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Abstract

Deligne and Mostow, in [Mos86], [Mos88] and [DM86], constructed a class of
lattices in PU(2, 1) using monodromy of hypergeometric functions. Thurston in
[Thu98] reinterpreted them in terms of cone metrics on the sphere. In this spirit
we construct a fundamental domain for the lattices with three fold symmetry in the
list of Deligne and Mostow. This is a generalisation of the works in [Par06] and
[BP15] and gives a different interpretation of the fundamental domain constructed
in [DFP05].

1 Introduction

One of the main goals in complex hyperbolic geometry is the study of lattices in
PU(n, 1).

In complex dimension two, Deligne and Mostow, in several works, including [DM86]
(as explained in the survey article [Par09]), gave several constructions of lattices arising
as monodromy groups of hypergeometric functions, which were defined using 5 param-
eters satisfying some properties, called a ball quintuple. This also leads to a sufficient
condition on the ball quintuple for the monodrmy group to be a lattice, called ΣINT.
Later, Thurston (see [Thu98]) showed that they can equivalently be seen as modular
groups of flat cone metrics on the sphere. Following this approach, one can consider
quintuples of cone angles at singularities (strictly related to the ball quintuples) and ob-
tain an explicit, sufficient condition on them for the modular group to be a lattice. This
condition is called Thurston’s orbifold condition and is equivalent to Mostow’s ΣINT
condition. Mostow then also found more ball quintuples giving discrete groups but not
satisfying ΣINT. Sauter, in [Sau90], studied these groups and showed that they are all
commensurable to some groups in the original list.

Among the lattices in the original list from Deligne and Mostow work, we consider
the ones with three fold symmetry. This means that three of the five singularities have
the same angle. In [Par09], Parker gives a table summarising all the three fold symmetry
lattices, included the ones studied by Sauter, that will not be treated in this work. The
table with Deligne and Mostow’s lattices is explained in Section 3 and in this work we
will consider all the 39 values of parameters contained in the table.

For some of these a fundamental domain has already been constructed. In particular,
Deraux, Falbel and Paupert in [DFP05] gave a construction for some Mostow groups.
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Later, Parker in [Par06] constructed a fundamental polyhedron for the Livné lattices
using a slightly different method. Later on, Boadi and Parker in [BP15] used the same
method for obtaining a fundamental domain for some Mostow groups of the first type.
We will use the latter method. In [Par09] Parker summarises the known constructions
and shows the relation between the method used for Livné lattices and lattices of the
first type and the one used in [DFP05].

In this paper we will give a general construction which covers all the remaining cases,
but also contains the previous ones.

The next section will briefly define the complex hyperbolic space and give basic
properties about it, its isometries and its subspaces. Each lattice we will be working on
is identified by some parameters which we explain in Section 3 and we will say it is of a
certain type according to their values. The three fold symmetry lattices will be described
in Section 3. In particular, we will explain how they are determined by two parameters,
p and k, as explained in the survey [Par09], that determine which class the lattice is
in. Working in full generality on the parameters, we will see that as the parameters
vary within a certain range, the combinatorics of the fundamental polyhedron is fully
determined.

Starting with a cone metric on a sphere with five cone singularities with prescribed an-
gles (arising from Mostow’s ball quintuples) and area one, we show that the moduli space
of such configurations is a complex hyperbolic space, following Thurston’s approach.

The key remark lies in the fact that if we cut the sphere through the five singular
points and then we open it up, we get an octagonal shaped figure Π. Such Π, and hence
the space of cone metrics on the sphere with prescribed angles, can be parametrised by
points in C3 and its area is a Hermitian form H of signature (1,2) on C3. Since we
consider metrics of area one, hence configurations up to rescaling and we want the area
to be positive, we get a complex hyperbolic 2-space as the moduli space.

Then we define some moves on the cone structures, which correspond to isometries in
H2

C. The first two are obtained by swapping two of the three singularities with the same
angle. The third one is a generalisation of Thurston’s butterfly moves (see [Thu98]). The
isometries given by the moves are generators for the group Γ, which is a lattice in PU(H)
and for which we construct a fundamental domain.

Following Thurston’s idea, we consider what happens when one or more cone singu-
larities collapse, becoming a single point. These will be the vertices of the polyhedron
and of its images under the isometries defined by the moves.

Each side of the polyhedron (i.e. maximal dimension facet) is contained in a bisector.
Bisectors are among the best understood subspaces of the complex hyperbolic plane and
have some useful properties. By intersecting the sides and calculating the dimension
of these intersections we then find also 2-dimensional and 1-dimensional facets of the
polyhedron. They are called the ridges and the edges.

Finally, we use Poincaré’s polyhedron theorem to prove that the polyhedron we con-
structed is actually a fundamental domain for Γ. For the polyhedron to verify Poincaré’s
theorem it needs to satisfy a few conditions. In particular, some combinations of the
three moves, that are the generators of Γ, have to pair the sides sending one in the other,
in a way that satisfies some special properties, according to the theorem. Because of
this they are called side pairing maps. Moreover, we have some conditions on the ridges,
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the most difficult of which has been to prove that the polyhedron and its images under
the side pairing maps tessellate a neighbourhood of the interior of each ridge. A slightly
different method will be used when the k parameter is not an integer.

The power of Poincaré’s polyhedron theorem lies not only in the fact that it proves
that the polyhedron is actually a fundamental domain for the group, but also because it
gives a presentation for the group. The conditions on sides and ridges consist, in fact, also
of some relations on the maps, called respectively reflection relations and cycle relations.
Using the side pairing maps as generators and such relations, we get a full presentation
for the group, which makes the picture more complete.

The previous cases mentioned, in which such a method has been already applied, are
implicitly contained in the construction we worked out and our approach unifies them.
As we said, according to the range values of p and k, we have different cone angles and
hence different configurations.

In particular, we showed that all previous cases can be obtained from our polyhe-
dron by collapsing some vertices, mainly three by three. Equivalently, we can find our
polyhedron from the previous ones by "cutting" some of the vertices, so as to obtain
three vertices and a new ridge instead. In particular, the polyhedron found in [Par06]
and [BP15] is exactly the one we construct here. In the last part we explain the relation
between our construction and the one in [DFP05].

I would like to thank my supervisor, John Parker, for his constant support and
the many insightful discussions during the preparation of this work. This research was
supported by a Doctoral EPSRC Grant, awarded by Durham University.

2 Complex hyperbolic space

In this section we will define the complex hyperbolic space, its main properties and
some information about its isometries. All the information presented here can be found
in more depth in the book from Goldman [Gol99].

2.1 Definition

The complex hyperbolic space arises naturally as a complex analogue to the real
hyperbolic space Hn

R. The real hyperbolic plane is, in fact, an example of complex
hyperbolic space of dimension 1. Generalising this construction to a complex vector
space we get complex hyperbolic space.

Let us take a complex vector space Cn,1 of dimension n+1, equipped with a Hermitian
form of signature (n, 1). We consider the Hermitian form in matrix form, given by an
Hermitian matrix H (i.e. H = H∗), which is non singular, with n positive eigenvalues
and one negative. Here A∗ is always be defined by A∗ = AT and the same notation will
be used for vectors.

Such matrix gives a product law on Cn,1 that we denote

〈z,w〉 = w∗Hz.

For z ∈ Cn,1, its norm under the product just defined, 〈z, z〉 = z∗Hz, is real, but it can
be positive, negative or zero. We hence decompose the space Cn,1 \ {0} in subspaces
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made of vectors where 〈z, z〉 is positive, zero or negative, namely V+, V0, V− respectively.
We now projectivise Cn,1\{0} by identifying all non-zero complex multiples of a given

vector. In other words, we are considering the projection P of Cn,1 \ {0} onto CPn. The
projection P preserves the subspaces V+, V0 and V−, because for λ ∈ C \ {0}, we have

〈λz, λz〉 = (λz)∗H(λz) = |λ|2z∗Hz = |λ|2〈z, z〉

and hence 〈λz, λz〉 and 〈z, z〉 must have same sign. In other words z and λz must be in
the same subspace.

We are now ready to define the complex hyperbolic space asHn
C = PV−, i.e. the space

of vectors of negative norm, up to multiplication by complex numbers. Its boundary is
∂Hn

C = PV0.
On such space we consider the Bergman metric, given by the formula

ds2 =
−4

〈z, z〉2
det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
.

Consequently, for two points z and w, their distance %(z,w) is given by

cosh2

(
%(z,w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

. (1)

2.2 The group of isometries and its subgroups

The group of holomorphic isometries of Hn
C is generated by the projectivisation of

the group of matrices that are unitary with respect to H. More precisely, let U(H) be
the group of square matrices of dimension n+1 such that A∗HA = H. We say that such
matrices are unitary with respect to H. Naturally, we will have SU(H) the subgroup of
such matrices with determinant equal 1.

To get the holomorphic isometries of Hn
C, we need to projectivise such a group as we

did for the space itself, whence the holomorphic isometry group of Hn
C is

PU(H) = U(H)/{eiθI : θ ∈ [0, 2π)}.

This group and complex conjugation generate the full isometry group of Hn
C. Sometimes,

to stress the dimension of the complex hyperbolic space it acts on, we will denote this
group as PU(n, 1).

The goal of this work is to give an explicit construction of a fundamental domain
for some lattices in PU(H) for the 2-dimensional complex hyperbolic space. We make
the convention that a fundamental domain is always an open region. Lattices are a
particular kind of subgroup and we will give this definition to conclude this section. Let
G = PU(H). A discrete subgroup Γ is a lattice when the quotient Γ\Hn

C has finite
volume with respect to the Bergman metric.

2.3 Bisectors

One of the most important classes of submanifolds in complex hyperbolic geometry
is that of bisectors. In this section we will give a brief description and expose the main
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properties we will need. These subspaces have been widely studied and more details can
be found in [Gol99].

Bisectors are defined as the locus of points in the complex hyperbolic space which
are equidistant from two given points, say zi and zj . By the formula in (1), it gives

〈z, zj〉〈zj , z〉
〈z, z〉〈zj , zj〉

= cosh2

(
%(z, zj)

2

)
= cosh2

(
%(z, zi)

2

)
=
〈z, zi〉〈zi, z〉
〈z, z〉〈zi, zi〉

,

and if zi and zj have the same norm, the definition becomes:

B = B(zi, zj) = {z ∈ H2
C : |〈z, zi〉| = |〈z, zj〉|}.

The complex line L spanned by zi and zj is called complex spine of the bisector.
Inside L there is a geodesic γ which is the intersection between the complex spine and
the bisector and it is called the spine of the bisector.

In the complex hyperbolic space there are no totally geodesic real hypersurfaces, so
also the bisectors are obviously not totally geodesic. They can be foliated though by
totally geodesic subspaces in two different ways: with slices or with meridians.

To define the slices first take the map ΠL, which is the orthogonal projection of the
whole space on the complex spine L. Then B is the preimage by ΠL of γ. We hence
define a slice to be a complex line that is a fibre of the map ΠL, i.e. the preimage of a
point of γ.

The other foliation is by meridians. A meridian is a totally geodesic Lagrangian plane
containing the spine γ. The bisector is the union of all its meridian. A meridian is also
the set of points fixed by a antiholomorphic involution which swaps zi and zj .

Other important subspaces related to bisectors are Giraud discs. Take three points
zi, zj and zk, not all contained in a complex line. Consider then B(zi, zj , zk), the set of
points equidistant from these three points. Giraud’s theorem tells us that such set is con-
tained in exactly three bisectors B(zi, zj), B(zi, zk) and B(zj , zk). Moreover, B(zi, zj , zk)
is a smooth non totally geodesic disc, called a Giraud disc.

3 Mostow lattices with a 3-fold symmetry

The main goal of this work is to give a fundamental domain for all Deligne-Mostow
lattices with three fold symmetry. In this section we will briefly describe, following
[Par09], how to parametrise these lattices.

The initial work of Deligne and Mostow makes such lattices arise as monodromy
groups of hypergeometric functions. Later, Thurston reinterpreted them in terms of
modular group of cone metrics on the sphere. Following this approach, we will show that
the moduli space of cone metrics on the sphere with prescribed cone singularities have a
complex hyperbolic structure and see the lattices as subgroups of automorphisms of the
sphere.

An important concept, appearing first in the work of Deligne and Mostow, is the one
of ball N -tuple. A ball N -tuple is a set of N real numbers µ = (µ1, . . . , µN ) verifying the
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conditions

N∑
i=1

µj = 2, 0 < µi < 1, for i = 1, . . . , N. (2)

Now, a cone singularity on a surface is a point around which the total angle is not
2π. In general, it can be any value, but in this work we will consider it to be in (0, 2π).

A flat cone metric on the sphere is a metric modelled on R2 except for a finite number
of points that are cone singularities. Around these points the surface can be described
by taking the part of R2 defined by {z = reiθ ∈ C : 0 ≤ θ ≤ θ0} and identifying the
edges of the sector through the map r ∼ reiθ0 . We will say that such a point is a cone
singularity of angle θ0 and we will call its curvature the value α = 2π − θ0. Outside the
singularities the curvature is 0.

If we have N cone singularities, the curvatures α1, . . . , αN must satisfy

N∑
i=1

αj = 4π, 0 < αi < 2π, for i = 1, . . . , N. (3)

Comparing (2) and (3) it is obvious that there is a correspondence between the
two: for a ball N -tuple (µ1, . . . , µN ) we can construct a cone metric on the sphere with
curvatures αi = 2πµi and vice versa.

As we will see for the case N = 5, N cone singularities on the sphere will give a
subgroup in PU(N − 3, 1), which is a lattice for singularities with certain prescribed
curvatures (equivalently, for certain ball 5-tuples). For N = 5, we say that a lattice has
three fold symmetry when at least three of the values of the corresponding ball N -tuple
(and hence the cone angles) are equal.

Table 4 summarizes all Deligne-Mostow lattices with three fold symmetry. The lat-
tices are divided according to the sign of the four parameters in the first four columns,
p, k, l and d. These values are very important, as we will see that they are the order of
some special elements of the lattices. In particular, the first two can uniquely determine
the ball quintuple and hence the curvature and the cone angles of the singularities on
the sphere, from which we can obtain a lattice in the way we will see in the following
sections.

