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Quantum computation mediated by ancillary qudits and spin coherent states
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Models of universal quantum computation in which the required interactions between register (computational)
qubits are mediated by some ancillary system are highly relevant to experimental realizations of a quantum
computer. We introduce such a universal model that employs a d-dimensional ancillary qudit. The ancilla-register
interactions take the form of controlled displacements operators, with a displacement operator defined on the
periodic and discrete lattice phase space of a qudit. We show that these interactions can implement controlled phase
gates on the register by utilizing geometric phases that are created when closed loops are traversed in this phase
space. The extra degrees of freedom of the ancilla can be harnessed to reduce the number of operations required
for certain gate sequences. In particular, we see that the computational advantages of the quantum bus (qubus)
architecture, which employs a field-mode ancilla, are also applicable to this model. We then explore an alternative
ancilla-mediated model which employs a spin ensemble as the ancillary system and again the interactions with
the register qubits are via controlled displacement operators, with a displacement operator defined on the Bloch
sphere phase space of the spin coherent states of the ensemble. We discuss the computational advantages of this
model and its relationship with the qubus architecture.

DOI: 10.1103/PhysRevA.91.012308 PACS number(s): 03.67.Lx, 03.65.−w

I. INTRODUCTION

A quantum computer has the potential to solve certain
problems and implement simulations faster than any classical
computer [1,2]. Although many steps have been made towards
a physical realization of a quantum computer, a device that can
outperform a classical computer remains a huge challenge.
The original theoretical setting for quantum computation is
the gate model [1,3], where a global unitary on a register of
computational qubits is decomposed into some universal finite
gate set, often composed of a single entangling two-qubit gate
and a universal set of single-qubit unitaries [4,5]. However,
this model requires both individual qubit addressability, to
implement single-qubit unitaries on each register qubit, and
controllable coherent two-qubit interactions between arbitrary
pairs of register qubits. This can be very experimentally
challenging and so, motivated by this, alternative models of
quantum computation have been developed.

One possible route to improving the physical viability of
a model is to mediate the multiqubit gates between compu-
tational qubits using some ancillary system. The original ion
trap gate of Cirac and Zoller is such a scheme, where the
ancillary system in this case is the collective quantized motion
of the ions [6]. We shall refer to computational architectures of
this type as ancilla-mediated quantum computation (AMQC).
This encompasses many of the experimental demonstrations of
quantum computation and AMQC has many advantages over
a direct implementation of the gate model. First, the ancillary
system may be of a different physical type that is optimized
for communication between isolated low decoherence qubits
in a computational register. Such hybrid systems have been
proposed or physically realized in a variety of physical setups,
an example being the coupling of spin or atomic qubits via
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ancillary photonic qubits [7,8]. Indeed, models of universal
quantum computation in which an ancillary qubit mediates
all the required operations on the register qubits via a single
fixed-time interaction between the ancilla and a single register
qubit at a time have been developed [9–14]. This is known
as ancilla-driven or ancilla-controlled quantum computation
when measurements of the ancilla drive the evolution [9–12]
or when all of the dynamics are unitary [13,14], respectively.

However, in general, the mediating ancillary system need
not be a qubit but may be of any dimension. This is the case in
a variety of experimental settings such as superconducting
qubits coupled via a transmission line resonator [15,16],
semiconductor spin qubits coupled optically [17], or the
coupling of a Cooper-pair box with a micromechanical
resonator [18]. A well-studied computational model which
harnesses a higher dimensional ancilla is quantum bus (qubus)
computation [19–25] which employs a field-mode “bus” and
the interactions with the register qubits are via controlled
displacements [19–23] or controlled rotations of the field
mode [21,24,25]. The continuous-variable nature of the
displacement operator for a field mode can have additional
advantages in terms of the computational power of the model.
In particular, certain gate sequences can be implemented using
fewer bus-qubit interactions than if each gate was implemented
individually [22,23] and these techniques can be used to
implement certain quantum circuits with a lower scaling in
the total number of interactions required in comparison to the
standard quantum circuit model [26].

A possible alternative ancillary system to a field-mode is
a d-dimensional system, a qudit. Models that utilize qudits
have been shown to exhibit a reduction in the number of
operations required to implement a Toffoli gate [27–29]. In
particular, it has been shown that using a qudit ancilla can
aid a computational model, with advantages including large
savings in the number of operations required to implement
a generalized Toffoli gate (a unitary controlled on multiple
qubits) [30] and simple methods for realizing generalized
parity measurements on a register of qubits [31]. These results
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are not directly applicable to the qubus model, however, we
show, using the formalism for the finite lattice phase space
of a qudit [32,33], that the computational advantages of a
field-mode bus also apply in the case of a qudit ancilla. We
develop a full ancilla-mediated model of quantum computation
based only on controlled displacement operators acting on an
ancilla qudit. The previous work [30,31] on ancillary qudits
can also be understood within this framework and we show
that the computational advantages demonstrated in the qubus
model can be transferred into this finite dimensional context.

One possible physical realization of a qudit is in the
shared excitations of an ensemble of qubits (the Dicke states),
with such ensembles realizsed and coherently manipulated
using nitrogen-vacancy (NV) centers in diamond [34] and
ensembles of caesium atoms [35]. However, such systems are
also naturally described using the language of the continuously
parametrized spin coherent states [36,37]. We further show
that with an appropriately defined controlled displacement
operator, based on rotations on a Bloch sphere, we can
introduce an alternative ancilla-mediated model. Although
individual two-qubit gates can be implemented in a simple
manner, due to the spherical nature of the phase space the
equivalent displacement sequences to those used in qubus
computation to reduce the total number of interactions required
do not implement the desired gates with perfect fidelity in this
case. However, we show that these sequences exhibit negligible
intrinsic error for spin coherent states consisting of realistic
numbers of spins. We begin with some essential definitions
and a review of the field-mode qubus model.

