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Abstract 

This paper describes the theoretical prediction, finite element simulation and experimental 

studies of extrudate swell in monodisperse and bidisperse polystyrenes. We present a 

molecular approach to understanding extrudate swell using the tube-model-based Rolie-Poly 

constitutive equation within a Lagrangian finite element solver. This yields theoretical 

predictions of swelling which show a close universality: the molecular weight dependence of 

the swelling can be removed when the flow speed is scaled by the Rouse Weissenberg 

number. The roles that both chain orientation and stretch play in determining extrudate swell 

are clearly identifiable from plots of swelling ratio against each Weissenberg number. We 

also present isothermal extrusion experiments on the same polymers and can obtain good 

predictions well into the strong chain stretching regime. The predictions for swelling ratios 

match those from experiments up to Rouse Weissenberg numbers of ~7, above which 

swelling is over-predicted by the Rolie-Poly equation.  

I. INTRODUCTION 

Predictions of extrudate swell have been sought for many years, frequently with the intent to 

relate its magnitude to measurable rheometrical quantities. For example, Tanner (1970) [1] 

related swelling out of a long capillary to measurement of first normal stress difference and 

shear stress: 
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Here τw is the shear stress at the capillary wall and N1 is the first normal stress difference 

across the capillary. De is the maximum diameter of the extrudate at steady state flow and d is 

the diameter of the capillary used for extrusion. This equation has proven useful in roughly 

predicting extrudate swell although it neglects several factors which are present in practical 

extrusion experiments: 

i. Die entry and exit effects are ignored (as the die is assumed to be infinitely long). 

ii. The influences of gravity and surface tension are not included. 

iii. The swelling profile cannot be predicted, only the maximum swelling ratio. 

The constant 0.1 is added empirically to improve fit to experimental data. This is required 

because the elastic recovery arguments used in the rest of the equation fail to predict the 

Newtonian swelling ratio of 1.1. The factor was changed to 0.13 in later papers.[2] The 

fraction De/d is referred to as the B value. 

Other theories have used similar approaches with varying advantages and disadvantages, for 

example using entry/exit pressure drops and values for the wall shear stress. Liang et al [3] 

stated that B was a linear function of wall shear stress: 

 1 2 wB f f    (2) 

The constants f1 and f2 are material specific constants related to the elasticity of the polymer 

and τw is the wall shear stress. This equation fits experimental data well for filled rubber 

compounds although not for very high shear rates. 

The die exit pressure drop was predicted by Liang [4] to affect extrudate swell.  
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where ΔPexit is the pressure drop across the die exit. This equation fits experimental data for 

high density polyethylene (HDPE) melts best at high shear rates with significant deviations at 

lower shear. 
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Seriai et al [5] removed the long die condition  by experimentally investigating the l:d ratio 

(the ratio of the capillary length l to its diameter d) of the capillary and the capillary residence 

time. For longer dies the extrudate swell was found to drop off, becoming a function of the 

capillary wall shear rate. This is due to stress relaxation along the extruder length becoming 

more effective as l:d increases. 

The conditions into which the extrusion occurs are also important. If the surrounding 

temperature is lower than the extrudate then cooling will result in lower extrudate swell. 

When the extrudate exits the heated die into the ‘cold’ medium it will contract thermally, 

causing shrinkage. The flow properties of the polymer will also change. The inner portion of 

the extrudate will have a lower viscosity than the cooler, outer portion which may cause 

swelling .[6] On the other hand, swelling will be arrested if the polymer is cooled through its 

glass transition (or crystallised in the case of semicrystalline polymers, such as HDPE), 

potentially trapping stresses within the extrudate. This effect has historically been corrected 

for by annealing the extrudate. The disadvantage of this method is that it is difficult to 

measure change in extrudate swell over time and that measured diameters must be corrected 

for thermal expansion/cooling. Extrusion into a heated oil bath [7] solves the heating/cooling 

problem but raises problems involving penetration of the oil into the extrudate and surface 

tension effects. An optimal way to avoid all these problems is to perform the whole extrusion 

isothermally, as is done in this work. 