The elements of the ball quintuple, listed in the last columns, are related with the
parameters p and k in the following way:

µ1 =
1

2
+

1

p
− 1

k
, µ2 = µ3 = µ4 =

1

2
− 1

p
, µ5 =

2

p
+

1

k
. (4)

The other parameters are defined from the two first ones in the following way:

1

l
=

1

2
− 1

p
− 1

k
,

1

d
=

1

2
− 3

p
, t = −1

2
+

1

p
+

2

k
. (5)
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p k l d t µ1 µ2,3,4 µ5
3 4 -12 -2 1/3 7/12 1/6 11/12
3 5 -30 -2 7/30 19/30 1/6 13/15
3 6 ∞ -2 1/6 2/3 1/6 5/6
4 3 -12 -4 5/12 5/12 1/4 5/6
4 4 ∞ -4 1/4 1/2 1/4 3/4
5 2 -5 -10 7/10 1/5 3/10 9/10
5 5/2 -10 -10 1/2 3/10 3/10 4/5
5 3 -30 -10 11/30 11/30 3/10 11/15
6 2 -6 ∞ 2/3 1/6 1/3 5/6
6 3 ∞ ∞ 1/3 1/3 1/3 2/3
3 7 42 -2 5/42 29/42 1/6 17/21
3 8 24 -2 1/12 17/24 1/6 19/24
3 9 18 -2 1/18 13/18 1/6 7/9
3 10 15 -2 1/30 11/15 1/6 23/30
3 12 12 -2 0 3/4 1/6 3/4
4 5 20 -4 3/20 11/20 1/4 7/10
4 6 12 -4 1/12 7/12 1/4 2/3
4 8 8 -4 0 5/8 1/4 5/8
5 4 20 -10 1/5 9/20 3/10 13/20
5 5 10 -10 1/10 1/2 3/10 3/5
6 4 12 ∞ 1/6 5/12 1/3 7/12
6 6 6 ∞ 0 1/2 1/3 1/2
7 2 -7 14 9/14 1/7 5/14 11/14
8 2 -8 8 5/8 1/8 3/8 3/4
9 2 -9 6 11/18 1/9 7/18 13/18
10 2 -10 5 3/5 1/10 2/5 7/10
12 2 -12 4 7/12 1/12 5/12 2/3
18 2 -18 3 5/9 1/18 4/9 11/18
7 3 42 14 13/42 13/42 5/14 13/21
8 3 24 8 7/24 7/24 3/8 7/12
9 3 18 6 5/18 5/18 7/18 5/9
10 3 15 5 4/15 4/15 2/5 8/15
12 3 12 4 1/4 1/4 5/12 1/2
18 3 9 3 2/9 2/9 4/9 4/9
7 7/2 14 14 3/14 5/14 5/14 4/7
8 4 8 8 1/8 3/8 3/8 1/2
9 9/2 6 6 1/18 7/18 7/18 4/9
10 5 5 5 0 2/5 2/5 2/5
12 4 6 4 1/12 1/3 5/12 5/12

Table 1: Deligne-Mostow lattices with three fold symmetry.

The fifth parameter, t is a real parameter used by Mostow to describe the lattices,
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 π- θ-ϕ

π + θ

π/2 - θ/2+ϕ

v*

v3

v2

v1

v0

2

π + θ
2

π + θ
2

Figure 1: Double pentagon and cut through the five points.

together with p = 3, 4, 5 in [Mos80]. It is called the phase shift, because Mostow’s phase
parameter is ϕ, defined by ϕ3 = eπit. One particular critical value of this parameter is
1
2−

1
p . In Section 8 we will see why this is relevant for our analysis. We will say, following

Mostow, that it is a lattice with large phase shift if the condition |t| > 1
2 −

1
p holds. The

opposite condition is a small phase shift.

4 Cone structures

Let us now consider a cone metric on the sphere with 5 cone singularities of angles

(π − θ + 2φ, π + θ, π + θ, π + θ, 2π − 2θ − 2φ) . (6)

We call the cone points v0, v1, v2, v3, v∗ respectively. The angles θ and φ correspond
respectively to 2π

p and π
k , with p and k in Table 1.

For simplicity, let us first assume that the position of the five cone singularities is,
as in Figure 1, such that the sphere is like a pentagonal pillowcase and let us consider a
path in the sphere that starts from v0 and passes in order through v1, v2, v3, ending in v∗.
Suppose we cut through this path and open up the surface, obtaining an octagon like the
one in Figure 2, which we call Π. To be able to express the vertices of Π with coordinates,
we impose that the vertex v∗ coincides with the origin of the complex plane and we place
Π such that the coordinate of v0 is a multiple of i by a negative real number. The vertices
with positive real coordinates will be called v1, v2, v3, while the corresponding vertices
with negative real coordinates will be v−1, v−2, v−3.

The sides of Π are pairwise identified through a reflection with respect to the imagi-
nary axis and this identification allows us to recover the cone metric on the sphere. More
precisely, the vertices vi are identified to v−i and the edge between vi and vj is identified
with the one between v−i and v−j . Since only the boundary points and not the interior
are identified, this gives us back the shape of the cone metric as two pentagons glued
through the boundary, forming the pentagonal pillowcase we started from.
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π + θ

0=v*

v3

v2

v1

v0

2

π + θ
2

π + θ
2

π - θ
2

π - θ
2

π - θ
2

π + θ
2

π + θ
2

v-1

v-2

v-3
Π

T1T-1

T3T-3

T-2

T2

θθ

π - θ
2

π - θ
2

π - θ
2

 π- θ-ϕ π- θ-ϕ

ϕϕ

x1

x2

x3

B

A

π + θ
2

Figure 2: Octagon Π when the parameters are real.

We can also describe Π in terms of three real parameters, which we will call x1, x2, x3.
Let us take three triangles T1, T2 and T3 in the following way. The triangle T1 has the
three angles φ, π−θ

2 and π
2 + θ

2 − φ and side x1 opposite to the angle π
2 + θ

2 − φ. The
triangle T2 is isosceles. It has two angles equals to π−θ

2 and one θ. The two equal sides
have length x2. The triangle T3 has the three angles φ, π − θ − φ and θ and side x3
opposite to the angle π − θ − φ.

We now construct an octagon Π by first taking a copy of the third triangle T3, with
the vertex with angle π − θ − φ at 0 and the one with angle φ along the imaginary
axis and below it. Then remove from T3 a copy of T2 by making the two vertices of
angle θ coincide and by making x2 and x3 be collinear, both vectors pointing towards
the common corner of the two triangles T3 and T2. Similarly, remove from the figure
obtained a copy of T1 disposed such that the vertex of angle φ of T1 coincides with the
one of T3 with the same angle and such that x2, x3 are collinear and pointing in the
same direction. At this point we reflect the whole construction along the imaginary axis,
obtaining three more triangles T−3, T−2 and T−1. We consider the quadrilateral made
of the two triangles T3 and T−3, from which we delete triangles Ti, for i ∈ {±1,±2}.
The figure obtained is an octagon Π as in Figure 2. This is clearly the same figure as we
described previously when we label the vertices as explained before.

It is easy, in the system previously described, to calculate the coordinates of the
vertices of the octagon. These are the same value that one can find in [BP15].

We now consider a generic metric on the sphere and the same procedure applies, but
we need now to allow the three variables to be complex, in order to describe all possible
mutual positions of the singularities. The variables describing the octagon will be called
z1, z2 and z3. We construct an octagon by taking the same three triangles and making
the same vertices of the triangles coincide as before, but the three variables will be two
dimensional vectors representing the sides of the triangles and they will no longer line
up. It will be as in Figure 3.

As before, we can recover the metric on the sphere identifying the side between vi
and vj with the one between v−i and v−j . We obviously obtain a cone manifold which
is homeomorphic to the sphere and has five cone point of angles equal to those that we
had in the beginning.
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v*=0

v3

v2

v1

v0

π - θ

2 ϕ
v-1v-2

v-3

Π

T1
T-1

T3T-3

T-2

T2

θ

θ

π - θ

2

π - θ

2

π - θ

2

ϕ
z1

z2

z3

A

B

Figure 3: Octagon Π when the parameters are complex.

In the case of real variables xi’s, the area of the right half of the octagon can be
obtained taking the area of T3 and subtracting the area of T1 and the area of T2. We
then need to double this quantity to have the total area of Π. When allowing the variables
to be complex, we can see, using a cut and paste map, that the area remains given by
the same formula substituting each xi with zi complex. A simple calculation then shows
that

Area Π = 2 (AreaT3 −AreaT1 −AreaT2)

=
sin θ sinφ

sin(θ + φ)
|z3|2 − sin θ|z2|2 −

sin θ sinφ

(sinφ+ sin(θ − φ))
|z1|2. (7)

We remark that these are the same values obtained in [BP15].

5 Moves on the cone structures

We will now define automorphisms of the polygons described above. This is the same
procedure as in [BP15], which generalised [Par06].

We know that the second, third and fourth vertices have the same angle. This means
that there is no canonical way of ordering them while chosing a path through the five
points. Two of the three moves we will define are made by exchanging the order of the
three cone point of same angle when making the cut. The third move will be in the spirit
of Thurston’s butterfly moves (see [Thu98]).

The first move R1 fixes the vertices v∗, v0 and v1, and exchanges v2 and v3. This is
equivalent to saying that the path on the sphere along which we will open up the surface
to give the polygon Π will be done starting in v0, continuing in v1 as before, but then
passing, in order, through v3 and v2 and ending in v∗. In Figure 4 we show the new cut
in the glued pentagons case and the octagon that we obtain.

The new octagon can be obtained from the previous one by a cut and paste. In fact,
the new cut from v∗ goes directly where v2 was previously, as this is the image of v3. So
the triangle v∗, v3, v2 has to be glued on the segment between v∗ and v−3 according to
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v*

v3

v2

v1

v0

0=v'*=v*

v'2

v0

v'-1=v-1

v'-3

v'1=v1

v'3=v2

v'-2=v-3

∏

∏'

θ

θ

Figure 4: The cut for R1 and the octagon we obtain. Vertices v′i’s are the
images under R1 of vi’s.

the identification of the sides. Similarly, the triangle v−1, v−2, v−3 has to be glued on
the edge v1, v2, as in Figure 4. This means that the move R1 does not change the area
of the octagon.

One way to find the matrix of R1 is by describing geometrically the position of the
new variables, image of the zi’s. In fact, if we leave z3 and z1 as before and we multiply
z2 by eiθ, it geometrically means that we are rotating T2 and T−2 by θ, fixing the vertex
corresponding to angle θ, by definition of the variables. It is easy to see that this gives
the configuration on the right hand side of Figure 4.

The matrix of R1 will hence be:

R1 =

1 0 0
0 eiθ 0
0 0 1

 .
There is yet another way of calculating the matrix. As we can see in the figure, some

of the images will be in the position where the vertices originally were. This means that,
when considering their dependence on the new variables, it is enough to ask that the
coordinates of these images (in term of the image of the variables zi’s) coincide with
the coordinates of the original vertices, which depended on the z′is themselves. More
specifically, to find the matrix of R1, we need to solve equations v′0 = v0, v′1 = v1, v′3 = v2
and v′−2 = v−3.

Let us now define the second move R2. This new move fixes v∗, v0 and v3, while it
interchanges v1 and v2. As before, this means that the cut that we do goes first through
v0, then to v2 and v1 and finally it ends as before by cutting through v3 and v∗. The cut
and the octagon are shown is Figure 5.
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v'-3=v-3

∏'

∏

Figure 5: The cut for R2. Again, v′i is the image under R2 of vi

As before, in the figure we also showed the cut and paste map that we need to recover
the initial shape. In particular, the triangle between v3, v2 and v1 has to be glued on
the edge v−2, v−3, as this time the cut goes from v3 directly to the image of v2, that
coincides now with the position of v1. Similarly, the triangle v0, v−1, v−2 has to be glued
on edge v0, v1. Both gluings are done according to the side identifications we described
when recovering the come metric from the octagon. We remark again that the existence
of such a cut and paste implies that the area is preserved after applying the move R2.

In this case the easiest method to find the matrix of the transformation is to see
its action on the variables that determine the coordinates of the vertices. According to
Figure 5, we therefore ask that v′0 = v0, v′2 = v1, v′−1 = v−2 and v′3 = v3.

After some calculations that can be found in [BP15], we can get the matrix for R2

as:

R2 =
1

(1− e−iθ) sinφ

 − sin θe−iφ − sinφ− sin(θ − φ) sinφ+ sin(θ − φ)
− sinφ − sinφe−iθ sinφ

− sin(θ + φ) − sin(θ + φ) sinφ+ sin θeiφ

 .
The two moves R1 and R2 correspond, as automorphisms of the sphere with 5 cone

singularities, to a Dehn twist along a curve through the two points we are swapping, not
separating the other singularities.

We will finally define the third move A1. As we said, this is the generalisation of
the "butterfly moves" used by Thurston in [Thu98]. In his case, he was moving one side
across a region shaped like a butterfly such that in the end the signed area is the same.
Here, we make the triangle T1 rotate so that vertices v∗, v2, v3 remain fixed, while v′1
coincides this time with v−1. We obtain an octagon with a point of self intersection and
we need to consider the signed area to have it still preserved after applying the move.

As we can see in Figure 6, the triangles T2 and T3 remain fixed and hence so are the
variables z2 and z3. The third triangle is rotated of an angle of 2φ. This gives us the

12



v'-1
v'0

v'3=v3

v'2=v2
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0=v*=v'*

Figure 6: The octagon obtained after applying A1.

matrix of the move, which will be

A1 =

e2iφ 0 0
0 1 0
0 0 1

 .
As before, we can also see how it acts on the vertices and deduce from there the same
matrix.

At this point, we want to consider the group Γ = 〈R1, R2, A1〉. For the values of φ
and θ that we are considering, Γ is discrete and is the list of Deligne-Mostow lattices
described in Section 3. In fact, here we are implementing Thurston’s procedure described
in [Thu98], which, as he explains, is related with the groups previously constructed by
Deligne and Mostow in [DM86] and [Mos80]. In the following sections we will construct
a fundamental domain for the action of this group on the complex hyperbolic space.

