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Abstract: The estimation and policy use of spatially explicit discrete choice models has yet to receive 15 
serious attention from practitioners. In this study we aim to analyze how geographical variables 16 
influence individuals’ sensitivity to key features of heating systems, namely investment cost and 17 
CO2 emissions. This is of particular policy interest as heating systems are strongly connected to two 18 
major current environmental issues: emissions of pollutants and increased use of renewable 19 
resources. We estimate a Mixed logit model (MXL) to spatially characterize preference 20 
heterogeneity in the mountainous North East of Italy. Our results show that geographical variables 21 
are significant sources of variation of individual’s sensitivity to the investigated attributes of the 22 
system. We generate maps to show how the willingness to pay to avoid CO2 emissions varies across 23 
the region and to validate our estimates ex-post. We discuss why this could be a promising approach 24 
to inform applied policy decisions. 25 
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1. Introduction 28 

The European Union Renewable Energy Directive 2009/28/EC establishes a policy framework 29 
for the production and promotion of energy from renewable sources for the half billion Europeans 30 
living in the 28 EU member states. The directive requires that at least 20% of total energy needs in the 31 
EU be produced using renewables by 2020, to be achieved in the aggregate by defining various state-32 
specific targets. Such targets are set by taking into account the respective starting points and overall 33 
potential for renewables in each member state. The quota of renewable energy in the power mix 34 
ranges from 10% in Malta to 49% in Sweden. In Italy the target is set to 17%, starting from a base of 35 
5.7% share of renewable energy in 2005. To meet the EU targets, in 2010 Italy submitted to the 36 
European Commission the Italian Renewable Energy Action plan. The plan sets a 2020 target share 37 
for renewables across energy sectors as follows: 26.39% in the electricity sector, 17.09% in the 38 
heating/cooling sector, and 10.14% in the transport sector. Of relevance to our study is the large 39 
potential to increase the share of renewables in heating systems. Nearly 85% of the Italian households 40 
still use fossil fuel-based heating systems.  41 

Government authorities are hence concerned about collecting information that can help them 42 
design and implement policy instruments that may promote a switch from fossil-based to renewable 43 
systems. Given the great diversity of territorial features across the Italian peninsula, geographical 44 
factors are likely to determine substantial variation in the propensity to adopt renewables across the 45 
population of residential homes. Spatial effects have been found to be significant determinants of 46 
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households heating choices [1],[2] and can be linked to several factors, such as fuel price differences, 47 
heating traditions (e.g. mountain areas usually have strong tradition of firewood based heating 48 
systems), development of the gas grid (usually less developed in rural areas), availability of biomass 49 
fuels (stronger in areas located near forests) and different energy needs according to the area 50 
(buildings in urbanized areas are generally better insulated as compared to those in rural ones). This 51 
study aims to systematically explore such heterogeneity of preferences by means of a geographically 52 
explicit choice model estimated from choice experiment data. This study reports the results from a 53 
choice experiment investigating household preferences toward different heating systems in Veneto, 54 
a region in the North-east of Italy with a substantial amount of mountainous territory. The survey 55 
data explores preferences for six heating systems: three based on traditional fuels and three based on 56 
renewables. 57 

Over the last few years research applications in the field of residential heating based on choice 58 
experiments has increased in popularity amongst researchers [3],[4],[5]. This method enables analysts 59 
to investigate preference heterogeneity for different heating systems in terms of energy savings, 60 
environmental benefits, comfort considerations, compatibility with daily routines, personal habits 61 
and cost. Discrete choice model estimates from the analysis of choice experiments data show how 62 
subjects in the sample weight salient aspects in their stated choices. In the presence of a cost for 63 
alternatives the data be used to infer the marginal rate of substitutions of attributes with income. This, 64 
in our case, is interpreted as the willingness to pay (WTP) for the various heating characteristics 65 
described in the experiment. [3] estimated the WTP for energy-saving measures in residential 66 
buildings in Switzerland. [6] used key parameters (discount rate, intangible costs and degree of 67 
heterogeneity) to simulate various energy policies. [4] focused on microgeneration adoption in the 68 
UK and [7] examined the role age plays in terms of behavioral responses towards energy efficiency, 69 
in particular whether older individuals are less likely to adopt micro-generation renewable energy 70 
technology. [1],[8] investigated the choice of energy retrofits in Germany. [8] focused on CO2-saving 71 
measures (heating systems and insulation) and WTP for CO2 savings, whereas [1] examined driving 72 
factors of choice of residential heating systems. [5] examined how different attributes of residential 73 
heating systems affect private homeowners' choice of heating system following renovations. 74 

Whilst several studies have explored group decision making in choice analysis (see [9] for a 75 
reviews of such papers), a common assumption in the stated choice literature is that survey 76 
respondents make choices independently of preferences of others. For example, [10],[11]examined 77 
the preferences of plumbers and consumers for water heater systems using discrete choice 78 
experiments, but treated both samples as if they were independent of each other. Where 79 
interdependence between agents has been considered, the assumption has been that the relationship 80 
exists between household members (e.g. [12]), immediate family or close friends. There exists, 81 
however, an established literature (e.g. [13],[14]) accounting for a wider range of spatial 82 
interdependencies between individuals, which may induce interdependence of preferences. This 83 
induces the phenomenon of socially influenced decision-making: individuals neither act fully 84 
independently, nor reach decisions jointly, but they decide based on a mix of social interaction factors, 85 
which might be best represented in a succinct manner as geographical determinants. 86 

Over the last ten years or so an increasing body of literature has dealt with the study of spatial 87 
effects on welfare changes. Previous studies on this topic mainly focused on addressing the relevance 88 
of spatial factors through post hoc analysis on the WTP estimated from choice models (e.g. 89 
[15],[16],[17],[18]). However, there remains only limited work on the inclusion of spatial variables in 90 
the utility structure behind choice (e.g. [19],[20]). This paper contributes to the filling of this gap: it 91 
proposes Mixed Logit (MXL) specifications to explore how individuals’ sensitivity to key features of 92 
heating systems varies in the different geographical areas of the study region. We include not only 93 
variables referring to respondents’ geographical location, but also to socio-demographic 94 
characteristics of the area in which they live. This allows us to gain further insight on both spatial and 95 
social effects on heating systems preferences. To explore the post hoc validity of our results, we also 96 
map the mean values of marginal WTP estimates at the individual level within each area. Detecting 97 
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if the distribution of benefits is both spatially and socially uneven is useful as it helps policy makers 98 
to design geographically targeted programs that are coherent with public preferences.  99 

