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We study the phase separation of binary lipid mixtures that form bicontinuous cubic phases. The
competition between non-uniform Gaussian membrane curvature and line tension leads to a very
rich phase diagram, where we observe symmetry breaking of the membrane morphologies and re-
entrant phenomena due to the formation of bridges between segregated domains. Upon increasing
the line tension contribution, we also find facetting of lipid domains that we explain using a simple
argument based on the symmetry of the underlying surface and topology.

Introduction - Lipid self-assembly can adopt an as-
tonishing range of shapes and morphologies, from sin-
gle bilayer structures to stacks and convoluted periodic
structures [1]. Nature has, of course, exploited this poly-
morphism. A large number of organelles feature lipid-
based structures, including synaptic vesicles, endoplas-
mic reticulum, and Golgi apparatus. At the same time,
lipids are indispensable for detergency and foodstuffs in-
dustries [2], and membrane-based structures are increas-
ingly exploited in biotechnological and biomedical appli-
cations, e.g. as efficient nanoporous scaffolds for tissue
engineering [3] or for gene silencing with siRNA [4].

In this letter we will focus on one particular type of
mesophases that lipid mixtures in water can adopt, the
so-called bicontinuous cubic phases (BCP) [5–7], whereby
the lipids form a triply periodic lipid bilayer that sepa-
rates two percolating and non-intersecting water chan-
nels [8–10]. These phases have attracted attention due
to their high surface area, continuity of the bilayer sur-
face, and pore network. The amphiphilic nature of the
lipids also allows other molecules to be embedded in
them; for example, they have high propensity to enable
membrane protein crystallization. Although the details
remain unclear, it is thought that a combination of cur-
vature induced phase separation on the cubic surface,
a local destabilization of the cubic phase to a lamellar
phase and a two dimensional reservoir of proteins pro-
vided by the cubic phase are responsible for the observed
yield [11]. Here our interests are in the aforementioned
curvature induced phase separation.

Both in the biological and synthetic systems, these
lipid mesophases usually contain more than one lipid
species. To the best of our knowledge, the distribution
of different lipids across such a cubic surface, especially
the possible demixing transitions under the influence of
non-uniform curvature of the membrane structures, is
still not well-understood. Most studies on lipid phase
separation focus on much simpler membrane geometries,
such as lipid vesicles and supported membranes [12–14].
From a biological perspective, lateral lipid organizations
into domains and membrane curvatures are ubiquitous
features, and are known to play an important role for

Figure 1. Visualising the P-surface. Left panel: normalised

Gaussian curvature field G(x)
Gmin

(note that G(x) ≤ 0) on a

single patch with the zero-curvature point p at its centre.
Right panel: curvature induced formation of A-lipid domains
(in green) in k patches among the 8 available denoted by

(
8
k

)
(for fA = 0.07). For the sake of illustration we show them for
k = 1 (top) and k = 8 (bottom).

the membrane functionalities [15, 16]. From a materials
perspective, understanding the distribution of species of
interest on a BCP may be the first steps towards a sys-
tematic and rational functionalization of BCPs, where
active species can be localized into targeted domains. Fi-
nally, our work provides a comprehensive phase diagram,
with predictions of distinguishing features which we hope
will stimulate experimental verifications.

This letter is organized as follows. We first show that if
the two species do not interact but induce different bend-
ing rigidities, then a single type of curvature induced
phase separation occurs at all non zero area fractions.
Upon considering interactions between the species, we
observe a multiplicity of new modalities for the phase
separation, including the formation of bridges between
previously disconnected lipid domains. Moreover, we ob-
serve facetting of domains for which we provide a simple
explanation relying on symmetry and topology.

Segregation in absence of line tension - In this pa-
per we consider a binary lipid mixture or, alternatively, a
mixture of lipids and proteins that has formed a minimal
surface S (with zero mean curvature everywhere), and
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ask what are the thermodynamically favoured reparti-
tions of the species and how they depend on the bending
rigidities and inter-species interactions. Here our focus
is on the triply periodic surfaces which are known to be
formed by lipid mixtures as well as mixtures of lipids
and proteins in water [5–7]. We use standard notations
P, D, and G for the primitive, Diamond, and Gyroid sur-
faces respectively. Since they are periodic, we charac-
terize their properties per unit cell. To model a binary
mixture on a curved surface, we use a straightforward
extension of the Helfrich hamiltonian [17] to the case of
a binary mixture on a minimal surface that reads (cf.
Supplemental Materials (SM) for more details):

HS
el(fA) = δκ

∫
S

dµS(x) σA(x)G(x), (1)

where x denotes a point on S, dµS(x) is the area measure
on S at x, G(x) < 0 is the gaussian curvature at point x,
fA is the imposed area fraction of species A (with fB =
1 − fA), the field σA(x) ∈ [0, 1] is the mean occupation
number of species A at x, δκ = κAg − κBg and κA,Bg are
the gaussian bending rigidities associated to the species
A and B respectively. Our convention here is κAg < κBg ,
such that δκ < 0. It is also worth remarking that, since
typically κg < 0, B domains are softer than A domains.
Such a model may represent a coexistence between Lo
(liquid ordered; A-rich) and Ld (liquid disordered; B-
rich) domains, or alternatively, between lipid-rich and
protein-rich domains.