II. BACKGROUND

A. Definitions and phase space formalism

We denote the Pauli operators for the j th qubit by Xj , Yj ,
and Zj and the +1 and −1 eigenstates of Z by |0〉 and |1〉,
respectively (the computational basis). We define a general
controlled gate, controlled by the j th qubit, by

C
j

k (U,V ) := |0〉〈0|j ⊗ Uk + |1〉〈1|j ⊗ Vk, (1)

where U and V are unitary operators acting on the target
system k and CU := C(I,U ). Furthermore, we take the
standard definition for the single-qubit phase gate,

R(θ ) = |0〉〈0| + eiθ |1〉〈1|. (2)

Finally, we denote the set of integers modulo d by Z(d) =
{0,1, . . . ,d − 1} and the d th root of unity by ωd , using the
notation,

ωd (a) := ωa
d = ei 2πa

d . (3)

For a field mode, translations in position and momentum are
given by

X(x) := exp(−ixp̂), P (p) := exp(ipx̂), (4)

respectively, where the position and momentum operators, x̂

and p̂, obey [x̂,p̂] = i (� = 1). Their commutation relation
can be expressed in the Weyl form as

P (p)X(x) = eixpX(x)P (p). (5)

We then define the displacement operator by

D(x,p) := e− i
2 xpP (p)X(x), (6)

which can be also be expressed as

D(x,p) = exp[i(px̂ − xp̂)], (7)

using the Baker-Campbell-Hausdorff formula [38]. We then
define the coherent states by

|x,p〉 := D(x,p)|ψ0〉, (8)

where |ψ0〉 is normally taken to be the vacuum. We have the
identity,

D(x2,p2)D(x1,p1) = exp(iφ)D(x1 + x2,p1 + p2), (9)

where φ = (x1p2 − p1x2)/2 and hence a displacement oper-
ator D(x1,p1) translates the phase space point (x0,p0) to the
point (x0 + x1,p0 + p1). A set of displacements that form a
closed loop in phase space will create a geometric phase, given
by exp(±iA) where A is the area enclosed [20,21] and with
the sign dependent on the direction that the path is traversed.
A simple case involves translations around a rectangle, given
by

D(0,−p)D(−x,0)D(0,p)D(x,0) = eixp, (10)

which follows from Eq. (9), with xp the area enclosed.

B. The qubus computational model

We now give a brief review of qubus computation based
on controlled displacements [21–23]. We take an interaction
between a field-mode bus and the j th register qubit of the form,

Dj (x,p) := Cj (D(x,p),D(−x,−p)). (11)

A gate between the register qubits j and k can then be
implemented via the ancilla-mediated sequence,

Dk(0,−p)Dj (−x,0)Dk(0,p)Dj (x,0) = eixpZj ⊗Zk , (12)

which follows directly from Eq. (10) and is represented picto-
rially in Fig. 1. This two-qubit gate is locally equivalent [39]
to the controlled-rotation gate CR(4xp), via local rotations
of R(−2xp) on each computational qubit with the choice
of xp = π/4 giving the maximally entangling controlled-Z
gate (CZ). As any entangling gate in conjunction with a
universal set of single-qubit unitaries is universal for quantum
computation [5], if such a single-qubit gate set can be applied
directly to the register [40] this is a universal model of AMQC.

Using the gate method shown above, n controlled rotation
gates can be implemented on a register of qubits using 4n bus-
qubit interactions—four for each gate. However, with certain
gate sequences, it is possible to reduce this number by utilizing
the geometric nature of the gates [22,23,26]. For example, n

controlled rotations (of arbitrary angle) with one target and
n control qubits can be implemented with 2(n + 1) bus-qubit
interactions by first interacting each of the control qubits with
the bus via a controlled displacement in one of the quadratures,
then interacting the target qubit with the bus via a controlled
displacement in the other quadrature with the gate completed
by the conjugate of these displacements in sequence [23].
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Labeling the control qubits 1 − n and the target qubit with the
symbol t , this is implemented with the interaction sequence,

Dt (0,−p) · Dsqc
− · Dt (0,p) · Dsqc

+ =
n∏

k=1

eiθkZk⊗Zt , (13)

where Dsqc
± = ∏n

k=1 Dk(±xk,0) and θk = xkp. By replacing
the displacements controlled by the target qubit t with
sequences of displacements in the same quadrature controlled
by a set of m target qubits we can implement a gate between
each of the m target qubits and each of the n control qubits (a
total of m × n gates) using only 2(n + m) operations. With
the control qubits labeled as before and the target qubits
labeled (n + 1) − (n + m) we may write this as the interaction
sequence,

Dsqt
− · Dsqc

− · Dsqt
+ · Dsqc

+ =
n+m∏

j=n+1

n∏
k=1

eiθjkZk⊗Zj , (14)

where Dsqt
± = ∏n+m

j=n+1 Dj (0,±pj ) and θjk = xkpj . Using
similar techniques, the number of operations required to
implement a quantum Fourier transform (QFT)-like structured
quantum circuit acting on n qubits can be reduced from a
scaling of n2 to a scaling of n [22,26]. We now introduce a
computational model based on geometric phases created in the
phase space of an ancilla qudit.

