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Abstract We study the problem of determining the

majority type in an arbitrary connected network, each

vertex of which has initially two possible types. The

vertices may later change into other types, out of a set

of a few additional possible types, and can interact in

pairs only if they share an edge. Any (population) pro-

tocol is required to stabilize in the initial majority. First
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we prove that there does not exist any population pro-

tocol that always computes majority in any interaction

graph by using at most 3 types per vertex. However

this does not rule out the existence of a protocol with

3 types per vertex that is correct with high probability

(whp). To this end, we examine an elegant and very

natural majority protocol with 3 types per vertex, in-

troduced in [4], whose performance has been analyzed

for the clique graph. In particular, we study the per-

formance of this protocol in arbitrary networks, under

the probabilistic scheduler. We prove that, if the initial

assignement of types to vertices is random, the protocol

of [4] converges to the initial majority with probability

higher than the probability of converging to the initial

minority. In contrast, we show that the resistance of the

protocol to failure when the underlying graph is a clique
causes the failure of the protocol in general graphs.

Keywords majority in networks · population proto-

col · probabilistic scheduler · coupling

1 Introduction

One of the most natural computational problems in

many physical systems is to compute the majority, i.e.

to determine accurately which type of an element of the

system appears more frequently. For instance, the ma-

jority problem is encountered in various settings such as

in voting [12, 14], in epidemiology and interacting par-

ticles systems [17], in diagnosis of multiprocessor sys-

tems [25], in social networks [19,21] etc. In distributed

computing, the majority problem is an important and

natural special case of the central problem of reaching

consencus within a system [9, 16], where a number of

processes have to agree on any single data value (e.g.

leader election [11]). In all these physical systems, some
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pairs of elements may interact with each other while

other pairs may not be able to interact directly. This

structure of the possible pairwise interactions between

elements of the system can be modeled by a network

(i.e. graph), where elements and possible interactions

are represented by vertices and edges, respectively.

In order to solve the majority computation problem

in a network, we first need to make some assumptions

on the underlying model of computation. Much research

has been done under the assumption that there exists

a central authority, as well as unlimited available mem-

ory and full information about the whole network (see

e.g. [8, 27]). However, in many real systems we do not

have (or we do not wish to have) such a powerful com-

putational model. The weaker the considered model of

computation is (e.g. lack of central authority, partial

or no information about the system, lack of memory

etc.), the more challenging the majority computation

becomes.

One of the ways to study distributed systems where

agents may interact in pairs and each individual agent

is extremely limited (in fact, being able to change into

only a finite number of possible types) is by using pop-

ulation protocols [2, 5]. Then the complex behavior of

the system emerges from the rules governing the possi-

ble pairwise interactions of the agents. Population pro-

tocols have been defined by analogy to population pro-

cesses [15] in probability theory and have already been

used in various fields, such as in statistical physics, ge-

netics, epidemiology, chemistry and biology [7].

In particular, population protocols are scalable, i.e.

they work independently of the size n of the underlying

network (called the interaction graph) and the value of

n is not even known to the protocol. Furthermore they

are anonymous, i.e. there is only one transition function

which is common to all entities/agents: the result of an

interaction of an agent u of type qu with an agent v of

type qv is the same regardless of the identity of u and

v. The transition function of a population protocol only

specifies the result of every possible interaction, with-

out specifying which pairs of agents interact or when

they are chosen to interact. Usually it is assumed that

interactions between agents happen under some kind

of a fairness condition. For a survey about population

protocols we refer to [5].

In this direction, a very natural and simple popu-

lation protocol for the majority problem on the clique

(i.e. the complete graph), where initially every vertex

has one of two possible types, has been introduced and

analyzed in [4]. In particular, the protocol of [4] as-

signs only 3 possible types to every agent (i.e. there is

a 3 × 3 transition table capturing all possible interac-

tions) and the interactions between agents are dictated

by a probabilistic scheduler (i.e. all pairs have the same

probability to interact at any step). Every vertex has

an identity v, but it is unaware of the identity of any

other vertex, as well as of its own identity. Although

the underlying interaction graph in [4] is assumed to be

a clique, the authors distinguish in their protocol the

agents u and v participating in an interaction into an

“initiator” and a “responder” of the interaction (when

agents u and v interact, each of them becomes initiator

or responder with equal probability). Their main result

is that, if initially the difference between the initial ma-

jority from the initial minority in the complete graph

with n vertices is ω(
√
n log n), their protocol converges

to the correct initial majority value after O(n log n) in-

teractions with high probability.

Most works on population and majority dynamics

so far considered only two entity types (e.g. the voter

model [12], the Moran process [20]). The analysis of

population dynamics with more than two types is chal-

lenging. As an example we refer to the model of [4], in

which, although agents can have initially one of only

two types (red and green), the protocol itself allows ev-

ery agent to be of one among three different types (red,

green and blank) at every subsequent time point. Even

though this model is quite simple, it is very hard to be

analyzed. Computing the majority with as few types

as possible in the more general case, where the inter-

action graph has an arbitrary structure (as opposed to

the complete graph that has been mainly considered so

far) remained an open problem.

1.1 Our contribution

In this paper we study the majority problem in an ar-

bitrary underlying interaction graph G, where initially

every vertex can be of one out of two possible types

(red and green). We consider here the weakest and sim-

plest possible model of computation. In particular, we

assume the existence of no central authority and we al-

low every vertex of G to have only a (small) constant

number of available types it can change into. Although

every vertex of G has a unique identity, no vertex is

aware of its own identity or the identity of any other

vertex. Furthermore, although only two adjacent ver-

tices can interact, vertices of G do not even know to

which other vertices they are adjacent.

First, we focus on the problem of always comput-

ing the correct majority value in an arbitrary (directed

or undirected) interaction graph G, regardless of how

large the initial difference between the majority and the

minority is. In particular, assuming that the interacting

pairs of vertices are chosen by an arbitrary fair sched-

uler, we prove that there does not exist any population
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protocol that always computes majority in any inter-

action graph by using at most 3 types per vertex. Our

result implies that the 4-type interval consensus proto-

col proposed by [6] (thoroughly analyzed in [10] under

the probabilistic scheduler and also rediscovered in the

conference version of our paper [18] as the ambassador

protocol) is optimal in this sense.

Second, we provide a detailed analysis of the 3-type

protocol of [4] on an arbitrary interaction graph G. Our

first result in this direction is that, when the two ini-

tial types (red and green) are distributed on the ver-

tices of an arbitrary graph G uniformly at random,

the protocol of [4] will converge to the initial major-

ity with higher probability than to the initial minority.

The proof of this relies on a well known result in ex-

tremal combinatorics (in particular, on Hall’s marriage

Theorem). Furthermore we present an infinite family of

graphs {Gn}n∈N, together with an initial assignment of

types to vertices of each graph in this family, for which

the protocol of [4] can fail (i.e. it can converge to the

initial minority) with high probability, even when the

difference between the initial majority and the initial

minority is as large as n−Θ(lnn). Then we present an-

other infinite family of graphs {G′n}n∈N, together with

an initial assignment of types to vertices of each graph

in this family, for which the protocol of [4] can take an

exponential expected number of steps to converge. In

particular, this rules out the possibility to use a Markov

chain Monte-Carlo approach to approximate the prob-

ability that the protocol of [4] converges to the correct

majority value.

In order to prove our results on the classes {Gn}n∈N
and {G′n}n∈N, we first proved the intermediate result

that for any ε > 0, if the minority has size at most

( 1
7 − ε)n in the complete graph with n vertices, then

the protocol of [4] converges to the initial minority with

exponentially small probability. In particular, this is an

improvement upon the failure probability implied by

the result of [4], where it is shown that the probability

of failure is at most n−c, for some constant c. Our result

shows that, although the performance of the protocol

of [4] can drop significantly when the interaction graph

G is not the complete graph, it is quite robust when

G is the complete graph. After submission of our orig-

inal work in [18], we became aware of the paper [24],

the results of which can also be used to prove a tighter

version of our result concerning the robustness of the

protocol of [4] on the clique. However, the techniques

used there cannot be applied to graph structures other

than the clique. On the other hand, our proof technique

can also be applied in cases where the underlying inter-

action graph is different than (but close to being) a

clique, by using a non-trivial coupling argument which

might be of independent interest.

1.2 Structure of the paper

The rest of the paper is organized as follows: In Sec-

tion 2, we formally define population protocols and we

present the 4-type interval consensus protocol of [6] and

the 3-type majority protocol of [4]. Furthermore, we

discuss how to abstract computation under the proba-

bilistic scheduler by using Markov chains and we pro-

vide some useful preliminary results on birth-death pro-

cesses that we use in our proofs. In Section 3, we present

our impossibility result, that at least 4 types are neces-

sary in any population protocol that always computes

the correct majority value. In Section 4 we provide a

more detailed analysis of the 3-type majority protocol

of [4]. In particular, in Subsection 4.1, we present an

easy result on the probability of success of the proto-

col in the case where the initial types are distributed

uniformly at random on the vertices of the graph. In

Subsection 4.2, we present our coupling method for an-

alyzing the robustness of the majority protocol of [4],

which is the main contribution of our paper. Finally,

in Subsections 4.3 and Subsection 4.4 we show how our

coupling method can be used to prove that there are

certain graphs in which the majority protocol of [4] can

fail to compute the correct majority or take an expo-

nential number of steps to converge.