This is of particular interest in the Veneto region, as both national and local governments have 100 
the mandate to design and implement policy measures to foster households’ adoption of energy-101 
efficient and sustainable heating systems, based on renewable resources. These measures can be 102 
categorized into economic (e.g. capital grants, tax exemptions, price subsides) and awareness (e.g. 103 
education) measures. The latter aim at making households aware of the benefits of energy efficiency, 104 
and they attempt to change households’ behavior with respect to fossil fuel consumption. Although 105 
financial measures are usually introduced at the national or regional scale, awareness measures can 106 
have a local nature (e.g. meeting with citizens, lectures, etc.). Knowing in which areas households are 107 
generally less prone to pay a premium to install more sustainable systems would allow policymakers 108 
to direct more efficiently their efforts using geographical criteria. This may result in a broader 109 
awareness of the importance of the use of renewable resources and in a support over a broader 110 
geographical area of government intervention.  111 

The remainder of this paper is organized in four sections. Section 2 provides an overview of 112 
previous studies in the context of spatially explicit discrete choice models. Section 3 describes the 113 
methodology we adopted and motivates the model specification used for the data analysis. In section 114 
4 we report and discuss the results. Finally, conclusions are reported in section 5. 115 

2. Spatially explicit discrete choice models: empirical applications 116 

There is now compelling evidence that preferences for some environmental goods follow spatial 117 
patterns. This may be due to the spatial configuration of such goods and the availability of substitutes 118 
[21] or to residential sorting. People’s preferences for environmental goods can influence where they 119 
choose to live, so that measures of preferences tend to be correlated with measures of environmental 120 
quality or with distance to environmental amenities [22]. Recent developments in Geographical 121 
Information Systems (GIS) allow researchers to investigate spatial patterns in preferences for 122 
environmental goods. Amongst most common approaches is that of investigating spatial distribution 123 
of WTP estimates derived from DCE studies. [15],[16] used this approach to map WTP estimates for 124 
rural landscape features in Ireland. They found evidence of significant global spatial clustering and 125 
spatial autocorrelation of the WTP estimates with landscape features that were prevalent in given 126 
areas and iconic for local identity being more valued by locals. [23] investigated spatial heterogeneity 127 
in WTP for forest attributes in France. [24] used data on forest distance from respondent’s homes to 128 
capture spatial effects in WTP for enhancement of biodiversity in forests of New Zealand. They found 129 
evidence of distance-decay effects, that is, respondents living closer to the environmental good being 130 
evaluated tend to have a higher WTP for it. [25] mapped the outcomes of targeting agricultural land 131 
preservation by using four different strategies for spatial provision of environmental services in 132 
Delaware. [26] used local indicators of spatial association to explore WTP hot spots. [18] found 133 
evidence of distance decay on WTP estimates for forest attributes in Poland. Spatial effects on WTP 134 
estimates have been also investigated including spatial variables in discrete choice models. [27] 135 
included a distance parameter in a CV study to estimate distance-decay functions for a reduction in 136 
low flow problems on the River Mimram, England. [28] included in discrete choice models spatial 137 
variables aimed at investigating directional effects on distance decay of WTP values, related to the 138 
availability of substitute sites across the region. [29] included spatial variables as covariates in a 139 
discrete choice model to estimate the spatial pattern of the willingness to provide ecosystem services 140 
in agricultural landscapes.  141 

Other studies investigated spatial effects including spatial attributes in stated preferences 142 
scenarios. [30] examined visitors’ preferences for forest management at five adjacent municipal 143 
recreation sites in Finland, using a spatially explicit choice experiment. They included site specific 144 
levels of attributes to evaluate whether preferences towards management options differed across 145 
sites. [31] used discrete choice experiments to examine preferences for the spatial provision of local 146 
environmental improvements in the context of regeneration policies. They included the spatial scope 147 
of the policy as an attribute, making the trade-off between environmental amenity and its spatial 148 
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provision explicit. [32] included the distance from respondents’ home as an attribute to investigate 149 
distance decay effects on preferences towards cost management programs in UK. [28] evaluated WTP 150 
for improvements in the provision of environmental services of eleven lakes in a lake district in the 151 
Netherlands. They included the lakes as different labelled alternatives in choice sets. Finally, spatial 152 
effects on preferences for wind power are commonly investigated by including in the choice 153 
experiment attributes describing the distance between wind farms and residential areas or shores to 154 
account for visual intrusion (see [33] for a review). 155 

3. Data collection and survey 156 

The data for our empirical study was collected by means of a web-based questionnaire involving 157 
a sample of residents of the administrative provinces of Veneto that include some mountainous 158 
territory. Those with territory only in the plains were excluded. Such selection enabled us to make a 159 
comparison of preferences across respondents living at different altitudes. The sample covered 313 160 
municipalities (72.8 percent with less than five respondents, 18.5 percent between five and ten 161 
respondents, 9.9 percent between eleven and fifteen respondents and 8.6 percent with more than 162 
fifteen respondents). We used a stratified random sample of households, where the strata were based 163 
on the most important socio-demographics (age, education, genre, income, place of residence). 164 
Descriptive statistics of the sample are reported in Table 1. A total of 1,557 questionnaires were 165 
collected resulting in 1,451 completed sequences of choice tasks which were used for the analysis. 166 

Table 1. Descriptive statistics of respondents 167 

Sociodemographic Percentage 

Gender  

Man 35.9 

Woman 64.1 

Age (years)  

< 20 1.2 

20 - 39 52.3 

40 - 59 43.1 

> 60 3.4 

Education  

Primary school 0.3 

Secondary school 9.9 

High school  62 

Degree 23.4 

Postgraduate 4.3 

Annual net income (€)  

< 15,000 10 

15,001 - 25,000 24.5 

25,001 - 35,000 19 

35,001 - 45,000 23.8 

45,001 - 55,000 4.2 

> 55,000 2.4 

No answer 16.1 

Place of residence per province  

Belluno 5.9 

Padova 29.6 

Treviso 22.9 

Verona 24.4 

Vicenza 17.2 

 168 
  169 
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3.1 The Choice Experiment and the experimental Design 170 

