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Abstract A tree-child network is a phylogenetic network with the property
that each non-leaf vertex is the parent of a tree vertex or a leaf. In this paper,
we show that a tree-child network on taxa (leaf) set X with an outgroup
and a positive real-valued weighting of its edges is essentially determined by
the multi-set of all path-length distances between elements in X provided, for
each reticulation, the edges directed into it have equal weight. Furthermore, we
give a polynomial-time algorithm for reconstructing such a network from this
inter-taxa distance information. Such constructions are of central importance
in evolutionary biology where phylogenetic networks represent the ancestral
history of a collection of present-day taxa.
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1 Introduction

A central task in evolutionary biology is inferring the ancestral history of a col-
lection X of present-day (species) taxa based on the inherited characteristics
amongst the taxa in X. This inference is usually represented by a phylogenetic
(evolutionary) tree whose leaf set is X. One fundamental and widely-used ap-
proach for inferring the tree-like ancestral history of a collection of present-day
taxa is to utilise a measure of distance between taxa, such as the time since
separation from the most recent common ancestor, to infer the structure of an-
cestral relationships between taxa. Such approaches are called distance-based
methods, and include the popular method of Neighbor-Joining [10]. They are
often used because they are computationally fast compared to maximum like-
lihood methods. For a recent survey of distance-based methods for inferring
phylogenetic trees see Pardi and Gascuel [7].

Although one typically thinks of evolution as being a tree-like process, it
is now well recognised that for many collections of taxa the ancestral history
is non-tree-like and is more accurately represented by a phylogenetic network
rather than a phylogenetic tree. This is because of reticulate (non-tree-like)
processes in evolution such as hybridisation and horizontal gene transfer. To
date, most of the focus in inferring phylogenetic networks has been based on
topological information [5], but there is now a growing interest in making this
inferences based on distance information.

In this paper we establish an algorithm for efficiently (polynomial time
in the size of the input) reconstructing an edge-weighted tree-child network
from its inter-taxa distances. Reconstruction of edge-weighted phylogenetic
networks from distances is significantly more difficult than the analogous task
for phylogenetic trees. A crucial feature of this problem is that, for a phylo-
genetic network N , there is no longer a unique distance between every pair of
taxa unless N is a phylogenetic tree, so one must work with shortest distances,
average distances, sets of distances, or some other variation. As a result, we
have more strenuous requirements on the distances as well as the class of phy-
logenetic networks. To be precise, we shall require the multi-set of distances
between each pair of taxa, that the edge-weighted phylogenetic network is tree
child with an outgroup, and that the pair of edges directed into a reticulation
have equal weight.

In related prior work, Chan et al. [4] take a matrix of inter-taxa distances
and reconstruct an ultrametric galled network such that there is a path be-
tween each pair of taxa having the length given in the matrix, if such a phy-
logenetic network exists. Willson [11] studied the problem of determining a
phylogenetic network given the average distance between each pair of taxa,
where each reticulation assigns a probability to the two edges directed into
it. From such distances, one can reconstruct phylogenetic networks having a
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single reticulation cycle in polynomial time [12]. In earlier work [1], Bordewich
and Semple showed that (unweighted) tree-child networks can be reconstructed
from the multi-set of distances between taxa and that (unweighted) temporal,
tree-child networks can be reconstructed from the set of distances between
taxa, each in polynomial time. Furthermore, Bordewich and Tokac [2] have
shown that ultrametric, tree-child networks can be reconstructed from the set
of distances between taxa in polynomial time.

The originality of our work is in applying a Q-score, inspired by the
Neighbor-Joining algorithm [10], to determine key local structures in the net-
work. This enables us to establish a polynomial-time algorithm for reconstruct-
ing edge-weighted tree-child networks from inter-taxa distances. Although we
build upon the prior works mentioned above, it is a significant step to remove
the ultrametric condition, which is not realistic in many biological settings,
and to allow weighted edges, rather than the topological path lengths used
in [1]. The results are rigorously proved, not based upon empirical evidence.
The significance of the work is that it is an important step towards develop-
ing practical methods for fast reconstruction of phylogenetic networks based
upon distance data, and the proper understanding of the phylogenetic history
of taxa has major implications in healthcare (see e.g. [6] and [9]) as well as
biological understanding of the origins of present-day taxa.

For the rest of the introduction, we formally state the main result, after
some necessary definitions, as well as outlining the organisation of the paper.
Throughout, X will always denote a non-empty finite set.

A phylogenetic network N on X is a rooted acyclic digraph with no parallel
edges and the following properties:

(i) the unique root has out-degree two,
(ii) the set X is the set of vertices of out-degree zero, each of which has

in-degree one, and
(iii) all other vertices either have in-degree one and out-degree two, or in-

degree two and out-degree one.

For technical reasons, if |X| = 1, we additionally allow the directed graph
consisting of the single vertex in X to be a phylogenetic network. The vertices
of out-degree zero are called leaves. Furthermore, the vertices of in-degree one
and out-degree two are called tree vertices, while the vertices of in-degree two
and out-degree one are called reticulations. An edge directed into a reticulation
is a reticulation edge; all other edges are tree edges. An element in X is an
outgroup if its parent is the root of N . A phylogenetic network N is a tree-
child network [3] if each non-leaf vertex in N is the parent of either a tree
vertex or a leaf.
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Fig. 1 A weighted tree-child network (N , w) on X = {r, x1, x2, x3, x4, x5, x6} with out-
group r.

Let N be a phylogenetic network on X. Two distinct reticulation edges
e1 and e2 in N is a reticulation pair if e1 and e2 are directed into the same
reticulation. We say N has a reticulation-pair weighting, denoted (N , w), if the
edges of N are assigned a positive real-valued weighting w with the properties
that: for each reticulation pair e1 and e2 we have w(e1) = w(e2); and internal
tree edges have strictly positive weight. (Without this restriction on inter-
nal tree edges, it would not be possible to distinguish the internal structure
of networks with many zero-weight edges.) To illustrate, a reticulation-pair
weighted tree-child network (N , w) on X with outgroup r is shown in Fig. 1,
where X = {r, x1, x2, x3, x4, x5, x6}. The vertex u is a reticulation. As with all
drawings of phylogenetic networks in this paper, edges are directed down the
page.