2 The model and notation

A population protocol consists of a finite set Q of types1,

a finite set of input symbols X, an input function

ι : X → Q, a finite set of output symbols Y , an output

function γ : Q → Y , and a joint transition function

δ : Q×Q→ Q×Q. If, for any pair of types qa, qb ∈ Q,

δ(qa, qb) = (q′a, q
′
b) implies that δ(qb, qa) = (q′b, q

′
a), then

the population protocol is called symmetric. A popula-

tion protocol is executed by a fixed finite population of

agents with types in Q. We assume that each agent has

an identity v ∈ V , but agents are oblivious to their own

identity and to identities of agents they interact with.

Initially, each agent is assigned a type according

to an input x : V → X that maps agent identi-

ties to input symbols. In the general population pro-

tocol model, agents are identified with the vertices of

an interaction graph, whose edges indicate the possible

1 In the original formulation of population protocols these
are called states, but we chose to use the term type in order
to avoid confusion with the states in a Markov chain.
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agent interactions that may take place. Here, an inter-

action graph is a simple connected graph G (i.e. with-

out loops or multiple edges), which can be directed or

undirected. A function C : V → Q is called a con-

figuration. For two configurations C,C ′, we will say

that C ′ is directly reachable from C (or reachable in

one step from C) if there is (v, u) ∈ E, such that

(C ′(v), C ′(u)) = δ(C(v), C(u)) and C ′(w) = C(w), for

all w ∈ V \{v, u}. Unless specified otherwise, an inter-

action will correspond to a single time step and we will

use the term time to mean number of interactions2.

In particular, we will say that the population protocol

reaches configuration C at time t if, for every agent v

in the population, the type of v after t interactions is

C(v).

In the original model, agents do not send messages

or share memory; instead, an interaction between two

agents updates both of their types according to a joint

transition function (which can be also represented by

a table). Interactions between agents are planned by a

scheduler under a general “fairness” condition; the ac-

tual mechanism for choosing which agents interact is

abstracted away. More precisely, following the notation

in [2], a schedule is a finite or infinite sequence of pop-

ulation configurations C0, C1, C2, . . ., such that Ci+1 is

directly reachable from Ci, for every i ≥ 0. An infinite

execution is fair if the following holds: for every two

configurations C,C ′, if C occurs infinitely often and C ′

is directly reachable from C, then C ′ also occurs in-

finitely often. We will say that a scheduler is fair if it

produces fair schedules.

In this paper, we consider a special case of scheduler,

namely the probabilistic scheduler, which was first con-

sidered in [3] and was also used in the time analysis for

the protocol of [4]. The probabilistic scheduler is fair

with probability 1, and is defined on directed graphs

as follows. During each execution step, a directed edge

(v, u) ∈ E is chosen uniformly at random from E, where

v (i.e. the tail of (v, u)) is called the initiator and u

(i.e. the head of (v, u)) is called the responder of the

interaction. Then, agents v and u update their types

jointly according to δ. In particular, if v is of type qv
and u is of type qu, the type of v (respectively u) be-

comes q′v (respectively q′u), where (q′v, q
′
u) = δ(qv, qu).

The types of all other agents remain unchanged. The

probabilistic scheduler is defined on undirected graphs

similarly, by replacing every undirected edge {v, u} by

the two directed edges (v, u) and (u, v). That is, in an

2 In the literature of population protocols, the term time
sometimes refers to parallel time, which is equal to the num-
ber of interactions divided by the size of the population. How-
ever, we do not make this consideration in our paper; here, the
terms time and number of interactions are interchangeable.

undirected graph G, the probabilistic scheduler selects

first an undirected edge uniformly at random and then

it selects equiprobably one of its endpoint as the ini-

tiator. Note that a symmetric protocol does not distin-

guish between initiators and responders. Therefore, if

the protocol is symmetric, the probabilistic scheduler on

undirected graphs just chooses at each execution step

one undirected edge uniformly at random and lets its

endpoints interact according to the transition function.

Given the probabilistic scheduler, a popula-

tion protocol computes a (possibly partial) function

g : XV → Y with error probability at most ε, if for all

x ∈ g−1(Y ), the population eventually reaches a con-

figuration C that satisfies the following properties with

probability at least 1−ε: (a) all agents agree on the cor-

rect output, i.e. g(x) = γ(C(v)) for all v ∈ V and (b)

this is also true for every configuration reachable from

C. Furthermore, a population protocol stably computes

a (possibly partial) function g : XV → Y if, for every

fair scheduler, the population eventually reaches a con-

figuration C that satisfies both the above properties (a)

and (b).

Observation 1 If a symmetric population protocol

stably computes a function on an undirected interaction

graph G, then it also stably computes the same function

on a directed interaction graph G′ that comes from G

by assigning to every edge of G one or two directions.

2.1 Computing majority in arbitrary interaction

graphs

Bénézit et al. [6] proposed a symmetric population pro-
tocol with 4 types which, given an arbitrary undirected

graph G = (V,E) as the underlying interaction graph of

the population, stably computes the initial majority of

the types of the vertices of G (even if the initial major-

ity differs only by one from the initial minority). This

protocol is known as the interval or quantized consensus

protocol and was thoroughly analyzed under the proba-

bilistic scheduler in [10]. It was also rediscovered in the

conference version of our paper [18] as the ambassador

protocol.

Assuming that the input symbols are g (for green)

and r (for red), the set of types in the protocol is Q =

{g0, g1, r0, r1}. The input function ι is such that ι(g) =

g1 and ι(r) = r1. The output function γ is such that

γ(gi) = g and γ(ri) = r, where i ∈ {0, 1}. Finally,

we present the transition function δ in the form of a

symmetric table in Figure 1.

The proof of correctness of the interval consensus

protocol can be found in [6]. A detailed analysis under

the probabilistic scheduler can be found in [10]. It is also
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u \ v g0 g1 r0 r1
g0 − (g1, g0) − (r1, r0)
g1 (g0, g1) − (g0, g1) (g0, r0)
r0 − (g1, g0) − (r1, r0)
r1 (r0, r1) (r0, g0) (r0, r1) −

Fig. 1 The transition matrix of the interval consensus pro-
tocol.

worth noting that population protocols that converge

faster to the correct majority value were proposed and

analyzed in the recent work [1] at the cost of using more

than 4 types per vertex.

2.2 Computing majority with high probability on the

clique

Angluin et al. [4] proposed a 3-type population protocol

for computing majority with high probability (whp) in

the case where the interaction graph is a clique. Their

protocol uses just 3 types Q = {b, g, r}. For conve-

nience, we will sometimes refer to these types as the

blank, green and red type respectively. The joint tran-

sition function δ is given by:

δ(x, y) =

{
(x, x), if x = y or y = b

(x, b), if (x, y) ∈ {(g, r), (r, g)}. (1)

One of the main results in [4] is that if the underly-

ing interaction graph is a clique Kn (i.e. the complete

graph on n vertices) and interactions are planned ac-

cording to the probabilistic scheduler, then with high

probability 1−o(1), the above 3-type majority protocol

converges to the initial majority value if the difference

between the initial majority and initial minority popu-

lations is ω(
√
n log n).

2.3 Representation

Using the probabilistic scheduler to plan agent interac-

tions has the advantage that we can describe evolution

by using a discrete time Markov chain M. For general

interaction graphs, the state space S of M can have

up to |V ||Q| states3, namely one for each configuration

C : V → Q.

3 Here the term “state” is used in a different way than the
term “configuration”: a “state” denotes a state of the Markov
chain and a “configuration” is an assignment of different types
of Q to the vertices V of the graph. We note that, when the
underlying interaction graph has a high degree of symmetry,
the number of different states of the corresponding Markov
chain can be significantly smaller. Therefore, in general, we
distinguish between Markov states and configurations, since
states are encodings of sets of configurations.

Specifically for the model of [4], we denote by Wt

(respectively Rt and Gt) the set of agents of type b

(respectively r and g) at time t. Note that if the in-

teraction graph has a high degree of symmetry, then S
can be reduced significantly. One such example is the

clique Kn, in which case we can describe a state of M
by the tuple (|Rt|, |Gt|) (where we have also used the

fact that |Wt| = n− |Gt| − |Rt|).

2.4 Preliminaries on Birth-Death Processes

Consider a (discrete time) birth-death process B with

state space SB = {S0, S1, . . . , Sm}, for some integer

m ∈ N and transition probability matrix P given by

P (Si, Sj) =


pi, if j = i+ 1, 0 ≤ i ≤ m− 1

qi, if j = i− 1, 1 ≤ i ≤ m
1− pi − qi, if i = j /∈ {0,m}
1− pi, if i = j = 0

1− qi, if i = j = m.

In particular, when p0 = 1 (resp. p0 = 0), we say that

B has a reflecting barrier at state S0 (resp. we say that

S0 is an absorbing state). Similarly, when qm = 1 (resp.

qm = 0), we say that B has a reflecting barrier at state

Sm (resp. we say that Sm is an absorbing state). The

fraction pi
qi

(resp. qi
pi

) is called the forward bias (resp.

backward bias) at state Si. If pi
qi

=
pj
qj

, for all i, j 6=
{0,m}, we refer to pi

qi
(resp. qi

pi
) as the forward bias

(resp. backward bias) of B.

We now present some useful preliminary results on

discrete time birth-death processes. Other similar re-

sults concerning birth-death processes can be found for

example in [22,23,26].

Lemma 1 (Absorption probability) Consider a dis-

crete time birth-death processes B satisfying pi = p and

qi = q, with p 6= q, for all i = 1, . . . ,m − 1. Then,

given that the process starts at state Si, the probability

of reaching S0 before reaching Sm is equal to

Pr{B reaches Sm before S0|B(0) = Si} =

(
q
p

)i
− 1(

q
p

)m
− 1

.

In particular, Pr{B reaches Sm before S0|B(0) =

S1} =
q
p−1

( qp )
m−1

.

