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Abstract Compaction describes a range of natural syn- and
post-depositional processes that reduce the volume of sedi-
ments deposited in low-lying coastal areas, causing land-
level lowering and a distortion of stratigraphic sequences.
Compaction affects our reconstructions and understanding of
historic sea levels, influences how relative sea level changes in
the future and can act as a catalyst for rapid, widespread
changes in coastal geomorphology. Rates of compaction-in-
duced relative sea-level rise vary across space and through time
in response to a range of natural and anthropogenically accel-
erated processes and conditions. This paper provides a summa-
ryofourunderstandingof the causes andeffects of compaction,
considering findings from key palaeoenvironmental and strati-
graphic studies, sea-level reconstructions and recent observa-
tional data. It then considers the implications of these findings
for our ability to project compaction-induced relative sea-level
and associated coastal changes into the future.
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Introduction

Sea-level rise is arguably the most damaging and disruptive
effect of climate change, with potentially widespread and

significant impacts on coastal populations, infrastructure,
landforms and ecosystems [1–7]. To plan for and mitigate
these adverse effects, assessing and projecting future sea-
level rise as accurately as possible is a key scientific goal
[8–13]. This requires a thorough understanding of the many
drivers of sea-level change through space and time. The rela-
tionship between global climatic, hydrologic, cryospheric and
oceanographic processes and sea level is increasingly well
constrained, as are regional deviations in sea level from the
global mean (see recent reviews by Clark et al. [12], Dutton
et al. [14], Kemp et al. [15], Khan et al. [16], Kopp et al. [17],
Leuliette [18] and references therein). Global to regional sea
levels are modified by vertical land-level changes, driving
relative sea-level changes (here, defined simply as changes
in the difference in elevation between land level and sea level;
see Shennan [19] for further information and critique of defi-
nitions of relative sea level (RSL)) at a particular location and
time. Regional land-level changes can result from glacio-,
sedimentary- and hydro-isostatic adjustment [20–23] and tec-
tonic processes [24, 25]. The focus of this review paper is on
sediment compaction [26, 27•, 28, 29] which, in addition to
changes in sediment supply [30–33], can result in land-level
changes at the local scale.

Compaction describes a range of natural syn- and post-
depositional processes that reduce the volume of sediments
deposited in low-lying coastal areas [34, 35], causing land-
level lowering (i.e. subsidence) [28]. This can occur as a result
of stress- and time-dependent mechanical compression pro-
cesses that reduce pore space and increase bulk density [36].
Compression processes include consolidation, which de-
scribes the expulsion of pore water from sediment interstices
in response to burial by overburden sediments [37] or from
self-weight [28] and creep, which describes ongoing viscous
rearrangement of sediment particles [38••]. Predominantly or-
ganic sediments and peat deposits can also undergo florally
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and faunally mediated biochemical degradation, which can
increase mass loss and can change the compressive strength
of sediments [34, 39–42]. Compaction operates at various
depths below ground level, and so a distinction is often made
between near-surface (depths of ≤10 m or so below ground
level) ‘shallow subsidence’ [43], typically occurring in de-
posits of Holocene age [44••, 45••, 46•] and deeper sediment
compaction in pre-Holocene sediments [9, 47–49].
Compaction can be accelerated by anthropogenic activity
[26, 50, 51], notably through land drainage [52–54] and ex-
ploitation of aquifers and hydrocarbon reserves [55, 56].

The contribution of sediment compaction to RSL rise is
potentially highly significant at the local scale [38••, 44••],
with some studies suggesting that compaction-induced subsi-
dence can be equal to or greater than recent, current and
projected rates of global sea-level rise [13, 57]. As such, there
is a clear need to incorporate estimates of rates of compaction-
driven land-level lowering into societally relevant and appro-
priate regional to local projections of RSL change to inform
risk-management strategies [58, 59]. However, sediment com-
paction does not solely influence howRSL and coastlines may
change in the future. It can also fundamentally affect the ac-
curacy of reconstructions of historic sea level changes [35,
46•] which are crucial to our understanding of the controls
on sea level and how these changed in the past; provide longer
term context to current rates and patterns of sea-level change;
and allow us to better constrain those that may occur in future
[8, 14, 15, 60–63].