To ease reading, throughout the paper, a “weighted tree-child network”
means a “reticulation-pair weighted tree-child network”. Let (N , w) be a
weighted phylogenetic network on X, and let v and v′ be vertices in (N , w).
An up-down path from v to v′ in N is an underlying path

v, u1, u2, . . . , uk−1, v
′,

where, for some i ≤ k − 1,

(ui, ui−1), (ui−1, ui−2), . . . , (u1, v)

and

(ui, ui+1), (ui+1, ui+2), . . . , (uk−1, v
′)

are edges in N . The length of an up-down path is the sum of the weights of
the edges along it.

Now let Px,y be the set of up-down paths from x to y in N . The multi-set
of distances from x to y, denoted Dx,y, is the multi-set of lengths of paths in
Px,y. Of course, Dx,y = Dy,x for all x, y ∈ X and Dx,x = {0} for all x ∈ X. The
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multi-set distance matrix D of (N , w) is the |X| × |X| matrix whose (x, y)-th
entry is Dx,y for all x, y ∈ X, in which case D is realised by (N , w). As an
example, in Fig. 1, there are two up-down paths connecting x1 and x3, and
Dx1,x3

= {14, 21}.

Let D be a multi-set distance matrix on X. Let (N , w) be a weighted
phylogenetic network on X with outgroup r, and suppose that (N , w) realises
D. The weighting w is certainly not unique. Let u be the child of the root ρ of
N that is not r. Then, provided the sum of the weights w(ρ, r)+w(ρ, u) is fixed,
we can change the weights of the edges (ρ, r) and (ρ, u) to construct a different
weighting, w′ say, such that (N , w′) also realises D (where w and w′ are equal
on the other edges). We refer to this scenario as re-weighting the edges at the
root of N . A similar scenario happens at any reticulation of N . In particular,
let u be a reticulation in N with parents pu and qu, and let v be the unique
child of u. Then, provided the sum of the weights of (pu, u) and (u, v) and
the sum of the weights of (qu, u) and (u, v) are equal to w(pu, u) +w(u, v), we
can change the weights of the edges (pu, u), (qu, u), and (u, v), again fixing the
weights of all other edges, to construct a different weighting, w′′ say, such that
(N , w′′) realises D. We refer to this last scenario as re-weighting the edges at
a reticulation of N . For example, consider the weighted phylogenetic network
show in Fig. 1. If we increase the weights of both (pu, u) and (qu, u) to 2, and
simultaneously decrease the weight of (u, x4) to 2, then the resulting weighted
phylogenetic network also realises D.

Now let (N1, w1) be another weighted phylogenetic network on X with
outgroup r, and suppose, in addition to (N , w), that (N1, w1) realises D. We
say (N , w) and (N1, w1) are equivalent if N is isomorphic to N1, and w1 can be
obtained from w by re-weighting the edges at the root and at each reticulation.
Observe that this induces an equivalence relation on the set of weighted phy-
logenetic networks on X with outgroup r realising D. Furthermore, under this
relation, there is a unique weighted phylogenetic network, denoted (N0, w0),
in the equivalence class of (N , w), where the weight of each reticulation edge
is zero, and the weight of the pendent edge incident with the root ρ, that is
(ρ, r), is zero. The main result of the paper is the following theorem.

Theorem 1 Let D be a multi-set distance matrix on X with distinguished el-
ement r. Let (N , w) be a weighted tree-child network on X with outgroup r
realising D. Then, up to equivalence, (N , w) is the unique such network real-
ising D, in which case (N0, w0) can be found from D in time quadratic in |D|.

The unweighted analogue of Theorem 1 is established in [1]. Furthermore,
the analogue of Theorem 1 for when the multi-set distance matrix D is realised
by a weighted tree-child network whose weighting satisfies the ultrametric
condition is established in [2]. A weighting is ultrametric if the lengths of all
paths from the root to a leaf are the same.
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To provide some intuition to the proof of Theorem 1 and the content of
the paper, the algorithm proceeds iteratively by identifying a pair of taxa
that form one of two local structures (a cherry or a reticulated cherry) in the
target network. Before recursing, it either deletes one of these taxa or reduces
the distance matrix to effectively delete a reticulation edge from the network
under construction. We identify an appropriate pair of taxa using a so-called
Q-score, which is inspired by the Q-score used to identify a pair of taxa to
agglomerate in the popular Neighbor Joining algorithm [10].

The paper is organised as follows. The next section consists of some ad-
ditional preliminaries, including the notion of a reticulated cherry. Section 3
introduces the Q-score of a pair of elements in X. This score is calculated using
values in a distance matrix on X and is the key idea underlying Theorem 1.
The uniqueness and computational parts of Theorem 1 are proved in Sections 4
and 5, respectively. A phylogenetic network N is stack free if each reticulation
is the parent of either a tree vertex or a leaf. Also note that if N is a stack-
free network on X, where |X| = 1, then N consists of the single vertex in X.
Observe that if N is a tree-child network, then N is a stack-free network, but
the converse does not hold. In Section 6, we state, as a conjecture, an analogue
of Theorem 1 for stack-free networks and establish a lemma supporting the
conjecture. Consequently, where appropriate, the results in Sections 2 and 3
are generalised to stack-free networks.

We end the introduction with two remarks. First, it is natural to ask if all
of the inter-taxa distances are necessary in recovering a weighted tree-child
network. A separate collaboration is currently investigating this question. Sec-
ond, for the approach taken in this paper of using the Q-score, the assumption
in the statement of Theorem 1 that the edges directed into the same reticu-
lation have the same weight is necessary (for details, see Section 3). However,
whether this assumption is necessary in general, remains an open problem.