Proof Let hi = Pr{B reaches Sm before S0|B(0) = Si},
where i = 0, . . .m. Then h0 = 0, hm = 1 and hi =

phi+1 + qhi−1 + (1 − p − q)hi, for i = 1, . . . ,m − 1.

Setting ui = hi − hi−1, we then have that ui+1 = q
pui,
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hence ui+1 =
(
q
p

)i
u1, for i = 1, . . . ,m − 1. Further-

more, 1 = u1+ · · ·+um =

(
1 + q

p + · · ·+
(
q
p

)m−1)
u1.

Since u1 = h1, we have that h1 = 1

1+ q
p+···+( qp )

m−1 =
q
p−1

( qp )
m−1

. Finally, we have that hi =
∑i−1
j=0 uj+1 =∑i−1

j=0

(
q
p

)j
u1 =

1+ q
p+···+( qp )

i−1

1+ q
p+···+( qp )

m−1 , which completes the

proof. ut

Lemma 2 (Expected time to absorption) Consider a

discrete time birth-death processes B satisfying pi = p

and qi = q, with p 6= q, for all i = 1, . . . ,m−1. If B has

a reflecting barrier at S0 (i.e. p0 = 1), then the expected

time that B takes to reach Sm is

E[time for B to reach Sm|B(0) = Si]

=

1 +
1

p
(
q
p − 1

)

(
q
p

)m
−
(
q
p

)i
q
p − 1

− m− i

p
(
q
p − 1

) .
In particular, for large enough m, we have the following:

(a) If q
p < 1 and i < m, then

E[time for B to reach Sm|B(0) = Si] = O

 m− i

p
(

1− q
p

)
 .

(b) If q
p > 1 and i = 1, then

E[time for B to reach Sm|B(0) = S1]

= Ω

(
1

q
p − 1

(
q

p

)m)
.

Proof Let µi = E[time for B to reach Sm|B(0) = Si],

where i = 0, . . .m. Then µ0 = 1 + µ1, µm =

0 and µi = 1 + pµi+1 + qµi−1 + (1 − p − q)µi,

for i = 1, . . . ,m − 1. Denote yi+1 = µi+1 −
µi, and thus yi+1 = − 1

p + q
pyi = −

(
q
p

)i
−

1
p

(
1 + q

p + · · ·+
(
q
p

)i−1)
= −

(
q
p

)i
− 1

p

( qp )
i−1

q
p−1

, for all

i = 1, . . . ,m − 1. Note that
∑m−1
i=1 yi+1 = −µ1 and

thus µ1 =
∑m−1
i=1

[(
1 + 1

p( qp−1)

)(
q
p

)i
− 1

p( qp−1)

]
=(

1 + 1

p( qp−1)

)
( qp )

m− qp
q
p−1

− m−1
p( qp−1)

. Furthermore, we have

that

µi − µ1 =

i−1∑
j=1

yj+1

=

i−1∑
j=1

−
1 +

1

p
(
q
p − 1

)
(q

p

)j
+

1

p
(
q
p − 1

)


= −

1 +
1

p
(
q
p − 1

)

(
q
p

)i
− q

p

q
p − 1

+
i− 1

p
(
q
p − 1

) ,
and thus µi =

(
1 + 1

q−p

)
( qp )

m−( qp )
i

q
p−1

− m−i
p( qp−1)

as in the

statement of the Lemma. Notice then that, if q
p < 1

(or equivalently q < p) and m is large enough, then µi
is dominated by the term m−i

p(1− qp )
, which implies part

(a) of the Lemma. On the other hand, setting i = 1, if
q
p > 1 and m is large enough, then µ1 is dominated by

the term
(

1 + 1
q−p

)
( qp )

m− qp
q
p−1

, which implies part (b) of

the Lemma. ut

3 At least 4 types are needed for majority

We begin by defining the rank of a family of population

protocols.

Definition 1 (rank) For any population protocol P ,

denote by Q(P ) the set of types used by P . Let Pg
be a class of population protocols that stably com-

pute the function g. The rank of Pg is R(Pg)
def
=

minP∈Pg |Q(P )|.

In this section, we prove that 3 types are not suf-

ficient to stably compute the majority function in a

population of agents that have initially one of two pos-

sible types and for any interaction graph. Therefore, the

protocol of [6] is optimal with respect to the number of

types that it uses.

Theorem 1 Let Pmajority be the class of population

protocols such that every protocol in Pmajority sta-

bly computes the majority function in a population of

agents that have initially one of two possible types and

in any interaction graph. Then R(Pmajority) > 3.

Proof Assume for the sake of contradiction that there

is a population protocol P ∈ Pmajority that uses only

3 types, namely Q(P ) = {r, b, g}, among which r and

g are input symbols. Notice also, that since we initially

have a 2-type population, the final answer given by P

can have only two possible values (i.e. indicating the

type of the initial majority). Therefore, if the output
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function of P assigns different values to each distinct

type in Q(P ), then one of the types must never occur in

a final configuration. Thus, we can set the output value

of this type arbitrarily equal to the output value of one

of the other two types. Consequently,we may assume

that the output function of P is γ : Q(P )→ {0, 1}.
Since, by assumption P ∈ Pmajority, we cannot

have γ(r) = γ(b) = γ(g), otherwise P would not be

able to tell the difference between any two different

input populations. Therefore, we may assume without

loss of generality that there is a type q1 ∈ Q(P ) such

that γ(q1) = 1, while for both the other two types

q2 and q3 in Q(P )\{q1}, we have γ(q2) = γ(q3) = 0

(the case where q1 is the only types having γ(q1) = 0,

while γ(q2) = γ(q3) = 1 is treated similarly, by sym-

metry). We can also assume without loss of generality,

that when the initial majority is of type r, the protocol

eventually reaches a configuration where all agents are

of type q1, and thus P gives output 1.

Assume now that we have a population V of agents,

among which R ⊆ V are initially of type r and G ⊆ V

are initially of type g. We will denote this configuration

by (R,G). By the above discussion, if |V | = 2k + 1,

for some integer k ≥ 2, then P will output 1 in both

the following two configurations: (a) C1 = (R1, G1),

where |R1| = k + 1, |G1| = k and (b) C2 = (R2, G2),

where |R2| = k+ 2, |G2| = k− 1. In particular, running

P on input either C1 or C2, we will eventually reach a

configuration where all vertices are of type q1 (in fact we

will never leave this configuration once we have reached

it). In other words, there is a sequence of transitions

T1 (equivalently, there is a sequence of pairs of agents

picked by the scheduler) that transforms configuration

C1 to the configuration where all agents are of type

q1. Similarly, there is a sequence of transitions T2 that

transforms configuration C2 to the configuration where

all agents are of type q1.

Suppose now that we have a population V ′ = V ∪
{v, u}, i.e. V ′ consists of V together with two extra

agents v and u (where u, v /∈ V ). Consider also the fol-

lowing two initial configurations: (a) C ′1 = (R1, G1 ∪
{v, u}) and (b) C ′2 = (R2, G2∪{v, u}). In particular, in

configuration C ′1, agents in R1 are of type r and agents

in G1 ∪ {v, u} are of type g. Furthermore, in config-

uration C ′2, agents in R2 are of type r and agents in

G2 ∪ {v, u} are of type g. Note that the majority in C ′1
is of type g, while the majority in C ′2 is of type r. There-

fore, since P ∈ Pmajority, it follows that P must output

0 when the starting configuration is C ′1 and 1 when the

starting configuration is C ′2. But starting at C ′1 it is

possible to follow the sequence of transitions T1 (i.e. ig-

noring agents v and u during these steps), thus reaching

a configuration C ′ where all agents in V ′\{v, u} are of

type q1 and agents v and u remain of type r. Similarly,

starting at C ′2 it is possible to follow the sequence of

transitions T2, thus reaching to the same configuration

C ′. This is a contradiction, since P will not be able to

tell the difference between the starting configurations

C ′1 and C ′2. In particular, the output of P after reach-

ing C ′ will be wrong for exactly one of the two initial

configurations C ′1 or C ′2, contradicting the assumption

that P ∈ Pmajority. ut

4 The model of Angluin et al. in arbitrary

interaction graphs

In this section, we provide a detailed analysis of the 3-

type protocol of [4] on arbitrary interaction graphs G.

In particular, in Subsection 4.1, we present our result

concerning the random initial placement of individu-

als on the vertices of the interaction graph. In Subsec-

tion 4.2, we prove our auxiliary result that, when the

minority is sufficiently small, the probability that the

protocol of Angluin et al. fails in computing the ma-

jority value is exponentially small. In particular, this is

an improvement upon the failure probability implied by

the result of [3], where it was shown that the probability

of failure is upper bounded by the inverse of a constant

power of the number of vertices. Although this result

shows the robustness of the protocol of [4] in the clique,

we use it as an intermediate step in proving in Subsec-

tion 4.3 that there exists a family of graphs in which

the protocol can fail with high probability. Finally, in

Subsection 4.4, we prove the existence of a family of

graphs in which the protocol of [4] can take an expo-

nential expected number of steps to reach consensus.

4.1 Random initial placement

We prove in this subsection a preliminary result con-

cerning the model of [4] when the interaction graph

is an arbitrary, strongly connected, directed graph G.

In particular, we prove that if the initial assignment of

individuals to the vertices of G is random, then the ma-

jority protocol described in [4] correctly identifies the

initial majority with probability at least 1
2 .

For the proof of Theorem 2 below, we will need a

result from extremal combinatorics concerning systems

of distinct representatives. A system of distinct repre-

sentatives for a sequence of (not necessarily distinct)

sets T1, T2, . . . , Tx is a sequence of distinct elements

e1, e2, . . . , ex such that ei ∈ Ti for all i = 1, 2, . . . , x.

