounded clique-width if and only if
• H or H is isomorphic to rP1 for some r ≥ 1;
• H or H ⊆i bull +P1;
• H or H ⊆i F1;
• H or H ⊆i F2;
• H or H ⊆i F3;
• H or H ⊆i Q or
• H or H ⊆i K1,3 + 2P1.

rP1 for r = 4 bull +P1 F1

F2 F3 Q K1,3 + 2P1

Fig. 2. The graphs H from Theorem 4 for which the classes of H-free split graphs and
H-free split graphs have bounded clique-width.
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F4 F5

Fig. 3. The (only) two graphs for which it is not known whether or not the classes of
H-free split graphs and H-free split graphs have bounded clique-width.

In Section 3 we prove each of the bounded cases in Theorem 4. These proofs
use results from the literature, which we state in Section 2, together with some
other preliminaries. In particular, we will exploit the close relationship between
H-free split graphs and so-called weakly H`-free bipartite graphs (see the next
section for a definition). This enables us to apply Theorem 8 (a variant of
Theorem 3; both these theorems were proved in [18]) after first transforming a
split graph into a bipartite graph by removing the edges of the clique (this has
to be done carefully, as a graph may have multiple split partitions).

In Section 4 we prove Theorem 4. We show that if the class of H-free split
graphs has bounded clique-width then H or H must be an independent set or
an induced subgraph of F4 or F5. Both of these graphs have seven vertices. The
six-vertex induced subgraphs of F4 are: bull +P1, F1, F3 and K1,3 + 2P1. The
six-vertex induced subgraphs of F5 are: bull +P1, F1, F2, F2, F3, F3 and Q. These
graphs and their complements are precisely the cases listed in Theorem 4 (and
for which we prove boundedness in Section 3). Hence, we can also formulate our
main theorem as follows.

Theorem 4 (alternative formulation). Let H be a graph such that neither H
nor H is in {F4, F5}. The class of H-free split graphs has bounded clique-width
if and only if
• H or H is isomorphic to rP1 for some r ≥ 1;
• H or H ⊆i F4 or
• H or H ⊆i F5.

2 Preliminaries

We only consider graphs that are finite, undirected and have neither multiple
edges nor self-loops. In this section we define some more graph terminology,
additional notation and give some known lemmas from the literature that we
will need to prove our results. We refer to the textbook of Diestel [21] for any
undefined terminology.

Let G = (V,E) be a graph. The set N(u) = {v ∈ V | uv ∈ E} is the
neighbourhood of u ∈ V . The degree of a vertex u ∈ V in G is the size |N(u)| of
its neighbourhood. Let S, T ⊆ V with S∩T = ∅. Then S is complete to T if every
vertex in S is adjacent to every vertex in T , and S is anti-complete to T if every
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vertex in S is non-adjacent to every vertex in T . Similarly, a vertex v ∈ V \ T
is complete or anti-complete to T if it is adjacent or non-adjacent, respectively,
to every vertex of T . A set M of vertices is a module if every vertex not in M
is either complete or anti-complete to M . A module of G is trivial if it contains
zero, one or all vertices of G, otherwise it is non-trivial. A graph G is prime if
every module in G is trivial. We say that a vertex v distinguishes two vertices x
and y if v is adjacent to precisely one of x and y. Note that if a set M ⊆ V is
not a module then there must be vertices x, y ∈M and a vertex v ∈ V \M such
that v distinguishes x and y.

In a partially ordered set (P,≤), two elements p, q ∈ P are comparable if
p ≤ q or q ≤ p, otherwise they are incomparable. A set X ⊆ P is a chain if the
elements of X are pairwise comparable.

2.1 Clique-Width

The clique-width of a graph G, denoted cw(G), is the minimum number of labels
needed to construct G by using the following four operations:

1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labelled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 6= j);
4. renaming label i to j.

A class of graphs G has bounded clique-width if there is a constant c such
that the clique-width of every graph in G is at most c; otherwise the clique-width
of G is unbounded.

