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A SUðNÞL × SUðNÞR gauge theory for a scalar multiplet Y transforming in the bifundamental
representation ðN; N̄Þ preserves, forN > 4, an accidentalUð1Þ symmetry first broken at operator dimension
N. A vacuum expectation value for Y can break the symmetry to Hs ¼ SUðNÞLþR or to Hh ¼
SUðN − 1ÞL × SUðN − 1ÞR ×Uð1ÞLþR. In the first case the accidental Uð1Þ gets also broken, yielding a
pseudo-Nambu-Goldstone boson with mass suppression controlled by N. In the second case a global Uð1Þ
remains unbroken. The strong CP problem is solved by coupling Y to new fermions carrying color. The first
case allows for a Peccei-Quinn solution with Uð1ÞPQ protected by the gauge symmetry up to order N. In the
second caseUð1Þ can get broken by condensates of the new strong dynamics, resulting in a composite axion.
By coupling Y to fermions carrying only weak isospin, models for axionlike particles can be constructed.
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Introduction.—QCD has been firmly established as the
correct description of strong interaction phenomena in
particle physics. However, this beautiful theory also brings
in one theoretical conundrum. The QCD gauge sector
depends on two dimensionless parameters whose value is
not predicted by the theory, but must be determined exper-
imentally. The first one, αs, determines the strength of the
QCD interactions. Its measured value is a natural one for a
dimensionless quantity (roughly speaking it is of order
unity). The second one, θ, gives the amount of CP violation
in strong interactions. Theory only dictates that θ, which is an
angular variable,must fallwithin the interval ½0; 2πÞ, and also
in this case it would be natural to expect θ ∼Oð1Þ. Instead,
experimental limits on the neutron electric dipole moment
yield the upper bound jθj < 10−10, a value that is regarded as
highly unnatural. This theoretical nuisance bears the name of
“the strong CP problem.” QCD, however, would recover its
naturalness if, for some reason, θ ¼ 0. An elegant mecha-
nism to guarantee thevanishing of θwas proposed in 1977by
Peccei and Quinn (PQ) [1,2]. It relies on a Uð1ÞPQ global
symmetry, anomalous with respect to QCD, spontaneously
broken by the vacuum expectationvalue (VEV) of a standard
model (SM) singlet scalar field at a scaleva ≫ 100 GeV, and
broken explicitly by nonperturbative QCD effects at a scale
ΛQCD ∼ 100 MeV. Spontaneous breaking (SB) of a global
Uð1Þ symmetry gives a massless Nambu-Goldstone boson
(NGB). However, due to the presence of a relatively tiny
explicit breaking, the NGB of Uð1ÞPQ is not exactly mass-
less: it is a pseudo-NGB, commonly referred to as the axion
[3,4]. To account for jθj < 10−10 any other source of explicit
Uð1ÞPQ breaking besides QCD must either be absent or
adequately suppressed. This is difficult to achieve, especially
considering thatUð1ÞPQ, being anomalous, is not even a real
symmetry. Effective operators not respecting Uð1ÞPQ are

then expected to arise and, even if suppressed by the Planck
scalemP ¼ 1.2 × 1019 GeV, unless their dimension is larger
than d ∼ 10 would unavoidably give jθj > 10−10 [5–8].
In this Letter we propose amechanism that, on the basis of

first principles, can protect Uð1ÞPQ to arbitrary accuracy. A
scalar multiplet Y is assigned to the bifundamental repre-

sentation ðN; N̄Þ of the gauge group GðNÞ
LR ¼ SUðNÞL×

SUðNÞR. For N > 4 an accidental Uð1Þ “rephasing” sym-
metry is enforced at the classical level, and it only gets broken
at d ¼ N by det (Y).When the scalar gauge theory is coupled
to fermions carrying color, Uð1Þ acquires a QCD anomaly.

