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ABSTRACT
The cold dark matter (CDM) cosmological model unambiguously predicts that a large number
of haloes should survive as subhaloes when they are accreted into a larger halo. The CDM model
would be ruled out if such substructures were shown not to exist. By contrast, if the dark matter
consists of Warm Dark Matter (WDM) particles, then below a threshold mass that depends
on the particle mass far fewer substructures would be present. Finding subhaloes below a
certain mass would then rule out warm particle masses below some value. Strong gravitational
lensing provides a clean method to measure the subhalo mass function through distortions in the
structure of Einstein rings and giant arcs. Using mock lensing observations constructed from
high-resolution N-body simulations, we show that measurements of approximately 100 strong
lens systems with a detection limit of Mlow = 107 h−1 M� would clearly distinguish CDM
from WDM in the case where this consists of 7 keV sterile neutrinos such as those that might be
responsible for the 3.5 keV X-ray emission line recently detected in galaxies and clusters.

Key words: gravitational lensing: strong – methods: statistical – galaxies: haloes – dark
matter.

1 IN T RO D U C T I O N

A variety of observations indicate that dark matter accounts for more
than 80 per cent of the mass content of the Universe and so it dom-
inates the gravitational evolution of cosmic structure. Its existence
is inferred through its gravitational effects in galaxies and clusters
and through the distortion of galaxy images by gravitational lens-
ing (for a recent review see Frenk & White 2012). Measurements
of temperature anisotropies in the cosmic microwave background
(CMB; e.g. Planck Collaboration XVI et al. 2014) show that the
dark matter is not baryonic (e.g. Planck Collaboration XVI et al.
2014) but its identity remains unknown.

The cold dark matter (CDM) model in which the dark matter con-
sists of cold collisionless elementary particles (i.e. with negligible
thermal velocities in the early universe), such as the lightest stable
supersymmetric particle, has been shown, over the past 30 years,
to provide an excellent match to a variety of observations, many
of them predicted in advance of the measurements. These include
the structure of the CMB temperature anisotropies (Peebles 1982;

� E-mail: liran827@gmail.com

Planck Collaboration XVI et al. 2014) and the pattern of galaxy
clustering (Davis et al. 1985; Tegmark et al. 2004; Cole et al. 2005;
Springel 2005, see Frenk & White 2012 for a comprehensive list
of references). There are claims that the CDM particles may have
already been detected through γ -ray annihilation radiation from the
Galactic Centre (Hooper & Goodenough 2011) but these are con-
troversial; the Large Hadron Collider has not yet turned out any
evidence for supersymmetry.

The Warm Dark Matter (WDM) model, in which the particles
had non-negligible thermal velocities at early times, is a viable al-
ternative to CDM. Indeed, there are also claims that such particles
may have been detected, in this case through particle decays result-
ing in the 3.5 keV X-ray line recently discovered in galaxies and
galaxies clusters (Boyarsky et al. 2014; Bulbul et al. 2014). A 7 keV
sterile neutrino originally introduced to explain neutrino flavour os-
cillations (Boyarsky, Ruchayskiy & Shaposhnikov 2009) could be
such a particle. However, these claims are also controversial (cf.
Riemer-Sorensen 2014).

A very attractive feature of both the CDM and WDM models is
that they have predictive power; both are eminently falsifiable. The
major difference between them stems from the free-streaming cutoff
in the primordial power spectrum of density fluctuations which, in
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the case of keV-mass particles, occurs on the mass scale of dwarf
galaxies whereas, in the case of cold particles, it occurs on the scale
of planets. Thus, on scales larger than individual bright galaxies,
CDM and WDM are almost indistinguishable, but on subgalactic
scales they make radically different predictions (e.g. Lovell et al.
2012; Kang, Macciò & Dutton 2013; Bose et al. 2016; Ludlow et al.
2016).

The most striking difference between CDM and WDM is the
halo mass function which turns over at the very different cutoff
mass scales of the two models. The halo mass function itself is
difficult to measure directly but, as we shall see in this paper, the
mass function of subhaloes (that is haloes that have been accreted
into a larger halo and survive) is accessible through observations.
Rigorous and reliable predictions for the halo and subhalo mass
functions (SHMFs) in CDM and WDM exist from high-resolution
N-body simulations (Colı́n, Avila-Reese & Valenzuela 2000; Avila-
Reese et al. 2003; Springel et al. 2008b; Gao et al. 2011; Lovell
et al. 2012, 2014; Cautun et al. 2014; Bose et al. 2016; Hellwing
et al. 2016).