Let G be a graph. We define the following operations. For an induced subgraph
G′ ⊆i G, the subgraph complementation operation (acting on G with respect
to G′) replaces every edge present in G′ by a non-edge, and vice versa. Similarly,
for two disjoint vertex subsets S and T in G, the bipartite complementation
operation with respect to S and T acts on G by replacing every edge with one
end-vertex in S and the other one in T by a non-edge and vice versa.

We now state some useful facts about how the above operations (and some
other ones) influence the clique-width of a graph. We will use these facts through-
out the paper. Let k ≥ 0 be a constant and let γ be some graph operation. We
say that a graph class G′ is (k, γ)-obtained from a graph class G if the following
two conditions hold:

(i) every graph in G′ is obtained from a graph in G by performing γ at most k
times, and

(ii) for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant k
and any graph class G, any graph class G′ that is (k, γ)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [29].
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Fact 2. Subgraph complementation preserves boundedness of clique-width [27].
Fact 3. Bipartite complementation preserves boundedness of clique-width [27].

Combining the fact that the complement of any split graph is split with Fact 2
leads to the following lemma.

Lemma 5. For any graph H, the class of H-free split graphs has bounded clique-
width if and only if the class of H-free split graphs has bounded clique-width.

We will also need the following two results.

Lemma 6 ([14]). If P is the set of all prime induced subgraphs of a graph G
then cw(G) = maxH∈P cw(H).

Lemma 7 ([32]). The class of split graphs has unbounded clique-width.

2.2 Bipartite Graphs

A graph is bipartite if its vertex set can be partitioned into two (possibly empty)
independent sets. Let H be a bipartite graph. A black-and-white labelling ` of H
is a labelling that assigns, to each vertex of H, either the colour “black” or the
colour “white,” such that the two resulting monochromatic colour classes B`

H

and W `
H form a bipartition of VH into two (possibly empty) independent sets. We

say that H is a labelled bipartite graph if we are also given a fixed black-and-white
labelling. We denote a graph H with such a labelling ` by H` = (B`

H ,W
`
H , EH).

It is important to note that the pair (B`
H ,W

`
H) is ordered, that is, (B`

H ,W
`
H , EH)

and (W `
H , B

`
H , EH) are different labelled bipartite graphs.

Let H`1
1 and H`2

2 be two labelled bipartite graphs. We say that H`1
1 and H`2

2
are isomorphic if there exists a label-preserving isomorphism from H1 to H2,
that is, if there exists an isomorphism f : VH1 → VH2 such that for all u ∈ VH1 ,
it holds that u ∈ W `1

H1
if and only if f(u) ∈ W `2

H2
(note that this implies that

the (unlabelled) graphs H1 and H2 are isomorphic). The labellings `1 and `2
are then said to be isomorphic labellings. We say that H`1

1 is a labelled induced
subgraph of H`2

2 if H1 ⊆i H2, B`1
H1
⊆ B`2

H2
and W `1

H1
⊆ W `2

H2
. We denote this

by H`1
1 ⊆li H

`2
2 . Note that the two labelled bipartite graphs H`1

1 and H`2
2 are

isomorphic if and only if H`1
1 ⊆li H

`2
2 and H`1

2 ⊆li H
`2
1 .

If H is a bipartite graph with a labelling `, we let ` denote the “opposite”
labelling labelling to `, namely the labelling obtained from ` by reversing the
colours. If H is a bipartite graph with the property that among all its black-
and-white labellings, all those that maximize the number of black vertices are
isomorphic, then we pick one such labelling and call it b. If such a unique
labelling b does exist, we let b denote the opposite labelling to b.