III. QUDIT ANCILLA-MEDIATED QUANTUM
COMPUTATION

A. Phase space formalism

We first consider the phase space and displacement operator
for a qudit, a system with a d-dimensional Hilbert space, Hd .
The generalized Pauli operators for a qudit, denoted Zd and
Xd , obey the relation,

Z
p

d Xx
d = ωd (xp)Xx

dZ
p

d , (15)

where x,p ∈ Z [32,33]. Take |m〉x and |m〉p with m ∈ Z(d) to
be two orthonormal bases ofHd related by a Fourier transform,

p  quadrature

(x0+x,p0) (x0+x,p0+p)

x  quadrature

(x0,p0)
(x0,p 0+p)

(x0-x,p 0) (x0-x,p 0+p)(x0-x,p 0-p)

(x0+x,p0-p)

(x0,p 0-p)

FIG. 1. (Color online) The gate of Eq. (12) represented in the
phase space R2. The implementation of the gate is independent of
the initial state of the field mode. The phase created is given by
e±ixp where the phase takes the positive (negative) sign if the loop is
traversed clockwise (anticlockwise). This gate is local equivalent to
the controlled-PHASE gate CPHASE (4xp).

i.e., |m〉p := F |m〉x where F is given by

F := 1√
d

∑
m,n

ωd (mn)|m〉〈n|x. (16)

The generalized Pauli operators can then be defined as

Xd := exp

(
−i

2π

d
p̂d

)
, Zd := exp

(
i
2π

d
x̂d

)
, (17)

where x̂d and p̂d are “position” and “momentum” operators
given by

x̂d :=
d−1∑
m=0

m|m〉〈m|x, p̂d :=
d−1∑
m=0

m|m〉〈m|p. (18)

The phase space defined by these operators and bases is the
toroidal periodic Z(d) × Z(d) lattice, a torus with d2 discrete
points. The operators Xx

d and Z
p

d create translations in position
and momentum by x and p discrete lattice points, respectively,
and they are periodic, i.e., Xd

d = Zd
d = I [33]. A displacement

operator on this phase space can be defined by [41,42]

Dd (x,p) := ωd (−2−1xp)Zp

d Xx
d , (19)

where x,p ∈ Z. Furthermore, it obeys

Dd (x1,p1)Dd (x2,p2) = ωd (φ)Dd (x1 + x2,p1 + p2), (20)

where φ = 2−1(x1p2 − p1x2). If we implement displacements
around a closed loop in this phase space a phase is created, in
particular orthogonal displacements give

Dd (0,−p)Dd (−x,0)Dd (0,p)Dd (x,0) = ωd (xp), (21)

which is represented graphically on the torus Z(d) × Z(d) in
Fig. 2. If we consider the phase space points in each direction
to be separated by a distance of

√
2π/d , the phase created is

then e±iA where A is the area enclosed in phase space and the
sign depends on the direction that the path is traversed. Hence,
the phases that can be created are the d integer powers of ωd .

A generalization of Zd to arbitrary rotations can be obtained
by taking

Rd (θ ) := exp(iθ x̂d ) =
∑

n

einθ |n〉〈n|x, (22)

FIG. 2. (Color online) The toroidal phase space of a d-dimen-
sional qudit: Z(d) × Z(d). In analogy with a field mode in the phase
space R × R, a phase is created via displacements around a closed
loop.
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where θ ∈ R. Clearly Zd = Rd (2π/d). We then have

Dd (−x,0)Rd (θ )Dd (x,0)|m〉x = eiθ(x+m)d |m〉x, (23)

for x ∈ Z, m ∈ Z(d) and where the subscript d denotes that
the summation is modulo d. Hence as θ ∈ R any phase φ ∈ R
may be created by picking a suitable initial qudit state, position
displacement and rotation angle θ , for example (independent
of the dimension of the qudit), we may take m = 0, x = 1 and
θ = φ. A final Rd (−θ ) operator may be included which would
implement a phase of e−imθ but this is no longer necessary
due to the operator acting on a specific initial ancilla state [in
contrast to the initial state independent Eq. (21)].

B. The computational model

We can implement a model of universal ancilla-mediated
quantum computation by introducing an interaction between
an ancilla qudit and the j th computational qubit of the form,

Dj

d (x,p) := CjDd (x,p), (24)

which has analogous properties to the ancilla-register interac-
tion in the qubus model [43]. From Eq. (23), we have

Dk
d (0,−p)Dj

d (−x,0)Dk
d (0,p)Dj

d (x,0) = C
j

k R(θ ), (25)

where θ = 2πxp/d. As this is a two-qubit entangling gate as
long as xp �= nd for any integer n this is universal for quantum
computation on the register with the addition of single-qubit
gates on the register.

