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We report the first calculation of fully differential jet production at leading color in all partonic channels
at next-to-next-to leading order in perturbative QCD and compare to the available ATLAS 7 TeV data.
We discuss the size and shape of the perturbative corrections along with their associated scale variation
across a wide range in jet transverse momentum, pT , and rapidity, y. We find significant effects, especially
at low pT, and discuss the possible implications for parton distribution function fits.
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The Large Hadron Collider (LHC) is currently colliding
protons at center of mass energies up to

ffiffiffi

s
p ¼ 13 TeV. The

main goal is to search the high energy frontier for signs of
physics beyond the standard model. However, any searches
for new physics are irreducibly dependent on how well we
understand the standard model and the collider environ-
ment of the LHC itself.
At the LHC the inclusive cross section for a given final

state can be calculated using the factorization formula,

dσ ¼
X

i;j

Z

dξ1
ξ1

dξ2
ξ2

fiðξ1; μFÞfjðξ2; μFÞdσ̂ij; ð1Þ

which is accurate up to nonperturbative hadronization
corrections, typically of the order ΛQCD=Q, where Q is
the hard scale in the scattering process. The partonic cross
section, dσ̂ij, can be calculated as a perturbative series in
the strong coupling, αs, and systematically improved by
progressively including higher order terms in the series. It is
also necessary to have a good understanding of the non-
perturbative parton distribution functions (PDF), fiðξ; μFÞ.
The PDFs quantify the relative parton content of the proton
carrying a fraction, ξ, of the proton’s momentum for a given
factorization scale, μF. To calculate the cross section using
this formula we need accurate determinations of the PDFs,
αS, and the higher order terms in the perturbative expansion
of the partonic cross section.
Data from lepton-nucleon deep inelastic scattering (DIS)

experiments such as HERA [1] provide detailed informa-
tion about the quark PDFs and have been used to
significantly constrain the uncertainties on these quantities.
The inclusive cross section in DIS involves the exchange of
a virtual photon coupling to quarks at lowest order via the
electroweak coupling constant. The electrical neutrality of
the gluon means that the gluon PDF can only be con-
strained using specific final states, such as heavy quarks or
jets [2], or indirectly through the evolution of the flavor
singlet distribution. In contrast, jet production at the
Tevatron [3,4] and LHC directly probes the gluon PDF

and is Oðα2sÞ at leading order (LO). The single jet inclusive
cross section has been measured accurately by ATLAS
[5,6] and CMS [7] across the large dynamical range of
the LHC.
To take advantage of the available data we must be able

to calculate observables with sufficient precision yet the
cross section for producing jets is currently only known
exactly at next-to leading order (NLO) [8–12] and partially
at next-to-next-to leading order (NNLO) [13]. The theo-
retical uncertainty in this observable, estimated from the
dependence on unphysical scales, is the main limiting
factor when determining parameters like αs from jet data or
consistently including this data in global fits for PDFs
[14–17]. To improve on the status quo it is clear that an
accurate and precise determination of jet production at the
LHC is needed and so in this Letter we present the first
calculation of the NNLO correction to jet production in
perturbative QCD. Higher order corrections have the
potential to change the size and shape of the cross section
and also to reduce the residual scale dependence in a
calculation; we discuss the extent to which this is true for
the NNLO correction to the fully differential single jet
inclusive cross section.
Predictions for jet production at NNLO accuracy require

the relevant tree-level [18], one-loop [19–21], and two-loop
[22–24] parton-level scattering amplitudes as well as a
procedure for dealing with the infrared (IR) singularities
present in both the phase space integrals andmatrix elements,
but that cancel in any IR safe physical observable. Several
techniques have been developed for obtaining finite cross
sections at NNLO for hadronic initial states: antenna sub-
traction [25,26], qT-subtraction [27], N-jettiness subtraction
[28], sector-improved residue subtraction [29], sector
decomposition [30], and projection to Born [31]. We use
the antenna subtraction method, implemented in the parton-
level event generator, NNLOjet [32,33], to calculate the single
jet inclusive cross section, fully differential in the jet trans-
verse momentum, pT , and rapidity, y.
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We include the leading color contribution from all
partonic subprocesses in all channels. For example, in
the gluon-gluon scattering channel there are three partonic
subprocesses contributing to the double real correction:
gg → gggg, gg → qqgg, and gg → qqqq; we include the
contributions that are leading in the number of colors, Nc,
to all these subprocesses. In practice this amounts to
calculating the N2

c, NcNF, and N2
F corrections to all LO

subprocesses, where NF is the number of light quark
flavors. We include the full LO and NLO coefficients in
this calculation but note that retaining only the leading
color correction to all partonic subprocesses at NLO gives
the full result to within a few percent across all distribu-
tions. The analogous subleading color contributions at
NNLO are expected to be small and we do not include
them in this study. To support this assumption we note that
the subleading color NNLO contribution for pure gluon
scattering was presented in a previous study [34] and found
to be negligible. We construct subtraction terms to regulate
all IR divergences in the phase space integrals and cancel
all explicit poles in the dimensional regularization param-
eter, ϵ ¼ ð4 − dÞ=2, the details of which for the antenna
subtraction method can be found in [25,34,35]. The IR
finite cross section at NNLO is then integrated numerically
in four dimensions over the appropriate two-, three-, or
four-parton massless phase space to yield the final result.
In Fig. 1 we present the results for the double-differential