6 Complex hyperbolic space as moduli space

We will see now how the moduli space of cone metrics on the sphere of area 1, seen
as the different shapes of polygons Π that we can achieve, can be parametrised by a part
of complex hyperbolic space. The moves we constructed will correspond to actions by
isometries on the space.

As we saw in Section 2, the 2-dimensional complex hyperbolic space is by definition
the set of points for which a certain Hermitian form is positive, up to projectivisation.
First of all, up to now, all three parameters z1, z2, z3 were freely chosen, but for our pur-
pose two configurations such that the parameters are proportionals by the same constant
are the same. This is because we are considering the cone metrics to have fixed area,
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following Thurston (see [Thu98], Theorem 0.2). From now on, we will hence fix z3 = 1.
Recall that the area is given by (7) in terms of z1, z2 and z3. The coordinates z1 and
z2 will hence vary while keeping such quantity positive. On the moduli space of cone
metrics on the sphere this is equivalent to projectivising the coordinates.

Let us now consider the area as given in equation (7). If we consider the Hermitian
matrix

H = sin θ

−
sinφ

sinφ+sin(θ−φ) 0 0

0 −1 0

0 0 sinφ
sin(θ+φ)

 ,
such formula is equivalent to saying

Area(Π) = z∗Hz.

In this sense, the area gives an Hermitian form of signature (1,2) on C3.
We define hence our model of complex hyperbolic space as

H2
C = {z : 〈z, z〉 = z∗Hz > 0}.

Clearly, as we want our Π to have positive area, this gives a complex hyperbolic structure
on the moduli space of the polygon configurations. Equivalently,

H2
C =


z1z2
z3

 :
−|z1|2 sin θ sinφ

sinφ+ sin(θ − φ)
− |z2|2 sin θ +

sin θ sinφ

sin(θ + φ)
> 0

 . (8)

Since the moves preserve the area, they are unitary with respect to the Hermitian
form, i.e. R∗1HR1 = H and same for R2 and A1. This can also easily checked by
calculation.

6.1 Some special maps

In the group Γ = 〈R1, R2, A1〉, we will often use some special elements.
The first one is J , defined as J = R1R2A1. Its matrix is

J =
1

sinφ(1− e−iθ)

 − sin θeiφ − sinφ− sin(θ − φ) sinφ+ sin(θ − φ)

− sinφei(2φ+θ) − sinφ sinφeiθ

− sin(θ + φ)e2iφ − sin(θ + φ) sinφ+ sin θeiφ

 .
We remark that J has zero trace and hence it has order 3. Most of the time we will con-
sider projective equalities and drop the initial factor 1

sinφ(1−e−iθ) . Projective equivalence
will be denoted by the symbol ∼.

The second one is P , defined by P = R1R2. Its matrix is:

P =
1

sinφ(1− e−iθ)

 − sin θe−iφ − sinφ− sin(θ − φ) sinφ+ sin(θ − φ)
− sinφeiθ − sinφ sinφeiθ

− sin(θ + φ) − sin(θ + φ) sinφ+ sin θeiφ

 .
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Note that J previously defined can also be written as J = PA1. The transformation P
will be used here to give a new set of coordinates different from the z-coordinates used
until now.

The new coordinates are defined by

w =
[
P−1(z)

]
.

This gives us the formulae

w1 =
− sin θeiφz1 − (sinφ+ sin(θ − φ))e−iθz2 + sinφ+ sin(θ − φ)

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sinφ+ sin θe−iφ
, (9)

w2 =
− sinφz1 − sinφz2 + sinφ

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sinφ+ sin θe−iφ
, (10)

with inverses

z1 =
− sin θe−iφw1 − (sinφ+ sin(θ − φ))w2 + sinφ+ sin(θ − φ)

− sin(θ + φ)w1 − sin(θ + φ)w2 + sinφ+ sin θeiφ
, (11)

z2 =
− sinφeiθw1 − sinφw2 + sinφeiθ

− sin(θ + φ)w1 − sin(θ + φ)w2 + sinφ+ sin θeiφ
. (12)

The new set of coordinates makes it easier to describe the polyhedron, that will be
defined by imposing that the arguments of the coordinates z1, z2, w1, w2 vary in a certain
range.

We will often consider another transformation, which is the antiholomorphic isometry
ι defined by ι(z) = R1R2R1(z). Equivalently, ι(z) = PR1(z). By definition,

ι

z1z2
1

 ∼
 w1

w2e
iθ

1

 . (13)

This transformation will give us a symmetry of the polyhedron that we will construct
(see Lemma 7.1).

Remark 6.1. A simple computation shows that ι is consistent with the maps defined
previously. In other words, we have

Jι = ιJ−1, P ι = ιP−1 R1ι = ιR−12 R2ι = ιR−11 .

7 The polyhedron

In this section we will construct the polyhedron that we will later prove to be a
fundamental domain for the action of Γ. This is a general construction which contains all
cases of lattices with three fold symmetry on Deligne and Mostow’s list. The polyhedron
as we will describe it here will be a fundamental domain in some of the cases described
in Section 3. In the other cases, the fundamental polyhedron will be obtained from this
one by collapsing some triplets of vertices. Section 9.1 will be dedicated to the analysis
of these cases.
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7.1 Vertices

We will now explain which points of H2
C are the special points which will represent

the vertices of the polyhedron. For each of them we will give both z-coordinates and
w-coordinates. As before, w = P−1(z).

All these points will be obtained by making some cone points approach, until, in the
limit, they coalesce. In this case, each vertex will be obtained by separately coalescing
two distinct pairs of cone points. On the octagon Π, this corresponds to fixing the triangle
T3 and considering the cone metrics on the sphere corresponding to configurations when
T1 and T2 are as small and as big as possible, in different directions, until pairs of vertices
coincide. This is shown in Figure 7. Every time that we make two points coalesce, we
turn two cone points into a new one. Its curvature (complement of the cone angle), will
be the sum of the curvatures of the two points that have coalesced.

In the following tables we describe the vertices of the polyhedron. The first one tells
us, for each vertex, which cone points coalesced.

Vert. Cone points Vert. Cone points Vert. Cone points
z1 v0, v±1 v±2, v±3 z6 v∗, v±1 v±2, v±3 z11 v∗, v±3 v0, v±2
z2 v0, v±3 v±1, v±2 z7 v∗, v±1 v0, v±2 z12 v∗, v±2 v0, v±1
z3 v∗, v0 v±2, v±3 z8 v∗, v±1 v0, v±3 z13 v∗, v±2 v±1, v±3
z4 v∗, v0 v±1, v±2 z9 v∗, v±3 v0, v±1 z14 v∗, v±2 v0, v±3
z5 v∗, v0 v±1, v±3 z10 v∗, v±3 v±1, v±2

When two cone points collapse, we get a complex line in H2
C. We will label these

lines in the following way:

Lij = line obtained by making the cone points vi, vj coalesce,

for i, j = 0, 1, 2, 3, ∗. We will also call nij the polar vector to the line Lij . These complex
lines are described by the following equations.

Lij Cone pts z-coordinates equation w-coordinates equation
L∗0 v∗, v0 z1 = sinφ+sin(θ−φ)

sin(θ+φ) w1 = sinφ+sin(θ−φ)
sin(θ+φ)

L∗1 v∗, v−1 z1 = e−iφ sin θ
sin(θ+φ) w2 = eiθ sinφ

sin(θ+φ)

L∗2 v∗, v−2 z2 = eiθ sinφ
sin(θ+φ) w2 = sinφ

sin(θ+φ)

L∗3 v∗, v3 z2 = sinφ
sin(θ+φ) w1 = eiφ sin θ

sin(θ+φ)

L01 v0, v1 z1 = 0 sin θ
sinφ+sin(θ−φ)e

−iφw1 + w2 = 1

L02 v0, v2
sin θ

sinφ+sin(θ−φ)e
iφz1 + z2 = 1 sin θ

sinφ+sin(θ−φ)e
−iφw1 + e−iθw2 = 1

L03 v0, v3
sin θ

sinφ+sin(θ−φ)e
iφz1 + e−iθz2 = 1 w1 = 0

L12 v1, v2 z1 + z2 = 1 w2 = 0
L23 v2, v3 z2 = 0 w1 + e−iθw2 = 1
L13 v1, v3 z1 + e−iθz2 = 1 w1 + w2 = 1

With these equations, we can calculate the coordinates of the vertices by making the
complex lines intersect or, equivalently, two pairs of points coalesce at the same time.
The first table will give us the z coordinates of all the vertices, while the second one will
give us their w coordinates.
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Figure 7: The degenerate configurations giving the vertices of the polyhedron.
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Vertex coordinate z1 coordinate z2
z1 0 0

z2
sinφ+sin(θ−φ)
sinφ+eiφ sin θ

eiθ sinφ
sinφ+eiφ sin θ

z3
sinφ+sin(θ−φ)

sin(θ+φ) 0

z4
sinφ+sin(θ−φ)

sin(θ+φ)
sinφ(2 cos θ−1)

sin(θ+φ)

z5
sinφ+sin(θ−φ)

sin(θ+φ) eiθ sinφ(2 cos θ−1)sin(θ+φ)

z6 e−iφ sin θ
sin(θ+φ) 0

z7 e−iφ sin θ
sin(θ+φ) 1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))

z8 e−iφ sin θ
sin(θ+φ) eiθ

(
1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))

)
z9 0 sinφ

sin(θ+φ)

z10
sin(θ+φ)−sinφ

sin(θ+φ)
sinφ

sin(θ+φ)

z11 e−iφ sinφ+sin(θ−φ)
sin θ

(
1− sinφ

sin(θ+φ)

)
sinφ

sin(θ+φ)

z12 0 eiθ sinφ
sin(θ+φ)

z13
sin(θ+φ)−sinφ

sin(θ+φ) eiθ sinφ
sin(θ+φ)

z14 e−iφ sinφ+sin(θ−φ)
sin θ

(
1− sinφ

sin(θ+φ)

)
eiθ sinφ

sin(θ+φ)

Vertex coordinate w1 coordinate w2

z1
sinφ+sin(θ−φ)
sinφ+e−iφ sin θ

sinφ
sinφ+e−iφ sin θ

z2 0 0

z3
sinφ+sin(θ−φ)

sin(θ+φ) eiθ sinφ(2 cos θ−1)sin(θ+φ)

z4
sinφ+sin(θ−φ)

sin(θ+φ) 0

z5
sinφ+sin(θ−φ)

sin(θ+φ)
sinφ(2 cos θ−1)

sin(θ+φ)

z6
sin(θ+φ)−sinφ

sin(θ+φ) eiθ sinφ
sin(θ+φ)

z7 eiφ sinφ+sin(θ−φ)
sin θ

(
1− sinφ

sin(θ+φ)

)
eiθ sinφ

sin(θ+φ)

z8 0 eiθ sinφ
sin(θ+φ)

z9 eiφ sin θ
sin(θ+φ) 1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))
z10 eiφ sin θ

sin(θ+φ) 0

z11 eiφ sin θ
sin(θ+φ) eiθ

(
1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))

)
z12 eiφ sinφ+sin(θ−φ)

sin θ

(
1− sinφ

sin(θ+φ)

)
sinφ

sin(θ+φ)

z13
sin(θ+φ)−sinφ

sin(θ+φ)
sinφ

sin(θ+φ)

z14 0 sinφ
sin(θ+φ)

These vertices present a symmetry given by the transformation ι. In fact, as we can
immediately verify on the coordinates in the table, the following lemma holds:

Lemma 7.1. The isometry ι defined by (13) has order 2 and acts on the vertices in the
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following way:

ι(z1) = z2, ι(z3) = z4, ι(z5) = z5, ι(z6) = z10,
ι(z7) = z11, ι(z8) = z9, ι(z12) = z14, ι(z13) = z13.

7.2 The polyhedron and its sides

In this section we will construct a polyhedron D in complex hyperbolic space. Later
on, in Section 8.2, we will prove that this is a fundamental polyhedron for the group Γ
we are considering. The degenerate configurations of cone points on the sphere described
in the previous section will indeed be the vertices of the polyhedron D.

On the boundary of the polyhedron we have cells of different dimensions. The codi-
mension 1 cells (3-dimensional cells) are called sides. The 2-dimensional cells are called
ridges and the 1-dimensional are the edges. The vertices are the 0-dimensional cells in the
boundary of the polyhedron. The sides of the polyhedron will be contained in bisectors,
described in Section 2.3.

As we can easily see just by looking at the tables, if we consider one column of the
first or second coordinates table (i.e. fixing one of z1, z2, w1, w2), most vertices have
that particular coordinate either real or a real number multiplied by a unit complex
number of the same argument along the column (respectively e−iφ, eiθ, eiφ, eiθ). More
specifically, the only ones not following this rule are z1 for the w-coordinates and z2 for
the z-coordinates. This makes it natural to consider the portion of complex hyperbolic
space consisting of all points with arguments of the coordinates included in the ranges
bounded by these values. In fact, the two that, as we said, do not follow this rule, are
still within the bounded ranges (even if strictly in the interior). We hence define our
polyhedron to be such region, in the following way:

D =

{
z = P (w) :

arg(z1) ∈ (−φ, 0), arg(z2) ∈ (0, θ),
arg(w1) ∈ (0, φ), arg(w2) ∈ (0, θ)

}
. (14)

The sides of the polyhedron will then be contained in bisectors, which are defined as
in the following table.

Bisector Equation Points in the bisector
B(P ) Im(z1) = 0 z1, z3, z4, z5, z9, z10, z12, z13
B(P−1) Im(w1) = 0 z2, z3, z4, z5, z6, z8, z13, z14
B(J) Im(eiφz1) = 0 z1, z6, z7, z8, z9, z11, z12, z14
B(J−1) Im(e−iφw1) = 0 z2, z7, z8, z9, z10, z11, z12, z14
B(R1) Im(z2) = 0 z1, z3, z4, z6, z7, z9, z10, z11
B(R−11 ) Im(e−iθz2) = 0 z1, z3, z5, z6, z8, z12, z13, z14
B(R2) Im(w2) = 0 z2, z4, z5, z9, z10, z12, z13, z14
B(R−12 ) Im(e−iθw2) = 0 z2, z3, z4, z6, z7, z8, z10, z11

The choice of the name of the bisectors has been made in such a way that the bisector
B(T ) is sent by T to the bisector B(T−1), for T ∈ {P, P−1, J, J−1, R1, R

−1
1 , R2, R

−1
2 }.