Past

Stratigraphic and Palaeoenvironmental Studies

Coastal stratigraphies and the palaeoenvironmental records
contained within can be exploited to assess the magnitude
and rate of compaction-induced subsidence over centennial
to millennial timescales. In addition, coastal sedimentary ar-
chives can be used to obtain a broad understanding of the
controls on compaction and some of the key effects on coastal
landscapes.

Compaction has been widely observed to distort Holocene
coastal stratigraphies [34, 64, 65]. Törnqvist et al. [44••], for
example, presented a stratigraphic cross section obtained
along a sediment coring transect extending approximately
5 km normal to the Bayou Lafourche, Paincourtville,
Louisiana, USA (Fig. 1). They documented the >2-m differ-
ences in elevation of a near isochronous (c. 1400 cal BP) peat
layer which would have been effectively horizontal and uni-
form in elevation, covering extensive low-gradient coastal
plains, at the time of formation. Subsequent deposition of
thick (up to several metres), clastic overburden strata and dif-
ferential compaction of underlying deposits distorted the peat

stratum. Comparison of the in situ elevations of these interca-
lated samples with a reconstruction of the depositional altitude
of the peat layer provided an estimate of the magnitude by
which the peat layer has been lowered. This approach employs
isochronous basal samples, which are situated directly on an
incompressible surface and, hence, are unable to be lowered
through compaction of underlying sediment. Törnqvist et al.
[44••] noted post-depositional lowering (PDL) [46•] of the
peat layer reached c. 6 m in some locations. In conjunction
with the age of formation of the peat layer, Törnqvist et al.
[44••] calculated averaged rates of compaction-induced subsi-
dence of up to 5 mm year−1. They also suggested that com-
paction could create land level lowering rates of up to
10 mm year−1 over shorter timescales, given the non-linear
decline in the rate of compaction-induced lowering through
time [38••].

Long et al. [45••] reported differences of up to c. 5.5 m in
the elevation of the upper surface of a peat bed along a coring
transect in the area surrounding Rye, East Sussex, Southeast
England. They attributed these differences in elevation largely
to the effects of differential sediment compaction.
Palaeoenvironmental, chronological and sedimentological
analysis of core sediments collected at West Winchelsea sug-
gested that approximately 4.8 m of minerogenic sediment ac-
cumulated between c.1186 and 1460 CE, resulting from land-
level lowering at an average rate of c. 18 mm year−1. Long
et al. [45] attributed this to a geomorphic response to coastal
barrier breaching, which increased water depths and tidal en-
ergy, and caused loading of the peat layer by infilling of newly
available accommodation space by minerogenic sediment.
Enhanced drainage and consolidation of the peat layer were
likely to have been caused by headward erosion of tidal creeks
in response to the increase in tidal prism and energy condi-
tions. In turn, the peat experienced rapid compaction, causing
local RSL rise. This caused further positive feedback, notably
in terms of further deposition of dense minerogenic overbur-
den sediments and consequent rapid changes to the coastal
landscape.

Relative Sea-Level Studies

Compaction-induced stratigraphic distortion of coastal sedi-
ment successions has an important secondary effect on the
proxy reconstructions of RSL recorded therein. The requisite
sea-level index points (SLIs) provide an estimate of position
of RSL both in space and in time [19]. Compilations of SLIs
permit construction of age–altitude plots to assess changes in
RSL through time. Compaction-induced PDL of SLIs obtain-
ed from coastal sediment deposits lowers SLIs from their de-
positional altitudes [28].Where sediments record a rising RSL
trend, PDL of SLIs results in an overestimation of the magni-
tude and rate of RSL rise [35, 66, 67] (Fig. 2). In contrast, if
sediments record falling RSL, compaction-induced lowering
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of SLIs causes an underestimate of the magnitude and rate of
reconstructed RSL changes [35, 67] (Fig. 2).