inclusive jet cross section at NLO and NNLO, normalized
to the NLO theoretical prediction to emphasize the impact
of the NNLO correction to the NLO result. The collider
setup is proton-proton collisions at a center of mass energy
of

ffiffiffi

s
p ¼ 7 TeV where the jets are reconstructed using

the anti-kT jet algorithm [36] with R ¼ 0.4. We use the
NNPDF3.0 NNLO PDF set [15] with αsðM2

ZÞ ¼ 0.118
throughout this paper for LO, NLO, and NNLO predictions
to emphasize the behavior of the higher order coefficient
functions at each perturbative order. By default we set the
renormalization and factorization scales μR ¼ μF ¼ pT1,
where pT1 is the pT of the leading jet in each event. To
obtain the scale uncertainty of the theory prediction we vary
both scales independently by a factor of 1=2 and 2 with the
constraint 1=2 ≤ μR=μF ≤ 2. We find that the NNLO
coefficient has a moderate positive effect on the cross
section, 10% at low pT across all rapidity slices relative to
NLO. This is significant because it is precisely in this
region where the majority of the cross section lies,
especially in the central rapidity slices, and it is where
we observe the largest NNLO effects. At higher pT we see
that the relative size of the NNLO correction to NLO
decreases to the 1%–2% level and so the perturbative series
converges rapidly.
Given that we see a moderate NNLO correction to the

NLO prediction in the region where the bulk of the cross
section lies, it is instructive to compare to the available data.
The data points in Fig. 1 represent the ATLAS data for an

integrated luminosity of 4.5 fb−1 [6], normalized to the
NLO prediction. We do not include nonperturbative effects
in our predictions; they are quantified in [6] and found to be
a 2% effect in the lowest pT bin and at most a 1% effect in
all other bins (although the quoted uncertainty on the
nonperturbative corrections can be as high as 9% for the
lowest pT bin). The electroweak corrections computed in
[37] are applied multiplicatively to the QCD calculation for
central scale choice using the information provided in [6]
and the total is displayed as the red dashed line. The
electroweak effects are small to moderate for pT > 1 TeV
for central rapidities but otherwise negligible. We observe
that the data are described very accurately by the NLO
prediction, particularly at low to moderate pT , while the
NNLO prediction shows some tension with the data in the
same region.
The potential for the NNLO correction to change the

shape of the distribution relative to NLO can be seen clearly
in Fig. 2 where we show the k-factors for NLO/LO, NNLO/
NLO, and NNLO/LO as a function of pT in six rapidity
slices. In the central rapidity slices we observe that at low
pT the NLO correction acts negatively relative to LO and
then grows to a moderate positive correction at high pT .
In contrast, the NNLO correction acts positively at low pT
and decreases to a small effect at high pT . The aggregate
effect is shown in the NNLO/LO curve which is the result
of a partial cancellation between NLO and NNLO at low

FIG. 1. Double-differential inclusive jet cross sections meas-
urement by ATLAS [6] and NNLO perturbative QCD predictions
as a function of the jet pT in slices of rapidity, for anti-kT jets with
R ¼ 0.4 normalized to the NLO result. The shaded bands
represent the scale uncertainty of the theory predictions obtained
by varying μR and μF as described in the text. The red dashed line
displays the NNLO/NLO ratio corrected multiplicatively for
electroweak corrections [37].
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pT , reversing the negative NLO contribution to give a
positive total correction, and largely follows the NLO curve
at high pT . In the region, jyj > 1.5, we observe that the
NLO correction is once again negative at low pT but does
not grow as strongly as in central regions, and is indeed
negative at high pT for the most forward slices. Relative to
NLO, the NNLO corrections are again positive and
moderate at low pT, decreasing in size at high pT , such
that the total effect is a positive correction at low pT
decreasing to a negative effect at high pT in the most
forward region [38].
Aside from the size and shape of the NNLO corrections,

an interesting feature of Fig. 1 is the scale dependence at
NLO and NNLO, represented by the thickness of the bands.
At high pT , especially in the central region, the NNLO

scale dependence is dramatically reduced and the NNLO
band lies firmly within the NLO band. The situation is once
again different at low pT where we observe an appreciable
scale variation on the NNLO calculation, in some places
even larger than the NLO scale variation, and the bands do
not fully overlap.
This behavior is unexpected and so in Fig. 3 we analyze

the scale variation in more detail. We select three pT bins
at low (100–116 GeV), intermediate (290–318 GeV), and
high (642–688 GeV) pT in the central region jyj < 0.5
and display the cross section as a function of μR=pT1