Let G be an (unlabelled) bipartite graph, and let H` be a labelled bipartite
graph. Then G is weakly H`-free if there is a labelling `∗ of G such that G`∗ does
not contain H` as a labelled induced subgraph. Similarly, let {H`1

1 , . . . ,H
`p
p } be

a set of labelled bipartite graphs. Then G is weakly (H`1
1 , . . . ,H

`p
p )-free if there is
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a labelling `∗ of G such that G`∗ does not contain any graph in {H`1
1 , . . . ,H

`p
p }

as a labelled induced subgraph.
Example. The two non-isomorphic labelled bipartite graphs corresponding to P1
are shown in Fig. 4. Every edgeless graph is weakly P b

1 -free and weakly P b
1 -free

(simply label all the vertices white or all the vertices black, respectively). However,
if a bipartite graph is weakly (P b

1 , P
b
1 )-free then it cannot contain any vertices.

Hence, a bipartite graph can be weakly H`1
1 -free, . . ., weakly H`p

p -free, while not
being weakly (H`1

1 , . . . ,H
`p
p )-free.

P b
1 P b

1

Fig. 4. The two pairwise non-isomorphic labellings of P1.

For a more in-depth discussion of weakly H`-free bipartite graphs we refer to [18].
In this paper we will make use of the following theorem (see also Fig. 5).
Theorem 8 ([18]). Let H` be a labelled bipartite graph. The class of weakly H`-
free bipartite graphs has bounded clique-width if and only if one of the following
cases holds:
• H` or H` = (sP1)b for some s ≥ 1;
• H` or H` ⊆li (P1 + P5)b;
• H` ⊆li (P2 + P4)b or
• H` ⊆li (P6)b.

(sP1)b for s = 5 (P1 + P5)b (P2 + P4)b (P6)b

Fig. 5. The labelled bipartite graphs from Theorem 8.

Similarly to the way that a bipartite graph can have multiple labellings, a
split graph G may have multiple split partitions, say (K1, I1) and (K2, I2). We
say that two such split partitions are isomorphic if there is an isomorphism
f : V (G)→ V (G) of G such that u ∈ K1 if and only if f(u) ∈ K2. Let G and H
be split graphs with split partitions (KG, IG) and (KH , IH), respectively. Then
(KG, IG) contains (KH , IH) if H ⊆i G, KH ⊆ KG and IH ⊆ IG. We will explore
the properties of split partitions in the proof of Lemma 15.
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3 Proofs of the Bounded Cases in Theorem 4

In this section we show that the clique-width of each of the seven classes of
H-free graphs given in Theorem 4 is bounded. We start with the case H = rP1,
for which we give an explicit bound.12

Theorem 9. For any r ≥ 1, the class of rP1-free split graphs has clique-width
at most r + 1.

Proof. Let H = rP1 for some r ≥ 1 and let G be an H-free split graph with split
partition (K, I). It follows that |I| < r. In this case it is easy to see that the
clique-width of G is at most r+ 1: We introduce the (at most r− 1) vertices of I
with distinct labels. We use one more label for “new” vertices of K and one more
label for “processed” vertices of K. We then add each vertex of K one-by-one,
labelling it with the “new” label, and immediately connect it to all the already
“processed” vertices of K, along with any relevant vertices of I, after which we
relabel the new vertex to be “processed.” ut

We now consider the cases H = bull +P1 and H = Q. In order to prove these
two cases we apply Theorem 8 for the first time.

Theorem 10. The class of (bull +P1)-free split graphs and the class of Q-free
split graphs have bounded clique-width.

Proof. Let H be bull +P1 or Q and let H`
0 be the labelled bipartite graph

(P1 + P5)b or (P2 + P4)b, respectively. Suppose G is an H-free split graph and
fix a split partition (K, I) of V (G). Let G′ be the graph obtained from G by
applying a complementation to G[K]. By Fact 2, we need only show that G′ has
bounded clique-width. Now G′ is a bipartite graph with bipartition (K, I). If we
label the vertices of K white and the vertices of I black, then we find that G′
is a weakly H`

0-free bipartite graph and therefore has bounded clique-width by
Theorem 8. ut

The next theorem follows from Theorem 2 and Lemma 5 (recall that every
split graph is chordal). However, the proof of the corresponding case for chordal
graphs is much more complicated. In light of this, and to make this paper more
self-contained, we include a (much simpler) direct proof for this case.2

1 For the other bounded cases we do not specify any upper bounds. This would
complicate our proofs for negligible gain, as our primary goal is to show boundedness.
Moreover, in our proofs we apply graph operations that may exponentially increase
the upper bound on the clique-width, which means that any bounds obtained from
our proofs would be very large and far from being tight. Furthermore, we make use
of other results that do not give explicit bounds.