Horton and Shennan [66] compiled a database of SLIs
obtained from the Holocene coastal sediments of the eastern
English coastline. They noted the considerable scatter in SLIs
observed in regional sea-level curves of age against altitude.
To assess the extent to which this scatter could be explained by
sediment compaction and to estimate magnitudes and average
rates thereof, Horton and Shennan [66] used a combination of
basal SLIs and glacio-isostatic adjustment model results [68]
to develop regionally specific compaction-free RSL records
for the late Holocene. They noted that intercalated SLIs are
located at elevations lower than their isochronous basal equiv-
alents due to compaction-induced PDL. By considering the
differences in elevation (i.e. the residuals) between
compaction-prone (non-basal, intercalated) SLIs from and
the modelled RSL curve, Horton and Shennan [66] calculated
rates of calculated millennially averaged compaction-induced
subsidence rates of 0.4 ± 0.3 mm year−1. They noted consid-
erable spatial variation between regions, notably in relation to
macro-scale coastal geomorphology. For example, in the larg-
er Humber Estuary, Horton and Shennan [66] found
compaction-induced PDL rates of 0.6 ± 0.3 mm year−1.

To study regional differences in compaction-controlled
RSL changes further, Horton and Shennan [66] plotted the
elevation residuals against three key stratigraphic variables:
(1) the thickness of the sediment overlying each SLI; (2) the

thickness of sediment beneath each SLI and the underlying
incompressible basement; and (3) the full thickness of the
Holocene sediment in which the SLI is situated. The results
suggest that the magnitude of compaction-induced lowering
of SLIs is generally positively related to the thickness of over-
lying sediment and the overall thickness of the sediment col-
umn but negatively related to the depth to the incompressible
pre-Holocene basement (Fig. 3). However, the relationship
between the thickness of sediment beneath each SLI and the
underlying incompressible basement is often more variable
and not statistically significant [27•] (Fig. 3). Greater thick-
nesses of overburden create greater compressive stresses, re-
ducing the thickness of underlying strata, though samples lo-
cated near to the base of a stratigraphic column experience a
lower magnitude of PDL as the potential for cumulative com-
pression of underlying sediments is limited. Edwards [65],
Törnqvist et al. [44••] and Horton et al. [27•] not only reported
similar results but also noted that the magnitudes and rates of
compaction processes are functions of the lithology of over-
burden sediments and, hence, the specific nature and sequence
of the stratigraphy at any location. Indeed, the effects of com-
paction have been observed to be greater in stratigraphic suc-
cessions where denser minerogenic sediments are deposited
on top of lower density and greater compressibility
organogenic deposits [44••, 45••, 69].

Horton and Shennan [66] determined that the inclusion of
non-basal samples when calculating late Holocene rates of

Fig. 1 Stratigraphic cross-section
normal to Bayou Lafourche near
Paincourtville, LA, USA,
displaying distortion of an
initially horizontal peat surface of
uniform elevation. The thick-
dashed horizontal line indicates
the reconstructed initial elevation
of the peat/swamp surface. The
thick solid line indicates its
position following compaction-
induced lowering. Ages are in
conventional radiocarbon years
BP. MSL = contemporary mean
sea level. For further details, view
the original publication (ref.
[44••]). Reprinted by permission
from Macmillan Publishers Ltd:
Nature Geoscience ([44••]; ©
2008)
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RSL rise causes an overestimation of up to 0.4 mm year−1.
This is important because late Holocene rates of RSL change
can provide an indication of directions, rates and patterns of
land-level changes resulting from glacio-isostatic adjustment

(GIA), assuming no or minimal meltwater inputs (see refer-
ences in Engelhart et al. [70]). For this reason, regional com-
pilations of SLIs favour the use of basal deposits to minimise
the contribution of sediment compaction to reconstructed RSL
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Fig. 2 Schematic depiction of the effects of sediment compaction on sea-
level index points within low-energy intertidal stratigraphic successions
and the subsequent effects on age-altitude reconstructions of sea level in a
‘transgressive’ (deepening upwards) and b ‘regressive’ (shallowing

upwards) successions. Scales in a and b are indicative and are not
directly comparable. Source: Brain (ref. [35]; In: Shennan, I., Long,
A.J. and Horton, B.P. (eds), Handbook of Sea-Level Research). © 2015
Wiley, Ltd., reproduced with permission
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relative sea-level curve for New Jersey, USA. Sea-level index points are
classed as either compaction-free basal samples or compaction-prone
intercalated samples; overburden, depth to basement and total thickness
of sediment versus residual for intercalated index points. ‘Residual’ is the
difference between the fitted RSL curve and the centre point of each
intercalated index point. In the second left graph (residual vs.