Yang et al [8] used a capillary rheometer to study the molecular weight dependence of the 

extrudate swell. In these experiments the extrudate was cooled immediately on extrusion, 

then annealed in a heated oil bath for a fixed period of time to measure the stress relaxation 

within the extrudate as a function of annealing time. They found that the swelling ratio at a 

specific annealing time and shear rate decreases with increasing molecular weight of the 

polymer. However, when the time was scaled by the polymer relaxation time the data reduced 

to a single curve, meaning extrudate swell was independent of molecular weight. This 

relaxation time was calculated from the polymer melt viscosity rather than using polymer 

relaxation times taken from molecular theory. They also found that extrudate swell decreases 

with increasing die length but additionally decreases with the addition of slip at the die exit. 

It is therefore important to understand extrudate swell on a deeper level than simple theories 

based on normal stresses or pressure drops as any change in the amount of unrelaxed stress at 

the die exit can have significant effects on the swell behaviour. Both industrial application 
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and an understanding of polymer process science seek a way of predicting extrudate swell at 

a wide range of shear rates using molecular characteristics of the polymer known from its 

synthesis. 

Such an approach requires two major steps: First, a constitutive model for the material must 

be employed, consistent with the molecular physics and chemical structure of entangled 

melts.  Second, this formulation should be solved for the specific complex flow-fields 

encountered in extrusion. It is therefore necessary to use a fluid dynamics package capable of 

computing viscoelastic flows. This has been attempted in the context of extrudate swell using 

the K-BKZ [9], Phan-Thien Tanner (PTT) [10], Oldroyd-B [11] and the Pom-Pom [12] 

models amongst others. In 2011 Ganvir et al [12] used a Lagrangrian-Eulerian method and 

the XPP (eXtended Pom-Pom)[13] model. They reported reasonable agreement with 

experiment for commercial grade polydisperse polyethylenes although the simulations 

consistently over-predicted swelling due to non-isothermal effects 

Most of the experiments performed thus far have included a complicating factor making 

accurate prediction of extrudate swell difficult. Polydispersity and branched architectures 

tend to smooth out rheological features such as signatures of chain reptation and chain 

stretch, making the underlying cause of the observed phenomena harder to see. To develop an 

understanding of the underlying causes of extrudate swell therefore it is preferable to test any 

model using well characterised, monodisperse, linear melts. However, given the difficulty in 

synthesising large volumes of these materials it is necessary to perform small (gram) scale 

experiments rather than the kilogram scales that are required for industrial extruders. The 

tube theory of entangled polymer melts was itself developed through rheometry on small 

samples of monodisperse linear, star, comb and other controlled architecture polymers. [14] 

The same methodology has recently been successfully extended to complex flows.  For 

example, Graham et al [15] and Bent et al [16] performed recirculating flow cell experiments 

on ~200 g scales to compare the predictions of the Rolie-Poly equation to neutron scattering 

and birefringence experiments of monodisperse polystyrenes.  

The ability to perform rheometrical measurements under processing conditions on smaller 

scale than the recirculating flow cell or a conventional capillary rheometer is beneficial in 

such circumstances, where it is difficult to manufacture larger quantities of a polymer. To this 

end the Multi-Pass Rheometer (MPR) was developed in Cambridge.[17] The MPR consists 

of two hydraulically driven pistons, each inserted into a barrel filled with polymer. In-
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between the upper and lower barrels is placed a specially designed test section into which a 

variety of test pieces can be inserted. Quartz viewing windows are also inserted into the test 

section to allow visualisation of the flow during the test. The MPR can perform experiments 

using as little as 10 g of polymer and has been adapted for contraction-expansion, extrusion, 

capillary and cross slot flows.  In the work reported here, the MPR is used in a novel mode in 

which the lower chamber is originally nitrogen filled, enabling controlled visualisation of 

isothermal extrusion. 

Accurate simulation of these different flows requires modelling of both linear and non-linear 

rheology. The basic component of rheological linear response is the Maxwell model, which 

fits the linear rheological data to a series of single exponential relaxation processes: 

 0( )
t

t e  


  (4) 

where σ(t) is the stress at time t, σ(0) is the starting stress and τ is the relaxation time of the 

mode. It is possible to sum up a series of these ‘modes’ to model a series of relaxation times.  