2 Note that the boundedness in Theorems 9 and 11 also follows from Lemma 5 and
Theorem 2, combined with the fact that every split graph is chordal. However, the
proof of Theorem 2 in [3] relies on results from this paper. We therefore prove all the
results in this paper without relying on Theorem 2 or any other results from [3].
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Theorem 11. The class of (K1,3 + 2P1)-free split graphs has bounded clique-
width.

Proof. Let G be a (K1,3 + 2P1)-free split graph and fix of a partition of its
vertices into a clique K and an independent set I. If |I| ≤ 5 then G is 7P1-free
(at most one vertex of any independent set in G can belong to K), in which
case we are done by Theorem 9. We therefore assume that |I| ≥ 6. Since G is
(K1,3 + 2P1)-free, every vertex in K has either at most two neighbours in I or
at most one non-neighbour in I. Let K ′ be the set of vertices in K that have
exactly two neighbours in I. Suppose x, y ∈ K ′ and let w and w′ be the two
neighbours of x in I and let z and z′ be two common non-neighbours of x and y
in I (which exist since |I| ≥ 6). Then one of y’s neighbours in I must be w or w′
otherwise G[{x, y, w,w′, z, z′}] would be a K1,3 + 2P1, a contradiction.

If K ′ is is non-empty, choose x ∈ K ′ arbitrarily and delete both neighbours
of x in I (we may do this by Fact 1) to obtain a graph G′. Now every vertex
of K ′ has at most one neighbour in I ′ = I ∩ V (G′) in the graph G′. (If K ′ was
already empty, then we set G′ = G, I ′ = I.) In the graph G′ every vertex in K
has either at most one neighbour or at most one non-neighbour in I ′. Let K ′′
be the set of vertices that have more than one neighbour in I ′. By Fact 3, we
may apply a bipartite complementation between K ′′ and I ′ to obtain a graph G′′
in which every vertex of K has at most one neighbour in I ′. Finally apply a
complementation to the set K (we may do this by Fact 2). The resulting graph
is a disjoint union of stars, so it has clique-width at most 2. This completes the
proof. ut

It remains to prove that the class of Fi-free graphs has bounded clique-width
for i ∈ 1, 2, 3. We do this in Theorems 12–14.

Theorem 12. The class of F1-free split graphs has bounded clique-width.

Proof. Let G be an F1-free split graph. Fix a split partition (K, I) of G. By
Lemma 6, we may assume that G is prime. If G contains an induced bull (see
Fig. 1) that has three vertices in K and two in I, we say that this bull is special.

First suppose that G does not contain 18 vertex-disjoint special bulls. By
Fact 1, we may delete at most 5× 17 = 85 vertices from G to obtain a split graph
with no special bulls. Since the resulting graph contains no special bulls, it must
be Q-free, and therefore has bounded clique-width by Theorem 10.

We may therefore assume that G contains 18 vertex-disjoint special bulls,
B1, . . . , B18, say. For h ∈ {1, . . . , 18}, let Jh = {j1,h, j2,h, j3,h} = K ∩ V (Bh) and
Ih = {i1,h, i2,h} = I ∩ V (Bh). In the remainder of the proof, we will show that G
must contain a non-trivial module, contradicting the fact that G is prime.

We first state the following two observations, both of which follow directly
from the fact that G is an F1-free split graph.

Observation 1. If s, t ∈ I have two common non-neighbours in K then N(s) ⊆
N(t) or N(t) ⊆ N(s).
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Observation 2. Every x ∈ I has a non-neighbour in Jh for every h.