SB of GðNÞ
LR via a VEVof Y can proceed via two patterns. In

the first case Uð1Þ also undergoes SB, acquiring all the
features of a PQ symmetry. In the second case a globalUð1Þ0
remains perturbatively unbroken. However, condensates of
the new strong gauge dynamics can break it, giving rise to a
composite axion. In both cases a solution to the strong CP
problem is obtained.
Accidental Uð1Þ in GðNÞ

LR scalar gauge theory.—For

N > 4, GðNÞ
LR gauge invariance restricts the renormalizable

potential for Y to the simple form

V0 ¼ λ½T − v2a=2�2 þ λAA; ð1Þ

where T ¼ Tr½YY†� and A ¼ Tr½MnrðYY†; 2Þ� with
Tr½MnrðM; kÞ� denoting the trace of the matrix of the minors
of order k of M [9]. We require v2a > 0 to trigger SB and
jλAj < ð2N=N − 1Þλ to ensure a potential bounded from
below. The matrix Yc of constant background values of YðxÞ
can be written in its singular value decomposition as

ffiffiffi
2

p

va
Yc ¼ ULŶU

†
R ¼ ULðΦ̂ ŶÞU†

R → Φ̂ Ŷ; ð2Þ
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where Ŷ ¼ diagðy1; y2;…; yNÞ is diagonal with real non-
negative entries normalized such that

P
iy

2
i ¼ 1, UL;R are

unitarymatrices,UL;R are special unitary [detðUL;RÞ ¼ þ1],
and Φ̂ is a diagonal matrix of phases such that
log detðΦ̂Þ ¼ log detðULU

†
RÞ ¼ i arg detðYcÞ≡ iδc. δc,

being an angular variable, ranges in the interval ½0; 2πÞ,
and the physics must be invariant under the redefiniton δc →
δc þ 2nπ (n ¼ 1; 2…). The last (diagonal) form in Eq. (2) is

obtained, without loss of generality, via a rigidGðNÞ
LR rotation.

The vacuum configurations that minimize V0 are easily
found [10]: T is blind to specific Ŷ configurations [this is
because it carries a large SOð2N2Þ accidental symmetry
that allows us to rotate between different configurations].
Minimization of the first term then just fixes the “length”
lðŶÞ ¼ v−1a

ffiffiffiffiffiffiffiffiffiffi
2hTip ¼ 1. The extrema of hAi ∝ P

i<jy
2
i y

2
j

instead depend on the structure of Ŷ. We have two
possibilities: (i) for λA < 0, hAi is maximized at the
symmetric point y2i ¼ 1=N; ∀ i; (ii) for λA > 0 the mini-
mum occurs when hAi ¼ 0, that is, when all entries in Ŷ,
but one, vanish. In summary, the configurations that
extremize V0 are

ðiÞ Yc
s ¼

vaffiffiffi
2

p Φ̂Ŷs; Ŷs ¼
1ffiffiffiffi
N

p diagð1; 1;…; 1Þ;

ðiiÞ Yc
h ¼

vaffiffiffi
2

p Φ̂Ŷh; Ŷh ¼ diagð0;…; 0; 1Þ: ð3Þ

The corresponding little groups are the two maximal

subgroups of GðNÞ
LR : Hs ¼ SUðNÞLþR for Yc

s and Hh ¼
GðN−1Þ

LR ×Uð1ÞLþR for Yc
h, where Uð1ÞLþR corresponds to

the diagonal combination of the two generators of GðNÞ
LR

proportional to λL;R
N2−1 ¼ diagð1; 1;…; 1 − NÞL;R. It is

important to stress that Hs;h cannot get broken further
by any type of perturbative effects [11] or, equivalently, that
neither can the vanishing entries in Yc

h be lifted nor can the
equality of the entries in Yc

s be spoiled. Some bibliographic
remarks are in order: the minima of the potential for the

case of global Gð3Þ
LR (namely, the SM quark flavor sym-

metry) were studied in Ref. [10] [and with the assumption
of a real det (Y) previously in Ref. [12]]. The possibility of
raising perturbatively the vanishing entries in Yh was
addressed in Ref. [13], and it was found that minimization
of the one-loop effective potential results in the same little
groupsHs;h. A more thorough breaking, yielding yi≠j ≠ yj,
can be in fact obtained only by introducing additional
reducible scalar representations [13,14].
The tree level potential V0 in Eq. (1) has an accidental

