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1 Introduction

The relationship between two-dimensional conformal field theories and gravity in
AdSj3 is one of the most interesting arenas for exploring and testing the AdS/CFT
correspondence, both in real Lorentzian spacetimes and for the Euclidean partition
function. The presence of an infinite-dimensional conformal symmetry on the field
theory and the simplicity of gravity in three dimensions make it possible to carry
out calculations that are inaccessible in higher dimensions. Due to the equivalence
of conformal structure in two dimensions and complex structure, it is natural to
study a CFT on a Riemann surface, and the simplest quantity to compute is the
path integral on the surface, which defines the partition function. For the torus
and higher genus surfaces, there is a nontrivial (though finite dimensional) moduli
space, and one interesting avenue of investigation is the study of the dependence of
the partition function on the moduli. For a holographic CFT in the semiclassical
limit, this is computed by the action of a geometry solving the equations of motion,
which for pure gravity is a hyperbolic three-manifold with the given surface as its
asymptotic boundary, due to the local triviality of Einstein’s equations in three
dimensions. For a given Riemann surface on the boundary, there are many possible
on-shell geometries which can contribute as saddle points to the partition func-
tion, including handlebody solutions, as well as non-handlebodies. As the moduli
vary, there are phase transitions in the partition function where bulk saddle-points
exchange dominance, generalising the Hawking-Page transition.



For the torus, this problem has been extensively explored, and the full partition
function can be related to a sum over geometries, related by the modular group
[1, 2, 3, 4, 5]. The situation for higher genus Riemann surfaces has been less
thoroughly explored, although the first steps were taken more than a decade ago
[6, 7]. The main barrier to progress in the higher genus case was that although
[6] reduced the evaluation of the action for a bulk handlebody saddle-point to the
calculation of a certain Liouville action on the boundary (using previous work by
[8]), the explicit form of the Liouville field for a given surface remained unknown.
These explicit fields and their actions are required to determine the phase structure
of dominant bulk saddles as a function of the boundary moduli. In this paper we
complete this programme by calculating the Liouville field numerically.

We will also compare the action for the handlebody solutions constructed in
this way to the action for a class of non-handlebodies obtained as a quotient of a
Fuclidean wormhole with two Riemann surface boundaries. The action for these
non-handlebodies can be easily calculated analytically.

Recently, these higher genus partition functions have seen renewed interest from
two different points of view. The states defined by integrating over half of a higher
genus surface have been studied by [9, 10, 11] (following [12]) as examples of sys-
tems with interesting entanglement structure. The slice where we cut the surface
in half has several disconnected components, so the state lives in several copies of
the Hilbert space of a CFT on a circle, and its entanglement can be related to
connectedness of the bulk solution, extending the basic relation between the ther-
mofield double state and eternal black holes [13]. Another motivation comes from
the consideration of Rényi entropies: these are defined as

Sp = Intr(p"), (1)

1—n
and generalise the von Neumann entropy S = —tr(pln p), which can be obtained
as the limit n — 1. When p is the reduced density matrix of some spatial region
A, obtained by tracing out the complementary region in the vacuum state (for
example), the von Neumann entropy is an entanglement entropy, and the Rényi
entropies for integer n are calculated by a path integral on a ‘replicated surface’
(with singular metric), formed by joining together n copies of the sphere across the
region A (reviewed in [14]). This gives a genus ¢ = n — 1 Riemann surface which
lives in a subspace of the moduli space with a Z, symmetry. The CFT partition
functions on these surfaces were studied holographically in [15], matching a CFT
calculation [16]. Since we work in a different conformal frame, our approach as
implemented here does not directly compute these Rényi entropies. Nevertheless,
we still get indirect information, and our method could be adapted if desired.

Motivated by these developments, we revisit the problem of calculating the
action for the bulk handlebody saddles where the boundary is a general Riemann
surface. We introduce a numerical approach for determining the Liouville field
using finite element methods. We can then use this numerical solution to calculate
the action for various different competing bulk saddles as a function of the moduli,
allowing us to map out the phase diagram for an arbitrary Riemann surface.

We will explicitly carry out the calculation in the genus two case in a two-
dimensional subspace of the moduli space. This is sufficiently rich to exhibit an
interesting phase structure, with regions where all three different phases consid-
ered in [9] become dominant. We map out this phase structure, confirming the
qualitative expectations from previous works, and showing in particular that the
non-handlebody phases are always subdominant to the handlebodies. The subspace



also contains a line with a Z3 symmetry, corresponding to Riemann surfaces that
would arise in the calculation of the Rényi entropy S3 for a pair of disjoint intervals.
We show that along this line the handlebodies respecting the Zs symmetry always
dominate over the symmetry breaking handlebodies we consider, though not all
discrete symmetries are necessarily respected by the bulk.

We also obtain explicit results for partition functions of general CFTs in pinching
limits as a cycle of a Riemann surface shrinks to zero size, which we compare to
our numerical results.

In the next section, we review the work of [6, 7], relating the action of bulk
saddles to the Liouville action, which sets the stage for our work. In section 3, we
discuss the two parameter family of genus two surfaces we study to illustrate our
approach, along with various analytic results. We then briefly discuss calculation
of CFT partition functions in pinching limits in section 4, and then in section 5,
we explain the numerical approach we use to find the Liouville field for a given
Riemann surface. In section 6, we present the results for genus two surfaces, before
concluding with a discussion of the results and future work.

2 Preliminaries

We wish to calculate the partition function Z on a compact Riemann surface X
of genus ¢ in a holographic CFT, with Einstein gravity dual', at large central
charge. In the semi-classical saddle point approximation we consider, the partition
function will be given by the action I of the dominant bulk classical solution, that
is, the one of least action: Z ~ e~ !. As we change the moduli of the Riemann
surface, the dominant bulk saddle can change, leading to first order transitions
between different phases of the partition function. We compute the leading order
part (o< ¢) of the action; the order ¢’ part can be computed from a bulk one-loop
determinant [17, 18], it is sometimes possible to go to higher order in ¢ [19, 20, 21],
and subdominant saddle points are expected to provide instanton contributions as
in the genus one case [1, 2, 3, 4, 5], but we will say no more about such quantum
corrections here.

In this section we collect the preliminary information we require. We first ex-
plain the Schottky representation of X we use, describe how the choice of metric
on X enters the calculation, and review the construction of bulk solutions and
computation of their action.

2.1 Schottky representation of X

The virtue of pure three-dimensional gravity that makes our calculation tractable
is that it is a locally trivial theory. This means that all Euclidean classical solutions
can be constructed from quotients of Euclidean AdSs, that is hyperbolic space H?,
by some subset of the isometry group? PSL(2,C). The boundary of H? is the
Riemann sphere P!, appearing as the complex plane if we adopt the upper-half
space representation of H3. The bulk isometries act on this boundary by Mobius

maps w — ?ﬁg Thus, when we consider bulk solutions with boundary X, the

!Pure Einstein gravity is a universal sector of many different holographic CFTs, all captured by our
calculation. We implicitly assume that the other fields play no role in the semiclassical limit (for example,
that there is no instability leading to condensation of some scalar), though the full bulk field contents
are relevant at first subleading order in ¢, contributing to the one-loop determinant.

2Some non-handlebody solutions come from the index two extension including orientation reversing
elements.



Riemann surface X will appear as a quotient of the Riemann sphere P'. This is a
Schottky uniformisation of X, which we now review.

Consider 2g nonintersecting simple closed curves, usually circles,? C;, C! for
i =1,...,g on the Riemann sphere, so that each curve divides the sphere into an
‘inside’ and ‘outside’, and each curve lies to the ‘outside’ of all others. Let the
Mobius maps L; map the interior of C; exactly into the exterior of C/. Each of
the L; has repulsive and attractive fixed points r; and a;, lying inside C; and C]
respectively. For a given L;, these points may be mapped by conjugation to infinity
and zero, after which L; is represented by a scale and rotation w qizw, for some g;
with 0 < |¢;| < 1. This means that these L; are loxodromic elements of PSL(2,C)
(as opposed to elliptic, for which |¢| = 1, or parabolic, for which the fixed points
coincide).

The group G generated by the L; is a Schottky group. The set of all the a;, r;, ¢
can be used to parameterise the space of possible Schottky groups. After using
the overall SL(2,C) to normalise the group to some convention, say by setting
a1 = 0,71 = 00,a0 = 1, the set of all parameters for which the L; generate a
Schottky group is a domain in C39~3, known as Schottky space, in one-to-one
correspondence with (normalised) marked Schottky groups, that is to say Schottky
groups with a distinguished set of generators Lq,..., L.

After we have removed the closure of the set of fixed points of G, to leave
the ‘domain of discontinuity’ Q(G) C P!, we may take the quotient by G. A
fundamental domain for this quotient is the region D exterior to all the C;, C!,
which is a sphere with 2¢g holes cut out. The action of the quotient is to identify
the circles bounding D in pairs C;, C! by L;, and each such identification acts to
add a handle, resulting in a surface of genus g. The complex structure is inherited
from that of P!, since the Mébius maps are conformal automorphisms.

Every Riemann surface can be obtained in this way, as a quotient X = G\Q(G).
In fact, there are many ways to do this: picking a canonical basis «;, 8;, 1 =1,...,9g
with [],[a;, 8] = 1 for the fundamental group of X, there is a marked Schottky
group with X = G\Q(G), where the image of C; is freely homotopic to «;, and
some curve between C; and C/ is homotopic to 3;. Roughly speaking, the «; are a
choice of g cycles to cut along to get a sphere with 2g holes. The set of possible
Schottky groups uniformising X is in correspondence with the possible normal
subgroups generated by «; and their conjugates, N (a1, ..., o). In the context of
the handlebody geometries we will describe shortly, this subgroup has a geometric
interpretation, as the set of cycles that are contractible in the bulk.