Consider the special bulls B1 and B2. By Observation 2, every vertex in I must
have a non-neighbour in J1 and a non-neighbour in J2. Let Ii,j denote the set of
vertices in I that are non-adjacent to both ji,1 and jj,2, for i, j ∈ {1, 2, 3}. (Note
that every vertex of I must be in at least one set Ii,j , but it may be in more than
one such set.) By Observation 1, for any two vertices s, t in any set Ii,j either
N(s) ⊆ N(t) or N(t) ⊆ N(s).

Since G is prime, no two vertices of I have the same neighbourhood. We may
therefore define a partial order ≤N on I: given two vertices s, t ∈ I, we say that
s ≤N t if N(s) ⊆ N(t). Note every set Ii,j is a chain under this partial order,
so I can be covered by at most nine chains.

We rename the sets Ii,j to be S1, . . . , Sp, in an arbitrary order, deleting any
sets Ii,j that are empty, so p ≤ 9. For i ∈ {1, . . . , p}, let si be the maximum
element of Si (under the ≤N ordering). From the definition of the sets Ii,j it
follows that for k ∈ {1, . . . , p}, Sk = {x ∈ I | N(x) ⊆ N(sk)}. If there are distinct
i, j such that N(si) ⊆ N(sj) then Si ⊆ Sj , so we may delete the set Si from
the set of chains Sk that we consider and every vertex of I will still be in some
set Sk. In other words, we may assume that S1, . . . , Sq are chains under the ≤N

ordering, with maximal elements s1, . . . , sq, respectively, where q ≤ p ≤ 9 and
every pair si, sj is incomparable under the ≤N ordering. (Note that q ≥ 2, since
i1,1, i2,1 ∈ V (B1) have incomparable neighbourhoods.)

By Observation 2, for each i ∈ {1, . . . , q}, the vertex si must be non-adjacent
to at least one vertex in each of J1, . . . , J18, so it must have at least 18 non-
neighbours in K. Let Xi be the set of vertices in K that are non-adjacent to si

and note that since si is maximum in Si, the set Xi is anti-complete to Si.
Since for i ∈ {2, . . . , q} the vertices si and s1 are incomparable, it follows

that si is adjacent to all but at most one vertex of X1 (by Observation 1).
Therefore, there is a subset X ′1 ⊆ X1 with |X ′1| ≥ 18− 8 = 10 such that X ′1 is
complete to {s2, . . . , sq}, so X ′1 ⊆ N(si) \N(s1) for i ∈ {2, . . . , q}.

Claim 1. For i ∈ {2, . . . , q} there is a vertex zi ∈ K such that every vertex in Si

is either complete or anti-complete to N(si) \ (N(s1) ∪ {zi}).

We prove Claim 1 as follows. Let t be the smallest (with respect to ≤N ) vertex
in Si that has a neighbour, say w, in N(si) \ N(s1). Any vertex s ∈ Si with
s <N t is anti-complete to N(si)\N(s1). Now t 6≤N s1, since w is not a neighbour
of s1 and s1 6≤N t, since t ≤N si and s1 6≤N si. By Observation 1, N(t) ∪N(s1)
contains all but at most one vertex ofK. If there is a vertex zi ∈ K\(N(t)∪N(s1))
then t is complete to N(si) \ (N(s1) ∪ {zi}) (if there is no such vertex then we
choose zi ∈ K arbitrarily, and the same conclusion holds). If s ∈ Si and t ≤N s
then N(s) ⊇ N(t) ⊇ N(si) \ (N(s1)∪ {zi}), as desired. This completes the proof
of Claim 1.

Recall that for i ∈ {2, . . . , q}, X ′1 ⊆ N(si)\N(s1). Let X ′′1 = X ′1 \{z2, . . . , zq}
(where z2, . . . , zq are defined as in Claim 1 above). Then |X ′′1 | ≥ 10− 8 = 2 and
every vertex in I is either complete or anti-complete to X ′′1 . Therefore X ′′1 is a
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non-trivial module of G, contradicting the fact that G is prime. This completes
the proof. ut

Theorem 13. The class of F2-free split graphs has bounded clique-width.