It has already been shown that there are computational
advantages that can be gained from using ancillary qudits
to aid a computational model [27,30,31]. We consider the
generalized Toffoli gate which maps the basis states of n

control and one target qubit to

|q1,q2 . . . ,qn〉n|ϕ〉t → |q1,q2 . . . ,qn〉nUq1·q2·····qn |ϕ〉t , (26)

for some U ∈ U (2), where qj = 0,1 denotes the state of the j th

qubit and |ϕ〉t is the state of the target qubit. In particular, it has
been shown that generalized Toffoli gates can be implemented
by only two interactions between each control qubit and the
ancillary qudit if a gate controlled on the state of the qudit may
also be implemented [30]. Using the formalism of controlled
displacements, and labeling the control qubits 1 − n, the target
qubit t and denoting the initial and final state of the register
by |ψi〉 and |ψf 〉, this can be achieved using a sequence of the
form,

Dsqc
−

d · Cn
t U · Dsqc

+
d |ψi〉|0〉x = |ψf 〉|0〉x, (27)

where Dsqc
±

d = ∏n
k=1 Dk

d (±xk,0) and Cn
t U is a gate that applies

U to the target qubit t if the ancilla is in the state |nd〉x (again
the subscript denotes modulo d). If xk = 1 for all k and d > n

then this applies a generalized Toffoli gate to the register.
This utilizes the ability of controlled displacements to encode
information about the number of register qubits in the state |1〉
into the orthogonal basis states of the qudit. This orthogonality
then facilitates gates controlled on this global property of the
register qubits. This is in contrast to the use of the continuous
variable nature of the field mode in the computational model
of Sec. II.

The reductions in the number of operations required for
certain gate sequences in the qubus model rely on the geometric
nature of the phases used for the gates. We have seen that we
may also consider the phases created by displacements of the
form Dd (x,p) around closed loops in the finite and periodic
lattice phase space of a qudit to also be geometric (in a certain
sense [44]) and hence we will show that similar computational
savings are possible in this model. We have seen that the
geometric phases that can be created from displacements of
the form Dd (x,p) are the d integer powers of ωd . Hence,
if a gate sequence is composed only of controlled rotations
of the form CR(2nπ/d) for integer n a d-level qudit can
also implement this gate sequence with the same number of
operations as in the qubus model (ignoring the additional local
corrections required in the qubus model). We illustrate this
with a sequence, analogous to that in Eq. (13), in which n

controlled rotations with one target qubit and n control qubits
are implemented with 2(n + 1) operations. With the target
qubit again labeled t and the control qubits labeled 1 − n we
have

Dt
d (0,−p) · Dsqc

−
d · Dt

d (0,p) · Dsqc
+

d =
n∏

k=1

Ck
t R(θk), (28)

where Dsqc
±

d is given earlier and θk = 2πxkp/d. Similarly, the
sequence of Eq. (14), in which m × n controlled rotation gates
can be implemented in 2(m + n) operations, is also applicable
to this model. If we label the control qubits as before and
the target qubits (n + 1) − (n + m) we may write this as the
interaction sequence,

Dsqt
−

d · Dsqc
−

d · Dsqt
+

d · Dsqc
+

d =
n+m∏

j=n+1

n∏
k=1

Ck
j R(θjk), (29)

where Dsqt
±

d = ∏n+m
j=n+1 D

j

d (0,±pj ) and θjk = 2πxkpj/d.
In some gate sequences only controlled rotations that are

maximally entangling, and hence locally equivalent to CZ, are
present. If this is the case a qubit ancilla, i.e., d = 2, is sufficient
to implement any of the sequences of the qubus model.

We have restricted the analysis here to a model with
ancilla-register interactions that are controlled displacements
operators and hence is directly analogous to the qubus model.
In Appendix A we discuss a model in which Dj (0,p)
gates are generalized to controlled Rd (θ ) interactions. In this
case we can create controlled rotation gates with arbitrary
phase (rather than only integer powers of ωd ) between pairs
of qubits by using the equality of Eq. (23) (and ancilla
preparation). However, we show this does not imply the
qubus decomposition results hold when the required phases
are not integer powers of ωd (although alternative interesting
multiqubit gates can be implemented efficiently). Therefore,
the dimensionality of the qudit, although not relevant to the
universality of the model, affects the power of the model to
reduce the number of ancilla-register interactions required to
implement certain gate sequences.

C. Implementation

An ancilla-register interaction Cj (Rd (θ ),Rd (−θ )) can be
generated, up to irrelevant phase factors, by applying the
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Hamiltonian,

Hd = Zj ⊗ Sz, (30)

for a time t = θ , where Sz is the effective z-spin operator for
a d-level qudit given by

Sz = diag(s,s − 1, . . . ,−s + 1,−s), (31)

where s = (d − 1)/2 and “diag” is the diagonal matrix in
the position basis. By acting the local unitary Rd (−θ ) on the
ancilla and taking appropriate values for θ we may implement
any Dj

d (0,p). As Xd = F †ZdF [33], we have

Dj

d (x,0) = F † · Dj

d (0,x) · F, (32)

and hence displacements in both quadratures can be imple-
mented via the interaction of Eq. (30) and local operations on
the qudit.

Physical systems that are used as qubits are often restric-
tions of higher dimensional systems to a two-dimensional
subspace and hence many of these systems are naturally
suited to a d-level qudit structure [45]. Qudits have been
demonstrated in various physical systems, including super-
conducting [46], atomic [47], and photonic systems, where in
the latter the qudit is encoded in the linear [48,49] or orbital
angular momentum [50] of a single photon. A further possible
realization of a qudit is in the Fock states of a field mode which
can be coupled to individual qubits via the Jaynes-Cummings
model [51]. The dispersive limit of the Jaynes-Cummings
model results in an effective coupling of the form,

Heff = Zj ⊗ a†a, (33)

which with this qudit encoding is equivalent to the Hamiltonian
Hd . Furthermore it has been suggested [30] that controlled
Zd gates may be realizable in the dispersive limit of the
generalized Jaynes-Cummings model, which describes the
coupling of a spin-s particle to a field mode, with a photonic
qubit encoded in the field mode.