At genus 1, every Schottky group is conjugate to {w — ¢*"w : n € Z} for
some ¢, which we can write as ¢ = €™ for 7 in the upper half plane; then the
Schottky representation is related to the more familiar description of the torus,
as the plane modulo a lattice C/(1,7), by an exponential map w = exp(2miz).
Taking 7 — 7 + 1 leaves ¢?> unchanged, so does not alter the Schottky group.
General modular transformations 7 g:j:s in PSL(2,Z) give a torus with the
same complex structure, but a different Schottky group, corresponding to a choice
of a as a primitive cycle on the torus, which goes from the origin of the z-plane to
m + n7 for some coprime integers m,n.

With the exception of the torus, it is a hard problem to identify when two dif-
ferent Schottky groups give Riemann surfaces with the same complex structure. A
crucial part of our calculation is to solve this ‘moduli matching’ problem numeri-

3If the curves can be taken to be circles, G’ (a group to be defined shortly) will be a classical Schottky
group. There exist nonclassical Schottky groups for which this is impossible, but all of the examples we
consider will be classical.



cally.

2.2 The boundary metric

In two dimensions the partition function of a CFT depends not just on the conformal
structure, but also on the metric itself, through the Weyl anomaly. The change
in the partition function under a Weyl transformation g — €2?g depends on the
theory in question only through its central charge, and not on other details, being
determined by the Liouville functional of ¢:

Z[e*g) = " 2lg), I =5 [ ey (9" 0u006 + Ro) @)
The anomaly means that before we compute the partition function we need to
specify which metric we are putting on the Riemann surface.

For higher genus Riemann surfaces X (for genus g > 2), there is a unique metric
of constant negative curvature on X. We will choose to study the CFT with this
metric with Ricci scalar R = —2. In the Schottky uniformisation representation,
this is related to the flat metric ds?> = dwdw on the w-plane by a conformal factor,

ds% = e*?dwdw = e**(da® + dy?) , (3)
where for dsﬁf to have Ricci scalar R = —2, ¢ satisfies the Liouville equation
V2 = 404,000 = (05 + 02)p = €*°. (4)

Furthermore, we must make the metric invariant under the action of the Schottky
group. The flat metric on the w plane does not respect this invariance, so this
requirement translates into the equivariance condition for ¢

HL(w)) = ow) — 3 Tog |I'(w)]? o)

where L is any element of the Schottky group.

We note in passing that the calculation of Rényi entropies requires a different
metric, which is flat except for conical singularities at specified points, correspond-
ing to the ends of intervals. The conformal factor which passes to that metric can
be similarly calculated as a solution of the Laplace equation with point sources at
the singularities, satisfying the same boundary conditions (5). We will not solve
this in the current paper, but it should be tractable using similar methods to those
we employ. This offers an alternative approach to that of [15], essentially equivalent
to a two dimensional electrostatics problem with nonstandard boundary conditions.

Once we choose a fundamental domain D for the Schottky group, we can regard
(4) as a PDE on D, with quasiperiodic boundary conditions (5) relating ¢ on C; and
C!. The uniqueness and existence of the constant curvature metric on X implies
that there is a unique solution to this boundary value problem. Our main task will
be to find this solution numerically.

This representation of the constant negative curvature metric on the Riemann
surface as a scalar function on the domain D has been studied in the mathematical
literature, with several authors providing bounds on the conformal factor e® (see
e.g. [22, 23]). Later, we will solve (4) numerically for the genus two case. These
solutions may be of some mathematical interest independent of the application to
holography.



2.3 Bulk saddle points

We now discuss the bulk saddle-points which can contribute to the holographic
partition function for a given Riemann surface X. The construction of X in terms
of a quotient by a Schottky group was adopted because it provides a simple rep-
resentation of the handlebody solutions in the bulk. The Mobius maps on the
boundary sphere have an extension into the H3, where they act as orientation-
preserving isometries. The loxodromic maps act without fixed points in the bulk,
which means that M = G\H? is a smooth hyperbolic manifold, with boundary X.

In the case that the fundamental domain D on the boundary is bounded by
circles, there is a simple extension to a bulk fundamental domain, the region between
the 2¢ hemispheres ending on the circles C;, C/ in the Poincaré half-space model of
H?3. The quotient then identifies these hemispheres in pairs, just as it identified the
circles on the boundary. From this it is easy to see that the cycles a; which are the
images of C; are contractible in the bulk, while the cycles §; which are the image
of curves from Cj; to C/ remain non-contractible. These g noncontractible cycles
generate the fundamental group of the bulk, which is free on g generators; in fact,
m1(M) is naturally isomorphic to the Schottky group G itself.

Each free homotopy class of closed curves curves has a unique geodesic rep-
resentative, the lengths of which enter the calculation of entropies of subsets of
boundaries, and which often have physical interpretations as horizons. It is there-
fore useful to relate the parameters of the Schottky generators to these bulk geodesic
lengths. This can be done algebraically [10], with the result that the geodesic re-
lated to the Schottky group element g € G C SL(2,C) has length

O
Trg

which simplifies to A = 2cosh™! 5~ when Trg > 2, as it will be in all cases we
consider.

As observed above, there are an infinite number of handlebodies bounded by
any particular Riemann surface, even for genus one. Roughly speaking, there is one
handlebody for each choice of g non-intersecting, homologically independent cycles
to fill in. While it is impossible to check all the possibilities, one can make the
problem more tractable by restricting attention to a subspace of the moduli space
with more symmetry. With a symmetric Riemann surface, one usually expects
the path integral to be dominated by a bulk saddle that preserves as much of
the symmetry as possible, which will allow us to restrict investigation to finitely
many geometries. Having said this, we will also check that certain saddles breaking
symmetries are subdominant to a saddle preserving them.

These handlebodies are the most intensively studied bulk solutions, as they are
expected to dominate the partition function, but these are not the only solutions.
One simple class is obtained from the construction of Euclidean wormhole solutions
with two Riemann surface boundaries by taking the bulk metric to be [24]

Trg2

5 +

A(g) = cosh™!

ds? = dx? + cosh? y ds% . (7)

where ds§( is the constant negative curvature metric on X. This is a solution in the
bulk for any X. If X were the hyperbolic plane H?, this is just the metric of H? in
hyperbolic slicing; we can obtain any surface of genus g > 2 by quotienting this H?
by a Fuchsian group. To obtain a single-boundary solution, we can quotient this
wormbhole solution by a Zs symmetry which combines x — —yx with an involution



of X. This will provide a smooth bulk saddle with a single boundary X if the in-
volution acts freely, but otherwise it will have orbifold singularities at x = 0 where
the involution has fixed points. These are non-handlebody solutions, as none of the
non-contractible cycles of X become contractible in the bulk. Their role holograph-
ically is somewhat mysterious, as is that of the two-boundary Euclidean wormholes,
and it has been conjectured [25] that they are always subdominant relative to the
handlebody solutions. We will confirm this numerically in the subspace of the genus
two moduli space we consider.

2.4 Bulk action

To compare the different bulk saddle-points, we need to compare their actions. The
evaluation of the bulk action for the handlebody solutions was discussed in detail
in [6]. The gravity action we are evaluating, including all boundary contributions
and counterterms, is

Ig] = 16_7r1G [/M d3z\/g(R+2) + 2/8M d?z\/(k — 1) — 21x (1 + log 46]?3” ,

(8)
where we have set the bulk AdS scale to unity, and y is the Euler character of the
boundary. Using a Fefferman-Graham coordinate system near the boundary, with

o d2f+dsk

ds
22

the bulk is cut off at the surface z = ¢, on which ~ is the induced metric, and
% the mean curvature. The unfixed parameter Ry is the radius of the sphere for
which the partition function is unity, which just sets the overall normalisation for
all partition functions.

On-shell, the action evaluates to

AR3
T= - | =4V + 2400 — dr(g—1) <1 —log 20>] ' (10)
€

 24m
where Vi and Aga are the volume of the spacetime up to the cutoff and the area
of its boundary*. The key result of [6] is that writing the boundary metric ds% in
terms of ¢ as in (3), we can relate the action of the bulk geometry to an action for

the boundary Liouville field ¢,
c
[=—5- [Irz[¢] — A —4m(g—1) (1 —log4Rg)] . (11)

The term A is the area of the boundary, which depends on the boundary metric;
it is cancelled by an identical term appearing in I7z. The nontrivial dependence is
given by Irz, which is the Liouville action of Takhtajan and Zograf [8],

Irz[¢] = / Ydw A dw <4a¢5¢+62¢) 12)
D2
° 3 " TNn
1 i (L L
i / <2¢ ~ g los|Zil* - logfck\2> 2 <kdw - _’fdu_f) .
; Ch 2 2\ L}, L,

The boundary terms are such that the value of the action is independent of the
choice of fundamental region D used to evaluate it. This form assumes that L; has

“Note that [6] missed a finite term coming from a subleading part of s, which gives a moduli inde-
pendent piece proportional to x.



a fixed point at infinity, so in particular, D is a bounded domain of the complex
plane.” The functional I7 is stationary exactly on the constant negative curvature
metrics, solving the Liouville equation (4).

Thus, the barrier to evaluating the bulk action for the handlebody phases is
simply lack of knowledge of the Liouville field that corresponds to the desired metric
on X, which for our choice is the solution of the Liouville equation (4). We will
show in section 5 how to solve this equation numerically; it is then straightforward
to perform the above integrals on the numerical solution to obtain the action.