2 Preliminaries

Let N be a phylogenetic network on X, and let {s, t} be a 2-element subset
of X. We say {s, t} is a cherry, alternatively a 0-reticulated cherry, if there is
an up-down path,

s, u1, t

say, between s and t, where u1 is (necessarily) a tree vertex. Furthermore,
{s, t} is a 1-reticulated cherry if there is an up-down path,

s, u1, u2, t

say, between s and t, where exactly one of u1 and u2 is a tree vertex. If u1 is
the tree vertex, then t is the reticulation leaf of the 1-reticulated cherry. Lastly,
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{s, t} is a 2-reticulated cherry if there is an up-down path,

s, u1, u2, u3, t

say, between s and t, where both u1 and u3 are reticulations, and u2 is a tree
vertex. Depending on whether {s, t} is a 0-, 1-, or 2-reticulated cherry, we refer
to the unique tree vertex in the associated up-down paths as the tree vertex of
the 0-, 1-, or 2-reticulated cherry, respectively. For example, in Fig. 1, {x1, x2}
is a cherry, while {x4, x5} is a 1-reticulated cherry with tree vertex qu. The
2-element set {x3, x4} is also a 1-reticulated cherry.

The proof of Lemma 1 for when N is tree child is established in [1].

Lemma 1 Let N be a stack-free (resp. tree-child) network on X, where |X| ≥
2. Then N has a k-reticulated cherry for some k ∈ {0, 1, 2} (resp. k ∈ {0, 1}).
Moreover, if N is weighted and u is a tree vertex at maximum distance from
the root, then u is the tree vertex of a k-reticulated cherry for some k ∈ {0, 1, 2}
(resp. k ∈ {0, 1}).

Proof Let u be a tree vertex at maximum distance from the root of N . We
prove the lemma for when N is stack free by showing that u is the tree vertex
of a k-reticulated cherry for some k ∈ {0, 1, 2}.

By maximality, there is no tree vertex in N below u, and so, as N has
no parallel edges, there are exactly two elements, x and y say, in X below
u. Moreover, as N is stack free, the number of edges on the unique directed
path from u to x (respectively, y) is at most two. By a routine check, it now
follows, for some k ∈ {0, 1, 2}, that u is the tree vertex of the k-reticulated
cherry {x, y}.

In the case that N is tree child, at least one child of u must be a leaf, and
hence for some k ∈ {0, 1}, that u is the tree vertex of the k-reticulated cherry
{x, y}. ut

Let (N , w) be a weighted phylogenetic network on X. Let {s, t} be a 2-
element subset of X that is either a 0- or 1-reticulated cherry of N , and denote
the parents of s and t by ps and pt, respectively. First assume that {s, t} is
a 0-reticulated cherry, and so ps = pt. Let gs denote the parent of ps. Then
reducing t is the operation of deleting t and its incident edge, suppressing ps,
and setting the weight of the resulting edge (gs, s) to be

w(gs, ps) + w(ps, s).

Now assume that {s, t} is a 1-reticulated cherry in which t is the reticulation
leaf. Let gs and gt denote the parents of ps and pt, respectively, where gt 6= ps.
Then cutting {s, t} is the operation of deleting (ps, pt), suppressing ps and pt,
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Fig. 2 Two weighted tree-child networks (N1, w1) and (N2, w2) obtained from (N , w) in
Fig. 1 by reducing x2 and by cutting {x4, x5}, respectively.

and setting the weight of the resulting edge (gs, s) to w(gs, ps) +w(ps, s) and
the weight of the edge (gt, t) to w(gt, pt)+w(pt, t). To illustrate, consider Fig. 2.
The weighted tree-child network (N1, w1) has been obtained from (N , w) in
Fig. 1 by reducing x2. Furthermore, the weighted tree-child network (N2, w2)
has been obtained from (N , w) by cutting {x4, x5}.

The proof of the next lemma follows from [1, Lemma 4.1].

Lemma 2 Let (N , w) be a weighted tree-child network. Suppose (N ′, w′) is
obtained from (N , w) by either reducing a leaf in a cherry, or cutting a 1-
reticulated cherry. Then (N ′, w′) is also a weighted tree-child network.

Let D be a multi-set distance matrix on X. For all x, y ∈ X, we denote
the maximum and minimum values in Dx,y by dmax(x, y) and dmin(x, y), re-
spectively. Now, let r be a distinguished element in X. We next describe two
reduction operations on D that parallel the above reduction and cutting op-
erations on a weighted phylogenetic network. This is necessary because in the
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reconstruction algorithm we will be working with the input data D, and not
with the unknown (as yet) network. We will only need to perform these paral-
lel operations in cases in which we have already identified a pair of taxa {s, t}
that form a k-reticulated cherry at maximum distance from the outgroup r,
in a sense that shall be defined precisely in the next section. In these cases the
assumptions made in the definitions below will be shown to hold.

Let {s, t} be a 2-element subset of X−{r}. First assume |Ds,t| = 1. Let D′
be the multi-set distance matrix on X ′ = X −{t} obtained from D by setting

D′x,y = D′y,x = Dx,y

for all x, y ∈ X ′. We say that D′ has been obtained by reducing t in D. Second
assume that, for all x ∈ X − {s, t},

{d+ c : d ∈ Ds,x} $ Dt,x,

where c = dmax(r, t)− dmax(r, s). Now let D′ be the multi-set distance matrix
on X obtained from D by setting

D′x,y = D′y,x = Dx,y

for all x, y ∈ X − {t},

D′t,x = D′x,t = Dt,x − {d+ c : d ∈ Ds,x}

for all x ∈ X − {s, t}, where c = dmax(r, t)− dmax(r, s), and

D′s,t = D′t,s = Ds,t − {dmin(s, t)}.

We say D′ has been obtained by cutting {s, t} in D.