Finally, the following lemma proves that the subspaces defined are bisectors and that
we named them following the convention just described.

19



Lemma 7.2. In z and w coordinates, we have

• Im(z1) < 0 if and only if |〈z,n∗1〉| < |〈z, P−1(n∗3)〉|,

• Im(w1) > 0 if and only if |〈w,n∗3〉| < |〈w, P (n∗1)〉|,

• Im(eiφz1) > 0 if and only if |〈z,n∗0〉| < |〈z, J−1(n∗0)〉|,

• Im(e−iφw1) < 0 if and only if |〈w,n∗0〉| < |〈w, J(n∗0)〉|,

• Im(z2) > 0 if and only if |〈z,n∗2〉| < |〈z, R−11 (n∗3)〉|,

• Im(e−iθz2) < 0 if and only if |〈z,n∗3〉| < |〈z, R1(n∗2)〉|,

• Im(w2) > 0 if and only if |〈w,n∗1〉| < |〈w, R−12 (n∗2)〉|,

• Im(e−iθw2) < 0 if and only if |〈w,n∗2〉| < |〈w, R2(n∗1)〉|.

The proof of the lemma goes simply by calculation. We will show just the first case
and the others ones are done in similar ways. This is very similar as the proof of the
equivalent statement for Livné lattices in [Par06].

Proof. Let’s take

n∗1 =

e−iφ sinφ+sin(θ−φ)
sin θ

0
1


and

P−1(n∗3) = P−1

0
1
1

 =

eiφ sinφ+sin(θ−φ)
sin θ
0
1

 .
It is immediate to verify that n∗1 is a vector normal to L∗1 and n∗3 is normal to L∗3.

Furthermore, we have

|〈z,n∗1〉| =
∣∣∣∣− sinφeiφz1 +

sinφ sin θ

sin(θ + φ)

∣∣∣∣
and

|〈z, P−1(n∗3)〉| =
∣∣∣∣− sinφe−iφz1 +

sinφ sin θ

sin(θ + φ)

∣∣∣∣ .
So, to have |〈z,n∗1〉| < |〈z, P−1(n∗3)〉|, we need to have a point which verifies

−Re(eiφz1) < −Re(e−iφz1), which is equivalent to require that Im(z1) < 0. �

Remark 7.3. By definition, a point is in the polyhedron D if and only if it satisfies all
the conditions on the left hand side in the lemma.

As we mentioned, the lemma explains the name given to the bisectors. In fact, for
example the bisector B(P ) is, by definition, given by Im(z1) = 0, which corresponds, by
the lemma, to the points satisfying

|〈z,n∗1〉| = |〈z, P−1(n∗3)〉|.
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Applying P to both sides of the equality, we get a point in the bisector defined by

|〈w, P (n∗1)〉| = |〈w,n∗3〉|,

which is indeed B(P−1). The sides of the polyhedron are contained in the bisectors. We
will define the side S(T ) to be the one contained in the bisector B(T ) and it will be
obtained by intersecting it with D.

7.3 Ridges and edges of the polyhedron

7.3.1 Useful inequalities

In this section we will present some trigonometric inequalities that will be used all
through the following sections. Some of them are equivalent to the inequalities found in
[Par06] and [BP15].

Lemma 7.4. Let z ∈ H2
C. Then

|z1|2, |w1|2 ≤
sinφ+ sin(θ − φ)

sin(θ + φ)
, and |z2|2, |w2|2 ≤

sinφ

sin(θ + φ)
.

The proof is straightforward considering the condition on the area for points of H2
C,

in a similar spirit as the inequalities in [BP15].
The second useful lemma is the following, divided in two cases according to the values

of p and l, the latter as defined in Section 5 in terms of p and k.

Lemma 7.5. Let z ∈ H2
C. Then we have

1. If p > 6, then
|z1|, |w1| < 1,

2. If l ≥ 0, then
|z2|, |w2| ≤ 1.

Proof. Obviously if the square of the modulus of a coordinate is smaller than 1, so is
the modulus of the coordinate itself. We then just need to prove that the square of such
moduli are smaller than 1. By the previous Lemma 7.4, we have

|z1|2, |w1|2 ≤
sinφ+ sin(θ − φ)

sin(θ + φ)
.

For the first part, we then just need to show that

sinφ+ sin(θ − φ)

sin(θ + φ)
< 1.

But we have

sinφ+ sin(θ − φ)

sin(θ + φ)
=

sinφ− 2 sinφ cos θ

sin(θ + φ)
+ 1 = 1− sinφ

sin(θ + φ)
(2 cos θ − 1) < 1,
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where the last inequality comes from the fact that sinφ
sin(θ+φ)(2 cos θ − 1) is positive when

0 < θ < π
3 . Since θ = 2π

p , this is the case when p > 6, as required.
For the second inequality, by the same Lemma 7.4, we just need to prove that

sinφ

sin(θ + φ)
≤ 1.

But this is true as long as sinφ ≤ sin(θ + φ). Moreover, this condition is equivalent to
the statement

θ + φ ≤ π − φ⇐⇒ 0 ≤ π − 2φ− θ ⇐⇒ 0 ≤ 2π

2
− 2π

k
− 2π

p
⇐⇒, 0 ≤ l

where the second equivalence comes from the fact that θ = 2π
p , φ = π

k and 1
l = 1

2 −
1
p −

1
k .

This implies that the condition in the second inequality corresponds to l ≥ 0 and hence
we are done. �

7.3.2 Ridges

In this section we will present the dimension 2 facets of our polyhedron, i.e. the
ridges. We will divide the ridges in two types. The first type of ridge is obtained by
intersecting two bisectors containing either the vertex z1 or z2 in their intersection. We
will get from these intersections some pentagonal ridges and some triangular ones. The
former will be contained in Lagrangian planes, while the latter are contained in complex
lines.

The second type of ridge comes from the intersection of bisectors defined by one
condition on the z-coordinates and one on the w-coordinates. We will again get some
triangular ridges, contained in complex lines, but this time we will also get hexagonal
ridges, contained in Giraud discs.

We will name the ridges according to the following convention. The ridge named
F (T, S), for T, S ∈ {P, P−1, J, J−1, R1, R

−1
1 , R2, R

−1
2 }, will be the ridge contained in the

intersection of the bisector B(T ) and B(S).
The following table summarizes the ridges of the first type. In the first group there

are ridges in the intersection of two bisectors, both containing the vertex z1 (in other
words, bisectors defined by conditions on the z-coordinates). In the second group are
ridges contained in two bisectors defined by conditions on the w-coordinates. The last
column says if the ridge is contained in a complex line, marked with S as it is a common
slice of the two bisector, or in a Lagrangian plane, marked with M because it is a common
meridian of the two bisectors.
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Ridge Vertices in the ridge Coordinates
F (P, J) z1, z9, z12 z1 = 0 S

F (R1, R
−1
1 ) z1, z3, z6 z2 = 0 S

F (P,R1) z1, z3, z4, z9, z10 Im(z1) = Im(z2) = 0 M
F (P,R−11 ) z1, z3, z5, z12, z13 Im(z1) = Im(e−iθz2) = 0 M
F (J,R1) z1, z6, z7, z9, z11 Im(eiφz1) = Im(z2) = 0 M
F (J,R−11 ) z1, z6, z8, z12, z14 Im(eiφz1) = Im(e−iθz2) = 0 M
F (P−1, J−1) z2, z8, z14 w1 = 0 S
F (R2, R

−1
2 ) z2, z4, z10 w2 = 0 S

F (P−1, R2) z2, z4, z5, z13, z14 Im(w1) = Im(w2) = 0 M
F (P−1, R−12 ) z2, z3, z4, z6, z8 Im(w1) = Im(e−iθw2) = 0 M
F (J−1, R2) z2, z9, z10, z12, z14 Im(e−iφw1) = Im(w2) = 0 M
F (J−1, R−12 ) z2, z7, z8, z10, z11 Im(e−iφw1) = Im(e−iθz2) = 0 M

The second type of ridges are the ones not containing the vertices z1 or z2 and they
are listed in the following table. In this case the ridges are contained either in a Giraud
disc or in a complex line. The last column of the table will hence have a G in the first
case and, as before, an S in the latter.

Ridge Vertices in the ridge Coordinates
F (P,R2) z4, z5, z9, z10, z12, z13 Im(z1) = Im(w2) = 0 G
F (J, J−1) z7, z8, z9, z11, z12, z14 Im(eiφz1) = Im(e−iφw1) = 0 G
F (R1, R

−1
2 ) z3, z4, z6, z7, z10, z11 Im(z2) = Im(e−iθw2) = 0 G

F (R−11 , P−1) z3, z5, z6, z8, z13, z14 Im(e−iθz2) = Im(w1) = 0 G
F (P, P−1) z3, z4, z5 Im(z1) = Im(w1) = 0 S
F (J,R−12 ) z6, z7, z8 Im(eiφz1) = Im(e−iθw2) = 0 S
F (R1, J

−1) z9, z10, z11 Im(z2) = Im(e−iφw1) = 0 S
F (R−11 , R2) z12, z13, z14 Im(e−iθz2) = Im(w2) = 0 S

From now on the ridges contained in a common slice will be called S-ridges, the ones
contained in a meridian will be the M-ridges and the ones contained in a Giraud disk
will be the G-ridges.

7.3.3 Edges

We so far discussed most facets of the polyhedron: the vertices, the ridges, the sides.
In this section we will present the last missing ones, the 1-dimensional facets of D, called
edges. The edge between two vertices zi and zj will be denoted by γi,j = γj,i. The edges
of the polyhedron D arise as 1-dimensional intersection of three or more sides. In the
following table we will list them, pointing out in which ridges they are contained.

Edge S-ridge M-ridge M-ridge G-ridge G-ridge
γ1,3 F (R1, R

−1
1 ) F (P,R1) F (P,R−11 )

γ1,6 F (R1, R
−1
1 ) F (J,R1) F (J,R−11 )

γ1,9 F (P, J) F (P,R1) F (J,R1)

γ1,12 F (P, J) F (P,R−11 ) F (J,R−11 )
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γ2,4 F (R2, R
−1
2 ) F (P−1, R−12 ) F (P−1, R2)

γ2,8 F (P−1, J−1) F (P−1, R−12 ) F (J−1, R−12 )

γ2,10 F (R2, R
−1
2 ) F (J−1, R2) F (J−1, R−12 )

γ2,14 F (P−1, J−1) F (P−1, R2) F (J−1, R2)

γ5,13 F (P,R−11 ) F (P−1, R2) F (P,R2) F (R−11 , P−1)

γ7,11 F (J,R1) F (J−1, R−12 ) F (J, J−1) F (R1, R
−1
2 )

γ9,10 F (R1, J
−1) F (P,R1) F (J−1, R2) F (P,R2)

γ3,4 F (P, P−1) F (P,R1) F (P−1, R−12 ) F (R1, R
−1
2 )

γ6,8 F (J,R−12 ) F (J,R−11 F (P−1, R2) F (R−11 , P−1)

γ12,14 F (R−11 , R2) F (J,R−11 ) F (J−1, R2) F (J, J−1)

γ4,10 F (R2, R
−1
2 ) F (P,R1) F (P,R2) F (R1, R

−1
2 )

γ8,14 F (P−1, J−1) F (J,R−11 ) F (J, J−1) F (R−11 , P−1)
γ9,12 F (P, J) F (J−1, R2) F (P,R2) F (J, J−1)

γ3,6 F (R1, R
−1
1 ) F (P−1, R−12 ) F (R1, R

−1
2 ) F (R−11 , P−1)

γ13,14 F (R−11 , R2) F (P−1, R2) F (R−11 , P−1)

γ12,13 F (R−11 , R2) F (P,R−11 ) F (P,R2)

γ10,11 F (R1, J
−1) F (J−1, R−12 ) F (R1, R

−1
2 )

γ9,11 F (R1, J
−1) F (J,R1) F (J, J−1)

γ7,8 F (J,R−12 ) F (J−1, R−12 ) F (J, J−1)

γ6,7 F (J,R−12 ) F (J,R1) F (R1, R
−1
2 )

γ4,5 F (P, P−1) F (P−1, R2) F (P,R2)

γ3,5 F (P, P−1) F (P,R−11 ) F (R−11 , P−1)

The edges verify the following proposition:

Proposition 7.6. Each edge γi,j of the polyhedron is a geodesic segment joining the two
vertices zi and zj.

Proof. We claim that each edge is contained in the common intersection of at least two
totally geodesic subspaces of two bisectors. This implies that such edge is a geodesic arc.
Remember, from Section 2.3, that slices and meridians are totally geodesic subspaces of
bisectors.

To prove the claim, let us consider for each edge the ridges it is contained in, as in the
previous table. Just looking at the list we can easily remark the following information:

• Each edge containing either z1 or z2 is contained in two M-ridges and one S-ridge;

• Two edges, namely γ7,11 and γ5,13, are contained in two M-ridges and two G-ridges;

• All other edges are contained in an S-ridge, an M-ridge and a G-ridge; some of
them are contained also in one more ridge, that is either an M-ridge or a G-ridge.

�

Remark 7.7. For the edges containing either z1 or z2 we have additional information.
Each of these edges is contained in two M-ridges of the same bisector. This implies that
such edges are in the spine of the bisectors.
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7.3.4 Other bisector intersections

We will now analyse all the other intersections between pairs of bisectors, to show
that the ones we listed in Section 7.3.2 are the only possible ridges. We will first analyse
certain bisector intersections which are made of the union of two edges of the polyhedron.
In all the cases there will be three vertices inside the intersection and we will prove that
the intersection actually consist in each case of the union of the only two edges connecting
two of these points to a central one. We remark that we are always considering the parts
of the intersection that are inside or on the boundary of our polyhedron.