These Maxwell modes can be summed together to give a full linear viscoelastic spectrum. So, 

over i modes: 
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where G’ and G” are the storage and loss moduli of the polymer, ω is the measurement 

frequency Gi is the modulus of the Maxwell mode and τi is the relaxation time of the 

mode.[18] 

The theory of Likhtman-McLeish specifies a particular example of the general Maxwell 

model in the case of monodisperse, linear, entangled polymer melts, using molecular tube 

theory to predict linear rheology and extract relaxation timescales for the polymer melt. In 

particular it describes how to obtain the terminal reptation time, τd and the Rouse relaxation 

time, τR [19] from the entanglement time, τe and the number of entanglements per molecule, 

Z. 
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The Rolie-Poly (‘Rouse Linear Entangled Polymer’) constitutive equation, used to model 

non-linear rheology, was derived by Likhtman and Graham in 2003 [20].  It is a 

simplification of the ‘GLAMM’ theory by Graham et al. in the form of a differential 

rheological constitutive equation, which embodies entanglement tube theory into a fully non-

linear constitutive equation valid from slow flow into the strongly chain-stretching regime. 

[21] The full theory includes terms for chain orientation; chain stretch and convective 

constraint release (CCR) as well as terms for coupling between these.[14] This is transformed 

into a much simpler equation applicable as it stands to a monodisperse melt, or to each 

fraction in a polydisperse melt, where the Rolie-Poly differential model becomes a non-linear 

extension of each of the linear relaxation modes of the material. 

For a monodisperse melt, or for each fraction that undergoes chain-stretch, the stress is 

calculated using the Rolie-Poly equation; 
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where I is the identity matrix, κ  is the velocity gradient tensor, σ is the local stress tensor, λ 

is the chain stretch; calculated from the scalar trace of the local stress tensor 

( ) / 3tr  σ   and β is a parameter determining the strength of constraint release. This is 

kept constant at β=0.5 as recommended in earlier papers on CCR[22] and is in line with 

previous uses of the Rolie-Poly model with linear polymers. [21] τd is the reptation time of 

the mode and τR is its Rouse relaxation time. The key feature of the Rolie-Poly model 

encompassing chain-stretch is that the constitutive representation of even a single 

monodisperse fraction carries two relaxation times, a longer one (reptation) controlling the 

orientation of chain segments, and a faster one (Rouse) relaxing the chain stretch 

(mathematically appearing as a function of the trace of the stress tensor).  In purely linear 

response, only the relaxation characterised by d appears (which allows a non-linear theory to 

be ‘generated’ by a set of linear relaxation modes by extending each one with a Rolie-Poly 

structure). A simpler alternative form of the model that removes the nonlinearity due to chain 

stretch is used as non-linear extensions of the high-frequency modes, since these arise 
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predominantly from sub-chain structures that do not stretch in the flow rates of our 

experiments: 
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The resulting model using multiple stretching and non-stretching Rolie-Poly elements can be 

used to calculate the stress deformation and chain stretch at any point in a flow simulation by 

calculating the change in stress across each simulation time step. 

The Rolie-Poly equation has provided accurate flow predictions of monodisperse entangled 

linear polymer melts especially for MPR flow studies performed as part of the Microscale 

Polymer Processing (μPP) projects.[23-25] The μPP projects produced several tools based on 

these theories to aid analysis and use of rheometrical data, which we employ in this work. 

Firstly, the analysis toolkit RepTate [26] allows time-temperature superposition of linear and 

non-linear rheometrical data and fitting to these data using, amongst others, the linear and 

non-linear theories introduced above. 

Secondly, the Lagrangian finite element solver flowSolve allows the parameters generated by 

RepTate to be used for flow modelling and computation. [27] The flowSolve program uses a 

starting mesh of triangles to simulate the polymer flow. At each step in the simulation the 

velocity of each grid point is calculated. The velocity gradient is assumed to be constant 

between each pair of connected grid points. The stress is then calculated for each triangle 

using these velocity gradients and a constitutive equation such as the Rolie-Poly or Pom-Pom 

equations. The Rolie-Poly equation is used for linear polymers whereas the Pom-Pom 

equation is used mainly for branched polymers.[20, 28] The mesh points are then moved 

according to their velocities. This will result in a deformation of the triangular mesh 

throughout the simulation. As with any Lagrangian solver, regular remeshing is required to 

maintain a regularly shaped triangular mesh which accurately portrays the fluid flow and 

accurately captures the stress history throughout the simulation. The velocities and velocity 

gradient tensors are calculated using standard equations for mass and momentum 

conservation in the non-inertial limit: 
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where μ is a Newtonian viscosity term formed from the fast ‘solvent’ modes of the 

simulation (in a melt these may arise from viscoelastic material but possessing relaxation 

times much faster than any of the deformation rates in the flow) and v is the velocity of the 

point at a particular time step.  