On the observational side, subhaloes can be detected through
their gravitational effects. Observations of the gaps in star streams
can be used to find subhaloes within our own Galaxy (e.g. Carlberg,
Grillmair & Hetherington 2012; Carlberg & Grillmair 2013; Erkal
& Belokurov 2015); Gravitational lensing provides a powerful tool
to detect subhaloes outside the Milky Way (e.g. Li et al. 2013,
2014, 2016; Hezaveh et al. 2014; Mahdi et al. 2014; Nierenberg
et al. 2014).

Distinguishing keV-mass WDM from CDM requires measuring
the SHMF below a mass of ∼109 h−1 M�. The most promising
places to detect such subhaloes are the galactic lenses. The presence
of subhaloes in the central regions of galactic haloes can perturb
the flux ratio of multi-image systems (e.g. Mao & Schneider 1998;
Metcalf & Madau 2001; Dalal & Kochanek 2002). It can also distort
the images of extended giant arcs or Einstein rings (e.g. Koopmans
2005; Vegetti & Koopmans 2009a; Vegetti et al. 2012; Hezaveh
et al. 2016).

Flux ratio anomalies have been measured only for a handful
of quasars and appear to reveal more small-scale structure than
predicted even for CDM, possibly due to projection effects from
intervening haloes and to inaccurate modelling of the complex mass
distribution in the lens galaxy (e.g. Xu et al. 2009, 2015). For
example, Hsueh et al. (2015) have shown that the flux ratio anomaly
of CLASS B1555+375, one of the most anomalous lens systems
known, can be explained by the presence of a previously undetected
edge-on disc in the lens galaxy.

Distortions of Einstein rings or giant arcs could offer a more direct
method. The technique developed by Koopmans (2005) and Vegetti
& Koopmans (2009a) can detect individual subhaloes and, using the
Bayesian formalism of Vegetti & Koopmans (2009b), a sample of
detections can constrain the SHMF. Vegetti et al. (2014) analysed
11 strong lenses in the Sloan Lens ACS Survey (SLAC; Bolton
et al. 2006) and obtained one detection in SDSS J0956+5110.
Their estimate of the projected substructure mass fraction (i.e. the
normalization of the SHMF) is in agreement with CDM and is
lower than the values inferred from flux ratio anomalies. However,
the constraints on the slope of the SHMF derived from such a small
sample are weak. Many more strong lenses will become available
with future galaxy surveys such as Euclid and LSST.

In this work we investigate how the detection of subhaloes in
perturbed Einstein rings or giant arcs can be used to distinguish
the SHMF in CDM and WDM. For this we make use of the
high-resolution CDM and WDM simulations of the Copernicus

Complexio (COCO) project (Bose et al. 2016; Hellwing et al. 2016).
The COCO-WARM simulation had an initial power spectrum appro-
priate to a thermal WDM particle of 3.3 keV. It turns out that this
power spectrum provides a very good approximation to that of the
coldest possible sterile neutrino model that is compatible with the
decay interpretation of the 3.5 keV X-ray line (corresponding to a
value of the lepton asymmetry parameter, L6 = 8.66; Lovell et al.
2015; Bose et al. 2016). Thus, ruling out this particular model would
exclude the entire family of 7 keV sterile neutrinos.

The paper is organized as follows. In Section 2 we briefly intro-
duce the COCO project. In Section 3 we estimate the probability of
detecting subhaloes in dark matter halo centres. In Section 4 we
present the modelling formalism of subhalo detections. In Section 5
we show the constraining power of subhalo detection from multi-
ple lens systems on the SHMF. Our conclusions are summarized in
Section 6.

2 SI M U L AT I O N DATA

We use the COCO simulations to derive the SHMF in a WDM uni-
verse. We begin by providing a brief discussion of the COCO simu-
lations.

2.1 Copernicus Complexio simulations

The COpernicus COmplexio simulations (Hellwing et al. 2016),
carried out by the Virgo Consortium, consist of a set of cosmo-
logical zoom-in simulations performed with a modified version of
the GADGET-3 code (Springel et al. 2001; Springel 2005). The re-
gion for resimulation was extracted from the Copernicus Complexio
Low Resolution (COLOR) simulation (a periodic cubic volume of side
70.4 h−1 Mpc); it contains 12.9 billion high-resolution particles in a
roughly spherical region of radius 17.4 h−1 Mpc. Each of the high-
resolution dark matter particles has a mass of 1.135 × 105 h−1 M�.
The gravitational softening was kept fixed at 230 h−1 pc in comoving
unit. Both COCO and COLOR assume the 7-year Wilkinson Microwave
Anisotropy Probe cosmological parameters (Komatsu et al. 2011):
�m = 0.272, �� = 0.728, h = 0.704, ns = 0.968 and σ 8 = 0.81.