We will also compare the values of the action for the handlebody phases to
the action for the non-handlebody solution (7), which is much easier to evaluate
because of the warped product form of the metric. Evaluating the action (10) for
the metric (7) with x > 0, the x integral is independent from the integral over
X, so the whole action is proportional to the area of X in the constant negative
curvature metric, which is 47(¢g — 1) by the Gauss-Bonnet theorem. The divergent
terms cancel, to leave us with

I=—2(g—1log Ry (13)

for the non-handlebody solution.
For our results below, we will normalise Z by choosing Ry = 1, so in particular
the action for the non-handlebody is zero.

3 A two-parameter family of surfaces

Our discussion so far has been completely general; it could be applied to the cal-
culation of the bulk action for any Riemann surface X at any point in its moduli
space. To illustrate our numerical methods, we will explictly compute ¢ for a sim-
ple family of genus two surfaces: we consider a two real-dimensional subspace of
the full three complex-dimensional moduli space of genus two surfaces. This is a
subspace of the three real-dimensional space of surfaces with a reflection symmetry
considered in [9], describing multiboundary wormholes. This same subspace also
arises as a subspace of the set of genus two surfaces which can be interpreted as
states with a single boundary. In addition to the physical interest of these inter-
petations, the symmetry of X in this subspace allows us to restrict consideration to
bulk saddle points which preserve this symmetry, so we will be able to completely
map out the relevant phases. In this section, we describe this subspace in more de-
tail, and identify the bulk saddle points which preserve the symmetry and explain
their physical interpretations.

3.1 Reflection symmetric surfaces

We first restrict to a class of Riemann surfaces with a reflection symmetry. Math-
ematically, this can be described as a real structure, which is a notion of complex
conjugation on the surface. This is defined as an involutive anticonformal auto-
morphism o. Further, we will only be interested in the case where the fixed point
set of o (which is known as the real part, and always consists of a finite number
k of simple closed curves) divides the surface into two components. Real surfaces
(X,0) can be classified by their ‘topological type’ (g, k,€), where g is the genus,

5This restriction can be relaxed, either allowing L; to be more general and including k& = 1 in the
sum, and if D is unbounded with the addition of a regulating circle at large radius, on which there is an
additional boundary term (33).



k the number of components of the real part as above, and e determines whether
the fixed point set of o splits the surface in two (e = 0, the case we require) or
leaves it connected (e = 1). A real surface (X, o) of type (g,k,0) can be built by
taking a Riemann surface Y with k boundaries, and sewing it to a reflected copy
of itself along the boundaries, a construction called the Schottky double. Then o
is the involution that simply swaps these two copies. The restriction to surfaces
with a reflection symmetry is physically motivated by the interpretation of these
surfaces as defining a natural set of states on the tensor product H®* of k copies of
the CFT. The wavefunction evaluated on any field configuration is defined by the
path integral on Y with the given field configuration as boundary conditions.

At genus zero, this is just the state-operator correspondence definition of the
vacuum, and for genus one, where the reflection symmetry restricts us to the rect-
angular torus (7 = i/3/27 pure imaginary), this construction gives the thermofield
double state.

For a holographic CFT, these states have geometric duals [12] which are black
holes with k£ > 1 asymptotic boundaries, and arbitrary topology behind the horizon
[26, 27, 28]. Depending on the moduli of X, there may be several different possible
bulk duals, with first order phase transitions between them as we vary the moduli.
The dominant solution is expected to respect the involution symmetry o, which
extends into the bulk as a time-reflection symmetry. This fixes a t = 0 slice ¥ in
the bulk, where the quantum state of the bulk fields is defined by a Hartle-Hawking
procedure, integrating over configurations on half of the Euclidean bulk, just as in
the definition of the boundary state. Because SL(2,R) acts on the equatorial slice
of H? in precisely the same way as it acts on the Northern and Southern hemispheres
of the boundary, there is always a phase in which ¥ is conformal to Y, but there
are also phases in which ¥ is disconnected, so the state in different copies of the
CFT may be entangled only through the quantum state of the bulk fields, and not
at leading order in the large ¢ semiclassical limit. Since ¥ has vanishing extrinsic
curvature, it provides a good Cauchy slice from which to classically evolve forwards
and backwards in Lorentzian time.

This general structure can be illustrated by considering the familiar case of genus
one, where everything can be explicitly computed. The rectangular torus (type
(1,1,0)) has two saddle points respecting the reflection symmetry, filling in either
the thermal Euclidean time circle, or the spatial circle. In the first case, the bulk t =
0 slice is a cylinder connecting the two boundary components, which is the Einstein-
Rosen bridge of the BTZ black hole, and in the second case % is two disconnected
copies of H?, the ¢ = 0 slice of pure AdS. The leading classical contribution to the
torus partition function always comes from one of these solutions, which exchange
dominance at the square torus 7 = ¢, the AdSs version of the Hawking-Page phase
transition.

3.2 Genus two

We now describe the moduli space of real surfaces at genus two. There are two
topologically distinct types of surfaces admitting a time-reflection symmetry, each
with three real moduli. The first, with (X, o) of type (2,3,0), studied in [9], is the
Schottky double of a pair of pants Y, describing an entangled state on three copies of
the CFT. The moduli space can be parameterised by the lengths (in the canonical
constant curvature metric on X) of the three circles fixed by o, L,, a = 1,2,3.
There are three kinds of handlebody saddles which preserve the Zo symmetry, and
thus are expected to dominate the path integral, distinguished by the topology of

10



the time reflection invariant surface ¥ in the bulk. For the first, ¥ is a pair of
pants, conformal to Y, corresponding to a connected wormhole geometry. For the
second, ¥ is three discs, corresponding to three disconnected copies of AdS. Finally
it can be a disc plus a cylinder, with three different versions depending on which
two boundaries the cylinder joins, corresponding to one copy of AdS and one of
BTZ.

The second possibility is type (2,1,0), so o fixes just one curve, and Y is a
torus with a single boundary. These surfaces define some excited pure state in
a single copy of the CFT, once again with three real moduli. For one possible
parameterisation of this space, choose a dual pair of cycles on the torus, and give
their lengths in the canonical metric on X, as well as the angle at which they meet.
Another possibility is the Fenchel-Nielsen coordinates, building the bordered torus
from a pair of pants, with two cuffs the same length, joining those cuffs with some
twist. There are now infinitely many different handlebodies respecting the time
reflection symmetry. One has the ¢t = 0 slice X equal to Y: this is a single-exterior
black hole with a torus hidden behind the horizon. The other phases have ¥ simply
a disc, and are classically dual to pure AdS, with the quantum state of the bulk
fields depending on which of the possible handlebodies is dominant.

These two three-parameter subspaces of Riemann surfaces admitting different
real structures in fact intersect in a two-dimensional family that admits both types
of time-reflection symmetry. From the point of view of the three boundary worm-
hole, this is the restriction to the subspace where two of the boundaries have the
same size, L1 = Lg. There is then a reflection symmetry that swaps these two
cycles; this is the symmetry that is interpreted as time reflection for the torus
wormhole. For the torus, the additional symmetry arises when we demand that
there is a dual pair of cycles meeting at right angles, so we have a rectangular
torus. We will analyse this two-dimensional subspace.

There are three possible bulk geometries respecting both of these symmetries.
For the three boundary wormhole interpretation, they correspond to a wormhole
connecting boundaries of equal size with a disconnected AdS for the third, the
totally connected wormhole joining all three boundaries, and a totally disconnected
geometry with three copies of AdS. In the alternative interpretation, these phases
correspond to the single exterior black hole phase, and two different pure AdS
phases, where one or other of the cycles of the torus is contractible in the Euclidean
bulk.

Solutions in this subspace in fact all have a third reflection symmetry, with total
conformal and anticonformal symmetry group Zsg X Zg X Zg. This additional symme-
try can be understood from the fact that every genus 2 surface is hyperelliptic, so it
can be represented as an algebraic curve y? = p(x) for some polynomial p of degree
five or six; every such surface admits the hyperelliptic involution y — —y. When
this commutes with the real structure o, the combination of ¢ with the hyperelliptic
involution provides a second inequivalent real structure. For a surface formed by
gluing two copies of a pair of pants, this second real structure can be thought of
as reflection in the plane splitting the pants in two along the seams. If we call the
cuffs of the pants the A-cycles, fixed by the original time reflection, the second real
structure fixes a dual set of B-cycles. The surface thus may be reinterpreted by
swapping the names of these cycles, and in this interpretation represents a different
point in the moduli space of real surfaces of type (2,3,0). This is much the same
as the case for a rectangular torus, where there is a spatial reflection symmetry in
addition to the time reflection symmetry, so swapping the roles of space and time
gives a different interpretation of the same surface. Any handlebody solution can
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also be interpreted from these two points of view, so a Euclidean geometry corre-
sponding to a connected phase can be reinterpreted as the disconnected phase for
a different point in moduli space.

The full order 8 symmetry group is manifest in the Schottky groups and fun-
damental domains D we choose, as reflections and inversions. This is be useful for
increasing the numerical efficiency, since it allows us to solve the Liouville equation
in a region D one eighth the size of the full fundamental domain, inferring the val-
ues elsewhere by the equivariance of ¢ under the symmetries. Expressions for the
action in the form of integrals only over D and its boundaries are given in appendix
A. The calculations in the reduced domain agree to numerical accuracy with those
done in the full domain with the original action (12), but are more computationally
efficient. The fundamental domains for the Schottky groups we use are shown in
figure 1, and described in more detail in the appendix.