3 Q-Score

We establish Theorem 1 by iteratively determining a 2-element subset {s, t}
in X − {r} that is either a 0- or a 1-reticulated cherry in (N , w). The same
approach is used in [1] to prove an unweighted analogue of this theorem, but
there the determination is straightforward. For example, in the unweighted
setting, |Ds,t| = 1 and Ds,t = {2} is both a necessary and sufficient condition
to determine that {s, t} is a 0-reticulated cherry of (N , w). However, with an
arbitrary weighting, the canonical generalisation of this condition is neither
necessary nor sufficient. The key to resolving this hurdle is the notion of a
Q-score.

Let D be a multi-set distance matrix on X. For all x, y, z ∈ X, the Q-score
of x and y with respect to z, denoted Qz(x, y), is the value

Qz(x, y) = 1
2 (dmax(z, x) + dmax(z, y)− dmin(x, y)) .
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For example, referring to the multi-set distance matrix realised by (N , w) in
Fig. 1,

Qr(x4, x6) = 1
2 (dmax(r, x4) + dmax(r, x6)− dmin(x4, x6))

= 1
2 (21 + 14− 8) = 27

2 .

Given the multi-set distance matrix of a weighted tree-child network (N , w)
with outgroup r, the next lemma shows that maximising the Q-score with
respect to r identifies a reticulated cherry of (N , w).

Lemma 3 Let D be a multi-set matrix of distances between elements of a set
X with distinguished element r, where |X| ≥ 3. Let (N , w) be a weighted stack-
free (resp. tree-child) network on X with outgroup r realising D. Let {s, t} be
a 2-element subset of X − {r} such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}.

Then

(i) For some k ∈ {0, 1, 2} (resp. k ∈ {0, 1}), the set {s, t} is a k-reticulated
cherry in (N , w).

(ii) The length of the longest up-down path in (N , w) starting at r and ending
at a tree vertex is Qr(s, t).

(iii) The length of the longest up-down path in (N , w) starting at r and ending
at the tree vertex u in the k-reticulated cherry {s, t} is Qr(s, t), and
dmax(r, s) and dmax(r, t) are realised by paths that include u.

Proof We begin by establishing a lower bound for

max{Qr(x, y) : x, y ∈ X − {r}}.

Let l be the length of the longest up-down path in (N , w) starting at r and
ending at a tree vertex, u say. By Lemma 1, u is a tree vertex of a k-reticulated
cherry {a, b} for some k ∈ {0, 1, 2}. Observe that if (N , w) is tree child, then
k ∈ {0, 1}. Using the maximality of l, and the fact that reticulations pairs
have equal weight, it is easily checked that Qr(a, b) = l and so

l ≤ max{Qr(x, y) : x, y ∈ X − {r}}. (1)

Now let {s, t} be a 2-element subset of X − {r} such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}.

Let ps and pt be the parents of s and t in (N , w), respectively. The rest of the
proof is partitioned into three cases depending on whether ps and pt are tree
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vertices or reticulations. For the first case, suppose that ps and pt are both
tree vertices. Let ls and lt denote the lengths of the longest up-down paths in
(N , w) from r to ps and r to pt, respectively. Noting that

dmax(r, s) = ls + w(ps, s)

and
dmax(r, t) = lt + w(pt, t),

and ls, lt ≤ l, we have

Qr(s, t) = 1
2

(
dmax(r, s) + dmax(r, t)− dmin(s, t)

)
= 1

2

(
ls + w(ps, s) + lt + w(pt, t)

− dmin(ps, pt)− w(ps, s)− w(pt, t)
)

≤ 1
2

(
ls + lt

)
≤ l,

where dmin(ps, pt) denotes the minimum length of an up-down path in (N , w)
between ps and pt. Since Qr(s, t) = max{Qr(x, y) : x, y ∈ X −{r}}, it follows
by (1) that equality holds throughout and so dmin(ps, pt) = 0. Since internal
tree edges have strictly positive weight, we have ps = pt, in which case {s, t}
is a 0-reticulated cherry in (N , w).

For the second case, suppose that exactly one of ps and pt is a tree vertex.
Without loss of generality, we may assume that ps is a tree vertex. Let ls and
lt denote the lengths of the longest up-down paths in (N , w) from r to ps and
r to a parent, gt say, of pt. Observe that

dmax(r, s) = ls + w(ps, s)

and, as w is reticulation paired,

dmax(r, t) = lt + w(gt, pt) + w(pt, t).

Let g′t denote the parent of pt that is on an up-down path in (N , w) realising
dmin(s, t). Note that gt and g′t may or may not be distinct. SinceN is stack-free,
gt and g′t are tree vertices. Therefore, as w(gt, pt) = w(g′t, pt) and ls, lt ≤ l,

Qr(s, t) = 1
2

(
dmax(r, s) + dmax(r, t)− dmin(s, t)

)
= 1

2

(
ls + w(ps, s) + lt + w(gt, pt) + w(pt, t)

− dmin(ps, g
′
t)− w(ps, s)− w(gt, pt)− w(pt, t)

)
= 1

2

(
ls + lt − dmin(ps, g

′
t)
)

≤ 1
2

(
ls + lt

)
≤ l,

where dmin(ps, g
′
t) denotes the minimum length of an up-down path in (N , w)

between ps and g′t. By the choice of {s, t} and (1), equality holds throughout
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and so dmin(ps, g
′
t) = 0, that is ps = g′t, in which case {s, t} is a 1-reticulated

cherry.

Lastly, suppose that ps and pt are both reticulations. Let ls and lt denote
the lengths of the longest up-down paths in (N , w) from r to a parent, gs say,
of ps and from r to a parent, gt say, of pt. Then

dmax(r, s) = ls + w(gs, ps) + w(ps, s)

and

dmax(r, t) = lt + w(gt, pt) + w(pt, t).