The choice experiment was conducted by presenting respondents with a series of hypothetical 171 
choice tasks, each of which presented three alternative types of heating systems. The available 172 
systems in the area are: 1) fire wood, 2) chip wood, 3) wood pellet, 4) methane, 5) LP Gas (Liquefied 173 
Petroleum gas), and 6) oil. Each heating system varied in terms of attributes’ levels. The attributes 174 
are: 1) investment cost, 2) investment duration, 3) annual operating cost, 4) CO2 emissions, 5) fine 175 
particle emissions, and 6) required own work. The respective levels are reported in Table 2, and a 176 
description of each provided in the text below. 177 

Investment cost is the cost for the purchase and installation of the heating system. Possible public 178 
subsidies from the state or the region are ignored. Investment duration refers to the working lifespan 179 
of the heating system, from installation to dismantling. Operating costs include fuel price, maintenance 180 
and repair costs as well as costs of the system’s electricity consumption. Energy cost depends on the 181 
unit cost of fuel and the operating efficiency. CO2 emissions refers to the quantity of CO2 released by 182 
the fuel combustion processes, and the same goes for fine particles emissions. Finally, required own work 183 
refers to the time required to ensure the faultless operation of the heating system (e.g., cleaning and 184 
handling fuel loads). The choice of attributes and their levels was based on earlier studies [5],[34],[35] 185 
and on feedback from experts. The annual operating cost and CO2 and fine particle emissions were 186 
calculated based on the energy consumption of an average detached house (120 m2), the efficiency of 187 
each heating system and unit price/emission of a fuel. Respondents were asked to select within each 188 
choice set their preferred option if they had to renovate their system. An example of choice set is 189 
provided in Table 3. 190 

Table 2. Attributes and levels of the Choice Experiment 191 

Table 3. Example of choice set 192 

Attributes Wood Pellet LP Gas Firewood 

Investment Duration (years) 19 20 19 

Fine particles emissions (g/year) 2250 15 7500 

CO2 emission (kg/year) 375 3525 150 

Required own work (hours/month) 1 1 15 

Investment cost (€) 17000 5000 12500 

Operative cost (€) 3750 9000 1200 

Your choice ⃝ ⃝ ⃝ 

In order to investigate the effect of the (un)availability of certain alternatives in the choice set 193 
and to investigate the effect of choice set composition, only three alternatives were shown in each 194 
choice task, despite the total number of labeled alternatives being six. The use of choice experiments 195 
with variable choice set size was common in the 1980s. For example, [36] reported two experiments, 196 

Attributes Firewood Wood Chip Wood Pellet Methane Oil LP Gas 

Investment cost (€) 
9,500, 11,000, 

12,500 

11,500, 

13,000, 14,500 

13,000, 

15,000, 17,000 

4,000, 4,800, 

5,600 

4,500, 5,500, 

6,500 

4,000, 5,000, 

6,000 

Investment duration 

(years) 
15, 17, 19 17, 20, 23 16, 19, 22 16, 18, 20 16, 18, 20 14, 17, 20 

Operating cost 

(€/year) 

1,200, 2,000, 

2,800 

2,000, 2,800, 

3,600 

2,500, 3,750, 

5,000 

4,000, 5,500, 

7,000 

6,000, 8,000, 

10,000 

9,000, 12,500, 

16,000 

CO2 Emissions 

(kg/year) 
150, 225, 300 300, 375, 450 375, 450, 525 

3,000, 3,750, 

4,500 

3,900, 4,575, 

5,250 

3,525, 4,125, 

4,725 

Fine particle 

emissions (g/year) 

4,500, 6,000, 

7,500 

2,250, 3,750, 

5,250 

750, 1,500, 

2,250 
15, 30, 45 150, 450, 750 15, 30, 45 

Required own work 

(h/month) 
5, 10, 15 1, 2, 3 1, 2, 3 - 0.5, 1, 1.5 0.5, 1, 1.5 
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one with fixed choice set size and the other with variable choice set sizes. [37],[38] proposed models 197 
to estimate the availability effects of alternatives. The theory was further developed by [39],[40] who 198 
studied the availability effects of alternatives and allowed to generate designs capable to estimate 199 
both availability and attribute cross effects. Despite evidence provided by this literature, the issue of 200 
availability design was at least in part ignored within the last decades. More recently, [41] focused on 201 
availability designs by incorporating such aspects in an efficient design framework. Their study 202 
allowed for both variable choice set sizes and fixed choice set sizes with differential alternative 203 
representations. Following [42], a variant of an efficient availability design was used it this paper: 204 
fixed choice set sizes, but different alternatives presented in each choice task. The availability design 205 
can be thought of as comprising two sequential experimental designs, one embedded in the other. 206 
The two designs are, respectively, a master or availability design, and a sub design. The master or 207 
availability design is a fractional factorial design that determines the subsets of alternatives that are 208 
present or absent in any given choice task. Each column of the master design represents an alternative 209 
and each row is a different choice task. The levels of the design take binary values where a one 210 
indicates that an alternative is present in a choice task and a zero indicates that it is not. Given that 211 
an alternative is present in a choice task, as determined by the master design, the sub design dictates 212 
the specific combination of attributes’ levels that describe each alternative.  213 

In our study a fixed master design was used, that produced a design with 20 choice tasks. The 214 
design was repeated three times (for a total of 60 choice tasks) to ensure that the attribute levels of 215 
the sub designs could be balanced, appearing 20 times for each attribute. The combination of levels 216 
that appeared in each choice task was defined according to three different sub designs, namely near 217 
orthogonal, D-efficient [43],[44],[45], and sequentially improved (or “serial") design [46]. For the serial 218 
design, an orthogonal design was used for the first respondent. After completion of the choice set by 219 
this first respondent, the parameters were estimated by the purpose design software in the 220 
background by a multinomial logit model based on his or her observed choices. Statistically 221 
significant parameters were then used as priors in determining the next design whilst parameters 222 
that were not statistically significant were assumed to be zero. Based on these new priors, a new 223 
efficient design was generated and given to the next respondent. The data from each additional 224 
respondent was then pooled with the data from previously surveyed respondents and new models 225 
were estimated, in order to generate a new design. The new design was then given to the next 226 
respondent. 227 

The design generated a total of 60 choice tasks that were blocked into 6 groups, so that each 228 
respondent faced 10 choice tasks. The sample was split so as to have the same number of respondents 229 
assigned to choice tasks produced with the different sub designs. 230 