Simulations were performed for both a CDM and a 3.3 keV
WDM universe: COCO-COLD and COCO-WARM, respectively. The initial
conditions for both sets were arranged to have the same Fourier
phases and were generated using the method developed by Jenkins
(2013).

The effect of free streaming at early times is to impose a cutoff
in the power spectrum. This is imposed in the initial conditions for
COCO-WARM, through a modified transfer function, T(k), so that the
power spectrum for WDM is related to that for CDM by:

PWDM(k) = T 2(k)PCDM(k), (1)

where T(k) is given by the fitting formula of Bode, Ostriker & Turok
(2001):

T (k) = (1 + (αk)2ν)−5/ν, (2)

where the constant, ν = 1.12, and α depend on the WDM particle
mass, mWDM, as

α = 0.049
(mWDM

keV

)−1.11
(

�WDM

0.25

)0.11 (
h

0.7

)
h−1 Mpc (3)

(Viel et al. 2005). The smaller the WDM particle mass, the larger the
cutoff scale in the power spectrum cutoff. In COCO-WARM the equiv-
alent thermal particle mass is mWDM = 3.3 keV. As discussed in the
Introduction, this power spectrum is a very good approximation to
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the power spectrum of the coldest possible sterile neutrino model
that is compatible with the decay interpretation of the recently mea-
sured 3.5 keV X-ray line (corresponding to a value of the lepton
asymmetry parameter, L6 = 8.66; Lovell et al. 2015; Bose et al.
2016). This power spectrum leads to a delay in the formation epoch
of haloes of mass below ∼2 × 109 h−1 M� in COCO-WARM relative
to COCO-COLD (Bose et al. 2016). We refer the reader to Bose et al.
(2016) and Hellwing et al. (2016) for further details of the COCO

simulations.

2.2 Subhaloes in COCO-WARM and COCO-COLD

Haloes in the COCO simulations were identified using the FOF al-
gorithm (Davis et al. 1985) with a linking length of 0.2 times
the mean interparticle separation. Gravitationally bound subhaloes
within each halo were identified using the SUBFIND algorithm
(Springel et al. 2001). Since the initial conditions for both COCO-
WARM and COCO-COLD had the same initial Fourier phases, any dif-
ferences in the abundance of low-mass subhaloes between the two
are due entirely to the different input power spectra.

In order to obtain the true mass function in WDM simulations, it
is necessary to identify and exclude artificial haloes that form in N-
body simulations from initial power spectra with a resolved cutoff,
as is the case for COCO-WARM. These spurious, small-mass haloes
are generated by discreetness effects that cause fragmentation of
filaments, as discussed by Wang & White (2007) in the context
of simulations from hot dark matter initial conditions. The same
phenomenon is seen in WDM simulations (Angulo, Hahn & Abel
2013; Lovell et al. 2014; Bose et al. 2016). Wang & White (2007)
found that a large fraction of these spurious haloes can be removed
by eliminating haloes with mass below,

Mlim = 10.1 ρ̄ d k−2
peak, (4)

where d is the mean interparticle separation and kpeak the wavenum-

ber at which the dimensionless power spectrum, 
(k)2 = k3

2π2 P (k),
reaches its maximum. Spurious haloes can also be identified by
tracing back their particles to the (unperturbed) initial density field.
The Lagrangian regions from which spurious haloes form tend to
be much flatter than the corresponding region for genuine haloes
(Lovell et al. 2014). By calculating the inertia tensor of the initial
particle load, the sphericity of a halo can be defined as c/a, where
a2 and c2 are the largest and smallest eigenvalues of the inertia ten-
sor. Spurious haloes in the COCO-WARM catalogues were removed by
Bose et al. (2016) by eliminating all haloes with shalf-max < 0.165
and Mmax < 0.5Mlim, where shalf-max is the sphericity of the halo at
the half-maximum mass snapshot and Mmax is the maximum mass
a halo achieved during its growth history.

Note that the halo selection in WDM is sensitive to these criteria.
In Bose et al. (2016), the sphericity cut is calibrated with respect
to CDM simulations and the maximum mass cut is calibrated by
matching simulations of different resolution. We refer the reader to
Lovell et al. (2014) and Bose et al. (2016) for a detailed discussion.