The following is a consequence of Hall’s marriage The-

orem (for a proof see chapter 5 in [13]):
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Corollary 1 ([13]) Let T1, T2, . . . , Tx be r-element

subsets of a universe of y elements, such that each el-

ement belongs to the same number d ≥ 1 of these sets.

If x ≤ y, then the sets T1, T2, . . . , Tx have a system of

distinct representatives.

We are now ready to prove the following Theorem.

Theorem 2 For any strongly connected directed graph

G, if the initial assignment of individuals to the vertices

of G is random, then the majority protocol described

in [4] correctly identifies the initial majority with prob-

ability at least 1
2 .

Proof Assume without loss of generality that the initial

majority is of type g (green), i.e. |G0| ≥ |R0|. The state

space of the Markov chain M describing the evolution

of the protocol will be the set S = {(A,B) : A,B ⊆
V,A∩B = ∅}. In particular, whenM is in state (A,B)

at time t, we will write that (Rt, Gt) = (A,B), and

this will mean that the subset of vertices A (respec-

tively B) is of type r (respectively g). It is also evident

that the set of vertices V − (A ∪ B) is of type b. It

then follows that the majority protocol in [4] fails to

correctly identify type g as the initial majority if M
eventually reaches state (V, ∅); we will then say that

the initial minority wins (whereas in the opposite case

we will say that the initial majority wins). Since the

initial placement of individuals on the vertices of the

graph is random and the initial minority is of type r,

we also have that

Pr{initial minority wins}

=
∑

S⊆V :|S|=|G0|

[
1(
n
|G0|
) ·

·Pr{(V, ∅) reached|(R0, G0) = (V − S, S)}
]
. (2)

Consider now a fixed choice of S in the above sum and

an arbitrary set A ⊆ S of size |A| = |R0| = |V − S|
(notice that it is always possible to find such a set A,

since |S| ≥ |V − S|, by assumption). Then we have

Pr{(V, ∅) reached|(R0, G0) = (V − S, S)}
≤ Pr{(V, ∅) reached|(R0, G0) = (V −A,A)}
= Pr{(∅, V ) reached|(R0, G0) = (A, V −A)}. (3)

For the inequality we used the fact that V −S ⊆ V −A
and that augmenting the initial set of agents (inclusion-

wise) of type r increases the probability that agents of

type r win. The basic proof idea behind this fact is

that, simulating the total possible executions that lead

to either a total red or total green configuration, the

extra agents of type r can only work in favor of the r

type.

For the equality we used the fact that the protocol

is symmetric for types g and r. In words, (3) states that

the probability that the initial minority wins, starting

from (V − S, S), is at most the probability that the

initial majority wins if we exchange agents of type r

initially placed in V − S with agents of type g initially

placed in A.

Notice now that if for any choice of S we assign a

unique choice of A = AS ⊆ S, i.e. such that for any

S 6= S′ we have AS 6= AS′ , then we are done, since by

(2) and (3) we have

Pr{initial minority wins}

=
∑

S⊆V :|S|=|G0|

[
1(
n
|G0|
) ·

·Pr{(V, ∅) reached|(R0, G0) = (V − S, S)}
]

≤
∑

S⊆V :|S|=|G0|

[
1(
n
|G0|
) ·

·Pr{(∅, V ) reached|(R0, G0) = (AS , V −AS)}
]

≤ Pr{initial majority wins}.

We now show that such a one to one correspon-

dence of sets AS to sets S is possible: For k = |R0|,
let T1, T2, . . . , T(nk)

be an arbitrary enumeration of sub-

sets of V of size exactly k. For any 1 ≤ i ≤
(
n
k

)
, let

also Ti be the set of subsets of V − Ti of size k. No-

tice that the set Ti is non-empty (because n − k ≥ k

by assumption) and is also uniquely determined by Ti.

Furthermore, each set inside Ti can be formed by se-

lecting exactly k vertices in V \Ti, therefore, the sets Ti
have the same size r =

(
n−k
k

)
. Additionally, by defini-

tion, a set Tj belongs to some Ti if and only if Ti (which

uniquely determines Ti) does not have any vertices in

common with Tj , and so there are exactly d =
(
n−k
k

)
distinct Ti’s that contain Tj . Therefore, we can apply

Corollary 1 to the sets Ti, with x = y =
(
n
k

)
. In partic-

ular, this implies that the sets Ti, 1 ≤ i ≤
(
n
k

)
, have a

system of distinct representatives, which concludes the

proof. ut

In the above theorem we provided a sufficient condi-

tion under which the majority protocol described in [4]

correctly identifies the initial majority with probability

at least 1
2 . This result is in wide contrast to the nega-

tive result of Subsection 4.3 (cf. Theorem 4), in which

we highlight a case where the majority protocol of [4]

fails with high probability.

It is worth noting that Theorem 2 does not imply

any bounds on the expected convergence time of the

protocol of [4] on arbitrary interaction graphs under the
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probabilistic scheduler; finding such bounds remains an

open problem.

4.2 Clique

In this Subsection we provide an upper bound on the

probability that all agents eventually become of type

r, given that we start with εn agents of type r and

(1− ε)n agents of type g on the n-vertex clique, where
1
n ≤ ε < 1

7 (the upper bound on ε is used to facili-

tate the exposition of our arguments, while the lower

bound guarantees that there is at least one vertex of

type r). We assume without loss of generality that εn

is an integer. By the discussion in Subsection 2.3, the

state space of the Markov chainM describing the evo-

lution of the protocol at time t contains tuples of the

form (|Rt|, |Gt|), where Rt (resp. Gt) is the set of ver-

tices of type r (resp. g) at time t. In particular, we are

interested in upper bounding

Pr{absorption at (n, 0)|initially at (εn, n− εn)}.

The core of our proof lies in the definition of two

discrete time processes W and C that “filter” the infor-

mation from the original Markov chain M.

Definition 2 (The Blank Process W) This process

keeps track of the number of blank vertices over time,

i.e. W(t)
def
= 〈# vertices of type b at time t〉.

For convenience, we will use the following notation

to describe transitions of M: We will write g → r to

describe a transition of the form (x, y) → (x − 1, y),

for some x, y ∈ {1, 2, . . . , n}. More specifically, g → r

is used to describe a transition where a directed edge

(v, u) is chosen by the scheduler, v is of type g, and u is

of type r. Similarly, we will use r → g for transitions of

the form (x, y)→ (x, y−1), g → b for transitions of the

form (x, y)→ (x, y+1) and r → b for transitions of the

form (x, y) → (x + 1, y). We note that the state of M
at any time t can be fully described by the initial state

and by a sequence of transitions among {g → r, r →
g, g → b, r → b}.

Definition 3 (The Contest Process C) Transitions

of M are paired recursively, starting from time 0 as

follows: Every transition that increases the number of

blanks is paired with the earliest subsequent transition

that decreases the number of blanks and is not paired

yet4. For an arbitrary time t, we denote by τ(t) (or

4 We assume that the pairing concerns only transitions that
change the state of M. In particular, transitions of the form
b → r, b → g, b → b, g → g and r → r are ignored in this
pairing as irrelevant.

just τ for short) the number of pairs until time t. The

Contest Process C is defined over the time scale τ , where

C(0) = |R0| and for τ = 1, 2, . . . ,

C(τ) =


C(τ − 1) + 1, if the τ -th pair is (r → g, r → b),

C(τ − 1)− 1, if the τ -th pair is (g → r, g → b),

C(τ − 1), otherwise.

For example, suppose that the underlying clique has

n = 4 vertices and we have the sequence of states

S0 = (1, 3), S1 = (1, 2), S2 = (1, 3), S3 = (1, 2), S4 =

(1, 1), S5 = (2, 1), S6 = (2, 0), S7 = (3, 0), S8 = (4, 0).

In the new notation, we start at S0 = (1, 3) and then

we have the transitions (1) r → g, (2) g → b, (3) r →
g, (4) r → g, (5) r → b, (6) r → g, (7) r → b, (8) r → b.

The value of Wt, for any t = 0, . . . , 8 is then easy to

find (e.g. W5 = 1). For the Contest process C, we pair

the transitions as follows: (a) S0 → S1 (which is r → g)

is paired to S1 → S2 (which is g → b), (b) S2 → S3

(which is r → g) is paired to S4 → S5 (which is r → b),

(c) S3 → S4 (which is r → g) is paired to S6 → S7

(which is r → b) and (d) S5 → S6 (which is r → g) is

paired to S7 → S8 (which is r → b). In particular, there

are only 4 transitions for C and in particular, we have

C(0) = 1, C(1) = 1, C(2) = 2, C(3) = 3, C(4) = 4.

Notice that the processes W and C are dependent.

As a matter of fact, C is not even defined using the same

time scale as W andM (to indicate this, we have used

the convention that t is the time variable for processes

M,W, while τ is the time variable for process C). How-

ever, observe that if we initially begin with no blanks

(i.e. |R0| + |G0| = n hence W(0) = 0), then whenever

W decreases its value, we have a transition step of C.
Additionally, we can prove the following:

Lemma 3 (Relating C and M) For any T ∈ N, de-

note by C|T the value of C given only states M(t), t =

0, 1, . . . , T (i.e. given the history of M up to time T ).

Then, C|T ≥ |RT | for any T ∈ N. Furthermore, if

C|T = 0, then all vertices are of type g.