To model the distribution σA in a more tractable way,
we first stress that any minimal surface with genus g
embedded in a flat torus T3 must contain 4(g − 1) zero
Gaussian curvature points [18]. For the P, D and G sur-
faces, g = 3 and they have 8 zeros. Each zero is located
at the centre of a hexagonal area we term as a patch (See
Fig. 1 here and Fig. 1 in the SM). The unit cell of either
of the P, D or G surfaces can thus be partitioned into 8
equivalent patches {Σi}i=1..8 such that the unit cell sur-
face S = ∪8

i=1Σi. We characterise the repartition of the
lipids on S by both the area fraction f iA of lipid A on each
patch Σi and the occupation number function σiA(x) in
it. For each patch Σi, given σiA, the entropy then reads
Si = −kB

∫
Σi
dµS(x)[σiA lnσiA+(1−σiA) ln(1−σiA)]. Min-

imising the overall free energy F = HS
el(fA)− T∑8

i=1 Si
with respect to the occupation number for a given set of
area fractions {f iA}i=1..8 leads to the typical Fermi-Dirac

distribution σi∗A (x) = [1 + e−βλ
i
A+βδκG(x)]−1 where λiA is

a Lagrange multiplier that imposes the value of f iA.
At low temperatures, the Fermi-Dirac distribution will

reach a value close to unity for all points x of Σi with an
energy lower than λiA. The lowest energy point pi in a
patch Σi is the symmetry point of the patch which has
exactly zero gaussian curvature (cf. Fig. 1). Thus, at low
T , the lipids A will fill the neighbourhood of pi until they
reach a critical Fermi curve CF , where {x ∈ CF |δκG(x) =

λiA}, beyond which there is no more lipids of type A
(cf. Fig. 1; a disconnected area occupied by lipid A is
termed as a domain). Close to pi, one may use polar
coordinates (ρi, θi) and, as a crude approximation, the
space is assumed euclidean and circularly symmetric near
pi. This allows us to Taylor expand the function G about
pi up to the second order so that the curvature energy

reads HΣi

el (f iA) ∼ δκ
∫ Ri

0
2πρidρi [G′′(pi)ρ

2
i /2] ∼ C(f iA)2,

where Ri is the mean radial distance of the Fermi curve
from the point pi such that f iA ≈ πR2

i /µ(Σi). Here C is a
constant and µ(Σi) is the area of the hexagonal patch Σi.
Remarkably, in spite of the very crude approximations
we have used, the predicted behaviour of the curvature
energy HΣi

el (f iA) ∝ (f iA)α, with α = 2, is close to what
we observed in simulations for the P-surface where the
exponent is found to be α = 1.83 (cf. SM).

Next, upon minimising the total free energy F =
C
∑8
i=1(f iA)2 with respect to the area fractions f iA at

fixed total area fraction fA = (
∑8
i=1 f

i
A)/8, it is easy

to see that the ground state in repartition among the
patches is always f iA = fA for all values of fA, corre-
sponding to the

(
8
8

)
configuration in Fig. 1.

Effect of the line tension - We have seen that, with
only curvature, the A lipids are evenly distributed among
the 8 available patches and formed dense domains in the
neighbourhood of zero curvature points at low tempera-
ture. This begs the question of how this picture changes
if the A − B interactions are not negligible i.e. if there
are line tension effects arising with domain formation,
which is a more realistic physical scenario. To answer
this question, we now carry out computer simulations of
the binary phase separation on the P-surface (the qual-
itative picture is the same for the D- and G-surfaces, as
justified in the SM). There are several known approaches
to model bicontinuous cubic membranes, from coarse-
grained Molecular Dynamics simulations [19] to contin-
uum field theoretical approaches [20–22]. Here we use
Metropolis Monte Carlo simulations [23] to resolve the
thermodynamics of the system.