Uð1Þ rephasing symmetry Y → eiðα=NÞY (under which
δc → δc þ α) so that the full symmetry of the classical

Lagrangian is GðNÞ
LR ×Uð1Þ. The first minimum Yc

s breaks
also Uð1Þ and yields a NGB, which, in first approximation,
remains massless. However, accidental symmetries are

generally not respected by gauge invariant operators of
higher dimensions. A fundamental set of higher order
operators can be constructed by considering the character-
istic polynomial PðξÞ of the matrix YY†:

PðξÞ ¼ det ðξI − YY†Þ ¼
XN
n¼0

ð−1ÞnCnξ
N−n; ð4Þ

where I is the identity matrix, and Cn ¼ Tr½MnrðYY†; nÞ�
with C0 ¼ 1, C1 ¼ T, C2 ¼ A, CN ¼ det½YY†�≡ jDj2. The
solutions of PðξÞ ¼ 0 are the eigenvalues of YY† and,

being the eigenvalues invariant under GðNÞ
LR , so are the

coefficients Cn. They correspond to invariant combinations
of components of Y of dimension d ¼ 2n [13]. The
determinant D ¼ det Y is another invariant, since under

GðNÞ
LR , D → detðVLYV

†
RÞ ¼ det Y [15]. However, while all

Cn’s respect the Uð1Þ accidental symmetry, under
Y → eiðα=NÞY, DðxÞ → eiαDðxÞ. Thus, Uð1Þ gets first
broken at d ¼ N by

VD ¼ kDþ k�D�

mN−4
P

¼ 2κD
mN−4

P
cos½φþ δðxÞ�; ð5Þ

where κ and φ are the modulus and argument of the
coupling k, D ¼ jDj, δðxÞ ¼ argDðxÞ, and the mN−4

P
suppression stems from the assumption that VD is gen-
erated by gravity effects. In case (i), the minimum of VD is
obtained for hδðxÞi≡ δc ¼ π − φ, lowering the minimum
of V0 by the amount

ΔV ¼ v4a
2κ

ð2NÞN=2

�
va
mP

�
N−4

: ð6Þ

Thus, in the breaking GðNÞ
LR × Uð1Þ → Hs, of the initial

2ðN2 − 1Þ þ 1 generators N2 − 1 are left unbroken,
N2 − 1 are spontaneously broken, while, because of the
explicit breaking VD in Eq. (5), the NGB of the sponta-
neously broken global Uð1Þ acquires a tiny mass
Oð ffiffiffiffiffiffiffi

ΔV
p

=vaÞ. In case (ii) instead, a global Uð1Þ0 generated
by λLþR

N2−1 þ ðN − 1ÞI is preserved by Yc
h, so that at the

renormalizable level GðNÞ
LR ×Uð1Þ→Hh×Uð1Þ0. Although

VD breaks Uð1Þ0 in interactions, since hDi ¼ 0 there is no
SB, and no NGB arises.
Solutions to the strong CP problem.—Solutions to the

strong CP problems can be implemented by introducing
fermions carrying color. Let us proceed by first introducing

four fermion multiplets transforming under GðNÞ
LR as

QL∼ðN;1Þ, QR∼ð1;NÞ, ΨL ∼ ðN̄; 1Þ, ΨR ∼ ð1; N̄Þ. Since
they can be combined into real representations of SUðNÞL;R
(QL;R ⊕ ΨL;R), there are no gauge anomalies. Gauge
symmetry allows for Yukawa couplings of the form
Q̄LYQRþΨ̄LY†ΨRþH:c:, which preserve the Y rephasing
symmetry if the fermions are transformed chirally with
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Uð1Þ charges satisfyingXQL
−XQR