Let g′s and g′t denote the parents of ps and pt, respectively, on an up-down
path in (N , w) realising dmin(s, t). As N is stack free, each of gs, g

′
s, gt, and

g′t are tree vertices. Since w is reticulation paired, w(gs, ps) = w(g′s, ps) and
w(gt, pt) = w(g′t, pt). Therefore, as ls, lt ≤ l,

Qr(s, t) = 1
2

(
dmax(r, s) + dmax(r, t)− dmin(s, t)

)
= 1

2

(
ls + w(gs, ps) + w(ps, s) + lt + w(gt, pt) + w(pt, t)

)
− dmin(g′s, g

′
t)− w(gs, ps)− w(ps, s)− w(gt, pt)− w(pt, t)

)
= 1

2

(
ls + lt − dmin(g′s, g

′
t)
)

≤ 1
2

(
ls + lt

)
≤ l,

where dmin(g′s, g
′
t) denotes the minimum length of an up-down path in (N , w)

between g′s and g′t. By the choice of {s, t} and (1), equality holds throughout
and so dmin(g′s, g

′
t) = 0, that is g′s = g′t. If (N , w) is not tree child, then {s, t}

is a 2-reticulated cherry. While if (N , w) is tree child, then (N , w) has a vertex
with two child reticulations; a contradiction.

In each case, it easily follows that Qr(s, t) is the length of the longest
up-down path in (N , w) starting at r and ending at the tree vertex of the
k-reticulated cherry {s, t}. In addition, in each case we have the equality ls =
lt = l, from which it follows that dmax(r, s) and dmax(r, t) are each realised by
a path via the tree vertex of the k-reticulated cherry. This completes the proof
of the lemma. ut

Lemma 3 does not necessarily hold if (N , w) is not stack free or if the
weighting does not have the property that w(e1) = w(e2) for each reticulation
pair e1 and e2. Consider the two weighted tree-child networks (N1, w1) on X1

and (N2, w2) on X2 shown in Fig. 3, where X1 = {r, x1, x2, x3} and X2 =
{r, x1, x2, x3, x4}. Here, b is a positive real and, for clarity, unweighted edges
each have weight one. The fact that unweighted edges each have the same
weight is simply for convenience. Observe that (N1, w1) is not stack free and



Constructing Tree-Child Networks from Distance Matrices 13

x1

x2 x1 x2 x3

x4

r
b

x3

r

(ii) (N2, w2)(i) (N1, w1)

2b

b

Fig. 3 Two weighted tree-child networks for which the maximum Qr-score is not realised
by either a 0- or 1-reticulated cherry.

the weighting in (N2, w2) does not satisfy the reticulation pair property. With
regards to (i), it is easy to check that

Qr(x2, x3) = max{Qr(xi, xj) : xi, xj ∈ X1 − {r}}

provided b is sufficiently large. But {x2, x3} is neither a 0- nor 1-reticulated
cherry in (N1, w1). In (ii), provided b is sufficiently large,

Qr(x1, x3) = Qr(x2, x3) = max{Qr(xi, xj) : xi, xj ∈ X − {r}},

and {x1, x3}, as well as {x2, x3}, is not a 0- or 1-reticulated cherry.

4 Tree-Child Networks

In this section, we prove the uniqueness part of Theorem 1. We begin with a
lemma which will be used again in the next section.

Lemma 4 Let (N , w) be a weighted tree-child network on X with outgroup
r, where |X| ≥ 3. Let D be the multi-set distance matrix of (N , w). For some
k ∈ {0, 1}, let {s, t} be a k-reticulated cherry in (N , w) such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}.

Depending on k, let D′ be the multi-set distance matrix obtained from D by
reducing t if k = 0 and by cutting {s, t} if k = 1. Then D′ is realised by the
weighted tree-child network obtained from (N , w) by reducing t if k = 0 and
by cutting {s, t} if k = 1.

Proof If k = 0, then it is clear that D′ is realised by the weighted tree-child
network on X ′ obtained from (N , w) by reducing t. Therefore suppose that
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k = 1 and t is the reticulation leaf of the 1-reticulated cherry {s, t}. Let
(N ′, w′) be the weighted tree-child network on X obtained from (N , w) by
cutting {s, t}. We next show that D′ is realised by (N ′, w′).

Let ps and pt be the (unique) parents of s and t in (N , w), respectively.
Since the only up-down paths in (N , w) between elements in X traversing
(ps, pt) involve t, it follows that D′x,y = D′y,x is realised by (N ′, w′) for all x, y ∈
X−{s, t}. Let x ∈ X−{s, t} and consider the set of up-down paths starting at s
and ending at x, and the set of up-down paths starting at t, traversing (ps, pt),
and ending at x. There is an obvious one-to-one correspondence between the
two sets. Under this correspondence, if ds,x is the length of an up-down path
starting at s and ending at x, then the length dt,x of the corresponding up-
down path starting at t, traversing (ps, pt), and ending at x is

dt,x = ds,x + w(ps, pt) + w(pt, t)− w(ps, s)

= ds,x + c,

where, by Lemma 3 and the equality of weights on reticulations pairs, c =
dmax(r, t)− dmax(r, s). Hence, for each x ∈ X − {s, t},

D′t,x = D′x,t = Dt,x − {d+ c : d ∈ Ds,x}

is realised by (N ′, w′). Lastly, D′s,t = D′t,s is realised by (N ′, w′) as there
is exactly one up-down path P = s, ps, pt, t in (N , w) between s and t that
traverses (ps, pt), and which is therefore the only path removed when cutting
{s, t} in (N , w). Path P must have distance dmin(s, t), since any other up-
down path P ′ from s to t also traverses the edges (ps, s) and (pt, t) and must
traverse the reticulation edge paired with (ps, pt), which has weight equal to
(ps, pt), and hence P ′ is at least as long as P . ut

By way of example, consider (N1, w1) as shown in Fig. 2. The pair that
maximise the Qr-score is {x3, x4} with Qr(x3, x4) = 1

2 (19+21−6) = 17. Con-
sider the multi-set distance matrix D realised by (N1, w1), and the multi-set
distance matrix D′ obtained by cutting {x3, x4} in D. Now Dx1,x3

= {14, 21}
and Dx1,x4

= {16, 21, 23}. The latter set can be viewed as

{21} ∪ {d+ c : d ∈ Dx1,x3 , c = 2},

where 21 is the only distance realised by a path not going via the parent of
x3. Observe that D′x1,x4

= {21}. Finally, Dx3,x4
= {6, 14, 21}, and D′x3,x4

=
{14, 21}, where the length 6 up-down path is the only path removed by cutting
{x3, x4} in (N1, w1).