In Fig. 1, we show the differential SHMF in COCO simulations.
The SHMF in COCO-COLD can be fitted by the power law, n(M) ≡
dN(<Msub)/dM = A0M−α , where N(<Msub) is the total number
of subhaloes with mass smaller than Msub and α = 1.9 (Springel
et al. 2008a; Gao et al. 2012). The COCO-WARM simulation produces
similar numbers of subhaloes as COCO-COLD at larger masses but
much smaller numbers for Msub > 109 h−1 M�. The slope of the
SHMF in COCO-WARM begins to deviate appreciably from α = 1.9
at ∼108 h−1 M�. At 107 h−1 M�, the difference between the two
SHMFs has grown to be a factor of 10. In Fig. 1, we plot SHMFs

Figure 1. The differential SHMF for host haloes of different mass. The
solid black (COCO-COLD) and red (COCO-WARM) points show the SHMF for
host haloes with mass in range [1011 h−1 M�, 1013 h−1 M�]. The dashed
lines show the mass function for haloes in different mass ranges in COCO-
WARM. We scale the dashed lines to match the red solid points (by requiring
the average amplitude of different curves to be the same), so that one can
compare the shape of the SHMFs in COCO-WARM. The blue line shows the fit
to the SHMF in COCO-WARM.

in host haloes of different mass bins, and find that they all have
the same shape. The SHMF in COCO-WARM can be fitted with the
expression used by Schneider et al. (2012):

nWDM/nCDM = (1 + mc/m)−β . (5)

Lovell et al. (2014) show that the WDM mass function is well fitted
adopting β = 1.3. We fix β = 1.3 and fit the mass function of
COCO-WARM to find a best-fitting value of mc = 1.3 × 108 h−1 M�.
The corresponding fit is shown by the solid lines in Fig. 1.

3 SU B S T RU C T U R E D E T E C T I O N I N S T RO N G
GRAV I TATI ONA L LENSES

If the projected position of a subhalo is close to the Einstein radius
of a strong lens system, it can perturb the surface brightness distri-
bution of the Einstein ring. The strength of the perturbation depends
on the mass of the subhalo and its relative distance to the Einstein
ring.

To investigate the probability of a subhalo falling in the region of
an Einstein ring, we first calculate the Einstein radius of dark matter
haloes of a given mass. In the real Universe, the size of the Einstein
radius is determined by the central mass distribution which, in
sufficiently large haloes, is dominated by the baryonic component
of the galaxy. Previous analyses have shown that modelling the
total central mass distribution as a singular-isothermal-sphere (SIS)
can successfully predict the location of strong lensing images (e.g.
Gerhard et al. 2001; Koopmans et al. 2006; Czoske et al. 2008).
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Denoting the stellar velocity dispersion as σ v, the Einstein radius
of an SIS can be written as:

θE = 4πσ 2
v

c2

Dl,s

Ds
, (6)

where Ds is the angular diameter distance from the source to the
observer and Dl,s is the distance between the lens and the source.
Since COCO is a set of dark matter-only simulations, it provides halo
masses but not stellar velocity dispersions. A convenient way to
infer the latter is to take them from the stellar velocity–dispersion
versus halo–mass relation obtained in a realistic cosmological hy-
drodynamics simulation. Here, we use the recent EAGLE reference
simulation which follows the coupled evolution of baryons and dark
matter in a cubic volume of side 100 Mpc, with gas mass resolu-
tion of 1.8 × 106 M� and softening length of 0.7 kpc (Schaye
et al. 2015). EAGLE provides a good match to both the observed stel-
lar mass function and the galaxy size–stellar mass relation so it is
reasonable to assume that the stellar velocity dispersions are also
realistic. Using the public EAGLE data base1 (McAlpine et al. 2016),
we find that the velocity–dispersion versus halo–mass relation is
well fitted by:

σv = σ0
(M/M1)γ1

(1 + M/M1)γ2−γ1
, (7)

where M is the halo mass, σ 0 = 117 km s−1, M1 = 1.5 ×
1012 h−1 M�, γ 1 = 4.30, γ 2 = 6.79, and σ v is the average stel-
lar velocity dispersion within the inner 5 kpc of the central galaxy.