4. The Model 231 

Within the choice experiment approach each respondent’s choice is modelled as a function of 232 
the attributes using Random Utility Theory [47],[48]. According to the theory, for and individual n 233 
facing a set of J alternatives, denoted by j=1,…,J the utility of choosing the alternative i is a function 234 
of the K attributes used to describe alternative j. The utility function has a systematic part Vni (indirect 235 
utility) and a random part εni, for all unobserved variables, such that 236 

𝑈𝑛𝑖 =  𝑉𝑛𝑖 +  𝜀𝑛𝑖   ∀ i in j. (1) 237 

The systematic part of the utility function of individual n associated with the selected alternative 238 
i is modeled as a linear function of the vector of the attributes xi and associated parameters βn. If the 239 
unobserved error term εni is assumed to be i.i.d. extreme value type I, the probability of individual n 240 
choosing alternative i out of J alternatives can be defined by the Conditional Logit (CL) model: 241 

Pr(𝑈𝑛𝑖 > 𝑈𝑛𝑗 , ∀𝐽) =  
exp(𝑉𝑛𝑖)

∑ exp(𝑉𝑛𝑗)
𝐽
𝑗=1

 (2) 242 

A property of the CL model is the Independence of Irrelevant Alternatives (IIA), which is most 243 
often undesirable as it implies constant share elasticities. The Mixed Logit (MXL) model [49],[50] 244 
allows for a relaxation of the IIA assumption, whilst continuing to assume the residual error term is 245 
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i.i.d. extreme value type I distributed. The MXL model allows for un-attributable heterogeneous 246 
preferences (i.e., unlike interaction effects, preferences are assumed to be randomly distributed over 247 
the population). Different interpretations have been given to the MXL in various empirical work, the 248 
two most common interpretations being the Random Parameter Logit (RPL) and Error Component 249 
Logit (ECL) models. Whilst mathematical equivalent [51], the respective behavioural interpretations 250 
of the two models are motivated by distinct analytical interests [52]. More specifically, RPL appeals 251 
to the analysis of taste variation, whilst the ECL interpretation is more amenable to the analysis of 252 
complex substitution patterns and variance-covariance structure. Behaviourally sound models often 253 
mix the RPL and ECL features to achieve flexible specifications that are suitable for the problem at 254 
hand. In this spirit we use two separate sources of randomness, one linked to diversity across 255 
respondents, the other shared across respondents from the same geographical area. 256 

The utility structure is specified as 257 

𝑉𝑛𝑖 =  𝛽′𝐱𝑛𝑖 + 𝜇𝑛
′𝐳𝑛𝑖,        (3) 258 

where 𝐱𝑛𝑖 and 𝐳𝑛𝑖  are vectors of observed variables relating to alternative i, 𝛽 is a vector of fixed 259 
coefficients, 𝜇𝑛 is a vector of random terms with mean µ and stochastic components that, along with 260 
𝜀𝑛𝑖  define the stochastic portion of utility as well as the manner in which utility is correlated across 261 
respondents via the unobserved portion of utility. 262 

What makes this model explicit in its geographical variables is that 𝜇𝑛  has a stochastic 263 
component 𝜖𝑛 with standard deviation that is in part constant and in part shifted by 𝛼ℎ 𝑧ℎ, linked to 264 
the hth place of residence via the indicator vector 𝑧ℎ. The parameter 𝛼ℎ expands or shrinks the total 265 
standard deviation tailoring it to the place of residence indicated by 𝑧ℎ. In essence: 266 

𝜇𝑛ℎ =  𝜇 +  𝜖𝑛ℎ = 𝜇 + (𝜎 + 𝛼ℎ𝑧ℎ)𝜂𝑛  where  𝜂𝑛~𝑁(0,1)    (4) 267 

The aim of the study is to investigate how the variance of the random parameters changes according 268 
to different areas of the region. In particular, we focus on the variance shift of key random taste 269 
parameters: the coefficient for the cost of heating system and that for the CO2 emission. The first 270 
relates to the marginal utility of income, the second to the marginal utility of emission abatement. 271 
Importantly for a geographical tailoring of the subsidy policies, geographical differences in the 272 
random cost parameter allow us to better investigate how the marginal WTP estimates vary across 273 
the region.  274 

Under this basic specification each person has her own parameter 𝜇𝑛ℎ, which deviates from the 275 
population mean 𝜇  by 𝜖𝑛ℎ . The idiosyncratic random term 𝜖𝑛ℎ is normally distributed and has 276 
standard deviation 𝜎 + 𝛼ℎ 𝑧ℎ with mean 0. Variance reducing sites will have 𝛼ℎ < 0, while variance 277 
increasing ones 𝛼ℎ > 0. 278 

To define the geographical areas affecting the variance of 𝜖𝑛ℎ we used three different criteria to 279 
capture both spatial and social effects. We grouped the municipalities of the region according to three 280 
criteria: 1) altitude, i.e. being located in low land (plain or valley), hilly or mountainous area, 2) 281 
average income in the municipality, 3) population size. Accordingly, we estimated three MXL 282 
models. The first criterion produced three different areas, the second and the third ten areas each. 283 
Average income was divided in ten classes of €1,000 width, ranging from €15,000 to €25,000. The 284 
population size classes are move in steps of 5,000 people, with boundary classes being less than 5,000 285 
and over 40,000.  286 

Model identification was ensured by keeping as baseline hilly areas for the first criterion, the 287 
lowest average income segment (less than 15,000€) and the lowest population size (less than 5,000 288 
people).  289 
  290 
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4.1 Expected results and rationale 291 

We now turn to our expected results for selected features of the investigation and the rationale 292 
behind each expectation. From the altitude-related model we expect individuals living in 293 
mountainous areas to be relatively more homogenous in their views on cost of heating system. The 294 
motivation would be that populations in these areas are traditionally quite careful with resource use 295 
and management because of their harsh living conditions and close-nit societies who often openly 296 
disapprove of profligacy. We do not have a clear expectation with respect to residents in hills and 297 
plains, although we suspect that there would be a gradient of heterogeneity with the largest being 298 
associated with lower altitude. With respect to preference variation of CO2 emissions, we expect that 299 
people in the plains be more homogeneous since they are more exposed to air pollution than people 300 
in the hills or mountains, especially during the periodical winter fogs that impede speed of transport, 301 
often dramatically. Even though fogs are not directly caused by CO2 emissions, smog (smoke+fog) is 302 
strongly correlated with CO2. 303 