The flowSolve program allows simulation of a variety of different flow geometries via 

incorporation of both fixed and moving boundary walls with slip or no-slip boundary 

conditions. In the case of free surface flows the polymer parameters can be altered to include 

gravity and surface tension. 

flowSolve has been used in an earlier form to predict flow of polyethylenes through a slit. 

[29] It could predict the stress birefringence at the flow inlet and outlet and has also been 

used to predict stress birefringence in cross slot flow. [30] The predictions of the Pom-Pom 

model break down at high shear rates due to flow asymmetry and flow memory effects. The 

μPP project used flowSolve to predict flow properties at specific points of interest in the flow, 

for example comparison to neutron scattering data for flow past re-entrant corners. [31] Work 

on constriction flows in the MPR is relevant here, describing how the entry and exit flows of 

polystyrene through a slit vary as a function of Weissenberg number (the deformation rate 

made dimensionless with respect to the dominant relaxation time of the material).[27] These 

studies describe the three regimes that emerge from the two relaxation times of Rouse and 

reptation processes.  We will therefore find it useful to define two Weissenberg numbers, one 

with respect to the reptation time of a linear entangled chain ( d dW    ), and one with 

respect to its Rouse (stretching) time ( R RW    ): 
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 (10) 

Most of the simulations we report are in the orientation and stretch regimes with very few 

occurring in the linear regime, which is asymptotically simply the Stokes solution, since the 

Rolie-Poly equation reduces to the Newtonian viscous fluid in this limit. [32] 

The long-term aim of the research programme in which this work is situated, is to be able to 

predict and understand extrudate swell of complex, industrially relevant polymer melts. In 

order to understand these systems we start by predicting extrudate swell for a simple 

monodisperse, linear polymer melt, comparing with experiment, and building up in 
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complexity gradually.  In this work we present fluid dynamics simulations using the Rolie-

Poly constitutive equation, computed in 2D axisymmetric constriction and extrusion flow 

using the Lagrangian viscoelastic solver flowSolve. In section II.A we review the molecular 

model adopted for monodisperse polymers in non-linear flow, in section II.B the flow-solving 

protocol and in section III our experimental technique and materials. The results of 

comparing experiment and theory is presented in section IV, and conclusions in section V.  

 

 

II. COMPUTATIONAL 

A. THEORY 

The theory used for the flow simulations is the finite-stretch Rolie-Poly constitutive equation. 

A modified version of Equation (7) was used to include finite extensibility for the single 

stretching Rolie-Poly element used in our models of the monodisperse melt and the two 

stretching elements used in our models of the bidisperse melt: 
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A is the chain orientation tensor and  F(λ) is a ‘spring force’, reducing λ at times when the 

chain is significantly stretched.[33] Equation (8) was used to give non-linear constitutive 

structure to the remaining linear relaxation modes, which are all taken to be non-stretching in 

our flow regimes. 

The value of λmax used  is 5, taken as a reasonable estimate for polystyrene as in [34]. This 

takes account that at very high shear a polymer chain cannot be stretched infinitely. 

Incorporating finite extensibility is vital in these simulations, in which the Rouse 

Weissenberg number is exceeded.  



10 

 

 

B. SIMULATION 

The extrusion simulations are all calculated using the flowSolve software described above 

using the initial geometry and starting mesh of triangles shown in Fig. 1.  

 

FIG. 1  The starting geometry and mesh used in a flowSolve extrusion simulation.  

The geometry is defined to match the capillary available within the MPR, i.e. an upper well 

of diameter 10 mm, a capillary of length 5 mm and diameter 2 mm followed by free space. 