An alternative candidate physical system is an ensemble
of N qubits on which we may define the collective spin
operators Jμ = ∑N

j=1 μj with μ = X,Y,Z and J 2 = J 2
x +

J 2
y + J 2

z which obey the SU(2) commutation relations. The
simultaneous eigenstates of Jz and J 2 are known as the Dicke
states and when such an ensemble is restricted to the N + 1
dimensional subspace which is symmetric with respect to
qubit exchange it may be considered to be a d = N + 1-
dimensional qudit with a basis given by the symmetric Dicke
states of the ensemble. Indeed, there have been proposals
for qubit ensembles to be coupled to computational qubits
in the context of utilizing the collective ensemble states
as a quantum memory [52–55]. A particularly promising
candidate for such an ensemble-qubit hybrid system is in
the coupling of an NV center ensemble in diamond to a flux
qubit with coherent coupling between such systems having
been experimentally demonstrated [34] and we will return to
this later. An alternative formalism for the N + 1-dimensional
symmetric subspace of such an ensemble is to consider the
SU(2) or spin coherent states, and in the next section we
show that with a suitably defined displacement operator on
these states that we can implement a continuous variable based
spin-ensemble ancilla-mediated model.

IV. SPIN COHERENT STATE ANCILLA-MEDIATED
QUANTUM COMPUTATION

A. Phase space formalism

We first introduce the spin coherent states of a collection
of N qubits, also referred to as SU(2) or atomic coherent
states [36–38]. We define a displacement (or rotation [37,38])
operator by

DN (θ,ϕ) := ei( θ
2 sin ϕJx− θ

2 cos ϕJy ), (34)

where θ,ϕ ∈ R [56]. A spin coherent state of N qubits is then
defined as

|θ,ϕ〉N := DN (θ,ϕ)|0,0〉N, (35)

where the reference state is taken to be |0,0〉N = |1〉⊗N . A spin
coherent state is a separable state of N qubits in the same pure
state [57] which may be written as

|θ,ϕ〉N =
(

cos
θ

2
|1〉 − e−iϕ sin

θ

2
|0〉

)⊗N

, (36)

or alternatively they may be expressed in terms of the sym-
metric Dicke states that are a basis for the N + 1-dimensional
symmetric subspace. The phase space of N qubits restricted
to such states can be represented on a Bloch sphere of radius
N , as depicted in Fig. 3, and the displacement operator can be
interpreted as a rotation around some vector in the xy plane.

We may introduce an alternative parametrization for the
spin coherent states, analogous to writing a field-mode
coherent state in terms of a complex number α, that is a
stereographic projection of the sphere onto the complex plane.
We take ζ = −e−iϕ tan θ

2 [38] with which the spin coherent

N

x y

z

FIG. 3. The spin coherent states of N qubits can be represented on
a Bloch sphere of radius N . The displacement operator of Eq. (34) can
be interpreted as a rotation around some vector in the xy plane. The
north pole represents the reference state |0,0〉N and can be considered
to be the phase space origin.
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states can be expressed as

|ζ 〉N =
( |1〉 + ζ |0〉√

1 + |ζ |2
)⊗N

. (37)

In this parametrization the displacement operator becomes

DN (ζ ) =
(

I2 + ζσ+ − ζ ∗σ−√
1 + |ζ |2

)⊗N

, (38)

where σ± = 1
2 (X ± iY ). It is straightforward to confirm that

DN (ζ )|0〉N = |ζ 〉N and furthermore we have the identity,

DN (ζ2)DN (ζ1)|0〉N = eiNφ(ζ1,ζ2)

∣∣∣∣ ζ1 + ζ2

1 − ζ1ζ
∗
2

〉
N

, (39)

where φ(ζ1,ζ2) is given by the equality

eiφ(ζ1,ζ2) = 1 − ζ1ζ
∗
2

|1 − ζ1ζ
∗
2 | . (40)

As in the the case of a field mode or qudit, closed loops in
phase space create geometric phases. Displacements around
the orthogonal x and y axes are given by taking cos ϕ = 0
(ζ ∈ R) and sin ϕ = 0 (ζ ∈ I), respectively. We consider a
sequence of orthogonal displacements, acting on a coherent
state, of the form,

DN (−iζ4)DN (−ζ3)DN (iζ2)DN (ζ1)|0〉N = eiφt |ζt 〉N, (41)

where ζj ∈ R, j = 1 − 4. In order to create a geometric phase
and no overall displacement we require that ζt = 0. If the phase
space geometry is flat, as in the case of a field mode, we can
take ζ1 = ζ2 = ζ3 = ζ4 [as in Eq. (10) with x = p]. However,
on the surface of a sphere this is not the case and if we restrict
ζj such that ζ4 = ζ1 = η then, using Eq. (39), it can be shown
that to satisfy ζt = 0 we must take ζ2 = ζ3 = τ (η), where

τ (η) = 1 − η2 −
√

η4 − 6η2 + 1

2η
. (42)

The corresponding phase φt is given by

φt = N tan−1

(
2ητ + τ 2 − η2

1 + 2ητ − η2τ 2

)
. (43)

That there does exist such a τ and that τ �= η can be seen
schematically from Fig. 4.