We now turn our attention to the effect of segregating sites on the basis of average income. For 304 
the heterogeneity of cost coefficient, we expect that as income increases the variation of taste intensity 305 
for income should also increase as income has been found to be a typical source of heteroscedasticity 306 
in economic datasets. The cost coefficient in linear utility specifications is equivalent to the (negative 307 
of) marginal utility of income. Relatively poorer residents have little choice in the way they value 308 
their last unit of income, while those relatively better off can choose from a wider range of behaviors. 309 
A rich person can behave as a miser, but a poor person has no choice. Turning to heterogeneity for 310 
the CO2 coefficient we hold much weaker expectations. It can be argued that in richer sites there 311 
might be more disposable income and in as much as fewer emissions and a cleaner environment are 312 
a luxury good (as the literature on Environmental Kuznets curve suggests) a higher consensus in 313 
favor of renewables should be found in richer locations. 314 

The population gradient criterion should suggest that for both coefficients there should be a 315 
higher heterogeneity the higher the population, if anything because population size correlates with 316 
diversity. Extreme views on utility of income and CO2 emissions ought to be more common in larger 317 
size locations. However, it might also be that higher density induces more homogeneity of views 318 
against higher levels of pollution. In any case, we do not hold strong expectations along this 319 
segregation criterion and which feature will prevail remains an empirical question the outcome of 320 
which has weak theoretical basis. 321 

4.2 Ex-post validation 322 

The sequence of choices made by each respondent contains additional information that may help 323 
improve the accuracy of estimates derived from the latent utility, such as individual specific marginal 324 
WTP estimates. These can be used to assess the theoretical validity of the stated choice method by 325 
exploring how mWTP estimates correlate with theoretically meaningful independent variables, as 326 
suggested in the early literature of validation of hypothetical choice statements [53],[54]. In practice 327 
one can use visual inspection and regression analysis, we opt for both and use geographical mapping 328 
and kernels densities. The technical details are as follows. We simulated the population distributions 329 
of individual specific estimates of mWTPn by generating 10,000 pseudo-random draws from the 330 
unconditional distribution of the estimated parameters and we calculated individual-specific 331 
estimates for each draw as explained in the seminal literature of panel choice models [50],[55],[56]. 332 
The formula employed [57] is  333 

𝑊𝑇�̂�𝑛 =
1 𝑅 ∑ 𝜇𝑛,𝑟

𝑐 𝜇𝑛,𝑟
€ 𝐿(𝜇𝑛,𝑟|𝑑𝑎𝑡𝑎𝑛)⁄𝑅

𝑟=1⁄

1 𝑅⁄ ∑ 𝐿(𝜇𝑛,𝑟|𝑑𝑎𝑡𝑎𝑛)𝑅
𝑟=1

       (5) 334 

where R is the number of replications (i.e., draws of 𝜇𝑛), 𝜇𝑛,𝑟
𝑐  is the rth draw for the CO2 attribute, 335 

𝑑𝑎𝑡𝑎𝑛  is the observed sequence of choice data by respondent n, 𝐿(𝜇𝑛,𝑟|𝑑𝑎𝑡𝑎𝑛) is likelihood of an 336 
individual’s sequence of choices computed at draw 𝜇𝑛,𝑟 and 𝜇𝑛,𝑟

€  is the rth draw for the investment 337 
cost attribute, that is the payment vehicle used to compute the mWTPs. 338 
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The individual value estimates are averaged by geographical polygon of each municipality, 339 
colour-coded and mapped with ArcGIS to obtain the geographic distribution of the estimates. Kernel 340 
density distributions of mWTP from the best performing model are obtained conditional on income 341 
levels, altitudes of place of residence and population size of the place of residence.  342 

5. Results 343 

All MXL estimates were obtained by simulated maximum likelihood using Pythonbiogeme 344 
software [58]. The choice probabilities are simulated in the sample log-likelihood with 1,000 pseudo-345 
random draws. We estimated three specifications, one for each criterion by using different 𝛼ℎ 𝑧ℎ  in 346 
the standard deviation for the random parameters for cost and CO2 emissions. 347 

In the first MXL model, which relates to altitude of place of residence of the respondent, 348 
𝛼1 denotes the coefficient for mountain areas associated with 𝑧1, while 𝛼2 is the analogue for low 349 
land. So, the baseline standard deviation is for intermediate altitude areas (hilly). The second (average 350 
income) and third (population size) models have 10 ordinal groupings each, so nine 𝛼ℎ 𝑧ℎ  are used. 351 
In all models error components 𝜂𝑛  are assumed to have a standard normal distribution. As the aim 352 
of the study is to investigate the heterogeneity of sensitivities for the investment cost and the CO2 353 
emissions, we kept all other coefficients fixed. All models include six alternative specific constants 354 
(ASCs) for all heating systems except for LP Gas, which is the baseline.  355 

Table 4 shows the estimates for the MNL and the three MXL models. Each of the three MXL 356 
models substantially improves the fit to the data. Across the three MXL models, the specification 357 
based on population size seems to perform best, according to all criteria. In all the models, the 358 
investment and operating cost coefficients are significant and negative, as expected. The other 359 
significant determinants of preferences towards heating systems are the emission of CO2 and 360 
required own work. The negative sign for emissions coefficient (FP and CO2) are as expected, but that 361 
for FP is never significant, while the one for CO2 always is, suggesting a different sensitivity to the 362 
type of pollutant caused by heating systems and a preference for technologies that target CO2 363 
emissions. The coefficient for required own work is also negative, suggesting an expected preference 364 
for low maintenance systems.  365 

The alternative specific constants (ASCs) reflect the average system-specific impacts of 366 
unobserved factors associated with each system and measured with respect to LPG. These estimates 367 
are always statistically significant except for chip wood. The signs of the ASCs for firewood, wood 368 
pellet, and methane are positive, thus suggesting that those heating systems are preferred to the LPG 369 
fueled ones. Only the ASC for the oil based systems is negative, suggesting that it is the least preferred 370 
heating system. The standard deviations of random components are significant in each of the three 371 
models, thus suggesting heterogeneity of cost sensitivity in the sample for both investment cost and 372 
CO2 emissions. The estimated values for 𝛼ℎ  show the sensitivity of the variance of the random 373 
coefficients for investment cost and CO2 emissions across the geographical indicators of interest, 374 
which we now examine in turn.  375 