The following theorem establishes the uniqueness part of Theorem 1.

Theorem 2 Let D be a multi-set distance matrix on X with distinguished
element r. Let (N , w) be a weighted tree-child network on X with outgroup
r realising D. Then, up to equivalence, (N , w) is the unique such network
realising D.
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Proof The proof is by induction on the sum of the number n of leaves and the
number k of reticulations in (N , w). If this sum is 1, then (N , w) consists of the
single vertex r and so the theorem holds. If the sum is 2, then (N , w) consists
of two leaves attached to the root and again the theorem holds. Now suppose
that n + k ≥ 3 and the theorem holds for all weighted tree-child networks
with outgroup r, where the sum of the number of leaves and the number of
reticulations is at most n+ k − 1.

Let {s, t} be a 2-element subset of X − {r} such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}.

Then, by Lemma 3, {s, t} is a k-reticulated cherry for some k ∈ {0, 1}. If
k = 1, we may assume without loss of generality that t is the reticulation leaf.
Depending on k, let (N ′, w′) be the weighted tree-child network obtained from
(N , w) by reducing t if k = 0 and cutting {s, t} if k = 1. Furthermore, let D′
be the multi-set distance matrix obtained from D by reducing t in D if k = 0
and by cutting {s, t} in D if k = 1. By Lemmas 2 and 4 respectively, (N ′, w′)
is tree child and realises D′. Since (N ′, w′) has n − 1 leaves if k = 0 and
k− 1 reticulations if k = 1, it follows by the induction assumption that, up to
equivalence, (N ′, w′) is the unique weighted tree-child network with outgroup
r realising D′.

Let (N1, w1) be a weighted tree-child network on X with outgroup r real-
ising D. Since

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}},

it follows by Lemma 3 that {s, t} is a k-reticulated cherry in (N1, w1) for some
k ∈ {0, 1}. First assume that {s, t} is a 0-reticulated cherry in (N , w). Then
|Ds,t| = 1, and so {s, t} is a 0-reticulated cherry in (N1, w1). Let (N ′1, w′1) be the
weighted tree-child network on X −{t} obtained from (N1, w1) by reducing t.
Then, by Lemma 4, (N ′1, w′1) realises D′ and so, by the induction assumption,
(N ′1, w′1) is equivalent to (N ′, w′). Using this equivalence and considering a
distance in Dr,t, it is easily seen that (N1, w1) is equivalent to (N , w).

Now assume that {s, t} is a 1-reticulated cherry in (N , w). Then |Ds,t| 6= 1,
so {s, t} is a 1-reticulation in (N1, w1). Furthermore, as t is the reticulation
leaf of {s, t} in (N , w),

{d+ c : d ∈ Ds,x} $ Dt,x,

where c = dmax(r, t)−dmax(r, s), for all x ∈ X−{s, t}, and so t is the reticula-
tion leaf of {s, t} in (N1, w1). Let (N ′1, w′1) be the weighted tree-child network
on X obtained from (N1, w1) by cutting {s, t}. Then, as (N1, w1) realises D,
it follows by Lemma 4 that (N ′1, w′1) realises D′. Therefore, by the induction
assumption, (N ′1, w′1) is equivalent to (N ′, w′). Using dmin(s, t), it is now easily
deduced that (N1, w1) is equivalent to (N , w). This completes the proof of the
theorem. ut
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5 The Algorithm

Let (N , w) be a weighted tree-child network on X with outgroup r. Let D be
the multi-set distance matrix of (N , w). In this section, we present the algo-
rithm Q-Reduction which takes as input X, D, and r, and outputs (N0, w0).
As described at the end of the introduction, this algorithm recursively finds a
2-element subset that maximises the Q-score with respect to r and then, de-
pending on whether this subset is a 0- or 1-reticulated cherry, reduces or cuts
a 2-element subset of X in the current distance matrix. Once this matrix is
small, it recursively reverses these operations to construct (N0, w0). Formally,
Q-Reduction works as follows:

1. If |X| = 1, then return the phylogenetic network (N0, w0) consisting of the
single vertex r.

2. If |X| = 2, say X = {r, s}, then return the phylogenetic network (N0, w0)
consisting of leaves r and s adjoined to the root ρ with (ρ, r) weighted the
single value in Dr,s and (ρ, s) weighted 0.

3. Else, find a 2-element subset {s, t} of X such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}.

(a) If |Ds,t| = 1 (in which case, {s, t} is a 0-reticulated cherry), then
(i) Reduce t in D to give the multi-set distance matrix D′ on X ′ =

X − {t}.
(ii) Apply Q-Reduction to input X ′, D′, and r. Construct (N0, w0)

from the returned network (N ′0, w′0) on X ′ by reversing the reduc-
tion on t. In particular, if u is the parent of s in (N ′0, w′0), then
subdivide (u, s) with a new vertex v, add a new leaf t and adjoin
it with the new edge (v, t), assign weights w0(u, v) and w0(v, s)
so that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}

and

w0(u, v) + w0(v, s) = w′0(u, s),

and assign weight w0(v, t) so that dmin(s, t) = w0(v, s) +w0(v, t).
Return (N0, w0).

(b) Else ({s, t} is a 1-reticulated cherry, in which case it has reticulation
leaf t if, for all x ∈ X − {s, t},

{d+ c : d ∈ Ds,x} $ Dt,x,

where c = dmax(r, t)− dmax(r, s)),
(i) Cut {s, t} in D to give the multi-set distance matrix D′ on X.
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(ii) Apply Q-Reduction to input X, D′, and r. Construct (N0, w0)
from the returned network (N ′0, w′0) on X by reversing the cutting
of {s, t}. In particular, if u1 and u2 denote the parents of s and
t, respectively, in (N ′0, w′0), then subdivide (u1, s) and (u2, t) with
new vertices v1 and v2, respectively, adjoin v1 and v2 with the
new edge (v1, v2), assign weight w0(u1, v1) so that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X},

assign weight w0(v1, s) so that

w0(u1, v1) + w0(v1, s) = w′0(u1, s),

and assign weight 0 to (v1, v2) and (u2, v2), and weight w′0(u2, t)
to (v2, t). Return (N0, w0).