In our approach, we explicitly discretize a piece of the
P-surface contained in a cubic cell. This can be efficiently
done with the help of the Weierstrass-Enneper (W-E)
representation of minimal surfaces [18, 24, 25]. Upon
discretization, the binary mixture can then be modelled
as an Ising-like problem (see the SM for technical details).
A spin variable s is associated to each site and takes
either value 0 (for species B) or 1 (for species A). The
curvature hamiltonian of Eq. (1) thus maps exactly onto
a system of magnetic spins on a network N (S) with a
node-dependent external magnetic field and reads:

HS
el(fA) =

∑
i∈N (S)

δAiδκGisi, (2)

where δAi is the area of the tile i on the surface. In this
language, at any finite fA, species A (spin variable s = 1)
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Figure 2. Phase diagrams of the number of patches k occupied
by lipid A domains among the 8 available as a function of the
area fraction fA and the ratio J`/|δκ|. ` is the lattice spacing
of the cubic unit cell. For clarity, we show the phase dia-
grams (a) excluding (filled symbols) and (b) including (open
symbols) the possibilities of bridge formations between lipid A
domains. In (c) are shown configurations with increasing en-
ergy from top to bottom for fA = 0.75 and J`/|δκ| = 0.5. The
boxed configuration with 7 connected domains corresponds to
the most stable phase.

will occupy sites with the lowest value of δAiδκGi to min-
imize the total energy, as we have analyzed with a dif-
ferent vocabulary in the previous section. To model the
A−B interspecies interactions, we choose a short-range
nearest neighbours interaction which directly translates
into the line tension of the lipid domains:

HS
A−B(fA) ≡ J

∑
i∈N (S)

∑
j∈〈i〉

(si + sj − 2sisj)δLij , (3)

where J sets the magnitude of the exchange interactions,
δLij is the length of the edge shared by cells i and j, and
(si + sj − 2sisj) = 1 when si 6= sj and 0 otherwise.

Symmetry breaking - As it is evident, the hamilto-
nian in Eq. (3) is equivalent to an Ising model of fer-
romagnetism and therefore should lead to the same phe-
nomenology: above a critical temperature T ∗(J), the sys-
tem is paramagnetic and the two lipid species are mixed;

while below T ∗, the system becomes ferromagnetic and
a symmetry breaking favouring ”lumping” of spins in
spatial regions (segregation) occurs. There is, however,
one crucial difference between the standard Ising model
and our model. For the former, line tension effects al-
ways dominate demixing: domains of A lipids coalesce
to minimize the overall interfacial energy. In our model,
this coalescence mechanism competes with the curvature-
induced mechanism described in the previous section.

The first effect of line tension is to re-shuffle the (en-
ergy) ranking of configurations

(
8
k

)
with k patches occu-

pied by the A species by shifting down the low k config-
urations (because they have a lower interfacial cost) and
up the high k ones (because they have a high interfacial
cost). A first account of the competition between curva-
ture and line tension consists in assuming that the total
energy of a configuration

(
8
k

)
at a given packing fraction

fA would read k[HΣ
el(8fA/k) +HΣ

A−B(8fA/k)] i.e. as the
sum of the free energy of individual patches of equal size.
This summation approximation is valid when isolated do-
mains are formed at the centre of the hexagonal patches,
and one finds that increasing fA at fixed J`/|δκ| always
favours, eventually, higher k values, in agreement with
Monte Carlo simulation results shown in the phase dia-
gram in Fig. 2(a).

The caveat is that this summation approach is only
valid when the A species domains are disconnected.
Above certain fA values, the lowest energy configura-
tions are in fact those in which domains of lipid A span
across multiple patches (see Fig. 2). These bridges be-
tween patches essentially make the domains interact neg-
atively and in a non-pairwise fashion. The location of
these bridges coincides with the lowest curvature energy
regions at the patch boundary (c.f. Fig. 1). Taking
these configurations into account, the phase diagram in
Fig. 2(b) shows that the simple picture of Fig. 2(a) only
holds for small J`/|δκ| and fA. In fact, one observes
re-entrant behaviours whereby a configuration

(
8
k

)
previ-

ously unfavored in the disconnected regime, becomes re-
favored thermodynamically. We note that when bridges
are formed in the

(
8
8

)
configuration (open crosses in Fig.

2(b)), the segregated and continuous phases are effec-
tively inverted (lipid B domains are surrounded by A).

Domain facetting - Another distinguishing feature that
appears with line tension is the facetting of the domains
formed by the A lipids. This effect is shown in Fig. 3(b)
where the domain almost draws a hexagon compared to
Fig. 3(a) where the shape is more rounded, thus the
term “facetting”. To explain this, we recall that in gen-
eral if the underlying manifold has an n-fold rotational
symmetry, we expect the bounding curve that minimises
the perimeter length of a domain with fixed area to be a
regular n-gon whose sides are geodesics of the underlying
manifold. Moreover, on an anisotropic curved surface,
not all orientations of a regular n-gon are equivalent as
they lead in principle to different total perimeter lengths.
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Figure 3. Domain facetting. Shape of a lipid A domain in
the neighbourhood of the zero-curvature point p of a single
hexagonal patch. Note that only a half of the patch is repre-
sented. (a) in absence of line tension and (b) with high line
tension (J`/|δκ| > 1). (c) Geodesic curvature as a function of
the curvilinear coordinate l in absence of line tension (dashed)
and with high line tension (solid).