The proofs for the following propositions go on the lines of the ones that can be found
in the appendix of [Par06] and in [BP15]. For each case we will give one example and
the others will be done in the exact same way.

Proposition 7.8. The following bisector intersections consist of the union of two edges:

B(P ) ∩B(J−1) = γ10,9 ∪ γ9,12, B(J−1) ∩B(R−11 ) = γ8,14 ∪ γ14,12,
B(P ) ∩B(R−12 ) = γ3,4 ∪ γ4,10, B(J) ∩B(R2) = γ9,12 ∪ γ12,14,
B(R1) ∩B(R2) = γ4,10 ∪ γ10,9, B(J) ∩B(P−1) = γ6,8 ∪ γ8,14,
B(R1) ∩B(P−1) = γ4,3 ∪ γ3,6, B(R−11 ) ∩B(R−12 ) = γ3,6 ∪ γ6,8.

Proof. Let us consider the intersection B(P ) ∩ B(J−1) and a point z ∈ D in it. It
contains the three vertices z9, z10, z12. From the table of the sides we can easily see that
all three belong also to B(R2), which implies that also z is in B(R2).

Now, the coordinates of a point in B(P ) ∩ B(J−1), satisfy w1 = ueiφ and z1 = x.
Using then the formulas for w1 as given in (9) and the one for z1 as given in (11), we
have

ueiφ =
−xeiφ sin θ − z2e−iθ(sinφ+ sin(θ − φ)) + sinφ+ sin(θ − φ)

−x sin(θ + φ)− z2e−iθ sin(θ + φ) + sinφ+ e−iφ sin θ
,

x =
−u sin θ − w2(sinφ+ sin(θ − φ)) + sinφ+ sin(θ − φ)

−u sin(θ + φ)eiφ − sin(θ + φ)w2 + sinφ+ eiφ sin θ
.

We can solve the equations and find formulas for z2 and w2. They will be as follows.

z2 = eiθ
xueiφ sin(θ + φ)− u(eiφ sinφ+ sin θ)− xeiφ sin θ + sinφ+ sin(θ − φ)

sin(θ − φ) + sinφ− ueiφ sin(θ + φ)
,

w2 =
xueiφ sin(θ + φ)− x(eiφ sin θ + sinφ)− u sin θ + sinφ+ sin(θ − φ)

sinφ+ sin(θ − φ)− x sin(θ + φ)
.

The condition for z to be also in B(R2) gives us that Im(w2) = 0. We can hence
apply this to the expression for w2 that we just found and we get

Imw2 =
x sinφ(u sin(θ + φ)− sin θ)

sinφ+ sin(θ − φ)− x sin(θ + φ)
= 0.

In order for this to be true we need the numerator to be 0 and since sinφ 6= 0 for our
values of φ, then we have either

x = 0, or u sin(θ + φ)− sin θ = 0

⇐⇒ u =
sin θ

sin(θ + φ)
.
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This means that either z1 = 0 or w1 = eiφ sin θ
sin(θ+φ) . In the first case, the condition

implies that z ∈ B(J) too, so it is on the edge γ9,12. In the second case the condition
implies that we are on the line L∗3. But then, in the table defining the lines, we can read
the z-coordinates of such lines and see that this implies that z2 ∈ R. Then z ∈ B(R1)
and hence we are on the edge γ10,9. �

In some of the ridges contained in a complex line the intersection actually consists
of the union of a triangle, which is the ridge itself, and an extra edge connected to
one of the vertices of the ridge and not belonging to it. We will now see this for the
remaining intersections. The proposition will state that if we have a point in the bisector
intersection, but not belonging to the complex line containing the ridge, then it is on an
edge with one vertex on the ridge and one outside.

Proposition 7.9. The bisectors verify:

• A point z in the bisectors intersection B(P )∩B(P−1), with z1 6= sinφ+sin(θ−φ)
sin(θ+φ) , w1 6=

sinφ+sin(θ−φ)
sin(θ+φ) , belongs to the edge γ5,13.

• A point z in the bisectors intersection B(J) ∩B(R−12 ), with z1 6= e−iφ sin θ
sin(θ+φ) and

w2 6= eiθ sinφ
sin(θ+φ) , belongs to the edge γ7,11.

• Moreover, a point z in the bisectors intersection B(R2) ∩ B(R−11 ), with z2 6=
eiθ sinφ

sin(θ+φ) and w2 6= sinφ
sin(θ+φ) , belongs to the edge γ5,13.

• Finally, a point z in the bisectors intersection B(R1) ∩B(J−1), with z2 6= sinφ
sin(θ+φ)

and w1 6= eiφ sin θ
sin(θ+φ) , belongs to the edge γ7,11.

Proof. Take a point z ∈ B(P ) ∩ B(P−1). The condition z1 6= sinφ+sin(θ−φ)
sin(θ+φ) , w1 6=

sinφ+sin(θ−φ)
sin(θ+φ) means that we are not on the line L∗0, so we are out of the triangular

ridge of vertices z3, z4, z5. Since we are on the intersection B(P ) ∩ B(P−1), then both
z1 and w1 have to be real. We will hence write z1 = x and w1 = u. The conditions in
the hypothesis implies that we have x 6= sinφ+sin(θ−φ)

sin(θ+φ) , u 6= sinφ+sin(θ−φ)
sin(θ+φ) .

Using the formulas for z1 in terms of w1 and w2 as given by (11) and the one for w1

in terms of z1 and z2 as given in the formula (9), we can write:

x =
−ue−iφ sin θ − w2(sinφ+ sin(θ − φ)) + sinφ+ sin(θ − φ)

−u sin(θ + φ)− w2 sin(θ + φ) + sinφ+ eiφ sin θ
,

u =
−xeiφ sin θ − z2e−iθ(sinφ+ sin(θ − φ)) + sinφ+ sin(θ − φ)

−x sin(θ + φ)− z2e−iθ sin(θ + φ) + sinφ+ e−iφ sin θ
.

By solving the equations we can find formulas for z2 and w2 and we get the following:

w2 =
xu sin(θ + φ)− x(sinφ+ eiφ sin θ)− ue−iφ sin θ + sinφ+ sin(θ − φ)

sinφ+ sin(θ − φ)− x sin(θ + φ)
,

z2 = eiθ
xu sin(θ + φ)− xeiφ sin θ − u(sinφ+ e−iφ sin θ) + sinφ+ sin(θ − φ)

sinφ+ sin(θ − φ)− u sin(θ + φ)
.
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Taking only the imaginary part of both expressions, we have

0 ≥ Im(e−iθz2) =
sin θ sinφ(u− x)

sinφ+ sin(θ − φ)− u sin(θ + φ)
,

0 ≤ Im(w2) =
sin θ sinφ(u− x)

sinφ+ sin(θ − φ)− x sin(θ + φ)
,

where the first inequalities come from Lemma 7.2, which holds because we are talking
about points on the boundary of the polyhedron.

We claim that the two quantities on the right side have same sign. In this case,
since by the lemma they also need to have opposite sign, they must both be 0. But this
means that the initial point must have also Im(e−iθz2) = Im(w2) = 0 and hence be in
the bisectors B(R−11 ) and B(R2), which implies that it is on the edge γ5,13.

To show that the two quantities have the same sign, it is enough to show that the
two denominators have same sign. The other informations we have about points in the
polyhedron, is that Im(z2) ≥ 0 and Im(e−iθw2) ≤ 0. From the second inequality, we can
write

0 ≥ Im(e−iθw2) =
sinφ(u− 1)(sinφ+ sin(θ − φ)− x sin(θ + φ))

sinφ+ sin(θ − φ)− u sin(θ + φ)
.

Since φ is positive and smaller than π, we have that sinφ is positive. Also, by the first
part of Lemma 7.5, u − 1 is negative. For the whole expression to remain negative, the
rest of it must then be positive and hence

sinφ+ sin(θ − φ)− x sin(θ + φ)

sinφ+ sin(θ − φ)− u sin(θ + φ)
≥ 0.

But this implies that the numerator and the denominator must have the same sign and
this concludes our proof. �

In the proof of this proposition, we use Lemma 7.5. In Section 9.1 it will be clear
why only for the values in the lemma that precise analysis of bisectors intersection makes
sense, due to the collapsing of some ridges.

8 Main theorem

In this section, we will use the Poincaré polyhedron theorem to prove that Γ =
〈R1, R2, A1〉 is discrete, give a presentation for it and prove that D constructed in the
previous sections is its fundamental domain. More precisely, we will prove the following:

Theorem 8.1. Let Γ be the subgroup of PU(H) characterised by p and k as explained
in Section 3 and such that the two parameters have any of the values in Table 1. Then
the polyhedron D of the previous section is a fundamental domain for Γ, up to making
some vertices collapse according to the following rule:

27



Value of p Value of k Fundamental polyhedron

0 < p ≤ 6
(d < 0)

k ≤ 2p
p−2

(l < 0)
(large phase shift)

The polyhedron D constructed in Sec-
tion 7 with triples of vertices z3, z4, z5;
z6, z7, z8; z9, z10, z11 and z12, z13, z14 each
collapsed to a single vertex is a funda-
mental domain. This is the same as the
polyhedron constructed in [BP15].

0 < p ≤ 6
(d < 0)

k > 2p
p−2

(l > 0)
(small phase shift)

The polyhedron D constructed in Section
7 with triples of vertices z3, z4, z5 each
collapsed to a single vertex is a funda-
mental domain. This is the same poly-
hedron obtained in [DFP05], as we will
explain in Section 9.2

p > 6
(d > 0)

k ≤ 2p
p−2

(l < 0)
(large phase shift)

The polyhedron D constructed in Sec-
tion 7 with triples of vertices z6, z7, z8;
z9, z10, z11 and z12, z13, z14 each collapsed
to a single vertex is a fundamental do-
main. This is the same as the polyhedron
constructed in [Par06].

p > 6
(d > 0)

k > 2p
p−2

(l > 0)
(small phase shift)

The polyhedron D constructed in Section
7 is a fundamental domain.

The table in the theorem is strictly related to Table 1. The first three groups, in fact,
correspond exactly to the values of the Deligne-Mostow lattices of first, second and third
(Livné lattices) type presented in the table. Lattices of the fourth and fifth type are in
the fourth line of the table in the theorem.

Remark 8.2. The condition k Q 2p
p−2 is equivalent to saying that the phase shift param-

eter, as described in Section 3, is smaller or greater than 1
2 −

1
p .

We also remark that the equality cases have to be treated a bit more carefully. For p =
6 the vertex obtained collapsing z3, z4, z5 is on the boundary of the complex hyperbolic
space. These values are discussed in [BP15] and can be included in the case of the lower
values. The same discussion is true for the critical value of k and the first group is the
only case where such an equality actually holds.

8.1 Group presentations and Euler characteristic

To prove Theorem 8.1 we will use the Poincaré polyhedron theorem. Its power lies
not only in the fact that it allows to prove that D is a fundamental domain for Γ, but
because it also gives a presentation for the group.

Theorem 8.3. Suppose (p, k) is one of the pairs in Table 1. Then the group Γ generated
by the side pairing maps of D, i.e. P, J,R1, R2 as described has presentation

Γ =

〈
J, P,R1, R2 :

J3 = P 3d = Rp1 = Rp2 = (P−1J)k = (R2R1J)l = I,
R2 = PR1P

−1 = JR1J
−1, P = R1R2

〉
,
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with each relation in the first line holding only when the order of the map is positive and
finite.

A proof of this theorem comes out automatically while using the Poincaré polyhedron
theorem to prove Theorem 8.1 and is given in Section 8.3.2.

To conclude this section, we calculate the orbifold Euler characteristic χ(H2
C/Γ). The

standard Euler characteristic is calculated taking the alternating sum of the number of
cells of each dimension. As explained in [Par09], the orbifold Euler characteristic is
calculated similarly, with the difference that now each orbit of cells is counted with a
weight, which is the reciprocal of the order of its stabiliser. To do that we consider the
following table, in which we consider the polyhedron D constructed in Section 7 and we
list the orbits of facets by dimension, calculate the stabiliser of the first element in the
orbit and give its order.

Orbit of the facet Stabiliser Order
z1, z2 〈A1, R1〉 kp

z3, z4, z5 〈P 3, R1〉 pd
z6, z10, z13 〈A′1, R1〉 pl

z8, z7, z9, z11, z12, z14 〈A1, A
′
1〉 kl

γ1,3, γ2,4 〈R1〉 p
γ1,6, γ2,10 〈R1〉 p

γ3,6, γ5,13, γ4,10 〈R1〉 p
γ2,8, γ1,9, γ1,12, γ2,14 〈A1〉 k
γ7,11, γ9,12, γ8,14 〈JR1〉 2k

γ9,10, γ12,13, γ6,7, γ13,14, γ6,8, γ10,11 〈A′2〉 l

γ7,8, γ12,14, γ9,11 〈JR−11 〉 2l
γ4,5, γ3,5, γ3,4 〈R2P 〉 2d

F (P, J), F (P−1, J−1) A1 k

F (R1, R
−1
1 ) R1 p

F (R2, R
−1
2 ) R2 p

F (P,R1), F (P,R−11 ), F (P−1, R2), F (P−1, R−12 ) 1 1
F (J,R1), F (J,R−11 ), F (J−1, R2), F (J−1, R−12 ) 1 1

F (P,R2), F (R1, R
−1
2 ), F (R−11 , P−1) 1 1

F (J,R−12 ), F (R1, J
−1), F (R−11 , R2) A′1 l

F (J, J−1) J 3
F (P, P−1) P 3d

S(J), S(J−1) 1 1
S(R1), S(R−11 ) 1 1
S(R2), S(R−12 ) 1 1
S(P ), S(P−1) 1 1

D 1 1

The vertices are all contained in two orthogonal complex lines, which implies that
the stabiliser is a direct product of two cyclic groups generated each by the complex
reflections in these lines. The ridges are stabilised by the cycle relations, while the sides
are fixed only by the identity, as the side pairing maps send the sides one in the other.
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To find the stabiliser of the edges requires slightly more work. If the map T stabilises
an edge, then either it will fix the endpoints or it will swap them. If we can find a map
that swaps them, then it will generate the maps that fix them. If the vertices are not in
the same orbit, then there is no map that swaps them and analysing the action of the
side pairing maps (i.e. the generators of the group) of the vertices, we can verify that
the stabilisers are as in the table. If they are, the same analysis will tell us if there are
maps swapping the endpoints or just fixing them. In this way it is easy to check that
the stabilisers are the above.