In the “altitude” model all estimates for 𝛼ℎ  are significant, suggesting that density of coefficient 376 
values differs across the three altitude categories. 𝛼1𝑐𝑜𝑠  is associated with the variance of investment 377 
cost for respondents in mountain areas (-0.019) and 𝛼2𝑐𝑜𝑠 is its analogue for the plains (0.025). The 378 
alternate sign suggests a monotonic relationship between preference heterogeneity and altitude: the 379 
lower the latter the higher the former. In other words, these value estimates are consistent with a 380 
lower variance among respondents living in mountainous areas compared to those living in the low 381 
land, with those in the hills having an intermediate degree of heterogeneity thus confirming our 382 
expectation: preferences for marginal utility of money are more homogeneous in high altitude areas 383 
than elsewhere.  384 

The pattern reverses for heterogeneity of taste for emissions, which displays a positive, rather 385 
than negative, monotonic relationship with altitude. People living in mountainous areas are more 386 
diverse in preference (0.033) compared to those living in the hills and plains. The latter show a higher 387 
homogeneity (-0.025) of taste in their view on CO2 emissions. This differences in spread of taste 388 
parameters may be explained by considering that Veneto mountainous areas are less urbanized and 389 



 10 of 5 

populated (and therefore with more diffuse pollution), as compared to the hills and plains. So, 390 
extreme views are more prevalent in mountain areas where you might have a wider diversity of 391 
perceptions on the emission problem, whereas residents in the plains display higher converge in 392 
opinion. This may induce respondents living in the mountains to consider heating systems’ emissions 393 
with a broader difference of opinion, thereby requiring a higher policy effort from the viewpoint of 394 
education and generally adopt more sustainable heating systems.   395 

The seventh to eighth columns of Table 4 show coefficient estimates for the “average income” 396 
model. The lowest segment of income (less than €15,000) was defined as the baseline; eight out of 397 
nine investment cost coefficients and five out of nine CO2 emissions coefficients show significant 398 
estimates. All α coefficients associated with investment cost are positive, and their relative values 399 
confirm the theoretical expectation of a gradual increase in heterogeneity with respect to marginal 400 
utility of money as average income increases. We take this result as a strong endorsement of 401 
theoretical validity of this stated preference data.  402 

Finally, turning to the “population size” estimates (columns 10-12), four of the nine investment 403 
cost coefficients are significant and these show a monotonic set of relative values with respect to 404 
population size. A similar pattern, albeit with inverse correlation, is found for the eight coefficients 405 
with good significance for CO2 emissions. The values of heterogeneity coefficients decrease as we 406 
move from less to more populated areas, thereby suggesting that in bigger cities people are more 407 
heterogeneous in their preferences towards CO2 emissions. As expected, more populated cities are 408 
usually more urbanized and therefore more polluted. This may explain why individuals living in 409 
those areas are more sensitive to the issue of CO2 emissions, even those produced by heating systems. 410 

Table 4. Estimated parameters of the models 411 

 MNL MXL - Altitude MXL - Income MXL - Inhabitants 

Variable Coeff. St. Err |t| Coeff. St. Err |t| Coeff. St. Err |t| Coeff. St. Err |t| 

ASC Firewood 0.495 0.187 2.8 0.734 0.187 1.9 0.822 0.158 2.0 0.601 0.133 1.9 

ASC Chip wood 0.201 0.199 1.0 0.512 0.199 0.6 0.469 0.204 0.7 0.333 0.201 0.6 

ASC Wood pellet 0.711 0.166 4.7 0.888 0.166 2.1 0.934 0.174 2.0 0.812 0.231 2.1 

ASC Methane 0.944 0.212 9.8 1.023 0.212 7.7 1.026 0.157 8.6 1.001 0.234 6.0 

ASC Oil -0.311 0.071 6.0 -0.398 0.071 6.5 -0.411 0.055 6.7 -0.402 0.06 6.5 

Inv. duration 0.07 0.051 1.3 0.021 0.051 1.1 0.014 0.028 1.2 0.021 0.029 1.3 

CO2 emissions -0.207 0.032 1.0 -0.101 0.032 2.5 -0.121 0.021 2.4 -0.146 0.041 2.5 

FP emission -0.012 0.19 0.9 -0.002 0.19 0.5 -0.003 0.01 0.5 -0.003 0.012 0.5 

Req. own work -0.133 0.099 0.6 -0.144 0.099 2.0 -0.101 0.081 1.9 -0.109 0.099 2.0 

Investment cost -0.321 0.123 3.6 -0.525 0.123 8.0 -0.567 0.091 7.0 -0.531 0.086 7.9 

Operating cost -0.059 0.024 8.0 -0.068 0.024 4.6 -0.099 0.013 4.6 -0.061 0.021 4.6 

η cos - - - 0.371 0.131 3.2 0.421 0.098 4.2 0.391 0.115 3.8 

η co2 - - - 0.053 0.024 2.1 0.091 0.042 4.0 0.088 0.034 4.7 

α1 cos - - - -0.019 0.006 2.4 0.006 0.002 2.8 -0.031 0.043 0.6 

α2 cos - - - 0.025 0.019 2.1 0.009 0.004 2.8 -0.012 0.031 0.8 

α3 cos - - - - - - 0.016 0.032 0.6 0.009 0.006 1.9 

α4 cos - - - - - - 0.013 0.01 1.9 -0.015 0.034 1.0 

α5 cos - - - - - - 0.024 0.014 2.9 0.013 0.041 1.5 

α6 cos - - - - - - 0.025 0.012 1.8 0.013 0.026 0.3 

α7 cos - - - - - - 0.031 0.011 2.4 0.023 0.008 3.2 

α8 cos - - - - - - 0.044 0.019 2.6 0.025 0.019 2.1 

α9cos - - - - - - 0.056 0.017 3.2 0.039 0.018 3.1 

α1 co2 - - - 0.033 0.018 2.6 0.051 0.066 1.7 -0.001 0.036 1.8 

α2 co2 - - - -0.025 0.009 -2.8 -0.002 0.001 1.9 0.009 0.01 1.5 

α3 co2 - - - - - - 0.091 0.112 0.9 -0.011 0.004 2.0 

α4 co2 - - - - - - -0.015 0.032 1.1 -0.012 0.005 2.6 

α5 co2 - - - - - - -0.004 0.003 2.6 -0.017 0.016 1.8 

α6 co2 - - - - - - 0.014 0.01 0.2 -0.019 0.006 2.9 

α7 co2 - - - - - - -0.006 0.003 2.4 -0.019 0.004 3.1 

α8 co2 - - - - - - 0.041 0.02 2.2 -0.029 0.012 2.8 

α9co2 - - - - - - -0.009 0.005 3.3 -0.036 0.015 2.2 

ln(L) -15,544 -13,606 -13,412 -13,399 

AIC 31,107 27,874 26,790 26,731 

BIC 31,233 27,953 26,700 26,549 
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5.1 Individual WTP estimates 412 