Thus, we interpret the bounding curve in Fig. 3 (b) with
6-fold symmetry to be the curve that minimises both
shape and orientation at the same time.

To test the above rationale, we estimate the geodesic
curvature along the bounding curves of the two represen-
tative examples shown in Fig. 3(a) and (b) (cf. e.g. Ref.
[26]). In these figures, the curvilinear coordinate l ∈ [0, 1]
is the normalised arc length of each curve which enables
the comparison of the geodesic curvature for curves with
different total lengths in Fig. 3(c). In absence of line
tension, the geodesic curvature gc is approximately con-
stant around the boundary. With a large line tension, gc
reaches very high values for l close to zero, but is much
smaller than that without line tension as l approaches 1.
This is consistent with the above explanation although
it shows that the facetting is not perfect. It nevertheless
sheds light on what happens as we approach the ideal
facetting case: the geodesic vanishes almost everywhere
except close to l ' 0 where it diverges. This divergence
is representative of the wedge formed by the intersection
of two geodesics of the 6-gon and whose angle γ can be
estimated to be (cf. SM) γ = 2π/3 − (6|δκ|)−1HΣi

el (f iA)
for an area f iAµ(Σi).

Discussions - Let us start by estimating where typical
lipid mixtures are located in the phase diagram of Fig.
2. For a mixture of DOPC, sphingomyelin, and choles-
terol forming coexisting Lo and Ld domains, J ' 1.2
pN and |δκ| ' 3 × 10−19 J [27, 28]. Most synthetic
BCPs, however, are formed using the lipid Monoolein,
which is known to have a low bending rigidity with
|κG| ∼ κm < 10kBT [29]. Here κm is the (mean cur-
vature) bending rigidity. Using these values and taking
the typical lattice spacing of a BCP ` ' 10 − 100 nm
[30–32], this leads to J`/|δκ| in the range of O(0.1)-O(1)
considered in this paper.

When the line tension effects can be neglected, the

natural curvature of the surface alone is enough to a) in-
duce segregation in all surfaces and b) the segregation is
such that domains form in the same proportions on all
available patches on the surface. We then confirmed this
theoretical prediction by numerical calculations on the
P-surface and looked at the effects of non-zero line ten-
sion. The latter gives rise to two important features. (i)
Below the demixing critical temperature, it favours the
formation of bigger domains in a fewer number of patches
available on the surface that we characterize with a cor-
responding phase diagram. We also observe re-entrances
in this patch-occupation space due to the formation of
bridges between domains on neighbouring patches. Some
of these morphologies should lead to distinguishing fea-
tures (e.g. different x-ray scattering signatures due to the
change in symmetry), and we hope this work will stimu-
late experimental works to verify our predictions. (ii) In
the large line tension limit, we observed a facetting of the
domains for which we provided a simple explanation and
that we can relate to the curvature energy of a domain
on a patch.

Predicting patterning on cubic membranes is the vital
first step towards their systematic and rational function-
alization. On one hand, the ability to localize molecular
species by design into targeted domains can be beneficial
for controlled release in drug delivery or of chemical sub-
stances [33, 34], and for templating self-assembly [35] or
phase separation [36, 37] in the surrounding fluids. On
the other hand, suppressing phase separation between
lipid species or between lipids and proteins can be desir-
able in applications such as protein crystallization [11],
where segregation at an incorrect stage can strongly ham-
per the efficiency of the applications.

There are also a number of avenues for future work.
Firstly, here we have assumed that the BCP remains a
minimal surface. A closer inspection based on the theory
developed in [38] for domain-induced budding shows that
the conclusions presented here can be qualitatively af-
fected when κm/|δκ| < 0.4 (cf. SM). However, estimates
of this ratio for a wide range of lipid bilayers and mono-
layers in the literature show that it is only rarely below 1
[39]. This suggests that the minimal surface assumption
is very reasonable for realistic parameter values. Further
work is however still needed to fully assess how membrane
deformation, including budding instability, affects the
phase diagram of multicomponent BCPs. Secondly, the
present work tacitly assumes that the membrane domains
are formed by lipids of the same species in the two leaflets
(registration phase). Indeed, recent work on flat bilayers
suggests that registered domains is the thermodynami-
cally favoured phase for a wide range of lipid mixtures
[40]. It would be interesting to relax this assumption to
probe how curvature affects registration/anti-registration
and how, in turn, registration/anti-registeration may af-
fect the bilayer morphology. Thirdly, the system consid-
ered here provides an excellent setup to study how non-
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uniform curvature may affect the nature of the demixing
phase transition.
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