¼XΨR
−XΨL

¼XY . The
absence of Uð1Þ − SUðNÞL;R mixed anomalies is ensured
by the opposite sign of the two charge differences [16]. Let
us now triplicate the fermion content, and assign QL;R to
the fundamental representation of color, whileΨa

L;R (a ¼ 1,
2, 3) remain color singlets. Since there is no compensating
cancellation of the QL;R contribution, a Uð1Þ-QCD
anomaly arises.
(i) Solution with a fundamental axion.—We choose a

basis in which the SM quark masses are real while
θQCD ≠ 0 and, without loss of generality, we take the
ΨL;R couplings flavor diagonal:

eiðη0=NÞh0Q̄LYQR þ eiðηa=NÞhaΨ̄a
LY

†Ψa
R; ð7Þ

where h0, ha (a ¼ 1, 2, 3) are four real non-negative
parameters. If λA < 0, the minimum Yc

s is selected, and all
the fermions become massive, with degenerate masses
within each multiplet that, as we will now show, can be

brought into real form without inducing mixed GðNÞ
LR

anomalies. After SB, arg detðMQÞ ¼ η0 þ δc and
arg detðMaÞ ¼ ηa − δc; that is, there are four independent
phases that we wish to cancel (four conditions). We can
perform four chiral rotations of the fermion multiplets,
respectively, with phases α0, αa, subject to a fifth conditionP

3
a¼1 αa ¼ 3α0 to avoid mixed anomalies. The phase of Y

can be also redefined [this changes the argument of the
cosine in Eq. (5) as φ → ~φ], and all the complex phases can
thus be canceled. However, chiral rotations of QL;R are
anomalous with respect to SUð3Þc, and another source of
explicit Uð1Þ breaking is then introduced. After including
it, the relevant potential for δðxÞ acquires the form

Vδ ¼ ΔV cos½ ~φþ δðxÞ� − f2πm2
π cos½δðxÞ�; ð8Þ

where ~φ is unrelated with θQCD, and we have redefined
δðxÞ þ θQCD → δðxÞ so that the anomalous coupling to the
gluons reads ðαs=4πÞδG ~G. Note that when the angular
variable δðxÞ is varied in the interval ½0; 2πÞ, there is a
unique minimum of the potential so that, independently of
N, the number of domain walls [17] is always 1. From
Eq. (8) we see that if κ; ~φ ∼Oð1Þ, as it is natural to assume,
δc < 10−10 can be ensured only if the explicit breaking
satisfies ΔV=ðf2πm2

πÞ≲ 10−10. For the phenomenologically
preferred interval 109 ≲ va=N ≲ 1012 GeV this can be
fulfilled for 9 ≤ N ≤ 13 [18].
Let us now proceed to identify the axion field. In the

unitary gauge in which the rigidGðNÞ
LR rotation yielding Yc ∼

Φ̂ Ŷ in Eq. (2) is promoted to local, we can write YðxÞ ¼
Φ̂ðxÞŶðxÞ with

Φ̂ðxÞ ¼ diagðeiγ̂1ðxÞ;…; eiγ̂NðxÞÞ; γ̂i ¼
ffiffiffiffiffiffiffi
2N

p

va
γi: ð9Þ

The linear combinations of the N “orbital” modes γ̂i
corresponding to N − 1 non-Abelian broken generators,
and to the accidental Uð1Þ, are

aaðxÞ ¼ 2Tr½γ⃗ðxÞ · Ta�; ð10Þ

where γ⃗ ¼ ðγ1;…; γNÞ and, for a ¼ 1;…; N − 1, Ta are the
SUðNÞ Cartan generators with normalization Tr½Ta�2 ¼
1=2, while T0 ¼ ð1= ffiffiffiffiffiffiffi