From the table it follows that the Euler orbifold characteristic is

χ(H2
C/Γ) =

1

kp
+

1

pd
+

1

pl
+

1

kl
− 1

p
− 1

p
− 1

p
− 1

k
− 1

2k
− 1

l
− 1

2l
− 1

2d

+
1

k
+

1

p
+

1

p
+ 1 + 1 + 1 +

1

l
+

1

3
+

1

3d

=
1

kp
+

1

2p
− 3

p2
+

1

2p
− 1

p2
− 1

pk
+

1

2k
− 1

pk
− 1

k2

− 1

p
− 1

2k
− 1

4
+

1

2p
+

1

2k
− 1

4
+

3

2p
+

1

3
+

1

6
− 1

p

= − 4

p2
− 1

pk
− 1

k2
+

1

2k
+

1

p

=
p2 + 12p− 60

16p2
− t2

4
, (15)

where for the second equality we used 1
l = 1

2 −
1
p −

1
k and 1

d = 1
2 −

3
p , while in the last

one we used t = −1
2 + 1

p + 2
k .

This value is coherent with the one found by Sauter in Theorem 5.3 of [Sau90], up to
a scalar multiplicative factor. This factor is related to the fact that he considers different
groups related to the ones we have. In Section 7 of [Sau90] he explains the exact relation
between the different groups he considers and shows how the multiplicative factor appears
by calculating the volume for the groups we are considering, too. Let us remark that
this value is also consistent with those found in [Par09] for the polyhedra obtained by
collapsing vertices as in Theorem 8.1.

8.2 Poincaré’s polyhedron theorem

We will now present the version of the Poincaré polyhedron theorem that we will use,
following the one in [Par06].

Definition 8.4. A combinatorial polyhedron is a cellular space homeomorphic to a com-
pact polytope, with ridges contained in exactly two sides. A polyhedron D is the realisa-
tion of a combinatorial polyhedron as a cell complex in a manifold X. A polyhedron is
smooth if its cells are smooth. By convention, we will take the polyhedron to be open.

For the Poincaré polyhedron theorem we will need some conditions on the sides and on
the ridges of the polyhedron. We will now present such conditions. A smooth polyhedron
satisfying all of them is called a Poincaré polyhedron.
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Let D be a smooth polyhedron in X with sides Sj , side pairing maps Tj ∈ Is(X) such
that:

(S.1) For each side Si of D, there is another side Sj of D and a side-pairing map Ti
such that Ti(Si) = Sj .

(S.2)[reflection relation] If Ti(Si) = Sj , then Ti = T−1j . This implies that if i = j,
then T 2

i = Id, so if a map sends a bisector to itself, then it fixes it pointwise. The
relations Ti = T−1j are called reflection relations.

(S.3) T−1i (D) ∩D = ∅.
(S.4) T−1i (D) ∩D = Si.
(S.5) There are only finitely many sides in D and each side contains only finitely

many ridges.
(S.6) There exists δ > 0 such that for each pair of disjoint sides, they are at distance

at least δ.
To list the conditions on the ridges we first need to explain what the cycle transfor-

mations are. Let S1 be a side of D and F be a ridge in the boundary of S1. Let also T1
be the side pairing map associated to S1 and consider the image under T1 of the ridge
F . As we remarked in the definition, each ridge is contained in the boundary of exactly
two sides. T1(F ) will hence be in the boundary of T1(S1), but also in the one of some
other side S2. We call T2 the side-pairing map associated to S2 and we apply it to the
ridge T1(F ). Iterating this procedure, we get a sequence of ridges, a sequence of sides
Si and a sequence of maps Ti. Since we know that the amounts of sides and of ridges
are finite, these sequences must be periodic. Let k be the smallest integer such that all
three sequences are periodic of period k. Then Tk ◦ · · · ◦ T2 ◦ T1(F ) = F and we call
Tk ◦ · · · ◦ T2 ◦ T1 the cycle transformation at the ridge F . Now, for T = Tk ◦ · · · ◦ T2 ◦ T1
and m an integer, we define:

U0 = 1, U1 = T1, . . . Uk−1 = Tk−1 ◦ · · · ◦ T2 ◦ T1,
Uk = T, Uk+1 = T1 ◦ T . . . U2k−1 = Tk−1 ◦ · · · ◦ T2 ◦ T1 ◦ T,

...
...

...

U(m−1)k = Tm−1, U(m−1)k+1 = T1 ◦ Tm−1, . . . Umk−1 = Tk−1 ◦ · · · ◦ T1 ◦ Tm−1.

The ridge conditions are then the following.
(F.1) Every ridge is a submanifold of X, homeomorphic to a ball of codimension 2.
(F.2) For each ridge F with cycle transformation T , there exists an integer ` such

that T ` restricted to F is the identity. This means that a power of T fixes F pointwise.
(F.3)[cycle relations] For each ridge F with cycle transformation T , it exists an integer

m so that (T `)m is the identity on the whole space X. Moreover, for the Ui defined
previously, the preimages U−1i (D), for i = 0, . . . ,m`k − 1 are disjoint and the closures
of such polyhedra U−1i (D) cover a neighbourhood of the interior of F . In this case we
say that D and its images tessellate a neighbourhood of F . The relations T `m = Id are
called cycle relations.

The Poincaré polyhedron theorem now states

Theorem 8.5. Let D be a Poincaré polyhedron with side-pairing transformations Tj ∈ Σ,
satisfying side conditions (S.1)–(S.6) and ridge conditions (F.1)–(F.3). Then the group
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Γ generated by the side-pairing transformations is a discrete subgroup of Is(X) and D is
a fundamental domain for its action. A presentation for such group is given by

Γ =

〈
Σ:

reflection relations
cycle relations

〉
.

8.3 Proof of the main Theorem 8.1

In this section we will prove that all the hypothesis of the Poincaré polyhedron the-
orem hold and explain how to use it to prove Theorem 8.1.

8.3.1 Side pairing maps

Let us now consider the maps J, P,R1 and R2. These maps pair the eight sides of
the polyhedron, as shown in Figure 8. In this section we want to show that these side
pairing maps verify the conditions (S.1)–(S.6).

Conditions (S.1), (S.2), (S.5) follow clearly from our construction of the sides. Also,
(S.6) is an empty condition, because each pair of sides of our polyhedron intersects. The
following proposition shows that conditions (S.3) and (S.4) are verified by the sides of D.

Proposition 8.6. Let T be one of J±1, P±1, R±11 and R±12 . Then T−1(D) ∩ D = ∅.
Moreover, T−1(D) ∩D = S(T ).

Proof. Let us take a side S(T ). By definition it is contained in a bisector B(T ). By
Lemma 7.2, there exist two vertices zi and zj such that B(T ) is the set of points equidis-
tant from zi and T−1(zj). By applying T we get that T (B(T )) is B(T−1), which is the
bisector equidistant from T (zi) and zj . By Remark 7.3, the points of the polyhedron are
closer to zi than to T−1(zj), while the ones of T (D) are closer to T (zi) than to zj . This
implies that T−1(D) ∩D = ∅.

If we now also consider the boundary of the polyhedron and we pass to T−1(D) ∩
D = S(T ), we are considering the equality cases in Lemma 7.2. But the lemma itself
guarantees that the intersections, which corresponds to the equality cases of the lemma,
are always contained in B(T ). Since by definition S(T ) = D ∩B(T ), we are done. �

8.3.2 Cycle relations

It remains now to show that the ridges of the polyhedron D satisfy conditions (F.1)–
(F.3). This will be done in this and next section. The first condition is straightforward
in this case. In fact it is easy to see that the edges in a ridge intersect so that they
bound a polygon, giving hence a ridge homeomorphic to a ball. In the following table
we summarise the cycle relations coming from Properties (F.2) and (F.3). Proving them
is a simple calculation of the action of the transformations on the bisectors.
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B(J) B(J-1)
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-1)

B(P-1)

B(R1)

B(R2)

B(P)

Figure 8: The sides of the polyhedron with the corresponding side pairing maps.
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Ridges in the cycle Transformation ` m

F (P, J), F (P−1, J−1) P−1J 1 k

F (R1, R
−1
1 ) R1 1 p

F (R2, R
−1
2 ) R2 1 p

F (P,R1), F (P,R−11 ), F (P−1, R2), F (P−1, R−12 ) R−11 P−1R2P 1 1
F (J,R1), F (J,R−11 ), F (J−1, R2), F (J−1, R−12 ) R−11 J−1R2J 1 1

F (P,R2), F (R1, R
−1
2 ), F (R−11 , P−1) R2P

−1R1 1 1
F (J,R−12 ), F (R1, J

−1), F (R−11 , R2) R2R1J 1 l

F (J, J−1) J 3 1
F (P, P−1) P 3 d

This table gives immediately a proof the presentation as given in Theorem 8.3, as they
correspond to the cycle relations in the Poincaré polyhedron theorem and the reflection
relations are empty. The second part of property (F.3) will be proved in the next section.

8.3.3 Tessellation around the ridges

We now want to prove that the images of the polyhedron under the side paring maps
tessellate around neighbourhoods of the interior of the ridges. This is proved in different
ways, depending on whether the ridges described in Section 7.3.2 are contained in a
Giraud disc, in a Lagrangian plane or in a complex line.

Tessellation around ridges contained in a Giraud disc. The easiest case to treat
is the tessellation around the ridges F (J, J−1), F (R1, R

−1
2 ), F (P,R2) and F (P−1, R−11 ),

contained in Giraud discs. The main tool for this is Lemma 7.2. The proof goes along
the lines of the one in [Par06].

Proposition 8.7. We have the following:

• The polyhedron D and its images under J and J−1 tessellate around the ridge
F (J, J−1).

• The polyhedron D and its images under R−11 and R2 tessellate around the ridge
F (R1, R

−1
2 ).

• Moreover, the polyhedron D and its images under R−12 and P−1 tessellate around
the ridge F (P,R2).

• Finally, the polyhedron D and its images under R1 and P tessellate around the
ridge F (P−1, R−11 ).

Proof. The proof consists in dividing the space into points that are closer to one of L∗0,
J(L∗0) or J−1(L∗0) and showing that D and its images under J are contained each in a
different one of these domains and coincide with them around the ridge F (J, J−1).

More formally, by Lemma 7.2 we know that D is contained in the part of space closer
to L∗0 than to its images under J and J−1. We can hence write

D ⊂ {z ∈ H2
C : |〈z,n∗0〉| < |〈z, J(n∗0)〉|, |〈z,n∗0〉| < |〈z, J−1(n∗0)〉|}. (16)
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For a point z ∈ J±1(D), we also have J∓1(z) ∈ D. Applying the conditions in (16) to
J∓(z), we get

|〈J∓1(z),n∗0〉| < |〈J∓1(z), J(n∗0)〉|, |〈J∓1(z),n∗0〉| < |〈J∓1(z), J−1(n∗0)〉|.

By applying J±1 to all terms of (16), we obtain

J±1(D) ⊂ {z ∈ H2
C : |〈z, J±1(n∗0)〉| < |〈z,n∗0〉|, |〈z, J±1(n∗0)〉| < |〈z, J∓1n∗0〉|}.

Clearly, we used the fact that J has order 3, so J2 = J−1. It is obvious that D,J(D)
and J−1(D) are disjoint.

The ridge we are considering is characterized by Im(eiφz1) = Im(e−iφw1) = 0. We
take a neighbourhood of the interior small enough, so that it does not meet the other sides
of D. Then a point of U is in D if and only if it is closer to L∗0 than to its images. This
is because if we consider the z1 and w1 coordinates small enough, D actually coincides
with the set described in (16) and same for the images. From this, it’s easy to see that
D, J(D) and J−1(D) tessellate around U .

The cycle transformation is

F (J, J−1)
J−→ F (J, J−1).

The other points of the proof are done in the same way, by taking the different images
mentioned in the statement and using the same proof strategy. �

Tessellation around ridges contained in Lagrangian planes. The second type are
the ridges F (P,R1), F (P,R−11 ), F (J,R1) and F (J,R−11 ), contained in Lagrangian planes.
Again, the proofs are similar to the ones in [Par06].

They contain either vertex z1 or z2 and they are defined by conditions only on the
z-coordinates or on the w-coordinates. It is enough to show that the polyhedron and its
images under the side pairing maps tessellate around the ridges containing the vertex z1.
By applying ι we will have the same for ridges containing z2.

Proposition 8.8. The polyhedron D and its images under R−11 , P−1 and R−11 P−1 tes-
sellate around the ridge F (P,R1).

Proof. Considering that w = P−1(z) and that applying R1 means to add θ to the argu-
ment of z2, we can prove the signs in the following table.

Image of D Im(z1) Im(eiφz1) Im(z2) Im(e−iθz2)

D - + + -
R−11 (D) - + - -
P−1(D) + + + -

R−11 P−1(D) + + - -

We can see from the table that each pair of images have some coordinates whose
imaginary part has different sign. This clearly implies that they are disjoint.

Now, the ridge F (P,R1) is characterised by Im(z1) = Im(z2) = 0. Let us now consider
a neighbourhood U of the ridge and a point z ∈ U . If z has argument of z1 smaller than 0,
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then D and R−11 cover U , in the respective cases when the argument of z2 and positive or
negative. Similarly, when z has first coordinate of argument bigger than 0, then P−1(D)
and R−11 P−1(D) cover U , when arg(z2) is positive or negative respectively.

The corresponding cycle transformation is

F (P,R1)
P−→ F (P−1, R2)

R2−−→ F (P−1, R−12 )
P−1

−−−→ F (P,R−11 )
R−1

1−−→ F (P,R1).

�

By applying R1, PR1 and P = R−12 PR1 we get similar results for the other ridges in
the cycle, namely F (P,R−11 ), F (P−1, R−12 ) and F (P−1, R2) respectively.