Proof Notice that if all transitions up to time T were

paired according to the pairing in the definition of C,
then we would have exactly C|T = |RT |. Indeed, each

pair of transitions of the form (r → g, r → b) increases

the number of vertices of type r by 1, each pair of tran-

sitions of the form (g → r, g → b) decreases the number

of vertices of type r by 1 and any pair of transitions

of the form (r → g, g → b) or (g → r, r → b) does

not change the number of vertices of type r. Finally,

notice that transitions that are not paired are either of

the form r → g, or g → r, which can only decrease the

number of vertices of type r. This completes the proof

of the first part.
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For the second part of the Lemma, let T0 be a time

where C|T0
= 0 and note that because of the first part,

we already have that |Rt| = 0, so we only need to prove

that also W(T0) = 0. Assume for the sake of contradic-

tion that there is some vertex w that is of type b at time

T0. By definition, this implies that there is an unpaired

transition of the form r → g or g → r. Indeed, this

follows from the observation that paired transitions do

not change the number of vertices of type b, therefore

if all transitions are paired there must be no vertices of

type b remaining. If now the unpaired transition is of

the form r → g, then the existence of a vertex of type r

at the time of the transition (say time t < T0) together

with the fact that |RT0
| = 0 would imply that there is

also an unpaired subsequent transition (i.e. a transition

that happened at some time t′, with T0 > t′ > t) of the

form g → r. But if there is an unpaired transition of

the form g → r, then pairing it with a subsequent tran-

sition of the form g → b after time T0 would decrease

the value of C′ by 1, making it negative, which leads to

a contradiction because of the first part of the Lemma.

This completes the proof of the second part. ut

We will use the following domination statements in

Lemmas 4 and 5, which concern the domination of pro-

cesses W and C by appropriate birth-death processes:

Lemma 4 (Domination of W) Let α, β, κ ∈
{1, . . . , n−1}, with α < β. Let also BW be a birth-death

process, which has state space SBW = {S0, . . . , Sn},
with Sn an absorbing state and transition probability

matrix P , with P (Si, Si+1) = 1 for all i ∈ {0, . . . , α} ∪
{β, . . . , n−1}, P (Si,Si+1)

P (Si,Si−1)
= 2κ

α for all i ∈ {α+1, . . . , β−
1} and P (Si, Si) = Pr(W(t) = i|W(t − 1) = i),

for all t ≥ 1 and for all i ∈ {α + 1, . . . , β − 1}.
Then, given that the vertices of type r are at most

κ, the process W is stochastically dominated by BW
in the following sense: Pr(W(t) > x|W(0) = 0) ≤
Pr(BW(t) ∈ ∪y>xSy|BW(0) = S0), for any time t and

x ∈ {0, . . . , n}.

Proof For the proof, it suffices to show that, for any

t ≥ 1 and for any i ∈ {0, . . . , n− 1},

Pr(W(t) = i+ 1|W(t− 1) = i)

≤ Pr(BW(t) = Si+1|BW(t− 1) = Si).

This is trivially true for all i ∈ {0, . . . , α} ∪ {β, . . . , n−
1}, because the right hand side of the above inequality

is 1. For i ∈ {α+ 1, . . . , β− 1}, given that W(t− 1) = i

(i.e. there are exactly i blanks at time t), the probability

that W increases by 1 in the next time step is equal to

the probability that either a transition g → r or a tran-

sition r → g occurs, which is equal to 2|Rt−1||Gt−1|
n(n−1) . On

the other hand, given thatW(t−1) = i, the probability

that W decreases by 1 in the next time step is equal to

the probability that either a transition g → b or a tran-

sition r → b occurs, which is equal to i(|Rt−1|+|Gt−1|)
n(n−1) .

But then

Pr(W(t) = i+ 1|W(t− 1) = i)

Pr(W(t) = i− 1|W(t− 1) = i)
=

2|Rt−1||Gt−1|
i(|Rt−1|+ |Gt−1|)

≤ 2|Rt−1|
i

.

By assumption, this is at most 2κ
α , which combined with

the fact that P (Si, Si) = Pr(W(t) = i|W(t − 1) = i),

for all i ∈ {α+ 1, . . . , β − 1}, concludes the proof. ut

Lemma 5 (Domination of C) Let β, κ be positive in-

tegers, with β + κ < n. Let also BC be a birth-death

process, which has state space SBC = {T0, . . . , Tn}, with

T0, Tn absorbing states and transition probability ma-

trix Q, with Q(Ti, Ti+1) = 1 for all i ∈ {κ, . . . , n − 1},
Q(Ti,Ti+1)
Q(Ti,Ti−1)

= κ
n−β−κ for all i ∈ {1, . . . , κ − 1} and

Q(Ti, Ti) = Pr(C(τ) = i|C(τ −1) = i), for all τ ≥ 1 and

for all i ∈ {1, . . . , κ−1}. Then, given that the vertices of

type b are at most β, the process C is stochastically dom-

inated by BC in the following sense: Pr(C(τ) > x|C(0) =

|R0|) ≤ Pr(BC(τ) ∈ ∪y>xTy|BC(0) = |R0|), for any τ

and x ∈ {0, . . . , n}.

Proof It suffices to show that, for any τ ≥ 1 and for

any i ∈ {1, . . . , n− 1},

Pr(C(τ) = i+ 1|C(τ − 1) = i)

≤ Pr(BC(τ) = Ti+1|BC(τ − 1) = Ti).

This is trivially true for all i ∈ {κ, . . . , n− 1}, because

the right hand side of the above inequality is 1. For

i ∈ {1, . . . , κ − 1}, we apply the principle of deferred

decisions. In particular, let t1 (resp. t2) be the time in
the time scale ofM that corresponds to the first (resp.

second) transition of the τ -th transition pair in the def-

inition of C (notice that both t1 and t2 are random vari-

ables). Given that C(τ − 1) = i, the probability that C
increases by 1 in the next time step in the time scale of C
is equal to the probability that the τ -th transition pair

is (r → g, r → b), which is equal to Pr(C(τ) = i+1|C(τ−
1) = i, t1, t2) =

|Rt1 ||Gt1 |
2|Rt1 ||Gt1 |

|Rt2 |(n−|Rt2 |−|Gt2 |)
(|Rt2 |+|Gt2 |)(n−|Rt2 |−|Gt2 |)

.

On the other hand, the probability that the τ -th tran-

sition pair in the definition of C is (g → r, g →
b) is Pr(C(τ) = i − 1|C(τ − 1) = i, t1, t2) =
|Gt1 ||Rt1 |
2|Rt1 ||Gt1 |

|Gt2 |(n−|Rt2 |−|Gt2 |)
(|Rt2 |+|Gt2 |)(n−|Rt2 |−|Gt2 |)

. But then

Pr(C(τ) = i+ 1|C(τ − 1) = i, t1, t2)

Pr(C(τ) = i− 1|C(τ − 1) = i, t1, t2)
=
|Rt2 |
|Gt2 |

.

Since i ≤ κ− 1, by assumption, it follows by Lemma 3

that |Rt2 | < κ. Therefore, we have that

Pr(C(τ) = i+ 1|C(τ − 1) = i)

Pr(C(τ) = i− 1|C(τ − 1) = i)
≤ κ

n− β − κ
,
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which, combined with the fact that Q(Ti, Ti) =

Pr(C(τ) = i|C(τ − 1) = i), for all i ∈ {1, . . . , κ − 1},
concludes the proof. ut

We are now ready to prove our main Theorem,

which is stated below.

Theorem 3 Let ε < 1
7 . For large enough n, starting

from εn agents of type r and (1−ε)n agents of type g on

the clique Kn, the probability that the clique eventually

contains only agents of type r is at most
(
5
2

)n(ε− 1
7 )

+

2
(
7
6

)− n
13 = e−Θ(n).

Proof For the proof, we will upper bound the proba-

bility that the initial minority wins by providing upper

bounds to the probability that the following events oc-

cur, in which κ, β are predefined integers (which we fix

later to facilitate exposition):

(i) A1 is the event that C reaches κ before the number

of vertices of type b reaches β.

(ii) A2 is the event that the number of vertices of type

b reaches β before C reaches κ.

In particular, we note that

Pr{initial minority wins|M(0) = (εn, n− εn)}
≤ Pr(A1 ∪A2|M(0) = (εn, n− εn)) (4)

so we need to provide upper bounds for Pr(A1|M(0) =

(εn, n− εn)) and Pr(A2|M(0) = (εn, n− εn)).

We now set α = n
3 , β = n

2 and κ = n
7 . In that

case, the forward bias of the birth-death process BW at

states {Sα+1, Sα+2 . . . , Sβ−1} is at most rW
def
= 6

7 < 1

and the forward bias of the birth-death process BC at

states {T1, T2, . . . , Tκ−1} is at most rC
def
= 2

5 < 1.

In particular, by Lemma 5 and Lemma 1, given that

the number of vertices of type b is less than β, the prob-

ability that the process C reaches value κ before reach-

ing 0, given that it starts at εn, is at most

(
1
rC

)εn
−1(

1
rC

)n
7 −1

.

Therefore,

Pr(A1|M(0) = (εn, n− εn)) ≤

(
1
rC

)εn
− 1(

1
rC

)n
7 − 1

=

(
5
2

)εn − 1(
5
2

)n
7 − 1

. (5)

For the bound on Pr(A2|M(0) = (εn, n − εn)), no-

tice that, given M(0) = (εn, n− εn), the event A2 can

only happen if W reaches β before C reaches either 0

or κ. For integers k0 and k1 we will define the following

events: (i) B1 is the event that W reaches β and back-

tracks less than k0 times until then and (ii) B2 is the

event thatW reaches β and C takes more than k1 steps

(in the time scale of C) to reach either value 0 or κ.

We will set k0 = k1 =
(

1
rW

) n
12

=
(
7
6

) n
12 (however, note

here that equation (6) remains valid for any k1 ≤ k0).