Figures 1 to 3 describe the sample distributions of individual-specific mWTP, retrieved from the 413 
best MXL specification: the one with heterogeneity by population size. The individual level estimates 414 
were computed by using the software tool developed by [59]. The reported kernel densities uncover 415 
differences between the distributions of mWTP values to avoid the emission of 1kg/year of CO2 for 416 
respondents from the mountains, hills and plains (Figure 1). Note that because mWTP is computed 417 
as a function of both random coefficients, the relatively higher homogeneity of preferences for 418 
residents in the mountain for the random cost coefficient is offset by the relatively lower homogeneity 419 
of the random coefficient for CO2 emissions. As such, we cannot expect the distribution of these 420 
values to display the pattern of kurtosis previously revealed in the values of estimates for �̂�ℎ. By 421 
inspecting the figure it is apparent that residents in the plains and the hills have higher frequencies 422 
for lower mWTP values for emission reduction, while residents of the mountains have higher 423 
frequency in the higher range (in absolute terms) of mWTP values. This suggests that in the 424 
mountains there is preference for being able to emit less. Residents of the plains have lower modal 425 
values of mWTP with higher frequency around the mode.  426 

Figure 2 shows the kernel distributions for those respondents characterized by different income 427 
levels. We aggregate respondents in three segments: low yearly income (less than €18,000), 428 
intermediate income (€18,000 - €21,000) and high income (more than €21,000). The distributions show 429 
very similar modal values. However, the skewness varies and so does the kurtosis and the presence 430 
of local modal values. It is interesting to note that the only income group with higher density of 431 
positive values (i.e. in favor of emission increase) is the one with highest income, which also displays 432 
the highest variance and bi-modality. They are the only group with high density for WTP to avoid 433 
emission higher than €8. The distribution with stronger positive skewness is that of lowest income, 434 
which also displays highest homogeneity of preference (low variance and range) with none being 435 
willing to pay more than €6. The intermediate income group displays features in between the other two. 436 

Figure 3 shows the kernel distributions for town residents separated by population size, with 437 
towns with small (less than 10,000), intermediate (between 10,000 and 25,000) or large (more than 438 
25,000) populations. Interestingly, this plot shows a higher degree of heterogeneity, as compared to 439 
the previous ones. Small town residents have no frequency in positive values, which implies no 440 
propensity to increase emissions. They also display largest variation and bimodality, with a modal 441 
value strongly shifted to the left of the modes of the other two town size, which overlap. This implies 442 
a much higher mWTP for emission reduction. The largest population size towns show highest 443 
homogeneity. 444 
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 445 

Figure 1: Density distributions of individual-specific mWTP estimates for CO2 by altitude levels 446 
(estimates from the “population size” model) 447 

 448 

Figure 2: Density distributions of individual-specific mWTP estimates for CO2 by income levels 449 
(estimates from the “population size” model)  450 
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 451 

Figure 3: Density distribution of individual-specific mWTP estimates for CO2 by population sizes 452 
levels (estimates from the “population size” model)  453 

5.2 Validation and calibration of mWTP estimates 454 

Estimates of individual specific 𝑚𝑊𝑇𝑃𝑛
̂  to avoid CO2 emissions should be meaningfully related 455 

to those variables that are—at least in theory—determining WTP. In order to establish if this is so in 456 
our case we report the results of an OLS regression of 𝑚𝑊𝑇𝑃𝑛

̂  on a selected sub-set of socio-economic 457 
covariates, which include also indicators for altitude and population size. Instead of average income 458 
of the location of residence we prefer to include personal income of the respondent, and because of 459 
missing data on this variable, the sample is somewhat smaller (223 fewer respondents) than that used 460 
for estimation of the choice models. Table 5 reports the OLS estimates, whose signs support the 461 
validity of the 𝑚𝑊𝑇𝑃𝑛

̂  estimates. Increased education attainment is progressively related to higher 462 
values of 𝑚𝑊𝑇𝑃𝑛

̂ , as is personal income and being resident in the plains and in larger towns. Being 463 
a male respondent or of different age has no significant effect on 𝑚𝑊𝑇𝑃𝑛

̂  while being from the 464 
mountains, everything else being equal, shows a significantly lower𝑚𝑊𝑇𝑃𝑛

̂ . This seems in contrast 465 
with the unconditional distribution displayed in Figure 1, but the marginal effect of altitude, obtained 466 
while controlling for other variables, is obviously different from its unconditional effect. 467 

Table 5. OLS regression estimates for 𝑚𝑊𝑇𝑃𝑛
̂  468 

 Estimate Std. Err. t-value Pr(>|t|) Signif. 

Intercept 0.995 0.802 1.24 0.215  

Middle School -0.108 0.377 -0.29 0.775  

High School 0.584 0.164 3.57 <0.001 *** 

Graduate 1.010 0.186 5.43 <0.001 *** 

Post-graduate 1.848 0.300 6.16 <0.001 *** 

Man -0.043 0.101 -0.43 0.667  

ln(age) -0.153 0.174 -0.88 0.378  

income 0.017 0.004 4.50 <0.001 *** 

Plains 0.329 0.120 2.74 0.006 ** 

Mountains -0.576 0.110 -5.25 <0.001 *** 

ln(population) 0.174 0.048 3.64 <0.001 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘  ’ 1  

Adjusted R-squared:  0.1232     



 14 of 5 

Multiple R-squared:  0.1304,        

F-statistic: 18.24 on 10 and 1217 DF,      

p-value: < 2.2e-16     

Descriptive Stats of mWTP (dependent var.)   