In a similar way, we can also prove

Proposition 8.9. The polyhedron D and its images under R−11 , J−1 = A−11 P−1 and
R−11 A−11 P−1 tessellate around the ridge F (J,R1).

Again, by applying the maps in the cycle transformation, which is

F (J,R1)
J−→ F (J−1, R2)

R2−−→ F (J−1, R−12 )
J−1

−−→ F (J,R−11 )
R−1

1−−→ F (J,R1),

we can get that the tessellation property (F.3) holds also for F (J−1, R2), F (J−1, R−12 )
and F (J,R−11 ).

Tessellation around ridges contained in complex lines. In this section we will
show that the images of D tessellate around the ridges contained in complex lines. We
will divide them in two parts for which we will use slightly different methods.

We will start with the ridges contained in complex lines and defined by conditions ei-
ther on the z-coordinates or on the w-coordinates. These are ridges F (P, J), F (R1, R

−1
1 ),

F (P−1, J−1) and F (R2, R
−1
2 ). From the first two, the others follow by applying ι. We

will again omit the proofs, as they are equivalent to the ones in [Par06]. These proofs
strongly rely on the fact that p and k are integers. In some of the cases that we are
considering, though, k is of the form p/2, with p odd. The proof can be adapted, as we
will explain in Section 8.4.

Proposition 8.10. The polyhedron D and its images under P−1, A1 and A1P
−1 tes-

sellate around the ridge F (P, J). Moreover, the polyhedron D and its images under R1

tessellate around the ridge F (R1, R
−1
1 ).

By applying ι we have equivalent results around F (P−1, J−1) and F (R2, R
−1
2 ).

Moreover, in exactly the same way as in [Par06] we can prove that D and appro-
priate images tessellate around F (P, P−1). The proof is done by showing that in some
coordinates P 3 rotates n∗0 by eiψ, with ψ = 2π

d and d = 2p
p−6 , as in Table 1. At the

same time, P 3 fixes the ridge itself. Then the polyhedron and its images under P and
P−1 will be contained in different sectors for the arguments of at least one of the new
coordinates and they will cover a sector of length ψ. Applying P 3 it will cover a whole
neighbourhood of the ridge by rationality of ψ, since d is always an integer.
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Figure 9: The tessellation around F (R1, J
−1).

The corresponding cycle transformation is

F (P, P−1)
P−→ F (P, P−1).

Finally, we have the last set of ridges.

Proposition 8.11. The polyhedron D and its images under J , JR2, R1R2J and their
compositions tessellate around the ridge F (R1, J

−1).

Proof. The proof works similarly to those for ridges F (P, J) and F (P, P−1). We can in
fact change coordinates as in the latter case, so to have an analogous situation to the
one in the former. In this case though, we will define ψ = 2π

l , for l defined in (5).
First of all, we recall that F (J−1, R1) is contained in L∗3. Furthermore, the map

JR2R1 rotates the normal vector n∗3 by −ψ and it fixes pointwise the ridge. We then
change basis to new coordinates, so that the first coordinate is along the normal vector
to the complex line (up to a minus sign, which will be useful in the calculations) and the
other two are along two vectors spanning the complex line once we pass to projective
coordinates.

The vector in the new basis will hence bez1z2
1

 =
sinφ− sin(θ + φ)z2
sin(θ + φ)− sinφ

 0
−1
−1

+ z1

1
0
0

+
1− z2

sin(θ + φ)− sinφ

 0
sinφ

sin(θ + φ)

 .

We define then the ξ-coordinates to be

ξ1 =
sinφ− sin(θ + φ)z2

1− z2
,

ξ2 =
z1(sin(θ + φ)− sinφ)

1− z2
. (17)

Let us now look at Figure 9. By definition the ridge F (R1, J
−1) is contained in the

intersection of B(R1) and B(J−1). It is clear that on B(R1), since z2 is real, also ξ1 will
be real.
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If we take the ridge F (R−11 , R2), we know that the polyhedron D is as in the first
image of Figure 9. By definition of the bisectors, R2(B(R2)) = B(R−12 ). Also, R2 sends
F (R−11 , R2) to F (J,R−12 ) (see cycle relation below). Then we can apply the map to the
first image and get the second configuration, since F (J,R−12 ) is in B(J) and B(R−12 ) by
definition but also in R2(B(R−11 )) by construction. We can do the same thing applying
J and we get the third configuration in the figure.

We now want to prove that in the argument of the coordinate ξ1, D, J(D) and
JR2(D) make a sector of length ψ. Once we prove this, we can apply an argument as in
8.10 and apply R1. But this gives us the map R1R2J which acts on the ξ coordinates
(ξ1, ξ2) by sending to (e−iψξ1, ξ2), and hence it carries the configuration all around the
ridge and tessellates the space because of rationality of ψ, which comes from the fact
that l is always an integer.

To prove that the length of the sector is ψ, we will prove that the argument of the ξ1
coordinate of a point on JR2(B(R−11 )) is −ψ. This is just a calculation, as it turns out
that

JR2z = JR2

z1z2
1

 = J

− sin θe−iφz1 + (sinφ+ sin(θ − φ))(1− z2)
sinφ(1− z1 − e−iθz2)

− sin(θ + φ)(z1 + z2) + sinφ+ sin θeiφ


=

 2z1 sin2 φ(1− cos θ)
2z2 sin2 φeiφ(cos(θ + φ)− cosφ) + sin2 φ(1− eiθ)(e2iφ − 1)

z2(1− e−iθ) sinφ sin(θ + φ)(e2iφ − 1) + sin2 φ(1− e−iθ)(1− ei(2φ+θ))

 .

Then we can calculate its ξ1 coordinate and we have

ξ1 =
−ei(θ+2φ) sin2 φ(2(1− cos θ)(sinφ− e−iθz2 sin(θ + φ)))

−2 sin2 φ(1− cos θ)e−iθz2 + 2 sin2 φ(1− cos θ)
=

= e−iψ
sinφ− sin(θ + φ)e−iθz2

1− e−iθz2
(18)

If a point z is in B(R−11 ), then its z2 coordinate is z2 = eiθu and hence the previous
expression is

ξ1 = e−iψ
sinφ− sin(θ + φ)u

1− u
.

Clearly, the argument of the new coordinate is −ψ.
The last thing we need to show is that the three images are disjoint. We already

saw that D is disjoint from J(D) and R2(D) in 8.7 and in the equivalent statement of
8.10 for R2, respectively. But then also J(D) and JR2(D) are disjoint because J is an
isometry. To prove the disjointness of D and JR2(D), we look at the expression for the
ξ1 coordinate of a point in D, as in (17), and of a point in JR2(D), as in (18).

To show disjointness, we will show that D and JR2(D) are contained in the sector
where the argument of ξ1 is respectively bigger and smaller than −ψ

2 . To do that we just
need to show that B(J−1) and J(B(R−12 )) = JR2(B(R2)) are as said.

Since both these bisectors are defined by equations on the w-coordinates, it is useful
to rewrite the two equations in terms of these, using Formulae (11) and (12). They will
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be as following. If z ∈ D, then

ξ1 = 2 sin
θ

2
sinφe−i

ψ
2

sin θ − sin(θ + φ)e−iφw1

− sin θe−iφw1 + (sinφ− sin(θ + φ))w2 + sinφ+ sin(θ − φ)
,

with w1 and w2 coordinates of z. We will consider points in B(J−1), so w1 = eiφu, with
u real and we want to show that Im(e−i

ψ
2 ξ1) > 0.

Taking the imaginary part of the expression above, this means requiring that

(sin θ − sin(θ + φ)u)(sin(θ + φ)− sinφ) Im(w2) > 0.

The third term is positive for points in D, while the second one is positive as long as l is
positive, which is the case where the ridge we are tessellating around does not collapse.
The last thing we need is then to prove that in B(J−1) the modulus of w2 remains smaller
than sin θ

sin(θ+φ) . But looking at the structure of the side, as in Figure 8, we can see that
the side is bounded by the complex lines L03 and L∗3, so the modulus of w2 is between
0 and sin θ

sin(θ+φ) .
On the other hand, if z is in JR2(B(R2)), its coordinate will be

ξ1 = 2 sin
θ

2
sinφe−i

ψ
2

sinφ− sin(θ + φ)w2

(sinφ− sin(θ + φ))e−iφw1 − sin θw2 + sin θ
,

with w1 and w2 coordinates of a point in D. As they vary through the possible values,
z varies in JR2(B(D)). Here we consider points in JR2(B(R2)), so where w2 = x, with
x real and we want to show this time that Im(e−i

ψ
2 ξ1) < 0.

We now take the imaginary part of the expression for ξ1 and we obtain that such a
condition is equivalent to requiring that

(sinφ− sin(θ + φ)x)(sin(θ + φ)− sinφ) Im(e−iφw1) < 0.

As before, this reduces to show that the first term is positive and this is true because
of the structure of B(R2), which is contained between L12 and L∗2. This concludes the
proof.

The corresponding cycle transformation is

F (R1, J
−1)

R1−−→ F (R−11 , R2)
R2−−→ F (J,R−12 )

J−→ F (R1, J
−1).

�

By applying the isometries that compose the cycle transformation, we obtain the
tessellation around the last ridges, F (R−11 , R2), F (J,R−12 ) and F (R1, J

−1).

8.4 Polyhedra with extra symmetry

In this section we will describe the particular case when l or k are equal p2 . Considering
k or l is equivalent, since swapping them corresponds to swapping µ1 and µ5 in the ball
quintuple, which geometrically corresponds to choosing whether to have v∗ or v0 in the
origin of the coordinates and will hence give us the same construction. In this case
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the polyhedron has an extra symmetry, because by definition the condition implies that
φ = θ. The pairs (p, k) in our list and satisfying this condition, are (5, 5/2), (6, 3),
(7, 7/2), (8, 4), (9, 9/2), (10, 5), (12, 4) and (18, 3). By Theorem 6.2 in [Sau90], the
lattice (p, p2) is isomorphic to the one of the form (p, 2).

This includes the cases when k is not an integer, which have not been treated pre-
viously because previous proofs for tessellation rely on the fact that k was always an
integer. When tessellating a neighbourhood of F (P, J), in fact, D and P−1(D) are con-
tained in sectors where the argument of z1 is between 0 and φ and between φ and 2φ
respectively. Then, one can apply A1 to the polyhedra and translate of 2φ the sector. In
order to cover exactly all the possible values of the argument of z1 one then needs k to
be an integer.

To avoid this problem, one can use a slightly different version of the same theorem,
namely Poincaré polyhedron theorem for coset decompositions. The statement is very
similar to the one we gave and can be found in [Mos80] and in [DPP16]. The basic
difference is the presence of a finite group Υ < IsH2

C preserving the polyhedron and
compatible with the side pairing maps.

Then one just needs tessellation around one facet in each orbit of the action of Υ
and the cosets of the polyhedron will tessellate the space. This also gives a different
presentation for the group generated by Υ and the side pairings, with the additional
relations given by a presentation of Υ and by the compatibility relations. Here the group
Υ will be a finite cyclic group.

The reason why this approach is reasonable lies in the fact that when k = p
2 , by

definition, φ = θ and hence the configuration space has an extra symmetry. The main
difference is that we do not need then a butterfly move A1, because we can introduce a
move that swaps points v0 and v1 (which now have same cone angle). The new move,
squared, is the same as A1 we used so far. This solves the problem because the new move
acts on the z1 coordinate by rotating by φ instead of 2φ as before, so we just need 2k to
be an integer.

From now on, we will assume we are in the case where k = p
2 , hence φ = θ = 2π

p .
Clearly, the calculations to find vertices, area and moves could be simplified by adding
the relation φ = θ in the equations, but for simplicity we will leave them as they are. We
will have the moves R1 and R2 defined as before, but we will also have an extra move
corresponding to swapping the vertices v0 and v1, as we already mentioned. This new
move, that we will call S1, can be found by requiring that the images under S1 of the
vi’s, which we denote by v′i, satisfy the equations v′3 = v3, v

′
2 = v2, v

′
1 = v0 and v′0 = v−1.

The move is illustrated in Figure 10.
Solving the equations or looking at the geometric meaning of the move, one can

deduce the matrix of S1. The three moves will hence be

R1 =

1 0 0
0 eiθ 0
0 0 1

 , R2 =
1

1− e−iθ

 −e−iθ −1 1
−1 −e−iθ 1

−2 cos θ −2 cos θ 1 + eiθ

 , S1 =

eiθ 0 0
0 1 0
0 0 1

 .
Remark 8.12. We remark that S1 commutes with R1 and satisfies the braid relation
with R2.
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0=v*=v'*
v'3=v3

v'2=v2

v'1=v0

v'0=v-1

v'-2=v-2

v'-3=v-3

v'-1

Figure 10: The move S1.

By looking at the coordinates of the vertices of the polyhedron and keeping in mind
that φ = θ, it is easy to see that the action of S1 on the vertices is the following:

S1 : z1 → z1, S1 : z6 → z3, S1 : z7 → z4, S1 : z8 → z5,
S1 : z9 → z9, S1 : z11 → z10, S1 : z12 → z12, S1 : z14 → z13.

In other words, this means that S1 : B(J)→ B(P ).
It is then natural to use S1 as a side pairing map and to find another map which

will map B(J−1) and B(P−1) to each other. With P = R1R2 as before, we can define
S2 = PS1P

−1, which will act on the w-coordinates in the same way as S1 does on the
z-coordinates. In this sense they have an analogous relation to the one between R1 and
R2. By inspection on the table of coordinates of the vertices, one can see that the action
of S2 is

S2 : z2 → z2, S2 : z3 → z11, S2 : z4 → z10, S2 : z5 → z9,
S2 : z6 → z7, S2 : z8 → z8, S2 : z13 → z12, S2 : z14 → z14.

This means that S2 sends B(P−1) to B(J−1) as required.
The new side pairing maps will then be

R1 : B(R1)→ B(R−11 ), R2 : B(R2)→ B(R−12 ),

S1 : B(J)→ B(P ), S2 : B(P−1)→ B(J−1).