Proof. Let G be an F2-free split graph. Fix a split partition (K, I) of G. By
Lemma 6, we may assume that G is prime. If G contains an induced Q (see
Fig. 2) it must have three vertices in K and three in I (since Q has a unique
split partition).

First suppose that G does not contain two vertex-disjoint copies of Q. By
Fact 1, we may delete at most six vertices from G to obtain a Q-free split graph.
By Theorem 10, the resulting graph (and thus G) has bounded clique-width.

We may therefore assume that G contains two vertex-disjoint copies of Q,
say Q1 and Q2. For h ∈ {1, 2}, let Jh = {j1,h, j2,h, j3,h} = K ∩ V (Qh) and Ih =
{i1,h, i2,h, i3,h} = I∩V (Qh), where E(Qh) = {i1,hj1,h, i2,hj2,h, i3,hj2,h, i3,hj3,h}∪
{j1,hj2,h, j1,hj3,h, j2,hj3,h}.

We say that two vertices s, t ∈ I have comparable neighbourhoods if N(s) ⊆
N(t) or N(t) ⊆ N(s). Otherwise we say that s and t have incomparable neigh-
bourhoods.

Claim 1. Suppose s, t ∈ I have a common non-neighbour u ∈ K. If s and t have
incomparable neighbourhoods then |N(s) \N(t)| = |N(t) \N(s)| = 1.

We proof Claim 1 as follows. Since s and t have incomparable neighbourhoods,
there must be a vertex v ∈ N(s) \ N(t) and a vertex w ∈ N(t) \ N(s). Sup-
pose, for contradiction, that there is another vertex w′ ∈ N(t) \ N(s). Then
G[{s, t, u, v, w,w′}] is an F2. This contradiction completes the proof of Claim 1.

The vertices i1,1 and i3,1 cannot have a common non-neighbour t ∈ K, otherwise
G[{i1,1, i3,1, j1,1, j2,1, j3,1, t}] would be an F2. It follows that:

N(i1,1) ∪N(i3,1) = K. (1)

Next, by Claim 1, since i1,1 and i2,1 have incomparable neighbourhoods and a
common non-neighbour in K, namely j3,1 it follows that:

N(i1,1) = (N(i2,1) \ {j2,1}) ∪ {j1,1}. (2)

Combining (1) and (2), we conclude that:

K \ {j1,1} ⊆ N(i2,1) ∪N(i3,1). (3)

Now i2,1 and i3,1 have a common non-neighbour, namely j1,1. Note that j3,1 ∈
N(i3,1) \ N(i2,1). By Claim 1 it follows that either N(i2,1) ⊆ N(i3,1) (if i2,1
and i3,1 have comparable neighbourhoods) or N(i3,1) \ {j3,1} ⊂ N(i2,1) (if they
do not). This means that K \ {j1,1, j3,1} is a subset of N(i2,1) or N(i3,1). In
particular, i2,1 or i3,1, respectively, is complete to J2 ⊂ K. Then this vertex,
together with J2, i1,2 and i3,2 induces an F2 in G. This contradiction completes
the proof. ut

12



Theorem 14. The class of F3-free split graphs has bounded clique-width.

Proof. Let G be an F3-free split graph. Fix a split partition (K, I) of G. By
Lemma 6, we may assume that G is prime. If G contains an induced dart (see
Fig. 1) which has has three vertices in K and two in I, we say that this dart is
special.

First suppose that G does not contain 19 vertex-disjoint special darts. By
Fact 1, we may delete at most 5× 18 = 90 vertices from G to obtain a split graph
with no special dart. Since the resulting graph contains no special copies of the
dart, it must be Q-free, and therefore has bounded clique-width by Theorem 10.

We may therefore assume that G contains 19 vertex-disjoint special darts,
D1, . . . , D19, say. For h ∈ {1, . . . , 19}, let Jh = {j1,h, j2,h, j3,h} = K ∩V (Dh) and
Ih = {i1,h, i2,h} = I ∩ V (Dh). We will use the following claim.