3.3 Enhanced symmetries

Our Riemann surfaces generically have a symmetry group of order 8, but there
are subspaces where the symmetry is further enhanced. There are two distinct
one-parameter families of surfaces in our moduli space for which such enhancement
occurs, as follows from the classification [29], which help to understand some aspects
of the phase diagram analytically. These two families meet at a distinguished point
in moduli space, a very highly symmetric Riemann surface; this is the genus 2
analogue of the square torus 7 = i. We can identify explicitly the hyperelliptic
curve corresponding to this surface, and calculate its cycle lengths analytically,
which will act as a check on the numerical results.

The first possible enhancement occurs when all three A-cycles (and hence also all
three B-cycles) have the same length, corresponding to three-boundary wormholes
with all horizons the same size. The full conformal automorphism group for these
surfaces is Dg, the dihedral group of order 12, along with the anticonformal time
reflection commuting with these. Here we can explicitly check that the pair of
pants and thermal AdS saddles, which preserve the Zs symmetry, always dominate
over the disc plus annulus saddles, which break it. This is also the same family
of surfaces relevant for computation of the third Rényi entropy of two disjoint
intervals, parametrised by the cross ratio of the intervals’ endpoints, so we are also
verifying replica symmetry.

The other symmetry enhancement is an additional Zy, enhancing the conformal
automorphism group to D4. From the torus wormhole point of view, this occurs
when the two cycles of the torus behind the horizon have equal size. The symmetry
exchanges the A-cycles and B-cycles, which have matching lengths for these sur-
faces. As a consequence, the handlebodies for disconnected and connected phases,
which do not respect this symmetry but are exchanged under it, are degenerate.
This indicates that the symmetry enhancement is at the boundary separating these
two phases. It is possible to analytically calculate the relationships between cy-
cle lengths at this boundary, as we will describe briefly below. However, because
the relevant Schottky groups do not respect this symmetry, this information is not
helpful for finding the Schottky parameters, and hence the spacetime parameters
such as horizon lengths, at the phase transition, which will instead be determined
from the numerics. It is worth noting here that the partially connected phase does
respect the full symmetry group along this line, but is still subdominant for some
values of moduli, so this is an example where the bulk spontaneously breaks a
discrete symmetry.

12
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Figure 1: The choice of fundamental domains D we use for the relevant Schottky groups
G, corresponding in the three boundary wormhole to the connected phase (left) and
partially connected (right), and a cartoon of the surface we consider with various relevant
cycles marked. The generators for the Schottky group for the left domain identify the
two green circles on the right with one another, and similarly the two on the left; for
the right domain they identify the concentric orange circles, and the yellow circles. The
disconnected phase uses the left domain, but swaps the interpretations of A- and B-cycles.
The three involutions which generate the symmetries of the surface can be visualised as
reflections in the three coordinate axes. Reflection in the horizontal plane fixes the
blue and yellow A-cycles, and is interpreted as the time-reversal for the three boundary
wormhole, implemented as reflection in the horizontal axis for the left domain, and the
vertical axis for the right. Reflection in the plane of the page, fixing green and orange
B-cycles, is implemented as inversion in the unit circle for both domains. Finally, the
reflection in the vertical plane fixing the purple ‘waist’, interpreted as time reversal for
the torus wormhole, is represented by reflection in vertical and horizontal axes for left
and right domains respectively. The hyperelliptic involution is the half rotation around
the horizontal axis, fixing the six points where A- and B-cycles intersect.
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Now these two families of enhanced symmetry meet at a distinguished point
in the moduli space of curves where all six A-cycles and B-cycles are all the same
length. This is the genus 2 analogue of the point 7 = ¢ in the torus moduli space,
where the horizontal and vertical cycles are the same length®. From the classifica-
tion [29], there is a unique surface with the appropriate enhancement of symmetries,
with a conformal automorphism group of order 24, corresponding to the hyperel-
liptic curve y? = 28 — 1. For this surface, it is possible to explicitly work out the
lengths of geodesic cycles on the constant curvature metric, which gives us a check
on the results.

To do this, notice that the symmetries allow us to identify a tessellation of
the curve by identical hyperbolic triangles. We can identify their edges on the
complex z-plane, since they all lie on fixed points of some symmetry, as shown
in figure 2. These triangles all have corner angles m/2, /4 and 7/6, and a little
hyperbolic trigonometry gives the side lengths, which are %cosh_1 D, %cosh_1 3,
and % cosh™' 2. Now the cycles on the ¢t = 0 slice of the three boundary wormhole,
and the corresponding dual cycles, which we measure in the numerics, correspond
to arcs of the unit circle between two of the sixth roots of unity on the z-plane,
returning by the same arc on the other sheet. These contain four of the short edges
of the triangle, so are of length 2cosh™' 2. We will verify numerically that this is
the cycle length at the point where all six A- and B-cycles have the same length.

With a little more effort, we can make progress in calculating cycle lengths more
generally. To do this, note that if we cut our surface along all geodesics fixed by
symmetry, that is all the curves marked in figure 1, we decompose it into eight pen-
tagons, with right angles at every vertex. With the constant curvature metric, these
are right angle hyperbolic pentagons, with side lengths %5{‘72, %652, iﬁg‘, iﬂ‘g“, %Ew,
where 27 is the lengths of the ath A- or B-cycle, and £,, the length of the ‘waist’
that divides the surface in two. But there is a two-dimensional space of such
pentagons, so specifying two side lengths uniquely determines the others, and in
particular, the B-cycle lengths can be analytically determined as a function of the
A-cycle lengths. As an example of this, the phase boundary between disconnected
and connected phases, which happens when the A-cycle and B-cycle lengths are
equal, occurs when

{3 = 4coth™ ! sinh (?) . (14)

Note that this does not allow us to identify the Schottky parameters at the transi-
tion, because the handlebody does not respect the relevant symmetry.

4 Pinching limits

As a check on our numerically computed actions, we would like to compare them to
any available analytic results. Some progress can be made at the edges of moduli
space, where one or more cycles of the Riemann surface shrink to zero size. The
contribution of the vacuum block to the partition function in this limit was studied
in [21], which gave loop corrections to high orders in the semiclassical 1/c expansion.
However, it is not so easy to obtain the classical, order ¢ contribution that we are
studying, which is related to the fact that this depends on the choice of frame by
the Weyl anomaly, and not just the complex structure of the Riemann surface. In

6This is occasionally referred to as the Bolza surface, though this name is more usually given to the
maximally symmetric genus 2 surface, with twice as many automorphisms, but only real structures of
type (2,1,1) or (2,2,1), analogous to the torus with 7 = /3,
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Figure 2: The maximally symmetric real genus 2 Riemann surface. The left plot shows
a tessellation of the complex z-plane respecting the symmetries of the curve y? = 25 — 1.
The symmetries acting on the z-plane include the obvious reflections and rotations, as
well as inversion in the unit circle and the hyperelliptic involution y — —y exchanging
sheets. The red points are the sixth roots of unity, where the plane is ramified. Each
triangle has a vertex at either 0 or oo on the x-plane, where 12 triangles meet, so the
angle is T, and a vertex at e*)7/6 for some integer k, where 4 triangles meet with right
angles (the blue points in the figure), so the angle is 7/2. Finally, there is a vertex at
a sixth root of unity (the red points), which is a ramification point for the hyperelliptic
curve, so there are in fact 8 triangles meeting at this point, four on each sheet, with
angles m/4. The right diagram shows a fundamental domain of the hyperbolic plane for
the surface, which can be represented as a quotient of H?. The surface is given by an
appropriate identification of edges of this domain.
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this section, we explicitly compute how the order ¢ part of the partition function
in the constant curvature frame behaves in a pinching limit, in terms of the length
¢ of the pinching cycle.

To do this, we consider cutting the Riemann surface along the short cycle, and
insert a complete set of states, which equates the partition function to a sum of
two-point functions on a simpler (possibly disconnected) Riemann surface; see [21],
particularly the final appendix, for more details. The contribution from each state
comes with ¢ to the power of the dimension, so the sum will be dominated by the
vacuum state in the pinching limit. The vacuum is prepared by the path integral
on hemispheres, which we sew to each side of the cut cycle, normalised by dividing
by the partition function on a sphere of the same radius. So in the pinching limit,
we find the leading order piece of the partition function by cutting the surface along
the cycle, inserting hemispherical ‘caps’, and dividing by the partition function for
the sphere of that radius:

|2 & /1@ mime

where Z[] is the partition function of the indicated surface, and the images should
be interpreted as small pieces, near the pinching cycle (marked in red), of some
Riemann surface.

In any neighbourhood of the cycle topologically equivalent to a cylinder, by the
uniformisation theorem the geometry is determined uniquely by the length of the
cycle. The metric in can be written in the canonical form (defining R by ¢ = 27 R)

ds? = dr? + R? cosh?r d6? (16)

with our cycle at » = 0, valid for some range of the coordinate . In the pinching
limit we consider, we require that any cycle dual to the short cycle must become
long, which implies that the range of r in which this metric is valid becomes arbi-
trarily large. Once we cut along the cycle and insert a hemisphere, this metric will
give the geometry for » > 0, and then

ds? = dr? + R? cos® (%) d? (17)
is the hemisphere metric for —ZR <r < 0.

Now there exists a conformal transformation g — § = €2?¢ on the geometry with
the hemispherical cap sewn in, decaying exponentially for large r, which maps it to
the same capped geometry, but with a different value of R. Since the transformation
decays, in the pinching limit this will become a good approximation for a conformal
map on the entire Riemann surface (cut and with hemispheres sewed on), which
changes the radius of the cycle, but leaves the geometry far from it unaltered.
The ratio of partition functions at the two different radii is then simply given by
the Liouville action of the conformal map (along with a term coming from the
transformation of the sphere). We will find this conformal map to linear order,
which gives us the derivative of the partition function with respect to cycle length
in the pinching limit.