By observing that, every time W backtracks, we have

a step in C, we have that

Pr(A2|M(0) = (εn, n− εn))

≤ Pr(B1 ∪B2|M(0) = (εn, n− εn)). (6)

Indeed, givenM(0) = (εn, n− εn), the probability that

W reaches β before C reaches either 0 or κ is at most

the probability of the event thatW reaches β and back-

tracks less than k0 times until then (i.e. B1) or that W
reaches β and backtracks at least k0 times but it takes

longer for C to reach either 0 or κ (i.e. B2 ∩B1).

Notice now that, by Lemma 4 and Lemma 1, the

probability that the process W reaches β before going

back to α, given that it starts with α+ 1 blank vertices

is at most
1
rW
−1(

1
rW

)n
6 −1

. Therefore, by coupling W and

BW (defined in Lemma 4), we have that

Pr(B1|M(0) = (εn, n− εn))

≤ Pr
{
BW reaches Sβ and backtracks < k0 times

∣∣∣∣∣∣BW(0) = α+ 1
}

(7)

≤ Pr
{
BW reaches Sβ and visits Sα < k0 times

∣∣∣
BW(0) = α+ 1

}
(8)

≤ 1−

1−
1
rW
− 1(

1
rW

)n
6 − 1


k0

(9)

≤ k0
(

1

rW

)−n6
=

(
7

6

)− n
12

. (10)

Inequality (7) follows by domination in Lemma 4. In-

equality (9) follows from the memoryless property of

Markov chains and the observation that every time BW
takes the value α it immediately takes the value α + 1

on the next step, since it has a reflecting barrier on

Sα. Finally, to get inequality (10) we used the fact that

(1− x)y ≥ 1− 2xy whenever 0 < xy < 1
2 .

Let now XC be the number of steps (in the time

scale of C) needed for process C to reach either value 0

or κ. Notice also that we can use Lemma 2(a) in order to

upper bound the expected time needed for BC to reach

either T0 or Tκ. In particular, this is at most the time

needed for BC to reach T0 if it had a reflecting barrier

at Tκ, which is a mirror birth-death process to that of

Lemma 2(a) if we ignore all states other than T1, . . . , Tκ
(i.e. with m = κ and Si = Tκ−i, i = 0, . . . , κ). There-

fore, the expected time needed for BC to reach either T0
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or Tκ, given that it starts at Tεn is O

(
εn|E|2
1
rC
−1

)
= O(n5),

where we also used the fact that the probability that

C (and thus also BC) does not stay on the same state,

given that it starts at one of the states T1, . . . , Tκ−1, is

at least Ω
(

1
|E|2

)
(in particular, this is a lower bound on

the value of p in Lemma 2(a)). Therefore, by Lemma 5

and taking into consideration that C(0) = εn, the ex-

pected value of XC satisfies

E[XC |C(0) = εn] = O(n5).

By Markov’s inequality, for large enough n, we then

have that

Pr (XC > k1| C(0) = εn) <
E[XC |C(0) = εn]

k1
=
O(n5)

k1
.

In particular, we have that

Pr(B2 ∩B1|M(0) = (εn, n− εn))

≤ Pr (XC > k1| C(0) = εn)

=
O(n5)

k1
≤
(

7

6

)− n
13

. (11)

By using now the bounds we have for Pr(A1|M(0) =

(εn, n−εn)) in (5), Pr(B1|M(0) = (εn, n−εn)) in (10),

and Pr(B2 ∩B1|M(0) = (εn, n− εn)) in (11), together

with inequalities (4) and (6), we get that

Pr{initial minority wins|M(0) = (εn, n− εn)}

≤

(
1
rC

)εn
− 1(

1
rC

)n
7 − 1

+ k0

(
1

rW

)−n6
+
O(n5)

k1
(12)

≤
(
5
2

)εn − 1(
5
2

)n
7 − 1

+

(
7

6

)− n
12

+

(
7

6

)− n
13

.

This concludes the proof of the Theorem. ut

We note here that the upper bound on ε in the state-

ment of Theorem 3 is only used to facilitate exposition

of our arguments in the proof. We claim that this up-

per bound can be increased further by using the same

proof ideas, but that we cannot reach arbitrarily close

to 1
2 . However, we conjecture that the constant ε in

Theorem 3 can be as close to 1
2 as desired, as long as it

remains bounded away from it.

Conjecture 1 Let ε be a positive constant strictly less

than 1
2 . For large enough n, starting from εn agents of

type r and (1− ε)n agents of type g on the clique Kn,

the probability that the clique eventually contains only

agents of type r is at most e−Θ(n).

v u
Ln2

Kn1

Fig. 2 A lollipop graph consisting of a Kn1
clique and a Ln2

line.

4.3 Minority domination

Consider the lollipop graph (see Figure 2), which con-

sists of a complete graph Kn1
on n1 vertices, among

which vertex v is connected to the leftmost vertex u of

a line graph Ln2 on n2 vertices, with n1 +n2 = n. Sup-

pose that initially vertex v and all vertices in Ln2
are of

type r, while all vertices inKn1
\{v} are of type g. With-

out loss of generality, we also assume that n1 < n2, so

that the color green is the initial minority in the graph.

In this subsection we will provide a lower bound on the

probability that the initial minority eventually wins,

given that we start with this configuration.

For the analysis we will use the analysis of Subsec-

tion 4.2, together with a suitable domination argument

and the following fact:

Lemma 6 Consider a line graph Lm, in which the left-

most vertex is of type g and all other m−1 vertices are

of type r. Starting from this initial configuration, the

probability that eventually all vertices become of type g

is 1
2(m−1) .

Proof Let M denote the Markov chain that describes

the evolution of the protocol. Without loss of gener-
ality, we will assume that only transitions that result

in some vertex changing its type are allowed. In par-

ticular, discarding any transitions of M resulting from

interactions of the form b → r, b → g, b → b, g → g or

r → r does not change the probability of absorption of

M to one of its two absorbing states (namely the one

with all vertices of type r and the one with all vertices

of type g).

Let us now construct a stochastic process B by tak-

ing snapshots of M every two transitions that change

the state of M. Then we can describe the set of states

reachable by M (given the initial configuration) by a

single number between 0 and m. Indeed, starting from

a single vertex of type g on the leftmost vertex of the

line and all other vertices of type r, and taking snap-

shots of M every two transitions, we can only reach

configurations Sk, k = 0, . . . ,m, in which a number

of k consecutive vertices to the left are of type g and

all others are of type r. By the Markov property we

can easily verify that B is a Markov chain with state
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space {S0, S1, . . . , Sm} (where S0, Sm are absorbing)

and transition probability matrix P given by

P (Si, Sj)

=



1
4 , if |j − i| = 1, 2 ≤ i ≤ m− 2,
1
4 , if j = i+ 1 = 2 or j = i− 1 = m− 2,
1
2 , if j = i+ 1 = m or j = i− 1 = 0,

1, if i = j = 0 or i = j = m,

1− P (Si, Si+1)− P (Si, Si−1), if i = j, 1 ≤ i ≤ m− 1.

In particular, we have that

P (Si, Si−1)

P (Si, Si+1)
= 1,

for all i = 2, 3, . . . ,m − 2 and P (S1,S0)
P (S1,S2)

=
P (Sm−1,Sm)
P (Sm−1,Sm−2)

= 2. Furthermore, we have that

Pr{M reaches Sm|M(0) = S1}
= Pr{B reaches Sm|B(0) = S1}.

In order to compute the above probability, we proceed

as in the proof of Lemma 1. In particular, let hi =

Pr{absorption at Sm|B(0) = Si}. We then have that

h0 = 1−hm = 0 and hi+1−hi = P (Si,Si−1)
P (Si,Si+1)

(hi−hi−1),

for i = 1, . . . ,m− 1. In particular, hi+1 − hi = 2h1, for

all i = 1, . . . ,m − 2 and hm − hm−1 = h1. Finally, we

have that 1 =
∑m−1
i=0 (hi+1 − hi) = 2(m − 1)h1, which

completes the proof of the Lemma. ut

For the proof of the main Theorem in this subsec-

tion, we define stochastic processes W ′ and C′ just as

the processes W and C from Subsection 4.2, but con-

cerning the clique Kn1 . In particular,these processes

take into account only transitions involving either edges

that belong to the clique or the directed edge (u, v). We

note that Lemma 3 continues to hold for the modified

process C′ with only one modification (because of the

existence of the edge {v, u}) concerning its second part:

T must satisfy C′|T = 0 and C′|T−1 > 0 in order to be

able to deduce that Kn1 has only vertices of type g. 5

Furthermore, because of the existence of the directed

edge (u, v), the domination Lemmas 4 and 5 become as

follows:

Lemma 7 (Domination of W ′) Let α′, β′, κ′ be in-

tegers from the set {1, . . . , n1 − 1}, with α′ < β′. Let

also BW′ be a birth-death process, which has state space

SBW′ = {S′0, . . . , S′n1
}, with S′n1

an absorbing state and

transition probability matrix P ′, with P ′(S′i, S
′
i+1) = 1

5 If this is not the case, i.e. if only C′|T = 0 is given, then
we can still claim that all vertices except v are of type g,
whereas v can be of type g or b. However, this is not needed
in our analysis.

for all i ∈ {0, . . . , α′} ∪ {β′, . . . , n1 − 1}, P ′(S′i,S
′
i+1)

P ′(S′i,S
′
i−1)

=

2κ′+1
α′ for all i ∈ {α′ + 1, . . . , β′ − 1} and P ′(S′i, S

′
i) =

Pr(W ′(t) = i|W ′(t−1) = i), for all t ≥ 1 and for all i ∈
{α′+1, . . . , β′−1}. Then, given that the vertices of type

r in Kn1
are at most κ′, the processW ′ is stochastically

dominated by BW′ in the following sense: Pr(W ′(t) >
x|W ′(0) = 0) ≤ Pr(BW′(t) ∈ ∪y>xS′x|BW′(0) = S′0),

for any time t and x ∈ {0, . . . , n1}.