The simulations are all carried out within a cylindrical geometry using a central symmetry 

line. The full height of the upper test section and piston barrel within the MPR cannot be 

simulated due to the size of the geometry required therefore the upstream geometry is 

approximated using a flow entry line across which new triangles enter the simulation area at a 

defined velocity, vp. The simulations all include gravity acting downwards with the polymer 

flow and a surface tension of 30 mNm
-1

 (taken from [35] at 180 °C.) acting on the free 

surface, even though these are calculated to be small effects for all but the lowest input 

velocities. 

The number of points used in a simulation is characterised by the maximum length of a 

triangle size. This parameter was fixed at 0.3 mm in this study, after a series of simulations 

checking convergence, as this is a reasonable trade-off between accuracy and run-time. The 

effect of reducing the mesh size is minimal, a difference of ~1% versus a maximum length 

about half the size. Increasing the mesh size only has a significant effect at low shear rates, 

resulting in greatly increased swellings. At higher shear rates the swelling ratios obtained are 
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almost identical regardless of mesh size. This is detailed in Fig S1 of the supplementary 

information. 

The parameter used to characterise the swelling in this work, as in most previous studies, is 

the B value, i.e. the diameter of the extrudate relative to the diameter of the capillary. The B 

value is calculated using the maximum width of the ‘steady state’ profile as a function of 

distance from the die exit. This is also the point where the initial rapid expansion versus time 

of the extrudate out of the die has stopped. An example plot of the evolution of the extrudate 

diameter with time, together with examples of extrudate profiles, is shown in Fig. 2. 

 

FIG. 2  A plot of simulated extrudate diameter versus time for PS281 at WR=14. The maximum distance of the 

extrudate away from the centre line of the die is taken as De and the B value is the value of De/d where the graph 

becomes steady. The insets show the full extrudate profile at each open symbol. 

In some cases, the polymer may initially expand outwards further than its steady state value. 

The extrudate is then pulled downwards and the swelling ratio decreases to a plateau. In this 

case the value at the plateau is still taken to be the swelling ratio. This overshoot is a small 

effect and is not systematic as a function of flow speed or Weissenberg number. 

The parameter changed in the simulations is the flow input velocity vp. This is the average  

velocity at which mesh points enter the simulation area across the radius of the flow entry 

boundary rp. This is related to the equivalent Newtonian wall shear rate w  via the flow entry 

volume flux, Q:  
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Note that, due to shear-thinning, the true shear rate at the wall will be greater than (though of 

the same order as) this equivalent Newtonian shear rate. A range of shear rates were used 

corresponding to Weissenberg numbers relative to both Rouse and reptation times above and 

below 1. The range of input speeds required to span the same range of Weissenberg numbers 

changes depending upon the molecular weight although the speeds used for the 281 kDa 

polystyrene are 0.025 mm s
-1

-10 mm s
-1

. 

 

III. EXPERIMENTAL 

A.  MATERIALS 

The polystyrenes used were synthesised via anionic polymerisation. The samples 

PS100/PS400 were synthesised on a 200 g scale according to the procedure previously 

reported in [27]. The sample PS281 is partially deuterated and prepared according to the 

procedure reported in [15]. P627-S was obtained from PolymerSource and was prepared by 

living anionic polymerisation in THF at -78 °C. 

A summary of the materials used in this paper is shown in Table I: 

TABLE I A description of the polystyrenes used in this study and the molecular parameters used to define them 

at 180 °C, and to build optimised monodisperse models. d is the terminal reptation time and Z is the number of 

entanglements per chain. *P627-S is bidisperse so its Mw  is listed both as an average and (in parenthesis) for the 

higher MW peak alone. The values of Z, d and R  fitted to the linear rheology to create an optimatl 

monodisperse model for this polymer (results in figure 17) correspond to the higher MW component alone. 

Parameters for a bidispese model for P627-S are given in Table II. 

Sample 

Code 

Molecular Weight 

(Mw) /kDa
 

Mw/Mn Z d /s R  /s 

PS100 99.7 1.04 6 0.087055 0.017852 

PS281 281 1.13 17 0.7648 0.04703 

PS400 460 1.05 28 10.985 0.29276 

P627-S* 252 (340) 1.27 21 4.4346 0.16285  
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A GPC characterisation was then performed on the three polymers used within the MPR. The 

samples were all run using THF as the solvent at 35 °C. The Viscotek TDA 302 instrument 

used a triple detector system with intensity, viscosity and RALS light scattering detectors to 

determine the molecular weight distribution. 