Vegetti et al. (2014) have shown that the probability of detecting a
substructure in an Einstein ring depends on the mass and position of
the subhalo and on the gradient of the surface brightness distribution
of the lensed galaxy. In this work, we adopt the simple assumption
that within a thin region around the Einstein ring, any subhalo of
mass larger than a threshold, Mlow, can be detected through its
perturbation to the Einstein ring (Vegetti & Koopmans 2009b). In a
forthcoming paper we will investigate the effect of a more realistic
sensitivity function based on the results of Vegetti et al. (2014).
Following Vegetti & Koopmans (2009b), we take the width of this
thin annulus to be 2
θ = 0.6 arcsec.

The dark matter mass contained in the Einstein ring, Mring, is
given by

Mring(RE) =
∫ RE+
R

RE−
R

2πR dm(R) dR, (8)

where the Einstein radius, RE = θEDl; dm(R) is the surface mass
density of the dark matter halo; and 
R = 
θDl.

From equation (5), the probability of finding a subhalo of mass,
m, per unit volume can be written as:

dP

dm

∣∣∣∣
true

= A0m
α(1 + mc/m)−β, (9)

where for COCO-WARM, we have β = 1.3 and mc = 1.3 × 108 h−1 M�,
whereas for COCO-COLD, mc = 0.

We denote the maximum and the minimum mass of the sub-
haloes of interest that lie within the Einstein ring region as
Mmax and Mmin, respectively, and adopt Mmax = 1010 h−1 M� and
Mmin = 106 h−1 M�. We can then define a normalization factor, A0,
as:

A0 = 1∫ Mmax

Mmin
mα(1 + mc/m)−βdm

. (10)

1 http://www.eaglesim.org/database.html

The expectation value of the number of subhaloes in the Einstein
ring region with mass Mmin < m < Mmax can then be written as:

μ0(α, β,mc, fE, Mring) = fEMring∫ Mmax

Mmin
m dP

dm

∣∣∣
true

dm
, (11)

where fE = fsub(RE) and fsub is the fraction of mass contained in
subhaloes at a projected radius R.

When a halo merges into a larger system and becomes a subhalo,
it experiences dynamical friction and tidal striping. Subhaloes spiral
into the centre of the host halo and lose mass and many of them are
completely disrupted. As a result, we expect the fraction of mass
contained in subhaloes to increase with projected radius. The COCO

volume contains only a few dark matter haloes of mass larger than
1013 h−1 Mpc, making the estimation of fsub noisy. We therefore
make use of the analytical formula for fsub(R) derived by Han et al.
(2016). For dark matter haloes of mass in the range [1013, 1014]
h−1 M�, fsub can be approximated as

fsub = 0.35(R/rvir)
1.17, (12)

where rvir is the virial radius of the halo and R the projected radius.
Observationally, it is only possible to detect subhaloes more mas-

sive than a certain threshold. Vegetti & Koopmans (2009b) found
the measurement errors on subhalo mass to be approximately Gaus-
sian distributed with standard deviation, σ m. In our catalogues, we
will consider as ‘detected subhaloes’ those having a measured mass
larger than Mlow ≡ 3σ m. We note that this definition is different
from that adopted by Vegetti et al. (2014), who employed a detec-
tion threshold derived from the probability density of a substructure
mass, given the observed lensed data, marginalized over the host
lens and background source parameters.

Taking into account the detectability of a subhalo, we can rewrite
the expected number of subhaloes in the Einstein ring region as:

μ(α, β, mc, fE, Mring)

= μ0

∫ ∞

Mlow

∫ Mmax

Mmin

dP

dm

∣∣∣∣
true

exp

[
(m − m′)2

2σ 2
m

]
dm′dm. (13)

We generate mock subhalo detection events using a Monte Carlo
method. First, we randomly sample N haloes with mass in the range
[1013, 1014] h−1 M� using the mass function of the EAGLE reference
simulation. This mass range is consistent with the lens sample in
the SLAC (Vegetti et al. 2014). For simplicity, we assume that for
all the strong lens systems, zl = 0.3 and zs = 0.5, comparable to the
values in the SLAC observations.

Using equations (6)–(8), we calculate the velocity dispersion and
the Einstein radius for each halo, and the corresponding mass con-
tained within each ring, Mring. We assume the dark matter haloes
follow the NFW profile (Navarro, Frenk & White 1997) with
concentration–mass relation derived by Neto et al. (2007). Accord-
ing to equation (7), the velocity dispersion of our lenses ranges from
160 to 260 km/s, comparable to the lenses found in the observations
(e.g. Sonnenfeld et al. 2013). We assume that the appearance of a
subhalo follows a Poisson distribution with expectation μ(α, β, mc,
fE, Mring). We then sample the subhaloes according to equation (9)
assuming a Gaussian measurement error with standard deviation,
σ m, for each subhalo.