Proof It suffices to show that, for any t ≥ 1 and for any

i ∈ {0, . . . , n1 − 1},

Pr(W ′(t) = i+ 1|W ′(t− 1) = i)

≤ Pr(BW′(t) = S′i+1|BW′(t− 1) = S′i).

This is trivially true for all i ∈ {0, . . . , α′}∪{β′, . . . , n1−
1}, because the right hand side of the above inequality

is 1. For i ∈ {α′+1, . . . , β′−1}, given thatW ′(t−1) = i

(i.e. there are exactly i blanks at time t), the probability

that W ′ increases by 1 in the next time step is equal

to the probability that either a transition g → r or a

transition r → g occurs either involving vertices that

are both inside the clique, or involving u and v. If we

denote by R′t−1 (resp. G′t−1) the set of vertices of type

r (resp. of type g) in the clique Kn1
at time t− 1, then

the above probability is at most
2|R′t−1||G

′
t−1|+1

n1(n1−1)+1 . On the

other hand, the probability that W ′ decreases by 1 in

the next time step is equal to the probability that either

a transition g → b or a transition r → b occurs either

involving vertices that are both inside the clique, or

involving the edge (u, v). Given thatW ′(t−1) = i, this

probability is at least
i(|R′t−1|+|G

′
t−1|)

n1(n1−1)+1 . But then

Pr(W ′(t) = i+ 1|W ′(t− 1) = i)

Pr(W ′(t) = i− 1|W ′(t− 1) = i)
≤

2|R′t−1||G′t−1|+ 1

i(|R′t−1|+ |G′t−1|)

≤
2|R′t−1|+ 1

i
.

By assumption, this is at most 2κ′+1
α′, , which combined

with the fact that P ′(S′i, S
′
i) = Pr(W ′(t) = i|W ′(t −

1) = i), for all i ∈ {α′ + 1, . . . , β′ − 1}, concludes the

proof of Lemma 7. ut

Lemma 8 (Domination of C′) Let β′, κ′ be posi-

tive integers, with β′ + κ′ < n1. Let also BC′ be

a birth-death process, which has state space SBC′ =

{T ′0, . . . , T ′n1
}, with a reflecting barrier at T ′0, an ab-

sorbing state T ′n1
and transition probability matrix Q′,

with Q′(T ′i , T
′
i+1) = 1 for all i ∈ {0} ∪ {κ′, . . . , n1 − 1},

and
Q′(T ′i ,T

′
i+1)

Q′(T ′i ,T
′
i−1)

=
(

1 + 1
n1−β′−κ′

)
κ′+1

n1−β′−κ′ , for all i ∈
{1, . . . , κ′ − 1}, and Q′(T ′i , T

′
i ) = Pr(C′(τ) = i|C′(τ −

1) = i), for all τ ≥ 1 and for all i ∈ {1, . . . , κ′ − 1}.
Then, given that the vertices of type b are at most

β′, the process C′ is stochastically dominated by BC′
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in the following sense: Pr(C′(τ) > x|C′(0) = |R′0|) ≤
Pr(BC′(τ) ∈ ∪y>xT ′x|BC′(0) = |R′0|), for any time τ and

x ∈ {0, . . . , n1}, where |R′0| is the number of vertices of

type r in Kn1 at time 0.

Proof It suffices to show that, for any τ ≥ 1 and for

any i ∈ {1, . . . , n1 − 1},

Pr(C′(τ) = i+ 1|C′(τ − 1) = i)

≤ Pr(BC′(τ) = T ′i+1|BC′(τ − 1) = T ′i ).

This is trivially true for all i ∈ {0} ∪ {κ′, . . . , n1 − 1},
because the right hand side of the above inequality is 1.

For i ∈ {1, . . . , κ′−1}, we apply the principle of deferred

decisions. In particular, let t1 (resp. t2) be the time in

the time scale of M (i.e. the Markov chain describing

the evolution of the protocol on H) that corresponds to

the first (resp. second) transition of the τ -th transition

pair in the definition of C′. Given that C′(τ−1) = i, the

probability that C′ increases by 1 in the next time step

in the time scale of C′ is equal to the probability that the

τ -th transition pair is (r → g, r → b). If we denote by R′t
(resp. G′t) the set of vertices of type r (resp. of type g) in

the cliqueKn1
at time t, then the above probability is at

most
|R′t1 ||G

′
t1
|+1

2|R′t1 ||G
′
t1
|+1

|R′t2 |(n1−|R′t2 |−|G
′
t2
|)+1

(|R′t2 |+|G
′
t2
|)(n1−|R′t2 |−|G

′
t2
|)+1 . On the

other hand, given that C′(τ − 1) = i, the probability

that C′ decreases by 1 in the next time step is equal

to the probability that the τ -th transition pair in the

definition of C′ is (g → r, g → b), which is at least
|G′t1 ||R

′
t1
|

2|R′t1 ||G
′
t1
|+1

|G′t2 |(n1−|R′t2 |−|G
′
t2
|)

(|R′t2 |+|G
′
t2
|)(n1−|R′t2 |−|G

′
t2
|)+1 . But then

Pr(C′(τ) = i+ 1|C′(τ − 1) = i, t1, t2)

Pr(C′(τ) = i− 1|C′(τ − 1) = i, t1, t2)

≤
|R′t1 ||G

′
t1 |+ 1

|R′t1 ||G
′
t1 |

|R′t2 |(n1 − |R
′
t2 | − |G

′
t2 |) + 1

|G′t2 |(n1 − |R
′
t2 | − |G

′
t2 |)

(13)

≤
(

1 +
1

|G′t1 |

)( |R′t2 |
|G′t2 |

+
1

|G′t2 |

)
.

We note here that we do not need to worry about divi-

sion with 0 in the above fractions. In particular, by the

assumption β′ + κ′ < n1, we have that |G′t1 ||G
′
t2 | 6= 0.

Furthermore, by the definition of the time t2, there must

exist at least one vertex of type b at time t2, which im-

plies that n1−|R′t2 |−|G
′
t2 | > 0. Finally, we do not need

to worry about |R′t1 | = 0 for the following reason: by

the definition of C′, having no vertices of type r and

C(τ − 1) ≥ 1 at the same time would mean that there

is a transition g → r that needs to be paired before

any other transition of the form r → g and thus the

fraction in the left hand side of (13) would be 0 (which

is smaller than the bound given in the statement of the

Lemma).

Since i ≤ κ′ − 1 by assumption, it follows

by the first part of Lemma 3 that |R′t2 | < κ′.

Therefore, we have that Pr(C′(τ)=i+1|C′(τ−1)=i)
Pr(C′(τ)=i−1|C′(τ−1)=i) ≤(

1 + 1
n1−β′−κ′

)
κ′+1

n1−β′−κ′ , which, in combination with

the fact that Q′(T ′i , T
′
i ) = Pr(C′(τ) = i|C′(τ − 1) = i),

for all τ ≥ 1 and for all i ∈ {1, . . . , κ′ − 1}, concludes

the proof of Lemma 8. ut

We are now ready to prove the main result of this

subsection.

Theorem 4 Consider a lollipop graph on n vertices,

which consists of a complete graph Kn1 on n1 ≥ 100 lnn

vertices, among which vertex v is connected to the left-

most vertex u of a line graph Ln2
on n2 = n− n1 ver-

tices. Suppose that initially vertex v and all vertices in

Ln2 are of type r, while all vertices in Kn1\{v} are of

type g. Then with probability at least 1−16n
(

7
6.1

)−n1
13 =

1 − o(1), eventually only vertices of type g will remain

in the graph.

Proof For the proof, we modify accordingly the proof

of the main Theorem in Subsection 4.2. We begin by

setting α′ = n1

3 , β
′ = n1

2 and κ′ = n1

7 . In that case, the

forward bias of the birth-death process BW′ at states

{S′α′+1, S
′
α′+2 . . . , S

′
β′−1} is at most rW′

def
= 6.1

7 (taking

also into account that n1 →∞) and the forward bias of

the birth-death process BC′ at states {T ′1, T ′2, . . . , T ′κ′−1}
is at most rC′

def
= 2.1

5 .

We will also denote by R′t (resp. G′t) the set of ver-

tices of type r (resp. of type g) in the clique Kn1 at

time t. For simplicity, the initial configuration will be

denoted by E .

We first provide a lower bound on the probability

that the clique Kn1
reaches a configuration where all

its vertices (i.e. including v) are of type g. To this end,

we define the following events, which are similar to the

events A1 and A2 used in the proof of the main Theorem

in Subsection 4.2 (only now they are defined for the

clique Kn1
):

(i) Γ1 is the event that C′ reaches κ before the number

of vertices of type b reaches β′.

(ii) Γ2 is the event that the number of vertices of type

b reaches β′ before C′ reaches either 0 or κ′.