 

 

FIG. 3 GPC Data for the three polymers used in the MPR. This illustrates the bimodality of P627-S. 

Fig. 3 shows that P627-S is bimodal with two peaks in the GPC. The data for the two peaks 

and parameters used to describe them are described in Table. II. The relaxation times used in 

simulations for these fractions are also included in this table and the method used to obtain 

these is discussed in Section III.B. 

TABLE II Modelling data for the two Rolie-Poly stretching elements for the bidisperse model used in 

simulations of polymer P627-S at 180 °C. 

Rolie-Poly 

Element 

Molecular Weight 

(Mw) /kDa
 

Dispersity Weight 

fraction, ϕ 

Z τd/s τR/s 

1 160 1.034 0.37 10 0.9256 0.03614 

2 340 1.148 0.63 21 4.4346 0.2585 
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B. TECHNIQUES 

Shear Rheometry experiments were performed using a TA instruments HR-2 rotational 

rheometer. A 25 mm plate-plate geometry with a sample thickness of 1 mm was used in all 

experiments. A frequency sweep was performed on each material using a frequency range of 

0.1 - 600 rad s
-1

 and a temperature range of 140 °C - 200 °C. The data were time-temperature 

shifted using the RepTate software.[26]   

The TTS parameters used are shown in Table III: 

TABLE III  WLF shift parameters at 180 °C for the polystyrenes used in this study.  

Sample 

Code 

Molecular Weight 

(Mw) /kDa
 

C1 C2 C3 

PS100 99.7 7.63 -11 10.0 

PS281 281 6.43 -11 16.0 

PS400 460 7.64 -11 10.0 

P627-S 252 7.63 -11 10.0 

 

The data were TTS shifted to 180 °C to obtain the linear response of the polymer over a wide 

enough frequency range and then modelled using the linear theory of Likhtman and McLeish 

(Equation (6)) to obtain the τd and τR values given in Table I, from the terminal times of the 

rheology. Z values for the degree of entanglement of each sample were calculated using a 

uniform value for the entanglement molecular weight (Me) of 16.5 kDa for the polystyrenes 

in this study.  

The complete linear rheological spectra were modelled using a spectrum of 10 Maxwell 

modes, shown in Fig. 4 where the lowest frequency (slowest) Maxwell mode is assigned the 

relaxation time given in Table I. 
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FIG. 4  An example spectrum of Maxwell modes (diamond symbols give their moduli and frequencies) fitted to 

linear rheometrical data for PS281 at 180 °C. The range is chosen to match the range of shear rates used within 

the simulations. 

The non-linear rheology is approximated by assigning the single Rouse time from molecular 

theory to the slowest Maxwell mode, so creating a Rolie-Poly element in the constitutive 

model. This is an effective approximation to the full theory for a monodisperse, linear 

polymer as for these systems the slowest Rouse mode is the only one with a significant effect 

on the non-linear rheology. Further stretching modes would be required for a fit of 

polydisperse or branched systems as discussed in Section IV.D 

The bidisperse polymer P627S was also modelled by a similar procedure, by using the first 

and second crossover-frequencies in the linear Maxwell-model fit to the linear rheology to 

obtain an estimate for τe and thus using Equation (6) to calculate τd and τR.  The fitted 

reptation (terminal) time of the blend corresponds to the contribution of the higher molecular 

weight component alone, and the value of τR  shown in Table I is the ‘bare’ Rouse time that 

this fraction would possess in a monodisperse melt.  For a more accurate description of the 

non-linear rheology the entanglement-physics effect of bimodality was considered. Read et al 

[36, 37] showed that in a bimodal blend, constraint release within the ‘fat’ tube (constraints 

formed from entanglements with the high molecular weight chains alone) greatly increases 

the effective stretch-relaxation time (Rouse time) of that fraction in accordance with the 

formula: 
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where long is the volume fraction of long chains in the blend. The Rouse time of the 340 kDa 

chains, when a component in the bidisperse blend, will therefore be increased significantly 

from its monodisperse value, and thus its chain stretch will both relax significantly slower, 

and occur at lower extension rates than expected from the Rouse time given in Table I. This 

means that although the Rouse time of the short chain polymer is not exceeded the effective 

Rouse time of the long polymer is greatly exceeded at most experimental rates, and 

significant chain stretching occurs, causing extrudate swell. 