There are three different regions for the conformal map, given by r < 0, 0 <
r < rg and 7 > rg, where rg is the location of the geodesic cycle in the rescaled
metric. In each region, we have different values of scalar curvature (denoted Z
here to distinguish from the radius of the cycle) before and after the conformal
map, depending on whether the relevant point begins and ends in the constant
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negative curvature region or on the hemisphere. We must find ¢ from the differential
equation prescribing the transformation of curvature

R = e (R — 2V%0), (18)
solving separately for ¢ in each region. For r > ro, we have # = R = —2; for
r < 0, we have # = %, X = %; and finally for 0 < r < ro we have Z = —2,

R = 2.

Pilgking R' = R(1+e¢), for € small, we can linearise the equation and solve (with
an Ansatz independent of 6). This is straightforward in the first and second regions
where the curvature is unchanged or changes to linear order, but in the small region
0 < r < ro there is an order one change in curvature, so ¢”(r) will not in fact be
small.

First we solve for r > rg. One boundary condition specifies that ¢ decays; then
we find the new location rg of the constant-r geodesic, and specify the remaining
boundary condition by demanding that its radius be (14 €)R. Next, observe that ¢
and ¢’ (both of which must be continuous) are small, and converting the 0 < r < 70
region to part of a hemisphere must require ¢” to be of order one. Since rg is small,
so the solution need only be valid over a small region, it suffices to set ¢ as a
quadratic in r to this order of approximation. This sets the boundary conditions
of ¢ at r = 0, from which we may subsequently integrate to r = —3 R, verifying for
consistency that the result is smooth there (¢' = 0). The solution is

1 — tan~!(csch(r)) sinh(r) r>rg=Je
G(r) ~ e 1+ gmr — L (1+ )2+ 0<r<mng (19)
1+ = sin (F) —sR<r<o0

Note that in the middle regime, ¢ and ¢ are order €, but ¢” is order one, so that the
curvature can be changed at order one. It will still not contribute to the Liouville
action at linear order.

We now need the conformal anomaly (2)

ZlPg) =t 2g), I /g (97 a00,6 + %0) (20)

T 2Ur
where & is the scalar curvature in the metric g. In our case, working to linear
order, only the last term in the Liouville action contributes, giving

c c cTe
I, =——2 —€— —— 21
T Y (1)
and the Liouville action for changing the radius of the sphere from R to (1 + ¢)R
is ge to leading order, which cancels the constant term. The result that follows is
that for the pinching limit of the surface where the calculation applies, neglecting
all but the R~! contribution, we get

dlog Z cm

~ — 22
dR 12R2 (22)
so, integrating up, we get
cm
log Z ~ ——. 23
L™ 1R (23)

The first correction to this will be independent of R, depending on the full details
of the moduli of the punctured Riemann surface resulting from pinching the cycle
to a point.
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In the saddle point approximation where Z ~ e~!, this means that the dominant
saddle point must behave as

C7T2

[ ~—— 24
o, as £ +— 0 (24)

where we now parameterise the pinching cycle by its length ¢ = 27 R.

If several cycles pinch, unless they are also at a degenerate point where the
cycles remain at finite distance in the limit, this calculation applies independently
to all the cycles, so the result is just a sum of the various terms.

5 Numerical solution

Given a Schottky uniformisation of a Riemann surface, described as a region D in
the complex plane whose boundaries are circles C;, C/ identified under the action
of the loxodromic Mobius maps L;, our task is to find a solution ¢ of the Liouville
equation (4) with the transformation properties (5), and to evaluate the action (12)
for this solution. Here we describe a numerical method of solution.

Since the Liouville equation is nonlinear, we opt to use the Newton-Raphson
algorithm. Linearising the Liouville equation gives us the linear Newton-Raphson
equation

(V2 = 2%)39() = = (V2 — €0 . (25)

Similarly, (5) yields the quasi-periodic boundary conditions

So0 [L0w)] = b0 o] = = (6 [L0w)] ~ oolul — o L'@)P) - (20)

Beginning with a seed ¢(g), we iteratively solve the above equation and boundary
conditions for d¢;), and then set ¢y 1) = @) + ;). The procedure continues
until some success or failure condition is met’. For convenience, we will drop the
subscripts that label the Newton iterations in the remainder of this section.

To solve the above linear differential equations numerically, we need a discreti-
sation scheme. This particular differential equation is simple, but lies in a com-
plicated domain. We therefore resort to finite elements, which are well-adapted to
these kinds of problems.

Rather than to solve the linear equation directly, the finite element method
solves an integral form of this equation. Multiplying the equation by a test function
1) and integrating over the domain D, we obtain

- [ vo-vio-z [ wesos [ wiso= [ Vu-vor [ueo [ w9,
D D aD D D aD

(27)
where we have performed an integration by parts on the second-derivative terms,
V, is an outward-pointing normal derivative, and the integrals are taken using
the unsigned Euclidean measure. We can now use the boundary condition (26) to
rewrite the boundary terms. In our case where D has been reduced by using the
involution w — 1/w symmetry, this results in

/ V- Vép—2 / Ye*Po¢ = / V- Vo+ / ¢62¢¢+Z / . R , (28)

"We find that the basin of attraction for this problem is large enough that using the seed ) =0
converges for all of the solutions we have obtained. We stop the algorithm when [[d¢;)||oc < 10719,
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where R(C;) is the radius of the circle C;, and o(C;) = —1 if the domain lies within
the circle, and o(C;) = +1 if the domain lies outside the circle®. The domain can be
further reduced by lines of reflection symmetry without changing these boundary
terms. The lines themselves have no boundary contribution, which is equivalent to
a Neumann boundary condition.

At each Newton iteration, we are given ¢, and the aim is to find a d¢ such that
the integral equation (28) is valid for any 1 in some space of functions. For us, this

will be a Sobolev space of piecewise continuous second-order polynomials. We will
also approximate ¢ and d¢ using functions within this Sobolev space.

Following the finite element method, we decompose the domain into a mesh
of triangular ‘elements’.” The decomposition must be a valid triangulation in that
triangles must meet edge to edge and vertex to vertex. On the boundaries, we allow
the triangles to have curved edges. On each vertex and the midpoint of each edge,

place a node. Each triangular element therefore has six nodes, and these nodes are
shared between adjacent elements. Examples are shown in figure 3.
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Figure 3: Examples of the meshes used for the two types of Schottky group, in this case
at the triple point where all phases meet.

With a valid mesh, we can now define our Sobolev space. For each of the
nodes i, we can define a function ; that satisfies 9;(x;,y;) = d;; for all nodes j
with coordinates (z;,y;). In two dimensions, a second-order polynomial is uniquely
specified by its value on six points, and each element contains six nodes. We can
therefore extend v; to non-nodal points via polynomial interpolation within each
element. This yields a set of piecewise continuous functions ; that are second-
order polynomials in each element. The span of all 1; together with the standard
integral L? norm forms a Sobolev space which is our space of functions.

Given the values of any C? function ¢ on the nodes ¢ = ¢(x1,yr), we can
approximate ¢ using an element of the Sobolev space as ¢(x,y) = >, drtr(z,y).

By construction, this approximation agrees with the true function ¢ on the nodes.
The approximation can be improved by making the mesh finer.

Because these
8Note that using the involution symmetry has replaced the quasi-periodic boundary boundary con-
ditions with simple boundary integrals. Without such a symmetry, one would require some means of
imposing the quasi-periodic boundary condition more explicitly, such as a master/slave method that
replaces degrees of freedom on C{ with those on C;.

9Common mesh generation algorithms include Chew’s second algorithm and Ruppert’s algorithm for

generating (constrained) Delaunay triangulations. We simply use internal mesh generation routines in
Mathematica 10’s FEM package.
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are second-order polynomials, the approximation should improve roughly cubically
with the number of elements, assuming an evenly distributed mesh.

Now let us describe how to solve the integral form of the linear equation above.
We decompose the integrals as a sum of integrals on each element, and approximate
all functions as functions on our Sobolev space. Within each element, integrals and
derivatives can be computed from second-order polynomials'®. If we take as a test
function a basis function );, the integral equation reduces to an equation of the
form Zj A;j0¢; = b;. Over all basis functions, this defines a matrix A;; and a
vector b;, which gives a sparse linear algebraic system that can be solved using
standard algorithms such as multifrontal methods.

We note that the nodes that lie on the boundary of the domain D contribute
to the boundary terms in the integral equation. The fact that the interior nodes
have no such contribution is equivalent to requiring that outward-pointing normal
derivatives cancel between adjacent elements. This enforces the continuity of the
first derivatives of the functions in the fine mesh limit. (Continuity of the functions
themselves was already guaranteed by the piecewise construction of the Sobolev
space.) This is why the second-derivative terms were integrated by parts in the
integral equation.

Figure 4: Plots of the solutions of the Liouville equation for each of the phases, at the
triple point where all phases meet.

In Fig. 5, we show the convergence of this numerical method. As a measure
of error, we compute the area of the entire Riemann surface under the metric (3).
According to the Gauss-Bonnet theorem, this area must be 47 on a genus-2 surface
with the constant curvature metric R = —2. The convergence is cubic in the number
of elements, as predicted by the method.