2N
p ÞI. The canonically normalized

axion field then is

a0ðxÞ ¼ 2Tr½γ⃗ · T0� ¼
va
N

δðxÞ: ð11Þ

Note that since the periodicity of δðxÞ is 2π, the periodicity
of the axion is a0 → a0 þ ð2π=NÞva. Then, one might
wonder whether there are N domain walls corresponding to
the N minima ha0i þ ð2πn=NÞva, (n ¼ 0;…; N − 1). This
is not so because all these minima are gauge equivalent, in
the sense that the ZN center of SUðNÞLþR has precisely as
elements expði2πn=NÞI, so that the cyclic values of a0=va
are all connected by gauge transformations. Neglecting the
subdominant gravitational contributions, the axion mass is
ma ¼ NðmπfπÞ=va, while the strength of the axion-photon
coupling ð1=4ÞgaγγFμν

~Fμν is

gaγγ ¼ −1.92
ma

eV
2.0

1010 GeV
; ð12Þ

which falls within the axion window in Fig. 1.
(ii) Solution with a composite axion.— For λA > 0 the

VEV Yc
h provides mass for just one fermion in each N-

dimensional multiplet, 12ðN − 1Þ Weyl fermions remain
massless, and a global Uð1Þ0 acting on them remains

FIG. 1. ALP-photon coupling versus mass for different gauge
groups GðNÞ

LR . The green band and the yellow area represent two
preferred regions for axion models [19,20]. The blue line depicts
the axion coupling in Eq. (12).
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unbroken. While this hints to the possibility of a massless-
quark type of solution where θ is simply removed via a
chiral Uð1Þ0 rotation, such a scenario is not viable. This is
because, although the massless Q’s and Ψ’s would get

confined into F hadrons once, at ΛF ≫ ΛQCD, GðN−1Þ
LR

enters the strongly coupled regime, matching the
Uð1Þ0-QCD anomaly in the low energy theory [21] requires
that some composite fermions carrying color remain mass-
less, and these are not observed. We are then led to assume
SB of Uð1Þ0 by some color neutral condensate of Q and Ψ.
Then, the pseudo-NGB of the Uð1Þ0 symmetry would
correspond to a composite axion [22–24] with mass and
couplings suppressed as 1=ΛF. Clearly, this second scenario
is more speculative, so wewill mainly focus on the first one.
Phenomenology.—In the first scenario, after SB the

spectrum consists of (i). N2 − 1 gauge bosons with masses
OðvaÞ, (ii). N quarks Q and 3N SM singlet fermions Ψa,
stable at the tree level, with mQ;Ψ ∼Oðva=

ffiffiffiffi
N

p Þ,
(iii). N2 − 1 massless gauge bosons F, and (iv). one
pseudo-NGB (the axion). Tree level stability of the heavy
Q’s and Ψ’s follows from the fact that they do not carry
weak isospin and hypercharge Y, and thus cannot decay
into SM fermions. However, cosmologically stable heavy
relics, and in particular long-lived strongly interacting
particles, represent serious issues in cosmology and astro-
physics (see Refs. [19,20] for a recent discussion and
relevant references). A simple way to avoid all phenom-
enological problems is to assume a preinflationary scenario
(PQ symmetry broken before inflation) and va > Treheating

so that, after inflation has wiped away all the heavy states,
they cannot be regenerated. After inflation, the massless
gauge bosons F could be produced via gravitational effects,
or via gluon-gluon to FF scatterings. The first mode is
suppressed by powers of mP and typically very inefficient.
The rate for the second process can be estimated as
ðαFαsÞ2T9=m8