.
The points represent the cross section as calculated at
LO, NLO, and NNLO, evaluated at μR=pT1

∈ f0.5; 1; 2g
with μF=pT1

¼ 1. The solid line is the RGE prediction for
the scale variation starting from the cross section computed
with μR=pT1

¼ μF=pT1
¼ 1. To be fully consistent, the

RGE evolution variable should be pT1
; however, starting

with the distribution dσ=dpT , all information on pT1
is lost

and therefore we use pT to approximate pT1
as the RGE

evolution variable [39]. Nevertheless, the difference in the
evolution is small even at low pT and we include the RGE
lines to aid the discussion of the scale variation in each bin.
The long and short dashed lines are obtained using
μF=pT1

¼ 0.5 and μF=pT1
¼ 2, respectively.

From the left panel in Fig. 3 we observe that at LO the
scale variation is a monotonically decreasing function with
pT . At NLO the picture is quite different; the shape of the
RGE curve turns over at approximately the central scale
choice. The consequence of this behavior is that the scale
band is asymmetric, with the central scale being located at
the upper edge of the band, as can be seen in Fig. 1 where
the NLO scale band lies almost entirely below 1. The
overall variation is also relatively small at low pT (<5%),
which is linked to the smallness of the NLO coefficient
(∼4% of LO), as displayed in Fig. 2. The NNLO curve is
monotonically decreasing, leading to a more symmetric
band and the overall variation is significant, largely
reflecting the size of the NNLO correction. In the central
and right panels of Fig. 3 we observe a similar behavior;

FIG. 2. NLO and NNLO k-factors for jet production at
ffiffiffi

s
p ¼ 7 TeV. The lines correspond to the double-differential
k-factors (ratios of perturbative predictions in the perturbative
expansion) for pT > 100 GeV and across six rapidity jyj slices.

FIG. 3. The single inclusive cross section in three pT bins: (left) 100–116, (center) 290–318, and (right) 642–688 GeV, plotted against
the normalized scale choice μR=pT1

. Points represent the LO, NLO, and NNLO cross section as computed by NNLOjet at μR=pT1
¼ 0.5,

1, 2 and μF=pT1
¼ 1. The solid lines represent the renormalization group equation (RGE) solution for the scale variation, computed with

pT as the evolution parameter and μF=pT1
¼ 1. Long and short dashed lines represent the same quantities evaluated with μF=pT1

¼ 0.5
and μF=pT1

¼ 2, respectively.
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the NLO curve is once again turning over, yielding an
asymmetric scale band in Fig. 1. The NNLO curves are
monotonically decreasing and show diminishing scale
variation with increasing pT as the NNLO coefficient
becomes negligible relative to the moderately large NLO
correction, as displayed in Fig. 2.
To understand these results it is instructive to consider

the low and high pT regions separately. At high pT , the
NLO correction is moderate and positive; the NNLO
correction is small and reduces the scale variation signifi-
cantly relative to NLO with the NNLO scale band lying
within the NLO band. At low pT the behavior is quite
different; we observe that the NLO correction is small and
generally negative whereas the NNLO correction is mod-
erate and positive. The relative size of the NLO and NNLO
corrections leads to a significant NNLO scale band that
largely does not overlap with the NLO band.
A possible explanation may be found in the comparison

to data in Fig. 1. The data appear to be consistent with the
NLO prediction when using the NNLO NNPDF3.0 PDF
set. This PDF set is fitted to Tevatron and LHC jet data at
NNLO despite the exact calculation for jet production
being reported for the first time in this Letter. In the
approximate NNLO PDF fit, a restricted data set at high pT
was used in conjunction with an approximation to the
NNLO coefficient functions. This procedure has a small
influence on the low pT region that was included in the
NLO PDF fit and in fact we find that the NLO prediction
using the NLO PDF set gives an almost identical result to
that shown in Fig. 1 obtained with NNLO PDFs. However,
at low pT we see that the exact NNLO correction is not
small and the NNLO PDF fit potentially underestimates the
effect of the NNLO contribution in that region. A detailed
study of the effects of the single jet inclusive data sets and
NNLO theory predictions on PDF fits is required for more
substantive conclusions.
We have presented the first calculation of the single jet

inclusive cross section including all partonic subprocesses
at NNLO for the LHC using the antenna subtraction
method, implemented in the parton-level event generator
NNLOjet and compared to ATLAS data. We find that the
NNLO corrections are moderate at low pT and change
the shape of the distributions relative to NLO. At high pT
the corrections are smaller and we see a dramatic reduction
in the scale variation. The fact that the NNLO corrections
move the theoretical prediction away from the available
data suggests that this calculation may have an appreciable
impact when included in refitting the PDF used in this
study to jet data. We anticipate that this calculation will
open the door for precision phenomenology using LHC jet
data, including studies of scale choice, jet shape, cone size,
and different PDF sets.
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