B. The computational model

We now show how these geometric phases may be used to
implement a model of ancilla-mediated quantum computation.
We consider an ancilla spin ensemble and introduce an
interaction between this ancilla and the j th register qubit of
the form,

Dj

N (ζ ) := Cj (DN (ζ ),DN (−ζ )). (44)

A computational gate between a pair of register qubits j and
k can be implemented using the interaction sequence,

Dk
N (−iη)Dj

N (−τ )Dk
N (iτ )Dj

N (η)|ψ〉|0〉N = |ϕ〉|0〉N, (45)

where |ψ〉 is the initial state of the qubits j and k, |ϕ〉 =
exp(iφtZ ⊗ Z)|ψ〉, and τ and φt are given by Eqs. (42)
and (43), respectively. As the gate implemented on the

x y

z

FIG. 4. (Color online) A geometric phase is obtained by the
displacement of a spin coherent state around a closed loop. Here
we depict orthogonal displacements which correspond to rotations
around the x and y axes. We can relate the rotation angles γ and ς to
the variables η and τ from Eq. (42) via the stereographic projection.

register is identical to that in the qubus model, ancilla-register
interactions of this form can implement a universal ancilla-
mediated model of quantum computation with the addition of
single-qubit gates on the register.

In Sec. II we reviewed the methods that may be used
in qubus computation to reduce the number of bus-qubit
interactions required in certain gate sequences from the upper
limit of 4n for n controlled rotations. The schemes to reduce the
number of operations required for a particular gate sequence,
such as those given in Eqs. (13) and (14), require that more
than two register qubits are entangled with the bus at the same
time, and in particular more than one qubit is entangled with
each quadrature of the bus. In order to create a closed phase
space path via displacements on a spin coherent state, it is
necessary to take into account the curvature of the phase space
as quantified by Eq. (42). However, this is not possible when
there are multiple qubits entangled with either quadrature as
then different parts of the spin coherent state superposition are
different distances from the phase space origin (the north pole).
Hence, not all the phase space paths can be perfectly closed
and the ancilla will remain entangled with the register qubits
if such sequences of controlled displacements are applied.

In the limit that N → ∞, a spin coherent state is equivalent
to a field mode [57]. In particular, we show in Appendix B that

lim
N→∞

DN

(
ζ√
2N

)
= D(Re(ζ ),Im(ζ )), (46)

where Re(ζ ) and Im(ζ ) denote the real and imaginary parts
of ζ , respectively, and D(x,p) is the field-mode displacement
operator of Eq. (6). Hence, in this limit all the gate sequences of
qubus computation can be implemented with a spin-ensemble
ancilla. Although for finite N these sequences will not create
the exact gates required, and the ancilla will remain partially
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entangled with the register, they will implement the desired
gates with some fidelity that tends to unity as N → ∞.

We now consider the intrinsic error in a gate sequence
given that N is finite. We do this by considering the error
accumulated when we do not take account of the curvature
of the phase space and treat the ancilla as a field mode.
We initially consider the specific example of implementing
m × n controlled rotations between each of n control and
m target qubits using 2(n + m) ancilla-register interactions.
We do this by taking the operator sequence of Eq. (14) and
letting Dj (x,p) → Dj

N ((x + ip)/
√

2N ). For simplicity we
take m = n and act this sequence on an initial state |ψ〉|0〉N
giving some resultant state of the whole system, |ψf 〉

G
, where

|ψf 〉
G

= Dsqt
−

N · Dsqc
−

N · Dsqt
+

N · Dsqc
+

N |ψ〉|0〉N, (47)

in which Dsqc
±

N = ∏n
k=1 Dk

N (±xk/
√

2N ) and Dsqt
±

N =∏2n
k=n+1 Dk

N (±ipk/
√

2N ). Given that in the limit N → ∞
this sequence is equivalent to Eq. (14) with m = n, we wish
to estimate how well |ψf 〉

G
approximates Ô|ψ〉|0〉N where

Ô is the operator on the right-hand side of Eq. (14) given by

Ô =
2n∏

j=n+1

n∏
k=1

eiθjkZk⊗Zj , (48)

where θjk = xkpj . We consider the conditions under which
the errors in the phase and final ancilla state associated with
each register basis state are negligible, and hence Ô is well
approximated. These phase and ancilla state errors for each
register computational basis state will be bounded by the
error in the ancilla state that is displaced furthest from the
origin. If we fix all xk > 0 and all pj > 0, the ancilla state
displaced furthest from the origin is any of the four ancilla
states associated with a basis state in which all the control
qubits are all in the same state and similarly all the target
qubits are all in the same state. We consider the ancilla
state associated with all the register qubits being in the state
|0〉. For simplicity we choose the displacements such that∑n

k=1 xk = ∑2n
k=1+n pk =: ζn The final state of the ancilla

mode associated with this state is given by

eiφf |ζf 〉
N

= DN (−iζN )DN (−ζN )DN (iζN )DN (ζN )|0〉N,

(49)

where ζN = ζn/
√

2N . The final state in the field-mode case,
and hence the state we wish to approximate, is given by φf =
ζ 2
n and |ζf 〉 = |0〉 from Eqs. (10) and (46). Using Eq. (39) we

can calculate the phase φf and the parameter ζf . We have

φf = N tan−1

(
2ζ 2

N

1 + 2ζ 2
N − ζ 4

N

)
, (50)

which we may expand to first order in 1/N , giving

φf = ζ 2
n − ζ 4

n

N
+ O

(
1

N2

)
. (51)

Hence, for large N we have that φf ≈ ζ 2
n with an error of

order 1
N

which is negligible when ζ 4
n � N . In Fig. 5 we plot

FIG. 5. (Color online) The fractional error in the phase, φE =
ζ 2
n −φf

ζ 2
n

, as a function of ζn and N where φf is given by Eq. (50). The
range of N includes realistic values for the coherent manipulation of
spin ensembles [34,35].

the fractional error in the phase, φE = ζ 2
n −φf

ζ 2
n

, as a function of
ζn and N . From the definition of ζn we see that the size of ζn is
related to the number of qubits that can be entangled with this
sequence. If we wish to implement a maximally entangling
gate between each of the n control and n target qubits we
have ζn =

√
π

2 n ≈ n. We see from Fig. 5 that with N = 107,
which has been achieved with the coherent manipulation of NV
center ensembles [34], gates between a large number of qubits
may be implemented with a low phase error. For example with
ζn = 40 (hence 402 = 1600 maximally entangling gates can
be implemented between 40 control and 40 target qubits using
only 160 operations) and N = 107 we have φE ≈ 2 × 10−4.