A Rolie-Poly stretching element (Equation 7) with an inflated Rouse time, corresponding to 

the high MW component, was therefore used to model the higher fraction in the bidisperse 

melt in the flowSolve simulations. The longest Rouse time of this high Mw component (of 

bare value 0.16285 s in Table I) was increased to take into account stretch time enhancement 

of the longer chain in accordance with Equation (13) where long is the weight fraction of the 

340 kDa chains in the blend. This gives the renormalised Rouse time used in simulations of 

0.2585 s shown in Table II. A second stretching mode was added with Rouse time 

corresponding to the predicted values for the smaller molecular weight corresponding to the 

pure component peaks. These two Rouse times were calculated from Equation (6) (and 

adjusted according to Equation (13) in the case of the slower mode) and Z values calculated 

from the GPC peak molecular weights and the Me for the sample of 16.5 kDa. The reptation 

times and moduli were taken from the Maxwell mode fit for P627S, The weight fractions in 

Table II were calculated by integrating under each peak and using the ratio of the area under 

each peak to the total area as the weight fraction.  

Extrusion experiments are performed using a Multi-Pass Rheometer (MPR).  The advantage 

of this method is that only small quantities (~5-10 g) of polymer are required, allowing well 

characterised, monodisperse samples to be used rather than larger quantities of less well-

characterised or more polydisperse samples. In these experiments, the MPR is used in a 

‘single pass’ mode effectively as a small volume capillary rheometer. The bottom piston is 

left fully lowered and the top piston is gradually lowered so as to extrude polymer through 

the test section into the bottom chamber. The advantage of this arrangement is that the 

extrusion can be carried out isothermally rather than extrusion into room temperature 

conditions in which case the extrudate will cool, reducing the observed swelling. A schematic 
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diagram of the test section used is shown in Fig. 5. Two semi-circular test pieces are pushed 

together to form a cylindrical die through which extrusion can occur. 

The top chamber and the top piston barrel are filled with polymer and extrusion occurs into 

the bottom chamber. All of these parts are maintained at a constant temperature by an oil 

heating jacket. Observation of the extrudate profile is possible using the quartz viewing 

windows. 

 

FIG. 5  The MPR capillary setup. 

At the start of a test the polymer is packed into the upper test section and compressed to 

remove any inhomogeneity. The polymer is allowed to melt fully for a period of at least 

30 minutes before extrusion. The temperature of the apparatus is maintained at 180 °C 

throughout the process. During a test the top piston is moved down and the polymer is pushed 

through the capillary into the bottom chamber where it can drop freely.  

The diameter used for calculation of the B value is defined as the maximum extrudate width 

at steady state flow. (See Section II.B) 

The small upper barrel size of 40 mm means that extrusion can only occur for a limited 

period of time.  The maximum piston speed used varies per sample but allows for an 

extrusion time which is much greater than τd for all the polystyrenes studied meaning that the 

flow in the top barrel will have reached steady state during the extrusion. Gravity should also 

have a negligible effect upon the extrusion. Assuming the entire 5 g load of the upper well 
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were extruded into the bottom chamber and were hanging from the 2 mm diameter capillary 

under gravity the stress exerted would be in the order of 1.5×10
4
 Pa. This is significantly less 

than the plateau modulus of the polystyrene of ~10
5
 Pa, so that the component of material 

strain due to gravity is small. 

The extrudate form is very clear from the images.  Transparency is limited in the materials of 

this study, as the low concentration of particulates that they acquire from the many passes 

necessary to the study creates strong absorption in the long dimension of the sample (out of 

the plane).  To ensure that neither the accumulation of particulates, nor thermal degradation 

affected the melt rheological properties, the linear rheology was tested before and after 

extrusion, with no significant difference observed between the two tests. 

Examples of the swelling observed in the MPR are shown in Fig. 6.   

 

FIG. 6  Extrudate swell in the MPR at a) WR=3.9 and b) WR=46 respectively. The molten polymer is opaque 

therefore no detail can be seen in the upper chamber. The vertical white lines have been added to indicate the 

capillary diameter and the horizontal arrows indicate the maximum diameter (B value) for each.The extrudate 

continues to drop freely out of the viewable area into the lower chamber. 