Claim 1. If i, j ∈ {1, . . . , 19} then every vertex of Ii has at least one neighbour
and at least one non-neighbour in Jj.

We prove Claim 1 as follows. If i = j then the claim follows from the definition
of Di. Suppose i 6= j. If a vertex x ∈ Ii is complete to Jj then G[{x} ∪ Jj ∪ Ij ]
is an F3, which is a contradiction. Therefore each vertex in Ii has at least one
non-neighbour in Jj . Now suppose for contradiction that a vertex x ∈ Ii has no
neighbours in Jj . Let x′ be the other vertex of Ii. It must have a non-neighbour
y ∈ Jj . Note that y is then anti-complete to Ii. Now G[{y} ∪ Ji ∪ Ii] is an F3.
This contradiction completes the proof of Claim 1.

Claim 1 implies that for every i, j ∈ {1, . . . , 19}, every vertex of Ii must have
one of the six possible neighbourhoods in Jj , namely those that contain at least
one vertex of Jj , but not all vertices of Jj . This means we can partition the
vertices of I1 ∪ · · · ∪ I19 into 36 sets (some of which may be empty), according to
their neighbourhood in J1 ∪ J2. Since I1 ∪ · · · ∪ I19 consists of 38 vertices, two
of these vertices, say x and x′ must have the same neighbourhood in J1 ∪ J2.
Furthermore, by Claim 1, they have a common neighbour y ∈ J1 and common
non-neighbours z ∈ J1 and z′ ∈ J2. Since the graph G is prime, the set {x, x′}
cannot be a module. Therefore there must be a vertex z′′ that distinguishes x
and x′, say z′′ is adjacent to x, but non-adjacent to x′. Note that z′′ ∈ K,
so it must be adjacent to y, z and z′. Now G[{x, x′, y, z, z′, z′′}] is an F3. This
contradiction completes the proof. ut

4 Completing the Proof of Theorem 4

In this section we use the results from the previous section to prove our main
result. We need the following lemma.

Lemma 15 (Key Lemma). If the class of H-free split graphs has bounded
clique-width then H or H is isomorphic to Kr for some r or is an induced
subgraph of F4 or F5.

13



Proof. Suppose that H is a graph such that the class of H-free split graphs has
bounded clique-width. Then H must be a split graph, otherwise the class of
H-free split graphs would include all split graphs, in which case the clique-width
would be unbounded by Lemma 7.

Suppose that H has two split partitions (K, I) and (K ′, I ′) that are not
isomorphic. There cannot be two distinct vertices x, y ∈ I \ I ′, as then x, y ∈ I,
so they would have to be non-adjacent, and similarly x, y ∈ K ′, so they would
have to be adjacent, a contradiction. Hence, |I \ I ′| ≤ 1. For the same reason,
|I ′ \ I| ≤ 1.

Next suppose that |I \ I ′| = |I ′ \ I| = 1. Then there exist vertices x ∈ I \ I ′
and y ∈ I ′ \ I. Let I ′′ = I \ {x} and K ′′ = K \ {y}. Then I = I ′′ ∪ {x},K =
K ′′ ∪ {y}, I ′ = I ′′ ∪ {y} and K ′ = K ′′ ∪ {x}. Since x ∈ I and x ∈ K ′, x must be
anti-complete to I ′′ and complete to K ′′. Since y ∈ I ′ and y ∈ K the same is
true for y. (x and y may or may not be adjacent to each-other.) However, this
means that (K, I) and (K ′, I ′) are isomorphic split partitions of H, which is a
contradiction.

Due to the above, we may assume without loss of generality that |I \ I ′| = 1
and |I ′\I| = 0. Hence there is a vertex x such that I = I ′∪{x} and K ′ = K∪{x}.
Let H ′ = H \ {x} and note that H ′ has split partition (K, I ′) (though H ′ may
also have a different split partition) and that H can be obtained from H ′ by
adding a vertex that is adjacent to every vertex of K and non-adjacent to every
vertex of I ′.