overburden thickness), index point #40 formed at c. 8.5 ka and is
located 10 m below same age basal index points. The solid regression
line (where r = 0.64) includes index point #40; the dashed regression line
(where r = 0.85) excludes it. This removal is justified by Horton et al.
[27•] on the basis of significant anthropogenic disturbance at the site.
Source: Horton et al. [27•]. © 2013 Wiley, Ltd., reproduced with
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change and in determining background rates of GIA-
controlled RSL [70–72]. Similarly, the use of compaction-
free basal SLIs is preferable when reconstructing RSL over
multi-decadal to centennial timescales, where greater temporal
resolution is required to permit comparison with climatic,
oceanographic and cryospheric datasets [8, 61, 73].
However, basal peats are not ubiquitous through time and
space [71] and very few studies have used them to assess
sub-millennial variability in RSL [60, 74].

Where basal peats are not present or suitable at a particular
location, geotechnical modelling provides a means of
correcting post-depositionally lowered SLIs for the effects of
compaction [37, 39, 75, 76]. This approach is based on theo-
ries and models developed in geotechnical engineering and
soil mechanics that have subsequently been refined to suit
the specific geotechnical properties of intertidal sediments that
result from the unique lithologies and hydrogeological and
early-stage diagenetic conditions encountered in intertidal set-
tings [36, 46•]. Geotechnical modelling requires considerable
empirical input to quantify the strength properties of the con-
temporary and core sediments of interest but permits samples
at all depths within a single core of sediment to be
‘decompacted’ and returned to their depositional altitude,
even in the absence of basal SLIs [35]. Such models are able
to accurately reproduce the depth-specific values of bulk den-
sity measured in sediment cores [35, 67••] and replicate the
broad patterns of compaction effects seen in stratigraphic field
investigations noted above, such as greater contributions of
compaction to PDL in deeper, transgressive sequences [46•].

Recently, geotechnical modelling studies have better
constrained the influence of compaction on reconstructed
RSL over the last 200 or so year, during which global sea-
level rise accelerated in response to increases in global tem-
perature [8, 77]. Reconstructions of absolute sea level from
salt-marsh deposits in the northern [60, 61, 73, 74, 78–83] and
southern [63, 84] hemispheres have revealed an inflection that
varies spatially in terms of the timing, abruptness and magni-
tude of acceleration [77]. Brain et al. [46•] numerically dem-
onstrated that compaction can contribute up to 0.4 mm year−1

of local sea-level rise to reconstructions of RSL obtained from
salt-marsh sediments in successions ≤3-m thick. As such, they
demonstrated that the order-of-magnitude increases in the rate
of sea level recorded in salt-marsh sediments resulted from
increases in absolute sea level, and cannot be explained solely
as an increase in local RSL resulting from sediment compac-
tion [85]. However, spatial differences in compaction-driven
PDL are of the same order of magnitude and range as those
resulting from other processes that control RSL [10, 86–89].
Therefore, if not corrected for, compaction could influence our
interpretations of the processes causing spatial variability in
RSL. To this end, further geotechnical modelling is required at
a greater range of sites to ascertain spatial variability in
compaction-induced subsidence.

Brain et al. [67••] applied the geotechnical modelling ap-
proach to a core of salt-marsh sediment from North Carolina,
USA, to determine the degree to which it has been affected by
compaction-induced PDL. The North Carolina sea-level re-
cord has been used as a pseudo-global sea-level reconstruction
and has been used to calibrate semi-empirical models of
climate-related sea-level variability and project future global
sea-level changes in response to temperature changes [61]. If
the observed historical relationship between global tempera-
ture and sea level is incorrect as a result of PDL effects in the
North Carolina record, future projections of climate-
controlled sea level would overestimate the rate and magni-
tude of future sea-level rise. Brain et al. [67••] determined that
the key features of the North Carolina sea-level record were
not an artefact of sediment compaction, though minor PDL of
up to 2.5 cm was observed in the core (Fig. 4). This finding
improves confidence in the relationship between modelled
global sea level and temperature and, hence, future projections
of sea-level rise [10, 11].