To date, the smallest subhalo mass measured using this tech-
nique is 1.9 ± 0.1 × 108 M�, detected with a significance of 12σ

(Vegetti et al. 2012). In this study, we consider two values for the
minimum detection threshold, Mlow: 108 h−1 M�, the limit of cur-
rent observations, and 107 h−1 M�, our optimistic expectation for
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future observations. We generate mock data sets for both CDM and
WDM with N = 50, 100 and 1000 host haloes with Einstein rings.

4 BAY E S I A N IN T E R F E R E N C E F O R SU B H A L O
D E T E C T I O N S

The differences in subhalo detection rates can be interpreted quan-
titatively using Bayesian theory. Here, we follow the formalism
developed by Vegetti & Koopmans (2009b), outlined below.

Assuming that subhaloes follow a Poisson distribution in a lens
system, the likelihood of finding ns subhaloes of mass, m, in an
Einstein ring system can be written as:

L(ns, m| p, q) = e−μμns

ns!

ns∏
i=1

P (mi | p, q), (14)

where the vector, q = {α, fE, Mring, β, mc}, gives the parameters
of the model and the vector, p = {Mmin, Mmax, Mlow}, contains the
fixed values of the parameters that define the minimum and maxi-
mum mass allowed by the SHMF and the threshold detection limit
of a given observation. If the errors on the measurement of sub-
halo mass are Gaussian distributed with standard deviation, σ m,
P (mi | p, q) gives the probability of finding a subhalo with detected
mass, mi, given the true subhalo mass distribution function, dP

dm
|true.

P (mi | p, q) =
∫ Mmax

Mmin

dP
dm

∣∣∣
true

exp
[

(mi−m′)2

2σ 2
m

]
dm′

∫ Mmax

Mlow

∫ Mmax

Mmin

dP
dm

∣∣∣
true

exp
[

(m−m′)2

2σ 2
m

]
dm′dm

(15)

The denominator in this equation is a normalization factor. Given
N Einstein ring systems, the total likelihood can be computed as:

Ltot =
N∏

j=0

L(nj , mj | p, q), (16)

with nj and mj the number and masses of subhaloes detected in the
jth system.

We perform a MCMC fitting to the mock lens systems. The model
has five free parameters: q = {α, fE, Mring, β, mc}. In the likelihood
function, fE and Mring are completely degenerate and so they cannot
be determined separately using subhalo number counts. In a real
observation, the strong lensing image can be used to determine the
total mass within the thin annulus around the Einstein ring region
and the stellar mass of the central galaxy can be obtained from
multiband photometry. Combining these two masses fixes Mring.
Here, we simply set Mring to the value obtained from the MCMC.

As mentioned earlier, the SHMF in CDM follows a power law
in mass of exponent, α = 1.9 (Springel et al. 2008b; Gao et al.
2012). We therefore adopt a Gaussian prior for α with expectation
1.9 and standard deviation 0.1. We also adopt a Gaussian prior for
β (equation 5) with expectation 1.3 and standard deviation 0.1.

In this paper, we consider keV WDM. We derive mc for a set
of WDM simulations in Lovell et al. (2014), and find that log mc

increases almost linearly with decreasing of dark matter particle
mass. We assume the probability distribution of particle mass is
uniform for keV WDM, so we adopted a flat prior for mc in log
space. In this paper, we use the fE model in Han et al. (2016) to
generate mock observations. In a real universe, different galaxy
formation processes can influence the survival of substructures. We
thus assume conservatively for fE a uniform prior ranging from 0 to
1. We have also tried a flat prior in log space for fE and find that the
differences in posterior distribution are negligible.

5 R ESULTS

Fig. 2 shows the results of the MCMC analysis using 100
mock systems constructed using parameters appropriate to COCO-
WARM. Here, the input SHMF is obtained from equation (5)
with mc = 1.3 × 108 h−1 M�. The detection limit was set to
Mlow = 107 h−1 M�. The contours show the 68 and 95 per cent
confidence levels for the 2D posterior probability distribution of
model parameters, while their marginalized 1D posterior probabil-
ity distributions are shown as histograms at the end of each row.
The red vertical lines show the input value of each parameter. The
2D contours indicate that the parameters, fE (the fraction of dark
matter mass in subhaloes within the Einstein radius), and, mc (the
cutoff mass), are slightly degenerate. That is to say the lack of small
haloes in WDM can be partially compensated for by a decrease
in the overall amplitude of the SHMF. With a detection limit of
Mlow = 107 h−1 M� and N = 100 systems, both mc and fE are tightly
constrained. Crucially, we find that with data like these one can rule
out at the 2σ level all dark matter models with mc < 106.64 h−1 M�,
which includes CDM.