Notice now that, by the second part of Lemma 3

(see also the discussion before Lemma 7 in this sub-

section), whenever we have C′|t = 0 and C′|t−1 > 0,

all vertices in Kn1 must be of type g. In view of

this, we are interested in lower bounding the proba-

bility that C′ reaches 0 before either Γ1 or Γ2 hap-

pens, given that we initially start with a configura-

tion where all vertices in Kn1
\{v} are of type g and
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v is of type r. Equivalently, we are interested in up-

per bounding the probability that Γ1 ∪ Γ2 happen be-

fore C′ reaches 0. But for the latter, we can follow the

same steps as in the proof of Theorem 3. In particular,

using n1, α
′, β′, κ′, rW′ , rC′ , instead of n, α, β, κ, rW , rC

respectively, setting k′0 = k′1 =
(

1
rW′

)n1
12

, instead of

k0, k1, and setting ε = 1
n1

(i.e. initially we start with

a single vertex of type r in Kn1
) we get the following

equivalent to equation (12):

Pr{Γ1 ∪ Γ2 happens before C′ reaches 0|E}

≤
1
rC′
− 1(

1
rC′

)n1
7 − 1

+ k′0

(
1

rW′

)−n1
6

+
O(n51)

k′1

≤
(

7

6.1

)−n1
13

+

(
7

6.1

)−n1
12

+
2.9

2.1

1(
5
2.1

)n1
7 − 1

≤ 8

(
7

6.1

)−n1
13 def

= φK .

By Lemma 6, we also have that, given that there

are no vertices of type r in the clique Kn1 and that v is

of type g, the probability that eventually only vertices

of type g remain on the line Ln2 is at least 1
2n

def
= φL.

Indeed, this follows from the observation that n ≥ n2
and that the existence of any other vertex of type g or b

inside the line can only increase the probability that the

type of the leftmost vertex wins without v ever changing

its type from g to b.

Using all the above we then have that, given E , the

probability that eventually only vertices of type r re-

main in the lollipop graph at most the probability that

at some point Γ1∪Γ2 happens before C′ reaches 0, which

is at most

∞∑
i=0

φK(1− φL)i =
φK
φL

= 16n

(
7

6.1

)−n1
13

,

which is o(1) (i.e. it goes to 0 as n goes to infinity)

provided n1 ≥ 100 lnn. This completes the proof of the

Theorem. ut

4.4 Expected Exponential time to absorption

In this subsection we show that there are graphs in

which the majority protocol of [4] needs an expected

exponential time to reach consensus. We prove this by

analyzing the expected time to reach consensus in the

case where the interaction graph consists of 2 disjoint

cliques on n1 and n2 vertices each (i.e. n = n1 + n2)

and a single edge between them, as shown in Figure 3.

Initially, all vertices in the Kn1 clique are of type g,

while all vertices in the Kn2
clique are of type r.

v uKn1
Kn2

Fig. 3 An interaction graph G with 2 disjoint Kn1
and Kn2

,
connected with a single edge u, v.

v uKn1

Fig. 4 The graph H consisting of a clique Kn1
with a di-

rected edge (u, v), where only u does not belong to the clique.

We will assume w.l.o.g. that n1 ≤ n2 and that n1 is

an increasing function of the total number of vertices

(i.e. n1 →∞ as n goes to infinity). In order to provide

a lower bound on the time after which only one type

of vertices remains (e.g. either r or g), we will use a

directed graph H consisting of a single clique Kn1
and

a vertex v outside the clique, which is connected to a

vertex u of the clique with a directed edge (v, u).

We now prove the following:

Lemma 9 Let TH be the number of steps that the ma-

jority protocol of [4] needs to reach consensus when the

underlying graph is H and initially all vertices are of

type g except for u which is of type r. Then the mean

value of TH is at least exponential in n1.

Proof It is evident from the definition of the protocol

of [4] that eventually only vertices of type r will remain.

Indeed, vertex u can never change its type (notice that

the protocol of Angluin et al. is not symmetric), but

it can affect the type of v, and through v the type of

every vertex in the clique. In order to analyze the time

needed to reach (forced) consensus, we define stochas-

tic processes W ′′ and C′′ just as the processes W and C
from Subsection 4.2, but concerning the clique Kn1

. In

particular,these processes take into account only tran-

sitions involving either edges that belong to the clique

or the directed edge (u, v). We note that the first part

of Lemma 3 continues to hold for process C′′. However,

because of the existence of the directed edge (u, v), the

domination Lemmas 4 and 5 become as the next two

Lemmas (their proofs are identical to the proofs of Lem-

mas 7 and 8 respectively).

Lemma 10 (Domination of W ′′) Let α′′, β′′, κ′′ ∈
{1, . . . , n1 − 1}, with α′′ < β′′. Let also BW′′ be a
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birth-death process, which has state space SBW′′ =

{S′′0 , . . . , S′′n1
}, with S′′n1

an absorbing state and tran-

sition probability matrix P ′′, with P ′′(S′′i , S
′′
i+1) = 1 for

all i ∈ {0, . . . , α′′} ∪ {β′′, . . . , n1 − 1}, P ′′(S′′i ,S
′′
i+1)

P ′′(S′′i ,S
′′
i−1)

=

2κ′′+1
α′′ for all i ∈ {α′′+1, . . . , β′′−1} and P ′′(S′′i , S

′′
i ) =

Pr(W ′′(t) = i|W ′′(t − 1) = i), for all t ≥ 1 and for

all i ∈ {α′′ + 1, . . . , β′′ − 1}. Then, given that the

vertices of type r in Kn1
are at most κ′′, the process

W ′′ is stochastically dominated by BW′′ in the follow-

ing sense: Pr(W ′′(t) > x|W ′′(0) = 0) ≤ Pr(BW′′(t) ∈
∪y>xS′′y |BW′′(0) = S′′0 ), for any time t and x ∈
{0, . . . , n1}.

Lemma 11 (Domination of C′′) Let β′′, κ′′ be pos-

itive integers, with β′′ + κ′′ < n1. Let also BC′′ be

a birth-death process, which has state space SBC′′ =

{T ′′0 , . . . , T ′′n1
}, with a reflecting barrier at T ′′0 , an ab-

sorbing state T ′′n1
and transition probability matrix Q′′,

with Q′′(T ′′i , T
′′
i+1) = 1 for all i ∈ {0}∪{κ′′, . . . , n1−1},

Q′′(T ′′i ,T
′′
i+1)

Q′′(T ′′i ,T
′′
i−1)

=
(

1 + 1
n1−β′′−κ′′

)
κ′′+1

n1−β′′−κ′′ for all i ∈
{1, . . . , κ′′ − 1} and Q′′(T ′′i , T

′′
i ) = Pr(C′′(τ) = i|C′′(τ −

1) = i), for all τ ≥ 1 and for all i ∈ {1, . . . , κ′′ − 1}.
Then, given that the vertices of type b are at most β′′,

the process C′′ is stochastically dominated by BC′′ in

the following sense: Pr(C′′(τ) > x|C′′(0) = |R′′0 |) ≤
Pr(BC′′(τ) ∈ ∪y>xT ′′x |BC′′(0) = |R′′0 |), for any time τ

and x ∈ {0, . . . , n1}, where |R′′0 | is the number of ver-

tices of type r in Kn1
at time 0.

Continuing with the proof of Lemma 9, we note that

the expected time needed for the protocol to reach con-

sensus (i.e. reach a configuration where all vertices are

of type r) is at least the time that it needs to reach

either β′′ vertices of type b or κ′′vertices of type r.

We now set α′′ = n1

3 , β′′ = n1

2 and κ′′ = n1

7 . In that

case, the forward bias of the birth-death process BW′′
at states {S′′α′′+1, S

′′
α′′+2 . . . , S

′′
β′′−1} is at most rW′′

def
=

6.1
7 < 1 (taking also into account that n1 →∞) and the

forward bias of the birth-death process BC′′ at states

{T ′′1 , T ′′2 , . . . , T ′′κ′′−1} is at most rC′′
def
= 2.1

5 < 1.

In particular, by Lemma 2(b) and by the domina-

tion Lemma 10 for process W ′′, the expected number

of steps needed in order to reach β′′ vertices of type

b (given that initially there are no vertices of type b)

is Ω

(
1

1
rW′′

−1

(
1

rW′′

)n1
6

)
= Ω

((
7
6.1

)n1
6

)
. Similarly, by

Lemma 2(b) and by the domination Lemma 11 for pro-

cess C′′, the expected number of steps in the time scale

of C′′ needed for C′′ to reach κ′′ (given that initially only

vertex u is of type r) is at least Ω

(
1

1
rC′′
−1

(
1
rC′′

)n1
7

)
=

Ω
((

5
2.1

)n1
7

)
. By the first part of Lemma 3, this is at

least the expected time needed for the number of ver-

tices of type r to reach κ′′. The proof of Lemma 9 is

completed by noting that the expected time needed for

the protocol to reach the configuration where are ver-

tices are of type r is at least the minimum of these two

exponential quantities. ut

Using Lemma 9, we can prove the main result of

this subsection.

Theorem 5 Let G be an interaction graph on n ver-

tices, which consists of 2 disjoint cliques on n1 and n2
vertices each and a single edge between them (see Fig-

ure 3). Suppose that initially, all vertices in the Kn1

clique are of type g, while all vertices in the Kn2
clique

are of type r. Then the majority protocol of [4] needs

an expected exponential number of steps to reach con-

sensus.

Proof Let TG be the number of steps needed for the

protocol to reach consensus, starting from the intial

configuration described in the Theorem. Let also A be

the event that the initial majority eventually wins. We

then have that

E[TG] = Pr(A)E[TG|A] + (1− Pr(A))E[TG|A]

≥ Pr(A)E[TG|A].

Assume now w.l.o.g. that n1 ≤ n2. Then, by a sim-

ilar argument to the derivation of equation (3) in the

proof of Theorem 2, the probability that the initial ma-

jority wins (i.e. eventually only vertices of type r re-

main), is at least 1
2 . The proof is concluded by noting

that if TH is defined as in Lemma 9 then E[TG|A] ≥
E[TH ]. ut
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