Present

Present-day observations of rates of compaction-induced sub-
sidence in coastal environments have been made at a variety
of scales [55, 90•, 91, 92, 93]. Cahoon et al. [43], for example,
reported point measurements of subsidence resulting from
compaction of near-surface salt-marsh stratigraphies in
Louisiana, Florida and North Carolina, Southeastern, USA.
Over a 2-year monitoring period, Cahoon et al. [43] recorded
shallow subsidence of 0.45 to 4.50 cm, equivalent to annually
averaged rates of 2.3 to 22.5 mm year−1. Anthropogenic ac-
tivity can accelerate compaction and associated subsidence
significantly, as was documented during the drainage of
Whittlesey Mere which, prior to drainage, was a 400–
500 ha, c. 1-m deep lake [54] in the East Anglian Fenlands,
UK. Drainage of the Mere and groundwater table lowering
caused consolidation and wastage of an extensive peat layer,
resulting in subsidence of 3.91 m over c. 128 years (1850–
1978 CE), equivalent to an average rate of 30.5 mm year−1

[54]. Maximum subsidence rates during the early stages of
drainage were observed to reach 220 mm year−1 [54], demon-
strating the potential significance of compaction processes in
driving RSL changes.

Point estimates cannot, however, provide sufficient spatial
coverage to appropriately constrain variability in subsidence-
induced compaction over coastal landscapes, particularly the
widespread subsidence observed over large river delta sys-
tems [51]. To this end, remote sensing techniques, notably
Interferometric Synthetic Aperture Radar (InSAR), can be
used to accurately and precisely (i.e. with millimetre scale
resolution) measure vertical changes in land level through
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time, particularly where fixed location ground reflectors (‘per-
manent scatterers’) can be exploited [94–97].

Higgins et al. [98••] used InSAR to determine rates of
compaction-induced subsidence in the Ganges–Brahmaputra
delta, Bangladesh, noting average annual rates of up to
18 mm year−1 over a c. 4-year period (2007–2011 CE). The
InSAR results demonstrated good agreement with direct point
measurements of subsidence but provided a considerably
more detailed assessment of spatial patterns of subsidence
and the variability therein (Fig. 5), as also noted in many
studies employing a range of techniques [92, 99, 100]. In turn,
this permitted Higgins et al. [98••] to consider the causes of
subsidence. Comparison with regional geology maps revealed
a strong sub-surface lithological control on subsidence rates,
the lowest of which were observed in areas where stiffer
Pleistocene clays outcropped [98••]. In contrast, the highest
rates of subsidence were noted where surface deposits were
composed of softer organic Holocenemuds. Similar high rates
(≤15 mm year−1) of subsidence in Holocene sediments
(depths of 30–40 m below ground level) have been reported
in the PoDelta, Northeastern Italy by Teatini et al. [101] on the
basis of an 8-year (1992–2000 CE) interferometric monitoring
dataset.

InSAR has also been used to assess the spatial pattern of
rates of subsidence associated with consolidation of porous
strata as a result of groundwater abstraction over large (of
the order 103 km2) areas. Erban et al. [102], for example,
reported rates of c. 10–40 mm year−1 in the Mekong Delta,
Vietnam, between 2006 and 2010 CE. These rates correlated
well with calculations of compaction-induced subsidence

based on changes in hydraulic head measured in groundwater
monitoring wells, demonstrating the utility of predictive
models where the compaction process is sufficiently isolated
and understood (see also [103–106]). However, assigning a
cause for observed subsidence is not always straightforward
and often requires careful critique and comparison of moni-
toring techniques, datasets and modelling approaches [49, 55,
91].

Future

Our understanding of compaction processes and effects has
contributed greatly to our ability to constrain the many con-
trols on RSL, such that local to regional scale projections
thereof grow increasingly robust. For example, use of basal
peat-derived RSL data and geotechnical modelling of
compaction-induced PDL has improved the accuracy of
long-term estimates of GIA [66, 71, 86] and improved confi-
dence in our projections of climate-related global sea-level
variability [46•, 67••].