Q with αF the coupling strength of the new
gauge group. This reaction remains well out of equilibrium
for all T < mQ and is also too inefficient to produce F in
sizable amounts. We can then conclude that preinflationary
scenarios do not leave dangerous heavy relics in appreci-
ably amounts.
Postinflationary scenarios (PQ symmetry broken after

inflation and va < Treheating) yield a different picture.
During reheating, all the heavy states attain equilibrium
distributions. At T ≲ va the massive gauge bosons readily
decay into the lighter Q, Ψ fermions. Below mQ, the
unbroken SUðNÞLþR corresponds to a pure Yang-Mills
theory with large N that rapidly flows towards a confining
regime at ΛF ≫ ΛQCD. Bound state mesons ΠQðΨÞ∼
QQ̄ðΨΨ̄) singlets under SUðNÞLþR form, and readily
decay into lighter “gaugeballs” G ∼ FF of mass
mG ∼OðΛFÞ. Gaugeballs can decay invisibly into two
gravitons [25] or visibly into a pair of gluons with a rate
Γgg ∼ Λ9

F=m
8
Q. Visible decays are generally dominant, and

lifetimes sufficiently short (τG ≲ 10−2 s) to evade con-
straints from big bang nucleosynthesis are ensured if
mQ=ΛF ≲ 3 × 103. However, there are other more danger-
ous relics, like Mab ∼ ΨaΨ̄b with (a ≠ b) and, since at ΛF
color is unconfined, “mongrel” mesons Ma ∼QΨa will
also form. Mab decays are forbidden by Ψ-flavor con-
servation, and Ma decays are forbidden also by color
conservation. The abundance of these states is basically
determined by free particle annihilation before ΛF confine-
ment, which always results in ΩM ≫ ΩDM unless the
relevant mass scale is not much larger than a few TeVs.
This requires tiny values for the Yukawa couplings in
Eq. (7) and an appropriately small initial value of αF to
ensure that also ΛF≲ a few TeVs. All in all, the postinfla-
tionary scenario, if not ruled out, is certainly strongly
disfavored with respect to preinflationary scenarios.
Axionlike particles.—With no attempt to solve the strong

CP problem, models for axionlike particles (ALPs) can be
constructed along these same lines. Instead of new quarks,
let us introduce new colorless fermions T , doublets under
weak isospin and with zero hypercharge. SM singlet
fermions Ψ1;2

L;R are again needed to cancel gauge anomalies.

Now, in the breakingGðNÞ
LR → Hs the NGB of the accidental

Uð1Þ only receives mass from the determinant operator of
d ¼ N. However, here N does not need to be particularly
large so that, compared to axions, much larger ALP masses
and couplings to the photon are possible. We obtain

ma ¼
N

ffiffiffiffiffi
2κ

p

ð2NÞN=4

�
va
mP

�N−4
2

va; ð13Þ

gaγγ ¼
α

2π

E
va

¼ α

4π

N
va

; ð14Þ

where in the second equation we have used the electro-
magnetic anomaly coefficient E ¼ 2NXT L

Q2
� ¼ N=2 with

Q� ¼ � 1
2
the electric charges of the components of T L,

and XT R
¼ 0, XT L

¼ XY ¼ 1 the (assigned) PQ charges.
Equations (13) and (14) yield

gaγγ ¼
ffiffiffiffiffiffiffi
2N

p
α

8πmP

�
κNm2

P

m2
a

� 1
N−2

: ð15Þ

Figure 1 gives the ALP-photon coupling versus ma for
different values ofN, together with the preferred regions for
axion models [19,20].
Conclusions.—We have put forth a new realization of

the PQ solution to the strong CP problem. Our scenario
might be loosely classified as a Kim-Shifman-Vainshtein-
Zakharov type of axion models [26,27] since PQ charges
are carried only by non-SM particles. A new gauge group

GðNÞ
LR ¼ SUðNÞL × SUðNÞR is postulated, and new quarks

QL;R are assigned to fundamental representations of
SUðNÞL;R while the PQ scalar, rather than being a single
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complex field, is a matrix Y transforming in the bifunda-

mental representation of GðNÞ
LR . A PQ symmetry arises

accidentally, and remains protected by the gauge symmetry
from all types of explicit breaking up to dimension N,
which is in principle arbitrary. Depending on the gauge
symmetry breaking pattern, a different possibility where the
axion is composite can be also realized.
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