We now explore how the number of strong lens systems, N, affects
the constraining power of the method. In Fig. 3, we show constraints
on fE and mc using 50, 100 and 1000 mock systems for detection
limits of Mlow = 107 h−1 M� and Mlow = 108 h−1 M�. The 1σ error
on fE decreases by about a factor of 3 as N increases from 50 to 100.
Even with N = 50 lenses, one can still put constraints on the lower
limit as long as subhaloes as massive as Mlow = 107 h−1 M� can be
detected.

The variation of the constraints on mc for different values of
Mlow is displayed in Fig. 4. Red, black and blue histograms show
the marginalized 1D posterior probability distribution of mc, for
detection limits of Mlow = 107 h−1 M�, Mlow = 108 h−1 M�
and Mlow = 109 h−1 M�, respectively. A detection limit of
Mlow = 109 h−1 M� hardly constrains the properties of the dark
matter. This is not only because of poor detectability, but also be-
cause the number of subhaloes above this mass that can be found
within a host halo is intrinsically small. For Mlow = 108 h−1 M�,
dark matter models with mc > 108.5 h−1 M� are disfavoured, but
the lower limit of mc still cannot be constrained. Our results il-
lustrate the vital importance of the subhalo detection threshold in
distinguishing different dark matter models.

Lovell et al. (2014) resimulated four WDM analogues of the
CDM galactic haloes in the AQUARIUS simulations (Springel et al.
2008a) for warmer models than COCO-WARM, specifically for models
with power spectrum cutoffs corresponding to thermal relic warm
particle masses of mWDM = [2.28, 1.96, 1.59, 1.41] keV. By fitting
equation (5) to the SHMF in each case, we can obtain values for
mc, which increase for decreasing values of mWDM. We find best-
fitting values of log [mc/( h−1 M�)] = [9.07, 9.28, 9.55, 9.76] for
mWDM = [2.28, 1.96, 1.59, 1.41] keV, respectively. These values
are overplotted as the dashed black lines in Fig. 4. It can be seen
that with Mlow = 108 h−1 M� one can set a strong lower limit to
mWDM.

Finally, in Fig. 5 we show the 2D posterior probability distri-
butions of fE and mc using input models of COCO-COLD (upper)
and COCO-WARM (lower), with N = 100 and a detection limit of
Mlow = 107 h−1 M�. Encouragingly, we find that this observational
set up is sufficient to distinguish between the two cosmologies. In
other words, by observing approximately 100 strong lens systems
with a detection threshold of Mlow = 107 h−1 M�, we could poten-
tially rule out the 3.3 keV thermal WDM model, which, as discussed
earlier, has a very similar power spectrum to the ‘coldest’ 7 keV
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Figure 2. Parameter constraints from 100 mock systems constructed using parameters appropriate to the COCO-WARM simulation. The contours show the 68 and
95 per cent confidence levels for the 2D posterior probability distribution of the model parameters. The histograms at the end of each row show the marginalized
1D posterior probability distribution for each model parameter. The red vertical lines show the input values of each model parameter. The assumed detection
limit is Mlow = 107 h−1 M�.

sterile neutrino model. This is therefore a promising way potentially
to rule out the entire family of 7 keV sterile neutrinos as candidates
for the dark matter.

In Table 1, we show the 95 per cent error range for recovered mc

and fE from MCMC for different N and Mlow.

6 SU M M A RY A N D D I S C U S S I O N

In this paper we have investigated the potential of strong gravita-
tional lensing as a diagnostic of the identity of the dark matter. Two
of the currently most plausible elementary particle candidates for
the dark matter, CDM and WDM, make very different predictions

for the number of low-mass subhaloes that survive within larger
haloes by the present day. Strong lensing is sensitive to precisely
this population since subhaloes can produce measurable distortions
to Einstein rings.