The other intrinsic source of error is due to the ancilla mode
not exactly returning to its initial state and remaining entangled
with the register. The fidelity between the desired final state,
|0〉N , and the actual final state |ζf 〉

N
, F (ζf ,0) = |〈ζf ,0〉|2, is

given by

F (ζf ,0) =
(

1 + 8ζ 6
N(

1 + ζ 2
N

)4

)−N

, (52)

which we may expand to second order in 1/N , giving

F (ζf ,0) = 1 − ζ 6
n

N2
+ O

(
1

N3

)
. (53)

Hence, for larger N we have F (ζf ,0) ≈ 1 with an error of
order 1/N2. This fidelity is shown as a function of ζn and N in
Fig. 6. Again, we see that for realistic numbers of spins in the
ancillary ensemble the fidelity is very close to unity. Using the
same example as above, when ζn = 40 and N = 107 we have
1 − F (ζf ,0) ≈ 4 × 10−5.

In any finite sequence of controlled displacement the state
of the ancillary mode will be bounded within some phase space
square centered on the origin. Hence, when the errors accrued
from traversing this bounding square are negligible, which can
be assessed using the above error analysis, the intrinsic errors
due to the phase space curvature in such a sequence will also
be small.
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FIG. 6. (Color online) A plot of the fidelity F (ζf ,0), given in
Eq. (52) as a function of ζn and N . The range of N includes
realistic values for the coherent manipulation of spin ensembles
[34,35].

C. Implementation

The ancilla-register interaction Dj

N (ζ ) can be generated by
the Hamiltonian,

HN = Zj ⊗ X(φ), (54)

where X(φ) = sin φJx + cos φJy . Only one value of the
parameter φ is required to create displacements in both
quadratures as U † · eiθJx · U = eiθJy with U = (R(π/2)H )⊗N .
As we have already mentioned, a particular promising hybrid
system in which to realize an ensemble-qubit coupling is with
an ensemble of NV centers coupled to a superconducting flux
qubit, such as in the proposals of [53,54]. Such a coupling has
been experimentally realized [34] with a coupling term of the
form,

Hcoupling = Z ⊗ Jx +
N∑

k=1

δkZ ⊗ Xk, (55)

where in this context the δk terms can be considered to be error
terms due to the coupling strength varying over the ensemble.
A physical setup of the type demonstrated in [34] has the
advantage that the NV centers have an energy spectrum that
may allow for gap-tunable flux qubits to sequentially interact
with the spin ensemble by bringing them into resonance in
turn. Such an ensemble realizes either a qudit or a spin coherent
state by restricting the ensemble to its symmetric subspace and
hence leakage out of this subspace is an important source of
errors. Such leakage can be caused by inhomogeneity in the
ensemble, for example, if all the NV centers do not have an
identical energy gap or in the realistic case of δk �= 0 due to
the coupling strength varying over the ensemble. An important
topic for future work would be to consider the effect on the
computational model of the physically relevant errors, such as
those outlined above, within the realistic parameter regimes
for a specific realization.

V. CONCLUSIONS

We have introduced a model of ancilla-mediated quantum
computation based on controlled displacement operators act-
ing on an ancillary qudit. These displacement operators can be
considered to create geometric phases in a periodic and discrete
phase space. We have shown that this model can harness
the computational advantages previously demonstrated in
the qubus model, whereby the number of ancilla-register
interactions required to implement certain gate sequences can
be hugely reduced. Furthermore, using the work of Ionicioiu
et al. [30] we have seen that in this model generalized Toffoli
gates can also be implemented with a large saving in the
number of operations required.

An alternative finite-dimensional formalism with analogies
to a field mode is the spin coherent states of a spin ensemble.
We have shown that with an appropriately defined controlled
displacement operator, that can be interpreted in terms of
controlled rotations on a Bloch sphere, such an ancillary
system may also be used to implement a simple universal
model of ancilla-mediated quantum computation. For a finite
number of spins making up the spin coherent states, the
gate decomposition schemes of qubus computation cannot be
exactly implemented in this model. However, we show that
for realistic numbers of spins these intrinsic errors are small
and the gate decompositions implement the desired register
gates with a high fidelity. An interesting extension could be to
consider ancilla-register interactions that employ more general
transformations in SU(n) and in particular investigating an
interaction based on the displacement operators for SU(n)
coherent states [58].

A source of error relevant to computational models of the
type presented here is the propagating of correlated errors in
the computational register due to many register qubits being
simultaneously entangled with the ancillary system. It has been
shown that limiting the number of register qubit entangled with
the ancilla at one time and refreshing the ancilla after a certain
number of gates (with this number dependent on the strength of
the various decoherence mechanisms) can mitigate these errors
in the qubus model [59]. Equivalent results will hold in the
models presented here and a specific analysis for the physically
relevant decoherence model in a proposed realization would
be interesting future work.
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APPENDIX A

It is possible to implement a controlled rotation between
a pair of qubits that is of arbitrary angle by using a
controlled Rd (θ ) operator in place of the Dj (0,p) operators
in the sequence of Eq. (24) if the ancilla may be prepared
in the “position” basis. This can be achieved with the
sequence,

Dj

d (−1,0) · Ck
aRd (θ ) · Dj

d (1,0)|ψ〉|0〉x = C
j

k R(θ )|ψ〉|0〉x,
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where this equality follows from Eq. (23) and where a final
Ck

aR(−θ ) is not required (but could be included) due to the
ancilla preparation in a particular state.