The solutions and the integration domain are parametrised by the various Schot-
tky parameters described in appendix A. Horizon lengths can be obtained from
these parameters via . From each solution, we obtain the cycle lengths ¢, of the
A-cycles and B-cycles by numerically integrating fC e? along the curves described
in figure 1, which are geodesic from symmetry. This allows us to match the moduli
of Schottky groups in different phases. We then compute the on-shell bulk action
I from the integrals in appendix A. Since the bulk saddles corresponding to con-
nected and disconnected phases are related by the additional Zo symmetry, there

10Tn practice, integrals are computed using Gaussian quadrature, and differentiation matrices are
derived by differentiating the ;(z,y) on each of the nodes.
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Figure 5: Log-Log plot of error in the Gauss-Bonnet theorem: 1 — ﬁ, as a function of

the number of elements N. The linear fit gives a power N 3%,

are two families of solutions we must find in order to complete the phase diagram.
One family allows us to obtain both the connected wormhole phase and the fully
disconnected phase. Each solution in this family will have one value of the action,
but two different set of lengths ¢,, depending on which Zs symmetry is viewed as a
time reflection symmetry. The second family corresponds to the partially connected
phases with AdS and a BTZ black hole.

6 Results for genus two

Consider first the subspace with cycle lengths £ = ¢; = f5 = {3, which has a Z3
symmetry exchanging the boundaries. There are two phases respecting the full
symmetry group, corresponding to connected and disconnected spacetimes, and
we also consider a partially connected phase breaking the Zs symmetry. We can
directly restrict the parameters of our Schottky groups to this symmetry in the
totally connected/disconnected families, though in the partially connected family
it is not manifest which Schottky parameters correspond to equal cycle lengths, so
we must scan the two-dimensional 1 = 5 space of parameters and use interpolation
to obtain actions and cycle lengths for the £ = /1 = {5 = {3 family.

In Fig. 6, we plot the bulk action as a function of /. We find that the AdS
plus BTZ phase is never dominant. At smaller lengths, the totally disconnected
(three copies of AdS) phase is preferred, while for larger lengths, the connected
wormbhole is preferred. The phase transition between these phases occurs for the
maximally symmetric real Riemann surface where £ = fg, = 2log(2 + v/3), which
corresponds to horizon sizes A1 23 ~ 7.30, slightly larger than the 27 horizon length
corresponding to the Hawking-Page transition for the thermofield double.

Generalising to the two-dimensional family with f10 = ¢1 = {5, all three phases
we consider are dominant for some region of moduli space. In Fig. 7, we show the
phase diagram of solutions in this family, as a function of the cycle lengths of the
Riemann surface. The phase boundaries are found using interpolation. We see that
the disconnected phase is preferred whenever £15 is small, the partially connected
phase (where boundaries with equal lengths are connected) is preferred whenever
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Figure 6: Bulk action as a function of cycle lengths ¢ = ¢; = {5 = {3, normalised to that
of the most symmetric surface (o = 2log(2 + v/3). The phase with the lowest action
is preferred. At smaller lengths, the totally disconnected (three copies of AdS) phase
is preferred (red in colour version), while for larger lengths, the connected wormhole is
preferred (blue in colour version). The phase transition between these occurs precisely
at the length /yy,. The AdS plus BTZ phase (black in colour version) is never dominant.
All phases have a lower action than the non-handlebody phases (/¢ = 0.)

l19 is large and /3 is small, and the connected phase is preferred when all lengths
are large. We also checked the handlebodies corresponding to a partially connected
phase with the third boundary connected to one of the first two, which would break
the symmetry swapping boundaries one and two (interpreted as time-reversal for
the torus wormhole), finding they are never preferred. We also find that all of these
phases have an action below that of the non-handlebody solution (with I = 0)
throughout moduli space, though the subdominant solution appears to approach
zero at the edges of moduli space.

The boundary between the connected and disconnected phases lies on the line
of enhanced symmetry given by equation (14), where the A- and B-cycles have
equal sizes, though connected and disconnected solutions spontaneously break this
symmetry. The phase boundary ends at the tricritical point, where the partially
connected phase takes over, and the handlebody respects the symmetry, acting by
swapping the two generators (demanding o = & in the notation of the appendix).

The corresponding horizon sizes for the connected phase at the phase bound-
aries, determined by the Schottky parameters, are shown in figure 8. In particu-
lar, along the phase transition between connected and disconnected phases, taking
f3 — oo, the third horizon A3 in the connected phase is large but the lengths Ao
of the two equal horizons approach 27 from above.

At the phase boundary between the connected and partially connected phase
(see lower left plot of figure 8), we find the striking result that the horizon length
Az of the connected phase is A3 ~ 6.283, agreeing with 27 to high accuracy (to
around one part in 10* at the triple point), along the entire phase boundary. A
similar agreement with 27 appears in the partially connected phase as well, where
the length of a geodesic circling in the Euclidean time (homotopic to the third B-
cycle) agrees with 27 to a similar accuracy. Swapping A- and B-cycles to reinterpret
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Figure 7: Phase diagram over cycle lengths (15 = ¢1 = /5 and {3, normalised to that of
the most symmetric surface foym = 2log(2 + v/3). The partially connected phase shown
here connects the two ¢; = /5 cycles together. The remaining partially connected phase
is never dominant.
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this as the disconnected /partially connected phase boundary, this geodesic becomes
the horizon of the BTZ part of the partially connected geometry, so the transition
from partially connected to disconnected appears for approximately the same BTZ
horizon size as the Hawking-Page transition.

In terms of the torus wormbhole, the interpretation of these results is that the
black hole phase is dominant roughly when both the internal cycles of the torus
have length of at least 27. In particular, the minimal horizon length, occurring
for the square torus at the triple point, is at A =~ 22.3, much greater than the
Hawking-Page value.

On more careful investigation, this phase transition does not correspond to hori-
zon sizes of exactly 27, except perhaps in the limit £1o — oo at the edge of moduli
space. We checked this by setting the various A’s in question to 27 and scan-
ning the resulting one-parameter families of solutions. We find that for sufficiently
small f1o, these lines do not have matching cycle lengths, though the deviations
quickly become very small as f12 increases. In particular, this implies that if the
connected /partially connected phase boundary were extended much farther into
the region where the disconnected phase is dominant, then the horizon lengths will
show appreciable deviations from 27. The lack of matching is particularly obvious
in the limit 10 — 0, as one of the proposed families has £3 — oo while for the
other /3 remains finite in the limit. We do not yet have an explanation for why the
lengths approximate 27 so well for such a large range of parameters.

Finally, we compared our numerical results with the pinching limits analytically
obtained in section 4. The numerics becomes difficult for small cycle lengths, due to
a large separation of scales in the domain, so this check is not very precise, though
we find good agreement. For example, taking the pinching limit /5 — 0 along the
line separating disconnected and partially connected phases, a fit of the action to
a function —A%zfgp + C using 64 data points with 0.76 < ¢3 < 1 gives parameters
p =~ 1.03, A =~ .99. Data for this pinching limit is shown in figure 9, plotted against
—% + C with a one-parameter fit of the additive constant.

7 Discussion

A Riemann surface of genus g > 1 can be described by Schottky uniformisation as a
region in the complex plane with identified boundaries. This Schottky uniformisa-
tion description can be extended to a quotient of H3, giving a handlebody solution
in a Euclidean bulk, holographically dual to the field theory on the Riemann sur-
face. A given Riemann surface has infinitely many Schottky uniformisations; from
the bulk perspective these correspond to different handlebodies, characterised by
the choice of boundary cycles which become contractible in the bulk. The geometry
of least action dominates in the calculation of the partition function.

In [6], the calculation of the action of the bulk handlebodies was reduced to
the calculation of the Takhtajan-Zograf action [8] for a boundary Liouville field,
describing the conformal map from the flat metric on the complex plane to the
chosen metric on the Riemann surface. We have shown how, choosing a canonical
constant negative curvature metric, this Liouville field may be computed numer-
ically using finite element methods, and the Takhtajan-Zograf action evaluated.
Apart from the importance for holographic studies, the solution for the Liouville
field may be of some mathematical interest.

We explicitly calculated the action for some bulk handlebody solutions in a
two-dimensional subspace of the moduli space of genus two Riemann surfaces with
three commuting reflection symmetries. Restricting to handlebodies preserving
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Figure 8: The horizon lengths in the connected phase at the boundaries where it meets
the other phases. The upper plot shows Aj5 (blue) and A3 (red) as a function of the cycle
length /3, along the boundary with the disconnected phase; in the shaded part to the left
of the dashed line, the partially connected phase is dominant. The lower left diagram
shows the horizon lengths at which the connected phase becomes subdominant to the
other phases, so the allowed horizon lengths in this phase are in the region in the top
right, bounded by the solid lines. The lower right diagram shows the BTZ horizon length
ATz in the partially connected phase where it transitions to the connected phase with
horizon lengths A1y (and A3 &~ 27, not shown); these have physical interpretations as the
entropy of boundaries 1 and 2 either side of the transition. In the lower diagrams, dashed
curves indicate where the two phases involved in the transition are both subdominant to
the third phase.
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Figure 9: The action at the phase transition between partially connected and disconnected
. . 2 . ..

phases, compared with the analytic result I/c = — ¢z in the {3 — 0 limit (dashed curve).

A constant has been added to the analytic result, chosen to fit the data. The right plot

shows the same data on a log-log scale.

these symmetries allows us to consider finitely many solutions, three in this case.
These surfaces have two distinct interpretations as preparing Lorentzian states on
the circles of reflection symmetry: they give a state in three copies of the CFT,
or a state in a single copy of the CFT. In the first interpretation, the Lorentzian
analogues of the handlebodies we consider are a three-boundary wormhole, a totally
disconnected space, and a two-boundary wormhole plus a disconnected space. In
the second, they are two different versions of pure AdS and a single-exterior black
hole with a torus behind the horizon. We also compared these solutions to a non-
handlebody solution obtained as the quotient of a Euclidean wormhole.