In order to apply the Poincaré polyhedron theorem for cosets, we now need a group Υ
that leaves the polyhedron invariant and is compatible with the action of the side pairing
maps. Let us then define K = R1R2S1. This is similar to the definition of J , but using
S1 instead of A1. Multiplying the matrices gives

K =
1

1− e−iθ

 −1 −1 1
−e2iθ −1 eiθ

−2 cos θeiθ −2 cos θ 1 + eiθ

 .
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Remark 8.13. By looking at the eigenvalues of K, one can see that projectively it has
order 4, since eiθK has both determinant and trace equal 1.

One can apply K to the vertices of the polyhedron and verify that its action is the
following:

K : z1 → z2, K : z2 → z1, K : z3 → z10, K : z4 → z9,
K : z5 → z11, K : z6 → z4, K : z7 → z5, K : z8 → z3
K : z9 → z14, K : z10 → z12, K : z11 → z13, K : z12 → z8,
K : z13 → z7, K : z14 → z6.

This means that K preserves the polyhedron and acts on the sides as

B(R1)
K−→ B(R2)

K−→ B(J)
K−→ B(P−1)

K−→ B(R1),

B(R−11 )
K−→ B(R−12 )

K−→ B(P )
K−→ B(J−1)

K−→ B(R−11 ),

namely it cyclically permutes them, preserving the two columns in Figure 8. Using
Remark 8.12, and the braid relation between R1 and R2, it is easy to see that

R2 = KR1K
−1, S1 = K2R1K

−2, S2 = K3R1K
−3, R1 = K4R1K

−4

which proves that the action of K is compatible with the side pairing maps.
We now define Υ = 〈K〉 and we are in the framework of the Poincaré polyhedron

theorem for coset decompositions. The theorem ensures that we need to check the tes-
sellation only for one ridge per cycle (which we already knew) and for one ridge per orbit
under the action of K. This means that we need to analyse only the ridges contained
in B(R1), which are F (R1, R

−1
1 ), F (R1, P ), F (R1, J), F (R1, R

−1
2 ) and F (R1, J

−1), for
which we already proved the tessellation property.

We just need to check how the ridge cycles change with the new side pairing maps,
so to give a presentation for these groups according to the theorem. The cycles for the
ridges we mentioned are the following:

F (R1, R
−1
1 )

R1−−→ F (R1, R
−1
1 ),

F (R1, P )
R1−−→ F (P,R−11 )

S−1
1−−→ F (R−11 , J)

R−1
1−−→ F (J,R1)

S1−→ F (R1, P ),

F (R1, R
−1
2 )

R1−−→ F (P−1, R−11 )
K−→ F (R1, R

−1
2 )

F (R1, J
−1)

R1−−→ F (R2, R
−1
1 )

K−1

−−−→ F (R1, J
−1).

Remark that we stop when we come back in the same cycle or when we arrive in the
same ridge orbit under the action of K.

The presentation obtained from Poincaré polyhedron theorem for coset decomposi-
tions is then

Γ =

〈
K,R1 :

Rp1 = K4 = (K−1R1)
3d = (KR1)

3 = K2S−11 R1 = I,
(K2R1)

2 = (R1K
2)2

〉
.
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Figure 11: The angles whose values determines which polyhedron we shall consider.

We want to remark that since k = p
2 , by rewriting (5) or simply by inspection in Table

1, we have that l = d. It is then not surprising that the relation in the presentation where
l appeared, here it becomes (K−1)3d = I.

Finally, when k = p
2 , we have t = 5

p −
1
2 and by applying this to the formula found in

(15), we obtain

χ(H2
C/Γ) =

2(p− 5)

p2
,

which is 4 times the formula in the Livné case. This is what we expected since, as we
already mentioned, these lattices are isomorphic to the corresponding ones of the form
(p, 2), which are the Livné ones and D containes four copies of a fundamental domain
for them.

9 Previously known cases

In this case we will show how to change the polyhedron according to the values of p
and k so as to include all lattices with three fold symmetry listed in Section 3, including
the cases previously treated.

9.1 Degenerate cases

The first thing to remark is that the parametrisation we chose in (6) is completely
general and can be used to parametrise all possible lattices in our list when we impose
θ = 2π

p and φ = π
k as before.

In [Par06], the same angle parametrisation holds after imposing φ = π
2 , since for all

lattices of that group k = 2. In [BP15], this parametrisation has explicitly been used.
Other cases on the list could be treated with an extra condition. The lattices of fourth
type, for example, always have φ = π

3 . All of the ones of type 5, instead, satisfy θ = φ
since k = p

2 , as mentioned after interchanging k and l if necessary. This construction
though includes all the other cases up to imposing the values of p and k that we want to
consider.
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The difference comes out when we start making the singularities collapse in order to
find the vertices of the polyhedron. This is because when we make T1 and T2 shrink or
enlarge, the vertices of D change according to the size of the angles. Let us consider a
generic configuration as in Figure 2.

The angles that we will have to consider are marked in Figure 11. In particular, the
vertices of the polyhedron will depend on the values of

• The angle in T1 at the vertex v0, which we will call α;

• The angle in T3 at v∗, which we will call β;

• The two equal angles in T2, which we will call γ;

• The angle in T1 at v1, which by construction is equal to the angle γ defined previ-
ously;

• The third angle in T1, which we will call δ.

In this section we will explain the conditions on this angles to determine which are
the vertices of our polyhedron. Then we will substitute their values, that can be easily
calculated in terms of p and k.

What we need to show is that, for the particular values we are considering, the vertices
that we can obtain by making cone points collapse are the ones described in the theorem.
Let us first consider the cases where p > 0.

We have the following situation:

1. Vertices z1 and z2 are always possible and they do not depend on the angles at all.
They will hence always be in the polyhedron.

z3

z4

z5

(a) (b)

z3=z4=z5

Figure 12: The two possibilities for the vertices in case 2.

2. If we let z1 be as big as possible, keeping it real and such that T1 is in the interior
of T3, there are two possibilities, illustrated in Figure 12. As the coordinate grows,
either v1 will coincide with the apex vertex of T2, or v0 will coalesce with v∗.

In the first case (a) there is no other possibility for T2 but to collapse to a point,
giving a single vertex defined by v1 ≡ v2 ≡ v3. This is the case when β ≤ α.
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In the second case (b) we have instead that v0 ≡ v∗. Also, T2 has still some degrees
of freedom, so we can make z2 either to be 0, either to be as large as possible but
still real, or to be as large as possible but after rotating it as in Figure 12. The
three options give respectively that also v2 ≡ v3, v1 ≡ v2 or v1 ≡ v3. This is the
case when β ≥ α.

z6

z7

z8

(a) (b)

z6=z7=z8

Figure 13: The two possibilities for the vertices in case 3.

3. With a similar argument, by imposing z1 = re−iφ with r as big as possible, but
such that T−1 is inside T3, we can get the two possibilities in Figure 13.

Case (a) will correspond to when the cone points collapsing are v0 ≡ v2 ≡ v3 and
it corresponds to the case when γ ≥ β.
Case (b) is when we have v∗ ≡ v−1. The three choices will be when also v2 ≡ v3,
v0 ≡ v2 or v0 ≡ v3 and it occurs when γ ≤ β.

z9

z10

z11

(a)

(b)

z9=z10=z11

Figure 14: The two possibilities for the vertices in case 4.
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4. Similarly, when z2 is real, as big as possible and such that T2 is inside T3, we can
get the configurations in Figure 14.

Case (a) occurs when γ ≤ δ and the points will be v2 ≡ v1 ≡ v0.
In Case (b) we always have the condition v∗ ≡ v3, with the three possibilities as
v0 ≡ v1, v1 ≡ v2 or v0 ≡ v2. This happens when γ ≥ δ.

5. Once more, when z2 = reiθ, for r as big as possible but still maintaining a positive
area, we can have the configurations as in Figure 15.

We will hence have Case (a), when δ ≥ β and where v0 ≡ v1 ≡ v3.
When δ ≤ β we will have Case (b) instead, with v∗ ≡ v−2 for all the three vertices
and v0 ≡ v1, v1 ≡ v3 or v0 ≡ v3 in the each of them.

z12

z13

z14

(a) (b)

z12=z13=z14

Figure 15: The two possibilities for the vertices in case 5.

It is clear that since in each case we have either one or three vertices, the cases
with fewer vertices will be obtained by the case with more vertices by making triplets
of vertices collapse to just one. On the other hand, the case with many vertices can be
obtained from the other by cutting through a corner so to make one vertex become three.
We will see in Section 9.2 that this is exactly the case, for the values of p and k that
have already been treated.

In Figure 2 it is easy to see that

α =
π

2
+
θ

2
− φ, β = π − θ − φ, γ =

π

2
− θ

2
, δ = φ.

Substituting the values of the angles in terms of p and k, we can summarise the cases
with the following table.
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Case Relation on the angles Relation on p and k
2 (a) β ≤ α p ≤ 6

(b) β ≥ α p ≥ 6

3 (a) β ≤ γ k ≤ 2p
p−2

(b) β ≥ γ k ≥ 2p
p−2

4 (a) γ ≥ δ k ≥ 2p
p−2

(b) γ ≤ δ k ≤ 2p
p−2

5 (a) β ≤ δ k ≤ 2p
p−2

(b) β ≥ δ k ≥ 2p
p−2

As we can see, three of these conditions correspond to the same values for p and k, so we
will either have all cases of the three vertices or all cases of a single vertex. Consequently,
there are four possible cases and they are the four values of p and k given in the Theorem
8.1.

It is clear that the case of D described in the previous section is the one where all
14 vertices remain distinct. The other cases of the theorem follow immediately by our
analysis. In fact, we will have one case where only one triplet collapses, one case where
three triplets collapse and one case where all four do. By considering the theorem and
the figures to see which vertices are collapsing, we just need to consider that the name
of the configurations given in Figures 12–15 are the same as the ones given for D in the
previous sections.

We remark that when the angles we are considering are equal, while making the
points collapse to get a vertex, we obtain some configurations with zero area, so on the
boundary of the complex hyperbolic space. A more precise discussion of what happens
in these cases can be found in [Par06] and [BP15]. Moreover, it is clear that we do not
have the choice of the three configurations, so it is more natural to include them in the
case of the lower values of the parameters as we did in Theorem 8.1.

Another way to see this is to notice that the cases where three vertices collapse
correspond to when the values of l and d are negative. We saw that these two values are
the order of the cycle maps R2R1J and P 3 respectively. As explained in [Par09], when l
or d is negative, the corresponding map becomes a complex reflection in a point instead
of a complex reflection in a line. The ridge on the mirror indeed becomes a single point.
When they are not finite, the corresponding map becomes a parabolic element.

9.2 Relation with the previous construction for type 2

In this section we will analyse the relation between this method and the previous
fundamental polyhedra found for Deligne-Mostow lattices with three fold symmetry lat-
tices.

For the cases analysed in [BP15] and [Par06] our construction follows step by step
the one used there. Already in [Par09] it has been explained that the fundamental
polyhedron for type 1 can be obtained from the one of type 3 by truncating a vertex
with a triangle contained in a complex line. In that case, one vertex becomes three and
we will see that it corresponds to the case (a) and (b) in point 2 of our analysis of the
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Figure 16: The sides and the side pairing maps compared for our polyhedron
and the previous one for type 2 lattices.

vertices. Comparing the sides for these cases and the ones for ours it is easy to see that
the same thing can be done from our polyhedron.

For type 2, a construction was already found in [DFP05]. Since the approach there is
a bit different from ours, Parker in [Par09] already showed how to see in their procedure
an approach similar to ours. What we do here though, gives a different presentation for
the group and an easier construction of the polyhedron, more coherent with the known
construction for the other cases.

The main difference comes from the fact that the sides and the side-pairing maps
considered there are slightly different from ours. We now want to explain how to reconcile
the two presentations. First of all, for the case we are talking about we need to make
the vertices z3, z4 and z5 collapse to a single vertex as we saw in Theorem 8.1 and we

48



will call this new vertex z345. The sides of the polyhedron D after collapsing sides as
described for the second case of our main theorem, will be as in Figure 16.

We want now to compare our construction with the sides of the polyhedron considered
in [DFP05] as shown in Figure 11 of [Par09]. To refer to sides in our construction, we
will use B(T ), for T ∈ {J±1, P±1, R±11 , R±12 }, while for the sides used before we will be
coherent with their notation and call them S(T ), for T ∈ {J±1, P±11 , P±12 , R±11 , R±12 }.

The map J considered in each case coincides and so do the sides B(J) = S(J) and
the sides B(J−1) = S(J−1). The same thing is true for P = P1 = R1R2 and the
corresponding sides. On the other hand, the four sides B(R±11 ) and B(R±12 ) and the side
pairing R1 and R2 include in their action the six remaining sides S(R±11 ), S(R±12 ) and
S(P±12 ). In fact, the previous procedure splits the sides B(R1) and B(R−11 ) in two blocks
each, by cutting along a line through vertices z9, z11, z345 and a line through z12, z14, z345
respectively. Then, for each of B(R1) and B(R−11 ), of the two pieces of side obtained we
consider the one not containing vertex z10 and vertex z13 respectively. These are exactly
the sides S(R1) and S(R−11 ), and R1 sends the first to the latter. Similarly, for B(R2)
and B(R−22 ), we divide the sides in two blocks by cutting with a line through z12, z14, z345
and a line through z7, z8, z345 respectively. We then consider the block not containing
vertex z13 and z6 respectively and these are sides S(R2) and S(R−12 ) respectively, the
first sent to the second by R2.

We have then four more block to consider. The first remark is that there are, in fact,
only three blocks, because the parts of B(R−11 ) and of B(R2) containing vertex z13 are
the same block. For simplicity, we will call it S(T ). The other two blocks are exactly
sides S(P2) and S(P−12 ). We also know by our construction that R1 sends S(P2) to S(T ),
while R2 sends S(T ) to S(P−12 ). Since P2 = R2R1 by definition, that is the side pairing
map that sends the two new blocks S(P2) to S(P−12 ), as described in [Par09]. This is
illustrated in Figure 17.
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Figure 17: The sides and the side pairing maps compared for our polyhedron
and the previous one.
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