Let H ′`b be the labelled bipartite graph obtained from H ′ by complementingK,
colouring every vertex of I ′ white and every vertex of K black. Let G be a
weakly H ′`b -free graph. Then G has a black-and-white labelling `∗ such that
G`∗ = (B`∗

G ,W
`∗

G , EG) does not contain H ′`b as a labelled induced subgraph.
Let GS be the split graph obtained from G`∗ by complementing the set of black
vertices. Then (B`∗

G ,W
`∗

G ) is a split partition of GS that does not contain (K, I ′).
Therefore, GS has a split partition that does not contain (K, I) or (K ′, I ′). Hence,
GS is H-free. Since we assumed that the class of H-free split graphs has bounded
clique-width, by Fact 2 it follows that the class of weakly H ′`b -free bipartite
graphs must have bounded clique-width. By Theorem 8, H ′`b must therefore be a
black independent set, a white independent set or a labelled induced subgraph of
(P1 +P5)b, (P1 +P5)b, (P2 +P4)b or P b

6 . This corresponds to the cases where H is a
clique, an independent set or an induced subgraph of F4, F4, F5 or F5, respectively.

Now suppose that all split partitions of H are isomorphic. We argue similarly.
Let (K, I) be a split partition of H. Let H`

b be the labelled bipartite graph
obtained from H by complementing K, colouring every vertex of I white and
every vertex of K black. Let G`∗ = (B`∗

G ,W
`∗

G , EG) be a labelled bipartite graph
and let GS be the split graph obtained from G`∗ by complementing the set of
black vertices. Then G`∗ does not contain H`

b as a labelled induced subgraph
if and only if GS is H-free. Proceeding as before, we find that again H must
be an independent set or a clique or an induced subgraph of either F4, F4, F5
or F5 (though this time the extra vertex x is not present, so H must be a proper
induced subgraph of one of these graphs). ut
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We are now ready to prove Theorem 4.

Theorem 4 (restated). Let H be a graph such that neither H nor H is in
{F4, F5}. The class of H-free split graphs has bounded clique-width if and only if

• H or H is isomorphic to rP1 for some r ≥ 1;
• H or H ⊆i bull +P1;
• H or H ⊆i F1;
• H or H ⊆i F2;
• H or H ⊆i F3;
• H or H ⊆i Q or
• H or H ⊆i K1,3 + 2P1.

Proof. If H = rP1, the result follows from Theorem 9. The corresponding result
for H then follows from Lemma 5. For the remainder of the proof, we may
therefore assume that H contains at least one edge and at least one non-edge.

If H is an induced subgraph of bull +P1, F1, F2, F3, Q or K1,3 + 2P1 then
the result follows from Theorems 10, 12, 13, 14, 10 and 11, respectively. The
corresponding results for H then follow from Lemma 5.

Now suppose that the class of H-free split graphs has bounded clique-width.
Recall that H contains at least one edge and at least one non-edge. By Lemma 15
combined with Lemma 5, we may assume that H is an induced subgraph of F4
or F5. Note that both F4 and F5 have seven vertices. The six-vertex induced
subgraphs of F4 are: bull +P1, F1, F3 and K1,3 + 2P1. The six-vertex induced
subgraphs of F5 are: bull +P1, F1, F2, F2, F3, F3 and Q. These graphs and their
complements are precisely the bounded cases considered above. ut

5 Future Work

Our goal is to solve the two open cases for H-free split graphs, namely H ∈
{F4, F5} and the two open cases for H-free chordal graphs, namely H ∈ {F1, F2}.
This does not seem a straightforward task. There is still some hope that, for
i ∈ {1, 2}, the class of Fi-free chordal graphs has bounded clique-width as we
proved that the class of Fi-free split graphs has bounded clique-width. Note that
for i ∈ {4, 5}, the class of Fi-free chordal graphs has unbounded clique-width
and it does not seem possible to modify the construction that shows this to get a
proof for split graphs (hence we could potentially have two other subclasses of
split graphs with bounded clique-width). We also recall that such results, just
as in other cases [3,16,18], could be useful for completing the classification for
(H1, H2)-free graphs.
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