The next theorem shows thatQ-Reduction does indeed work as expected.

Theorem 3 Let (N , w) be a weighted tree-child network on X with outgroup
r. Let D be the multi-set distance matrix of (N , w). Then Q-Reduction ap-
plied to X, D, and r returns (N0, w0).

Proof The proof is by induction on the sum of the number n of leaves and
the number k of reticulations in (N , w). If this sum is 1, then (N , w) consists
of the single vertex r and Q-Reduction correctly returns (N0, w0). If the
sum is 2, then (N , w) consists of two leaves attached to the root and, again,
Q-Reduction correctly returns (N0, w0).

Now suppose that (N , w) has n leaves and k reticulations, where n+k ≥ 3,
and note that n ≥ 3. Let D′ be a multi-set matrix of distances on a set X ′,
and let r be a distinguished element in X ′. Suppose that D′ is realised by
a weighted tree-child network (N ′, w′) on X ′ with outgroup r, and with n′

leaves and k′ reticulations such that

1 ≤ n′ + r′ < n+ r.

The inductive hypothesis is that if Q-Reduction is applied to X ′, D′, and r,
then (N ′0, w′0) is returned.

Consider the run of the algorithm on input X, D, and r. Since n ≥ 3, at
the first iteration it finds a 2-element subset {s, t} of X − {r} such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}.

Furthermore, by Lemma 3, as D is realised by (N , w), either (i) we have
|Ds,t| = 1 or (ii) without loss of generality we have

{d+ c : d ∈ Ds,x} $ Dt,x,
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where c = dmax(r, t)− dmax(r, s). First suppose (i) holds. Then the algorithm
reduces t in D producing the multi-set distance matrix D′ on X ′ = X − {t}
given by

D′x,y = D′y,x = Dx,y

for all x, y ∈ X ′. This completes the first iteration and Q-Reduction is now
recursively applied to X ′, D′, and r. By Lemma 4, D′ is realised by a weighted
tree-child network, (N ′, w′) say, on X ′ with outgroup r. Since (N ′, w′) has
n − 1 leaves and k reticulations, it follows by the induction assumption that
Q-Reduction applied to X ′, D′, and r returns (N ′0, w′0). It is easily checked
that the construction in Step 3(a)(ii) of Q-Reduction applied to (N ′0, w′0)
returns (N0, w0). In this construction, observe that there is exactly one choice
for the weights of the edges incident with the parent of s and t in the returned
network.

Now suppose (ii) holds. Then Q-reduction cuts {s, t} in D to produce
the multi-set distance matrix D′ on X. This completes the first iteration and
Q-Reduction is now recursively applied to X, D′, and r. By Lemma 4, D′
is realised by a weighted tree-child network (N ′, w′) on X with outgroup r.
Since (N ′, w′) has n leaves and k− 1 reticulations, it follows by the induction
assumption that Q-Reduction applied to X, D′, and r returns (N ′0, w′0). It is
easily checked that the construction in Step 3(b)(ii) of Q-Reduction applied
to (N ′0, w′0) returns (N0, w0). Note that the weighting of (u1, v1) is unique as
is the weighting of (v1, s) in constructing (N0, w0). ut

We now turn our attention to the running time of Q-Reduction. The
algorithm takes as input a setX, an |X|×|X|matrixD whose entries are multi-
sets of up-down path distances of a weighted tree-child network (N , w) on X,
and an element r in X. We will assume that each entry in D is presented as an
ascending list of distances. Unless |X| ∈ {1, 2}, in which case Q-Reduction
runs in constant time, each iteration involves finding a 2-element subset {s, t}
of X − {r} such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X − {r}}.

Since each entry is an ascending list of distances, finding such a subset takes
O(|X|2) time, that is O(|D|) time, where |D| is the sum of the cardinalities of
the multi-sets that are the elements of D.

With a suitable 2-element subset of X − {r} found, we compute D′. This
computation is done in one of two ways depending on whether or not |Ds,t| = 1.
If |Ds,t| 6= 1, we need to additionally check which of

{d+ c : d ∈ Ds,x} $ Dt,x and {d− c : d ∈ Dt,x} $ Ds,x,

where c = dmax(r, t) − dmax(r, s) holds, for all x ∈ X − {s, t}. Since D is the
multi-set distance matrix of (N , w), it suffices to do this check for only one
element in X−{s, t} and this can be done in O(|D|) time. Computing D′ takes
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O(|D|) time and once (N ′0, w′0) is returned, it can be augmented to (N0, w0)
in constant time. Hence the total time of the iteration is linear in |D|.

When we recurse, the multi-set distance matrix D′ inputted to the recursive
call is strictly smaller than D since we either reduce an element, in which case
we delete a row and column of D, or we cut a 2-element set, in which case
we delete elements in entries of D. Thus the total number of iterations is at
most |D|, and so Q-Reduction completes in time O(|D|2). Together with
Theorems 2 and 3, this establishes Theorem 1.

6 Stack-Free Networks

In this section, we consider an analogue of Theorem 1 for stack-free networks.
Let (N , w) be a weighted phylogenetic network on X. If F is a subset of
edges of (N , w), we denote by w(F ) the sum of the weights of the edges in F .
Without loss of generality, let E′ be a subset of the edges of (N , w) consisting
of all the tree edges of (N , w) and exactly one edge from each reticulation
pair of (N , w). We say w is generic if w(F ) 6= w(G) for all distinct non-empty
subsets F and G of E′. Up to the restriction that reticulation pairs have equal
weights, if a weighting of each edge of N is selected independently from any
continuous probability distribution on the positive reals, then the probability
of the weighting being generic is one. Note that our requirement for a generic
weighting is very close to the no-equally-long-paths (NELP) property of Pardi
and Scornavacca [8], and is introduced for similar reasons.