Compaction is, and will continue to be, a significant driver
of RSL rise in some locations in future [26, 57]. Global mean
sea level between 1901 and 1990 rose at a rate of 1.2 ±
0.2 mm year−1, as determined from probabilistic (re-)analysis
of tide gauge records and inputs from physics-based numeri-
cal models [107]. Examination of satellite altimetry records
(namely those obtained by the TOPEX/Poseidon and Jason
missions) indicated that the average rate of global sea-level
rise between 1993 and 2009 was 3.4 ± 0.4 mm year−1
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[108]. Future accelerations are deemed to be highly likely,
primarily in response to thermal expansion of ocean waters
and enhanced melting of ice caps and glaciers [13]. The
highest emissions and temperature rise scenario considered
by the Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report (AR5) project rates of rise of be-
tween 8 and 16 mm year−1 (Representative Concentration
Pathway (RCP) 8.5) during the period 2081 to 2100 [13]. In
some locations, reported rates of compaction-induced subsi-
dence can equal or even greatly exceed the highest rates of
projected global sea-level rise.

Projecting rates of compaction-induced subsidence into
the future is not a trivial task. The stratigraphic record
provides considerable insight into the sub-surface controls
on compaction and adds longer term context to contem-
porary observations of subsidence rates. However, report-
ed rates of compaction-induced subsidence vary consider-
ably in terms of the measurement method employed; caus-
al mechanism; spatial location, coverage and resolution;
duration of the observation period; and in terms of the

quali ty and accuracy of the data reported [90].
Extrapolation of observed rates may be appropriate over
short (sub-decadal) timescales, but subsidence rates can
change extremely rapidly (i.e. over annual to monthly
timescales) in some circumstances, particularly where an-
thropogenic activities provide the causal mechanism [92,
97] or where geomorphic thresholds are exceeded [45••].

Put simply, compaction operates at the local scale over
a variety of timescales; as such, assessment and projec-
tion of compaction-induced land-level lowering require
local scale, site-specific studies to identify the causes of
compaction and the depths at which they operate.
Encouragingly, as outlined here, identifying such controls
on compaction can be achieved through a combination of
contemporary observations and stratigraphic studies. In
turn, such processes can then be modelled where our
understanding of process permits, allowing increasingly
robust projections of compaction-induced subsidence.
Recent modelling work [38••, 76] has demonstrated
how accurate and robust assessment of compaction can

Fig. 5 Rates of subsidence
recorded for the Ganges–
Brahmaputra–Meghna delta and
surrounding areas, demonstrating
the resolution of coverage
provided by InSAR methods
(data are from ref. [98••]) relative
to point-based estimates. Source:
Brown and Nicholls [90•], 10.
1016/j.scitotenv.2015.04.124,
reproduced under Creative
Commons Attribution-
NonCommercial-NoDerivatives
(CC BY NC ND) 4.0
International Public License
http://creativecommons.org/
licenses/by-nc-nd/4.0/ and with
permission from S. Brown. See
original publications for
discussion of the sources and
accuracy of individual data points
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be achieved with an appropriate geotechnical model, per-
mitting local to regional scale assessment of land-level
lowering in complex stratigraphies and unique lithologies
over short- to medium-term timescales.

It is also critical that future assessment of compaction-
induced RSL rise in coastal environments does not focus sole-
ly on changes in elevation. Compaction is one of many geo-
morphic processes operating in coastal environments, and is
intricately linked to marine, fluvio-estuarine and coastal sedi-
mentary processes [26, 32, 39, 45••]. Hence, the potential for
compaction to cause rapid and widespread coastal change
should not be neglected; incorporating the effects of compac-
tion into conceptual models and numerical simulations of
coastal wetland behaviour is an important ongoing consider-
ation [5, 39, 109].

Conclusions

My key conclusions are as follows:

1. Sediment compaction is an important process in coastal
stratigraphic successions. Compaction reduces the volume of
coastal sediment deposits. The resultant land-level lowering
creates a local relative sea-level rise.
2. Stratigraphic studies and observational data have revealed
that rates of compaction are variable both spatially and tem-
porally but can be greater than current and projected increases
in absolute sea level.
3. Compaction influences our interpretations of reconstruc-
tions of relative sea-level change obtained from compaction-
prone coastal stratigraphies. Without correction, this affects
the accuracy of estimates of long-term rates and spatial pat-
terns of glacio-isostatic adjustment and can affect our under-
standing of the sensitivity of global sea level to past and
projected temperature changes.
4. Our ability to project rates of compaction-induced coastal
subsidence into the future depends on accurate assessment of
causal compaction processes and the spatial and temporal
timescales over which they operate and subsequent robust
numerical modelling of resultant land-level changes and sub-
sequent changes in coastal geomorphology.
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