Mean St. dev. Median 25 q.tle 75 q.tle  

3.045 1.741 2.974 1.796 4.229  

In order to use estimates obtained by hypothetical statements for policy analysis it is necessary 469 
to calibrate them in order to reduce hypothetical bias. WTP estimates from hypothetical statements 470 
are typically larger than equivalent estimates obtained from revealed preference data. Several studies 471 
have investigated the regularity of such discrepancy and derived calibration factors [60],[61]. In the 472 
context of environmental goods, with which respondents seldom have familiarity, calibration is 473 
obviously particularly important. A comprehensive meta-analysis study of environmental 474 
nonmarket estimates is that of [60], in which they find “a median ratio of hypothetical to actual value of 475 
only 1.35, and the distribution has severe positive skewness”. So, in our calibration, the median value 476 
serves as the anchoring point which is deflated so that the hypothetical estimate is 1.35 times the 477 
calibrated estimate. We then impose a positive skewness on the calibrated values. Hypothetical value 478 
estimates falling in percentiles above the median are deflated in increments of 7% every steps of five 479 
percentile points, while values below the median are deflated in decrements of 5% for the same 480 
percentile steps.  481 

5.3 Geographical distributions of WTP for CO2 emissions 482 

In this section we explore the geographical distribution of benefits that would derive if all 483 
respondents changed to more sustainable (lower CO2 emitting) heating systems. The assumption is 484 
that respondents move from the current heating system—the data for which were collected in during 485 
the interviews—to the nearest system with lower emissions. So, for example, a respondent who 486 
reported to be currently using an oil-based system emitting 4575 kg of CO2/year would move to a 487 
more sustainable system within the oil-based group emitting only 3,900 kg/year. Someone else that 488 
was already at the lowest range of emission within a category (i.e. methane with 3,000 kg/year) would 489 
lower emissions by switching to the worse emitter in the more sustainable system in the renewable 490 
category (i.e. a pellet based system emitting 525 kg/year of CO2). In this manner we can approximate 491 
linearly the monetary change by using the individual specific estimates of marginal WTP obtained 492 
from the best performing mode, after suitable calibration for reducing hypothetical bias. 493 

The computation of the mWTP per kg of CO2 used the following formula: 494 

∆𝑊𝑇�̂�𝑛 = 𝑔(𝑚𝑊𝑇𝑃𝑛
̂ )∆𝑛,        (6) 495 

where 𝑔(. ) Is the calibration function (a coefficient consistent with the median value and skewness 496 
from [60]) that adequately deflates the estimate, and  ∆𝑛  is the marginal reduction in CO2, 497 
conditional on the heating system currently employed by the respondent (in kg of CO2/year). These 498 
were developed by assuming that the length of time respondents signalled to be away from the next 499 
adoption decision was an indication of pollution emission levels, with longer times indicating more 500 
sustainable current systems (with lower emissions). 501 

To explore the geographical distribution of the benefits from such hypothetical emission 502 
reduction we mapped the values across the territory of the target population (Figure 4). The map 503 
describes the municipality boundaries and the colouring reflects the averaged values from 504 
respondents within each boundary. It is apparent that the highest benefits from emission reduction 505 
occur in the low land in the south part of the map, and it is especially high in the large municipalities, 506 
such as the city of Verona and Padua. The lowest benefits, instead, occur in the mountainous north 507 
and along the hilly regions along the foot of the mountains. This might be counter-intuitive if 508 
compared with the distributions reported in figures 1 and 2, but it is mostly due to higher deflation 509 
values of 𝑔(. ) that apply to higher 𝑚𝑊𝑇𝑃𝑛

̂ , which are more prevalent at higher altitudes. 510 
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 511 

Figure 4: Distribution of WTP for marginally reducing CO2 emissions from heating systems at municipality 512 
level 513 

  514 
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6. Conclusions 515 

Emissions from heating systems are large contributors to the level of stock pollutants of the 516 
greenhouse gas type. Climate change is responsible for severe damage in high altitude areas, in the 517 
form of faster landslides, change in the snowfall patterns and topsoil erosion. However, in the plains 518 
air pollution is often more visible for the prevalence of winter fogs and low altitude haze. Respiratory 519 
problems are also more common in the lowlands. These factors, along with different patterns of 520 
population structure across these areas make geographical factors important in effective policy 521 
design. Stated preference methods are increasingly common in exploring nonmarket benefits 522 
associated with environmental policies. In this study we collect data on choice of heating systems 523 
across the population of Veneto in North-Eastern Italy. This densely populated region covers a wide 524 
range of altitudes, from the Alps to the lowlands of the rivers. Such diversity of microclimates induces 525 
a differentiated demand in terms of heating systems. As such it lends itself to studying the 526 
geographical distribution of policy actions aimed at a more sustainable pattern of adoption of heating 527 
systems and its nonmarket benefits. 528 

We developed a choice experiment survey to explicitly address the geographical dimension of 529 
taste heterogeneity across residents for the existing heating systems and potential adoptions of more 530 
sustainable ones. This required a complex experimental design, which nevertheless provided the 531 
identification of the parameters for all attributes and heating systems. In particular, from the 532 
methodological viewpoint, we proposed an MXL model specification to account for the role of spatial 533 
and socio-demographical factors in respondents’ heterogeneity of preferences towards key features 534 
of heating systems. Although our model cannot be considered a proper spatial model, it represents a 535 
way to inform discrete choice models with variables related to geographical features. This is 536 
important as the existence of spatial effect on welfare changes is well established in literature, but 537 
poorly explored in empirical studies. The estimation of spatial discrete choice models has still 538 
received little attention in literature, and our paper is an explorative work in such direction.  539 

The hypothesis that justified our work is that spatial variables such altitude, average income and 540 
population size of the municipality are sources of heterogeneity of preferences towards key features 541 
of heating systems.  542 

Our results show that the variables we consider are in fact a source of variation in the spread of 543 
sensitivity to cost and CO2 emissions. In particular, we found that respondents living at higher 544 
altitudes display a wider range of preferences than those in the lowlands. We validated our structural 545 
model as well as its ex-post values at the individual level by developing theoretical expectation with 546 
regards to key variables, such as income and education, that are confirmed by the results. We hence 547 
argued that the model and data are theoretically valid.  548 

From a policy viewpoint, our results are of particular interest considering that both local and 549 
national governments are providing financial incentives to encourage the installation of energy-550 
efficient and more sustainable heating systems. Being able to account for spatial differences in the 551 
perception of the benefits of such measures is useful to design programs that are coherent with public 552 
preferences. Furthermore, as some of these measures have a strong local connotation, our results can 553 
be useful to help policy maker in addressing their action locally. In particular, our findings suggest 554 
that geographical features matter for the adoption of sustainable heating systems and that 555 
government intervention should be developed taking this into serious account. 556 
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