We now show why gate sequence decompositions equiva-
lent to those in qubus computation do not always hold when
we allow these continuous gates. Consider a sequence of the
form,

Dsqc
−

d · Ct
aRd (θ ) · Dsqc

+
d |ψ〉|0〉x = G(θ )|ψ〉|0〉x,

where Dsqc
±

d = ∏n
k=1 Dk

d (±xk,0) as in the main text. This is
analogous to Eq. (28) and it clearly holds for some gate G(θ )
acting only on the register qubits as Rd (θ ) is diagonal in the
position basis. What is the gate G(θ )? Letting all xk = 1 (the
generalization is straightforward) and again using Eq. (23) we
can show that it maps

|q1, . . . ,qn〉|qt 〉t → eiθ(q1+···+qn)dqt |q1, . . . ,qn〉|qt 〉t ,
where the subscript d denotes modulo arithmetic. When n < d

then the modulo arithmetic is equivalent to ordinary arithmetic
and hence

G(θ ) =
n∏

k=1

Ck
t R(θ ),

as in the qubus model. However, if n > d then this is not the
case. The Dsqc

+
d sequence can be considered to encode into the

ancillary qudit the value of q1 + · · · + qn modulo d. In the case
of d = 2 this encodes the parity of the n qubits into the ancilla,
and hence for general d this can be seen to be a generalization
of parity to modulo d arithmetic. The size of the rotation on the
target qubit is then effectively controlled by this global prop-
erty of the n-control qubits. Note that this has a very similar
structure to the technique used to implement the generalized
Toffoli gate considered in the main text. A straightforward
extension is given by allowing multiple target qubits.

APPENDIX B

Here we review the group contraction of SU(2) which gives
the N → ∞ limit of the spin coherent states [36–38,57] and

show that in this limit the displacement operator of Eq. (34)
is equivalent to that of a field mode. The bosonic creation and
annihilation operators, denoted a† and a, can be defined by
a† := 1√

2
(x̂ − ip̂) and a := 1√

2
(x̂ + ip̂). The J spin operators

obeying [Jx,Jy] = 2iJz can be related to those of a bosonic
mode by the Holstein-Primakoff transformation [60],

J+√
N

= a†

√
1 − a†a

2N
,

J−√
N

=
√

1 − a†a

2N
a,

with J± := 1
2 (Jx ± iJy) = ∑N

j=1 σ±j
, and

Jz = a†a − N.

It then follows that

lim
N→∞

Jx√
2N

= x̂, lim
N→∞

Jy√
2N

= −p̂.

We have ζ = −e−iϕ tan θ
2 and hence from the definition of

DN (θ,ϕ) in Eq. (34),

DN (ζ ) = exp

(
i
tan−1 |ζ |

|ζ | (Im(ζ )Jx + Re(ζ )Jy)

)
.

We have

lim
N→∞

tan−1 |ζ/
√

2N |
|ζ/

√
2N | = 1,

and hence

lim
N→∞

DN

(
ζ√
2N

)
= ei(Im(ζ )x̂−Re(ζ )p̂),

= D(Re(ζ ),Im(ζ )),

which is the displacement operator for a field-mode given
in Eq. (7). Furthermore via this contraction process we
have

lim
N→∞

∣∣∣∣ ζ√
2N

〉
N

= |Re(ζ ),Im(ζ )〉,

where the right-hand side is a field-mode coherent state, as
defined in Eq. (8) [36–38,57].
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[42] A. B. Klimov, C. Muñoz, and L. L. Sánchez-Soto, Phys. Rev. A
80, 043836 (2009).

[43] We may instead define the ancilla-register interaction to be
of the form C(Dd (x,p),Dd (−x,−p)) to be even more ob-
viously equivalent to the interaction in the qubus model.
In the qubus model choosing between an interaction of the
form C(D(x,p),D(−x,−p)) and one of the form CD(x,p) is
essentially irrelevant (the choice taken herein is to be consistent
with the literature) as they are locally equivalent and x and p

can take any values. However in the qudit case the choice made
here is more convenient as it permits a lower dimension of qudit
for a set required smallest phase gate.

[44] The phase space Z(d) × Z(d) only has a rigorous geometry
when it can be labeled by a finite field (which is only possible
when d is an integer power of a prime). These technicalities
are not relevant here as we may consider the phases as
being geometric in origin in analogy to the phases created by
displacements of a field mode.

[45] S. J. Devitt, S. G. Schirmer, D. K. L. Oi, J. H. Cole, and L. C.
L. Hollenberg, New J. Phys. 9, 384 (2007).

[46] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz,
E. Lucero, A. D. O’Connell, D. Sank, H. Wang, J. Wenner,
A. N. Cleland et al., Science 325, 722 (2009).

[47] B. E. Mischuck, S. T. Merkel, and I. H. Deutsch, Phys. Rev. A
85, 022302 (2012).

[48] G. Lima, L. Neves, R. Guzmán, E. S. Gómez, W. A. T. Nogueira,
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