In writing this paper, we felt we were tantalisingly close to establishing an
analogue of Theorem 1 for stack-free networks with a generic weighting. In
particular, the following which we state as a conjecture:

Conjecture 1 Let D be a multi-set distance matrix on X with a distinguished
element r. Let (N , w) be a generically-weighted stack-free network on X with
outgroup r realising D. Then, up to equivalence, (N , w) is the unique such
network realising D.

Note that a reticulation-pair weighting is not sufficient for the conjecture
to hold. Fig. 4 gives an example of two reticulation-pair weighted, stack-free
networks that share the same multiset-matrix of inter-taxa distances but are
non-isomorphic.

The following lemma supports Conjecture 1, in that it proves a partial
result that could potentially be used in a proof of Conjecture 1. Given a
distance matrix D on X with distinguished element r that is realised by a
weighted stack-free network (N , w) on X with outgroup r, this lemma not
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r r

Fig. 4 In this figure all edges have weight 1. N1 and N2 are two non-isomorphic stack-free
phylogenetic networks on {x1, x2, x3, x4, y, r} with the same multiset-matrix of inter-taxa
distances.

only allows us to find a 2-element subset of X − {r} that is a 0-, 1-, or 2-
reticulated cherry of (N , w) using just D, but also to determine its type. The
notion of a generic weighting is crucially used in the proof of this lemma.
Whether one can relax this condition remains an open problem.

Lemma 5 Let D be a multi-set distance matrix on X with a distinguished
element r, where |X| ≥ 3. Let (N , w) be a generically-weight stack-free network
on X with outgroup r realising D. Let {s, t} be a 2-element subset of X − {r}
such that

Qr(s, t) = max{Qr(x, y) : x, y ∈ X}.

Then

(i) {s, t} is a 0-reticulated cherry in (N , w) if |Ds,t| = 1;
(ii) {s, t} is a 1-reticulated cherry in (N , w) with reticulation leaf t if, for all

x ∈ X − {s, t},
{d+ c : d ∈ Ds,x} $ Dt,x,

where c = dmax(r, t)− dmax(r, s); and
(iii) {s, t} is a 2-reticulated cherry in (N , w) otherwise.

Proof By Lemma 3, {s, t} is a k-reticulated cherry for some k ∈ {0, 1, 2}.
If |Ds,t| = 1, then it is clear that {s, t} is a 0-reticulated cherry in (N , w).
Suppose that, for all x ∈ X − {s, t},

{d+ c : d ∈ Ds,x} $ Dt,x,

where c = dmax(r, t)− dmax(r, s). We next show that, under this assumption,
{s, t} is a 1-reticulated cherry in (N , w) with reticulation leaf t.
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If {s, t} is a 1-reticulated cherry in (N , w), then, because of the strict subset
assumption, t is the reticulation leaf. Assume, to the contrary, that {s, t} is
a 2-reticulated cherry in (N , w). Let ps and pt be the parents of s and t in
(N , w), respectively. Let gst be a common parent of ps and pt. Since {s, t} is a
2-reticulated cherry in (N , w), it follows that ps and pt have at least one such
parent. If ps and pt have both parents in common, then |Ds,x| = |Dt,x| for all
x ∈ X − {s, t}; a contradiction. So gst is the only such parent. Let gs and gt
be the parents of ps and pt in (N , w), respectively, that is not gst.

Let z ∈ X −{s, t} such that z can be reached by an up-down path, Ps say,
starting at s, traversing (gs, ps) in (N , w). Since {d + c : d ∈ Ds,z} $ Dt,z,
there is an injection from the set of up-down paths from s to z to the set of up-
down paths from t to z, where each path is mapped onto a path whose length
differs by exactly c. Moreover, we may create this injection by extending the
canonical bijection between the set of up-down paths starting at s, traversing
(gst, ps), and ending at z and the set of up-down paths starting at t, traversing
(gst, pt), and ending at z. Thus we may assume that under the injection each
path traversing (gs, ps) maps to a path traversing (gt, pt). Hence there is an
up-down path Pt starting at t and ending at z such that

w(Ps) + c = w(Pt), (2)

where w(Ps) and w(Pt) are the sums of the weights of the edges in Ps and Pt,
respectively, and Pt traverses (gt, pt). By Lemma 3, dmax(r, t) and dmax(r, s)
are realised by paths via gst, hence we can express c as

c = w(gst, pt) + w(pt, t)− w(gst, ps)− w(ps, s),

and so (2) implies

w(Ps) + w(gst, pt) + w(pt, t) = w(Pt) + w(gst, ps) + w(ps, s). (3)

Let P ′s consist of the edges of Ps starting at gs and ending at z, and let
P ′t consist of the edges of Pt starting at gt and ending at z. So w(Ps) =
w(P ′s) + w(gs, ps) + w(ps, s) and w(Pt) = w(P ′t ) + w(gt, pt) + w(pt, t). Then,
by (3)

w(P ′s) + w(gs, ps) + w(gst, pt) = w(P ′t ) + w(gt, pt) + w(gst, ps).

But as w is reticulation paired w(gs, ps) = w(gst, ps) and w(gt, pt) = w(gst, pt),
so w(P ′s) = w(P ′t ), contradicting that w is generic. Thus {s, t} is a 1-reticulated
cherry with reticulation leaf t, and the lemma follows. ut

Unfortunately, although we are able to determine a 0-, 1-, or 2-reticulated
cherry of (N , w) using just D, in the case that we find a pair {s, t} that form
a 2-reticulated cherry, it is not clear how to obtain a multi-set distance matrix
D′ from D such that D′ is displayed by the network obtained from (N , w) by
cutting one of the reticulation edges in {s, t}. In particular it is not clear which
elements of Ds,t should be in D′s,t.
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