We compared the actions for these different solutions and determined the dom-
inant solution as a function of the two moduli. We confirmed the accuracy of the
numerical results by comparing to analytic expectations at special values of the
moduli, and in pinching limits at the boundary of the moduli space. There is a
line in the moduli space with a Zs symmetry; along this line, we found that the Zs
symmetric saddles dominated, and there is a Hawking-Page like phase transition
between the connected and disconnected phases. However, along another line in the
moduli space with an enhanced Zs symmetry, preserved by the partially connected
phase but not the others, the symmetric phase does not always dominate. The full
phase diagram is given in figure 7. The handlebodies always dominate over the
non-handlebody solution.

Our results largely confirm previous expectations, but it is worth noting that
symmetric solutions are not always dominant over those which spontaneously break
the symmetry. This is similar to the square torus, the critical surface at the
Hawking-Page phase transition, with a similar extra symmetry spontaneously bro-
ken by both dominant phases, although in that case there exists no handlebody that
respects the full symmetry group of the boundary. It would be interesting to un-
derstand which symmetries are always preserved and which may be spontaneously
broken. We should note that an important class of symmetries, which have inter-
pretations as time-reversal (¢ = 0 type real structures, in the language of section 3),
are found never to be broken in our examples, given the phases we have checked.
Such a symmetry breaking would make semiclassical Lorentzian interpretation of
the dual geometry more difficult, since there would be no natural ¢ = 0 slice on
which to define the Hartle-Hawking state. Furthermore, if all such symmetries are
preserved, it implies that there is no breaking of replica symmetry in calculations
of Rényi entropies (at least for time-reversal invariant states and subsystems), since
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the dihedral replica symmetry group can be generated by such reflections.

We found that along the boundaries separating the partially connected phase
from the others, certain horizon lengths approach 27 at the edges of moduli space,
and this remains a very good approximation well into the centre of moduli space.
It would be interesting to analytically understand these edges of moduli space, in-
cluding the corrections to explain why the approximation remains good in a regime
naively so far from the limit. This would no doubt be useful for more general
Riemann surfaces, and since the approximation is valid in such a wide parameter
range there is more hope for good analytic understanding than one might have
expected. A direct CFT calculation may also be tractable in such limits, giving an
interpretion of the phases as dominance of the vacuum Virasoro block propagating
in certain cycles.

An obvious avenue for future work is to extend to higher genus, where an in-
creased number of boundaries allows for a richer multiparty entanglement structure.
It is in fact possible to deduce results at higher genus for some special moduli al-
ready without further work via a trick, whereby we may extend a pair of pants
decomposition of a surface into the bulk, cutting certain handles of a handlebody,
and getting the action for each solid pair of pants from the genus 2 results. This is
usually not possible because the cutoff surface chosen (or equivalently the Liouville
field) depends on the surface globally, and this affects the action of each component.
However, if the cycles we cut along are fixed by a reflection symmetry, the cutoff
in each pair of pants component is identical to the cutoff for half the genus two
surface, so the action can be found. In terms of the Schottky domain, this is man-
ifested by the domain D being divided into pairs of pants bounded by geodesics
(at known locations fixed by symmetries), which allows solution of the Liouville
equation without reference to the identifications used. As a simple example of the
sort of result that can be deduced from this idea, the four boundary wormhole with
equally sized boundaries arranged to have the symmetries of a square (boundaries
lying in a plane, one at each vertex of the square, roughly speaking) has a transition
from connected to disconnected phases at horizon sizes A =~ 7.62.

One application of the results is to see what the phase structure implies for the
possible structure of entanglement in these states. For example, a phase transition
may prevent the moduli from ever exhibiting intrinsically n-party entanglement in
the sense of [9], or, more generally, may restrict the entropy cone of [30]. The reason
for this is that choosing horizon sizes large enough to be above the phase transition
may imply that every hyperbolic surface has another internal cycle short enough
to enter a Ryu-Takayanagi calculation. For example, taking the four boundary
wormbhole with the symmetries of a square as in the previous paragraph, the internal
moduli are relevant for horizon sizes A\ 2> 2.12, far below the phase transition point
deduced above.

It would also be interesting to check whether geodesics that leave the constant
time slice can ever be short enough to dominate the entanglement entropy, as
discussed in [10], where for the torus this possibility was shown to be prevented
only by the phase structure.
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A Action integrals

A.1 Takhtajan-Zograf action

We consider a handlebody geometry obtained from the quotient of H3 by the
Schottky group G generated by Mobius maps Li,...,L,. On the boundary Rie-
mann sphere of H3, pick a fundamental region D for G, bounded by 2g curves
0D = C1+C1+- -+ Cy + Cy, with C; = —Lg(Cy). The notation here means that
the curves inherit their orientation as the boundary of D, which means clockwise
in the plane for curves bounding D from the inside. The reverse orientation of a
curve is indicated by a sign.

If one of the curves bounds D from the outside on the w plane, so the funda-
mental domain is bounded, we can write the Takhtajan-Zograf action as

Irgld) = | LdwAdw (48¢>5¢ + e2¢> (29)
b2
1 i Ll/ E//
+ / <2¢ — ~log|L}|? — log |ck|2) = <kdw - J“dw)
Zk: Cr 2 F 2\ L, L,

where ¢j, denotes the bottom left component of the SL(2,R) matrix for Ly. The
sum runs over all k£ such that ws # 0o (or ¢; # 0), so if one transformation is a
scaling, rotation and translation (w ~ g?w-+wy), it does not contribute a boundary
term.

We will find it convenient to write this in a more geometric way. For each

generator L of G, let wgé) be the point —Ccl—: mapped to infinity, and 9(()’2) the angle
measured from this point. Then
Irale) = [ @ (Vo) + ) (30)
D

+ 4¢ + 41 —w®|) dg®)
3 I CISTATT)

where again the sum runs over all £ such that we, # 0.

When Cy is a circle, the final boundary integral independent of ¢ can be explic-
itly evaluated in terms of the geometry. We will do the case where C} bounds D
from the inside, so that wgé) lies inside Ck. On Cy, |w — wgé)\ is determined from
the cosine rule, as

lw —w® 2 = 2Dy, cos 60w — w®| + D} — R} =0, (31)

where Ry is the radius of Cj, and Dy the distance between its centre and wé’é).

But this equation has a second solution: it corresponds to the point with 9(()]2)
shifted by 7, with a sign. The product of |w — wgé)] for these two related points is
therefore R% — D]%, read off from the constant term of the quadratic. So if we add

the integrands coming from eé’é) related by a shift by m, we get just this constant,
and then the integral straightforwardly gives

/ 4log|w — wl | doF) = —4mlog(R? — D?) (32)
Ck

with the sign coming from the clockwise orientation. We will be able to evaluate
most other such integrals we encounter similarly.
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We may also choose D to be unbounded, including the point at infinity, but
then the bulk integral diverges logarithmically. We therefore must integrate over
a compact region, bounded by some regulating curve Cy, (for example, a circle of
large radius), add the boundary term

4/000 (6 + log [w]) O (33)

and take the limit where Cy, retreats to infinity. In this limit, the boundary term
is independent of the choice of origin.

A.2 Using symmetries

In the case where the Schottky group has some symmetry respected by the choice
of metric, the action can be obtained from a ‘symmetry reduced’ domain D, a
fundamental region for the extension of G by its automorphisms. The action is
not the integral of an intrinsic, local quantity on the surface, and ¢ transforms
nontrivially under the symmetries, so it takes some work to identify the expression
in the symmetry-reduced domain.

The only symmetries we will use will be reflections in some line, and inversions
in some circle. For the former, it is clear that we can just do all integrals over one
half of the plane, and double the result, since there will be equal contributions from
each half, but this is not the case for inversions.

So consider inversion in a circle of radius R;, and use polar coordinates (r;,6;)
centred on the circle of inversion, so the symmetry acts as r; — RZZ /7i. The equivari-
ance property of ¢, ensuring that the metric on the surface respects the symmetry,
is

2
&(R2/1i,0;) = ¢(ri,0;) + log (;) (34)
with derivative )
T 2
00U 1.0 = ~ (a”qﬁm, ) + ) (35)

and in particular, evaluating this at r; = R; tells us that the radial derivative of ¢
on the circle of inversion itself is —1/R;.

The integral of the ‘kinetic term’ over D reduces to the part D, lying on one
side of the inversion circle, as

2
L5

/ d*w(Ve)® =2 / [(V¢>2+28n¢+ 2]
D D Ty
_ 2 2 X . .
_2/de(v¢) +4/6ngd91+4/8blogrld01 (36)

where the extra boundary terms come from the nontrivial transformation of the
radial derivative of ¢.

Now if D is unbounded, and we use the inversion to make the reduced domain D
bounded, the boundary term (33) from the large circle of radius R, implementing
the cutoff can be mapped to a small circle of radius R% /Re, giving

4 / (gb(r = R2/R.,0;) — log @é) + log RC> a6, (37)

()

which precisely cancels the same boundary term from transforming the bulk inte-
gral, due to the opposite orientations. The upshot is that we need not include a
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cutoff in the reduced domain, or any additional terms, simply integrating over D
including the origin.