To explore the extent to which strong lensing can constrain the
SHMF, we have performed Monte Carlo simulations to mimic ob-
servations of haloes hosting the SHMFs of the COCO-WARM and
COCO-COLD high-resolution N-body simulations. The former has a
power spectrum appropriate for a 3.3 keV thermal relic, which hap-
pens to be a very good approximation to the power spectrum of
the coldest WDM model which is consistent with a sterile neutrino
decay interpretation of the 3.5 keV X-ray line recently discovered
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Figure 3. The constraining power on fE and mc using 50, 100 and 1000 mock Einstein ring systems. The upper panels show results for Mlow = 108 h−1 M�,
while the lower panels show results Mlow = 107 h−1 M�. The input SHMF is from COCO-WARM. The red crosses show the parameter values of COCO-WARM.
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Figure 4. The marginalized 1D probability distribution of mc for different
detection mass limits with N = 100. The mock systems are generated using
COCO-WDM SHMF. The vertical black solid line shows the mc value of the
COCO-WARM simulation. The coloured dashed lines from left to right show
the mc values of WDM models with particle masses mWDM = 2.28, 1.95,
1.59, 1.41 keV, respectively.

in galaxies and clusters (Boyarsky et al. 2014; Bulbul et al. 2014).2

Since the free-streaming cutoff wavelength in the linear power spec-
trum of WDM density fluctuations scales inversely with the mass
of the particle, ruling out this model by detecting subhaloes of mass
below the mass corresponding to the cutoff scale would also rule
out all other sterile neutrino models compatible with the X-ray line.

The SHMF in COCO-WARM begins to fall below the SHMF of COCO-
COLD at a mass of ∼109 h−1 M�. The difference between the two
mass functions grows to a factor of 2 at 108 h−1 M�, and to an order
of magnitude at 107 h−1 M�.

Our analysis shows that both the subhalo detection limit, Mlow,
and the number of observed strong lensing systems are the key for
constraining the dark matter model. Specifically, we have shown that
a sample of approximately 100 Einstein ring systems with detection
limit, Mlow = 107 h−1 M�, is enough clearly to distinguish between
the SHMFs of COCO-WARM and COCO-COLD. In other words, if we
live in a universe in which the dark matter predominantly consists
of 7 keV sterile neutrinos, this test would conclusively rule out
CDM, whereas if we live in a universe in which the dark matter
predominantly consists of CDM, the test would rule out all 7 keV
sterile neutrino families. If the detection limit is 108 h−1 M�, the
test with about 100 lenses can still set a lower limit on the WDM
particle mass, but it cannot rule out CDM. We stress, however, that
tests assuming a more realistic sensitivity function (see Vegetti et al.
2014) are required for a precise result.

Our results highlight the enormous potential for dark matter
research of high-resolution imaging surveys to search for strong

2 This model is also consistent with current constraints on the number of
small-mass haloes at high redshift derived from the Lyman α forest (Viel
et al. 2013).

Figure 5. The 2D posterior probability distribution of fE and mc, assuming
N = 100, Mlow = 107 h−1 M�. The lower panel shows the results with input
model of COCO-WARM (red), and the upper panel shows the results with input
mode of COCO-COLD (blue). The vertical dashed line shows the mc value of
the COCO-WARM simulation.

lensing systems. Current optical surveys have found ∼102 strong
lenses, but only a fraction of them have sufficiently high qual-
ity data for a measurement of the SHMF. A few subhaloes of
mass below 109 h−1 M� have already been detected (Vegetti et al.
2010, 2012, 2014). Currently, the lowest subhalo mass detected
in an Einstein ring, which was imaged at the Keck telescope, is
1.9 ± 0.1 × 108 M� (Vegetti et al. 2012). These authors claim
that the detection sensitivity of data of this quality can reach
2 × 107 M�. This is the level required to carry out the test de-
scribed in this paper.

Planned ground-based telescopes such as LSST and space mis-
sions such as Euclid will increase the sample of strong lenses by
several orders of magnitude. Euclid, for example, may be able to
obtain high-resolution images for ∼105 strong lenses (Pawase et al.
2014). At the same time, the SKA survey will increase the sam-
ple of strong radio lenses also to ∼105. Follow-up observations
with VLBI may even detect 106 h−1 M� subhaloes (McKean et al.
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Table 1. The 95 per cent error range for recovered mc and fE from MCMC for different N and Mlow and for CDM and WDM models.

WDM CDM
log Mlow = 8 log Mlow = 7 log Mlow = 7

N = 100 N = 1000 N = 50 N = 100 N = 1000 N = 100

fE/0.001 [0.42,2.21] [0.58,1.11] [0.25,4.51] [0.42,2.12] [0.56,1.11] [0.48,1.80]

log mc <8.5 <8.5 [ 6.8, 9.6] [6.64,8.53] [ 7.7, 8.5] <7.6

2015). Aside from direct or indirect detection of the dark matter
particles themselves, Einstein ring systems currently offer the best
astrophysical test of the nature of the dark matter.
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