It will also be useful for us to integrate the ‘kinetic’ term by parts, since this
will eliminate the need to take any derivatives of the numerical solution for ¢.

t/}pw(V¢V::—l/}9w¢ﬁﬂ¢+:/~ds¢vn¢ (38)
D D oD

In the first term, when ¢ solves the Liouville equation we can use it to replace the
Laplacian. The boundary term requires the normal derivative of ¢, but we will be
able to obtain it analytically as D will invariably be made up of arcs of circles in
which there is an inversion symmetry. This is not necessarily the original inversion
symmetry, but may be a new inversion resulting from conjugation by some element
of G. We know the radial derivative of ¢ on such a circle, V,¢ = +0,,¢ = F1/R;,
with the sign depending on whether D lies inside or outside the relevant circle, and
the length element is ds = +R; df;. This allows us to replace each component of
the integral with

/m¢m@:—/¢wi (39)

We also have to consider the transformation of any boundary terms that lie
outside D. We now move on to describe the two different families of Schottky
groups we are considering, where we will work out the boundary transformations
in each case.

A.3 First domain

This section collects all the relevant information for the domain corresponding to
the connected and completely disconnected phases of the three boundary wormhole,
and the pure AdS phases of the torus wormhole.

In the symmetric two-parameter family we consider, there are three commuting
anticonformal involution symmetries, which can be thought of as acting on the Rie-
mann sphere by reflection in the three coordinate planes. The curves Cy, Ca, Cf, CY,
can then be taken as equally sized circles with centres on the equator, at longitudes
+a for C1,C] and 7 + « for Cy, C4 for some angle o € (0,7/2), so the Schottky
group identifies neighbouring circles. The reflection in the equatorial plane, corre-
sponding to the time-reflection for the three boundary wormhole in the connected
phase, maps each circle to itself, but flipped. The reflection swapping Cy <+ C
and Cy <» C) corresponds to time reflection when the bulk is reinterpreted as the
three boundary wormhole in the disconnected phase. The final reflection, being
the time-reversal for the torus wormhole, swaps C; <> Cy and Cf < C). Re-
laxing the assumption of this final symmetry would allow us to describe the full
three-parameter space of three-boundary wormholes by having different radii for
the pairs C1,C{ and Ca,C). We stereographically project this sphere to the w-
plane in such a way that the equator maps to the real axis, and the symmetries
act as reflection in the axes and inversion in the unit circle, which we denote by C.
The whole domain D is unbounded, but we use the inversion to consider D as the
part within the unit circle.

We can write the generators as
(1)
La(w) = 5 200 L) = — U (40)

wy W — Woo Wy W — Woo
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(k) (K)

where w;"”,ws’ are real, in order to be symmetric under complex conjugation.
There is a single parameter redundancy here, since we can act with an SL(2,R)
transformation that fixes +1 while retaining this form for the generators. To impose
the full symmetry including reflection in the z-axis, swapping the two generators,

82) = —w(()l) and wg) = —wg). We will look only at the first

generator here, simplifying notation by writing wg = w(()l) >0, Weo = w(()é) > 0,
with the second generator being treated identically.

There is a unique choice of curves C7, C] respecting the symmetries, with C;
a circle centred at wp, with radius R = y/wo(wp — W ). In terms of the variables

(wo, R), we can write the SL(2,C) matrix generator

1 /1 —wo
N=R (wg R? — w%) (41)

and the range of parameters allowed is 0 < R < wg < 1 — R (or something more
general if we relax the z — —x symmetry). The SL(2,R) matrix representations
are useful for relating this parameterisation to the horizon geometries, using (5);
the lengths A1, A2, A3 of the three horizons come from the generators ¢g;, g2, and
gz = _91_1 - g2. A useful fact is that on C7, we have 6y = 0 + 6, where 6y, # and
O~ are respectively the angles measured from wg, 0 and wee.

We do not have much work to do here with boundary integrals, since Cj is
a boundary of D. Using the action (30), the symmetry reduction (36), and the
analytic integral (32) inserting the distance between ws, and wgy as Dy = R?/wy,
we have

we further require w,

Sry = 2[ d?w [(qu)2 +62ﬂ +4 qﬁdeJr/~ 4log |w| df
D oD oD
4

+ / 4¢ b — 47 log <R2 — RZ> + (terms from Cs). (42)
C1 Wo

We further simplify by integrating the first term by parts, and use (39) for the
resulting boundary terms. The boundary dD consists of three cycles: the unit
circle C' (which inherits anticlockwise orientation as the boundary of D), and C;
and Cs. The integrals including ¢ on C7 and C5 get three contributions, from the
original boundary term, the additional term from the symmetry, and the integration
by parts, which combine very simply after using 8 + 0, = 6y. The terms without ¢
dependence can be explicitly evaluated. The final result, not necessarily imposing
symmetry under reflection in the z-axis, reinstating independent radii R;, Re and
centres w(()l), w(()Q) for Ch and Cy, is

Sty = 2/ d?w [—w% + eﬂ + 2/ ¢ do
D C
+2 / ¢ dol) +2 / ¢ O — 8mlog (R Ry) . (43)
C1 C12

To match moduli, we measure the lengths ¢ of the three A-cycles and three
B-cycles on the constant curvature metric, via £ = [ e? evaluated numerically on
the appropriate curve. The A-cycles are the curves fixed by complex conjugation:
the segment of the real axis between C; and Cf, the similar part between Cy and
CY, and finally the union of the remaining intervals of the real axis. The B-cycles
are made up of the points fixed by the inversion symmetry (time-reversal in the
interpretation as the disconnected phase), which are the circles C; and Cy, and the
unit circle C.
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A.4 Second domain

In this section, we repeat the above analysis for the second sort of domain we use,
corresponding to the partially connected phase of the three boundary wormbhole,
and the black hole phase of the torus wormhole.

Once again, in the symmetric family we consider the three commuting anti-
conformal involution symmetries, act on the Riemann sphere by reflection in the
coordinate planes. The curves C1,Cq, C1, C} in this case are taken be taken as cir-
cles with centres on the equator, where the z-axis and y-axis intersect the sphere.
Take C7 and Cf to have equal radii and lie on opposite sides of the circle, and
similarly for Co,C%. The reflection in the equatorial plane now corresponds to
time-reversal for the torus wormhole, and the other reflections each have inter-
pretations as time-reversals for the partially connected phases of three boundary
wormbholes.

After projecting to the w-plane, the symmetries are again represented by reflec-
tions in the coordinate axes and inversion in the unit circle. We may choose the
generators, in a convenient parameterisation, as

Li(w) = tan? (3‘) w, Lo(w)= % (44)
with a, & € (0,7/2), and tanatan & < 1. The points mapped to zero and infinity
by Lo are wy = cos a and wes, = sec «. The fundamental domain D is bounded by
circles C and Cf, centred at the origin with radii tan (%) and cot (%) respectively,
and Cy, C4 centred at =+ sec o, both with radius tan . The circle C meets the unit
circle orthogonally at e™*®. Again denoting the angles measured from 0, wg, wee by
0,6y, 05, we have 0 = 0 + 6y. Reducing the domain using the inversion means we
need only consider the region D inside the unit circle, bounded by Cy, the arcs Cs
and Ch of Cy, C} lying within the unit circle, and the two parts of the unit circle
between C3 and C', which we denote by C, oriented anticlockwise as inherited from
D.

The SL(2,C) generators of the Schottky group are then

_ (tan (%) 0 _ 1 1 —cosa
= < 0 cot (3‘)) 27 dna (— cos 1 > (45)

and are again useful for relating «, & to the parameters of the bulk geometry by
equation (5). Interpreted as the partially disconnected phase for the three boundary
state, the horizon of the BTZ part of the geometry corresponds to the generator ¢;
(taking the time-reversal to be reflection in the y-axis). For the torus wormhole, the
generators g1, go correspond to the lengths of the two cycles of the torus behind the
horizon, and the horizon itself corresponds to g1-g2-g; L. gy . Swapping a <+ & then
gives an equivalent Schottky group, related by an SL(2,C) transformation which
swaps the two generators. In particular, when o = &, this becomes an additional
automorphism of the Schottky group, corresponding to the torus behind the horizon
becoming ‘square’, having equal cycle lengths.

In this case, the boundary terms require more work, since we will need to move
the integral on the part of Cs outside the unit circle to the inside, onto Co, using
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the inversion map L.

/@«bdeoo:/@czsdeoo—/u@)wem (46)
= [ ¢dbs — /~ (¢ +2logr) (2d0 — db) (47)

CQ CQ
:/ 2% c190+/~ 2log r d (6 — 6) (48)

CQ C’2

Going from the first line to the second requires the equivariance of ¢ under r — 1/r,
as well as some geometry to work out how angles change under inversion (05 —
T+ 20 — 0 ). The last line uses 0 + 0y = 0.

Once again, we use (30), the symmetry reduction (36), and the integral (32)
with Dy = 0, Ry = tan « to get

Irs[6) _z/Dde (Vo) + ] +4 R +4/6D loglw|do  (49)

+4/ 2¢)d00+4/ 2logr d (6y — ) — 47 log tan® o
02 02
and we then integrate by parts, and combine terms to find
Irz[¢) :2/ d?w [—¢V2¢ + e2¢] +2 [ ¢do+ 2/ pdo+4 [ ¢dis
D 4 C Cy

— 8w log tan (Z) — 8mlog tan o + 8/~ log r dfy (50)
Co

This last integral can be evaluated in terms of dilogarithms, or alternatively written

as
2c T
/ logr dfy = / — dz (51)
Co o sinz

which we may easily evaluate numerically.

Now to match moduli between this phase and the other, we again find the lengths
¢ of the appropriate cycles fixed by the symmetries, by the integral ¢ = [ e?. The
A-cycles here are those fixed by reflection in the y-axis, being the two segments of
the axis itself, as well as Cy. The B-cycles are fixed by inversion, and are the two
arcs of the unit circle C joining Cy and C%, and the circle C.
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