B values can readily be extracted from these images by measurement of the width of the 

extrudate at its steady state widest point using an image analysis program.  It is also evident 

from the profiles in Fig. 6 that the extrudate swell grows considerably as the strain rates take 

the melt into the chain-stretching regime. 
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IV. RESULTS AND DISCUSSION 

A. ROUSE AND REPTATION WEISSENBERG NUMBERS 

Since a monodisperse melt possesses two relaxation times even at the coarsest level of 

approximation, there are two possible dimensionless deformation rates, depending on which 

timescale is used as a multiplier for the shear rate to make it dimensionless.  We refer to these 

as the reptation and Rouse Weissenberg numbers defined in Section II.A.  Once rates have 

been made dimensionless in this way, the only parameter that differentiates one 

monodisperse entangled melt from another is the ratio of Rouse to reptation times.  This ratio 

is a single-valued function of the number of entanglements per chain, Z tabulated in Table I, 

so that R/d~Z
-1

 for moderate degrees of entanglement. Plotting a property of melt flow such 

as the extrudate swell B against the reptation Weissenberg number for different molecular 

weights will superimpose features due to chain orientation, while plotting against the Rouse 

Weissenberg number will do the same for features arising from chain stretch.  

The results for extrudate swell for the monodisperse polystyrenes used are shown versus 

equivalent Newtonian wall shear rate in Fig 7 (a), versus reptation Weissenberg number in 

Fig 7 (b) and versus Rouse Weissenberg number in Fig 7 (c). 
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FIG. 7 Computed B values in flowSolve for three different molecular weight polystyrenes. a) Shows the data 

plotted as a function of equivalent Newtonian wall shear rate, b) shows the lack of superposition versus 

reptation Weissenberg number. and c) shows the superposition versus Rouse Weissenberg number. 

At low Weissenberg numbers where there is almost no chain stretch there is a small decrease 

in B with shear rate.  This is the first, very weak, non-linearity in the response of extrudate-

swell.  The data are consistent with the expectation that this sets in at reptation Weissenberg 

numbers of order unity. This minimum in swelling ratio is not constant with Rouse 

Weissenberg number but occurs at a roughly constant reptation Weissenberg number, 

meaning that this is a chain orientation rather than chain stretch induced phenomenon. No 

downturn is observed for PS400 as the reptation Weissenberg number is always exceeded 

within these simulations. Below Wd =1 the flow at the die exit has time to relax all the elastic 

stress built up at the die wall, leading to the limiting Newtonian result for the expansion. 

Above Wd=1, the reduction in apparent viscosity (both shear- and extension- thinning) that 

comes from chain alignment, results in an increased flow speed away from the die, compared 

with the low-flow case, reducing the swelling.  This effect is consistent with early work by 
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Tanner on planar flows in which extrudate swell is seen to decrease below a Weissenberg 

number of 1. [38]  

The swelling ratio at high shear rates is independent of molecular weight when plotted 

against WR but there is no superposition versus Wd except at the lowest speeds where B is 

small and only weakly dependent upon WR. 

The superposition of the curves at different molecular weights versus WR is very significant. 

This indicates that of the spectrum of relaxation times in the model the only one that makes a 

significant difference to the swelling is the Rouse time of the highest molecular weight 

fraction. Extrudate swell must therefore be a chain stretch phenomenon. An analysis at the 

underlying causes of extrudate swell may now be performed by looking at the chain stretch 

during the simulation. 

B. CHAIN STRETCHING 

The advantage of using fluid dynamics simulations combined with a molecular constitutive 

equation such as Rolie-Poly is that it is possible to look at the evolution of molecular 

variables such as chain stretch, as well as macroscopic ones, as a function of both time and 

location in the simulation. Fig. 8 shows the chain stretch as given by the value of λ within 

triangles adjacent to the capillary wall. The finite number of triangles present at the die wall 

results in some noise in the chain stretching data. The data in Fig. 8 and Fig. 10 are averaged 

over 5 triangles of the simulation mesh to produce smoother curves. 

 

FIG. 8 Computed chain stretch along the die wall for PS281 at WR above and below 1, keeping the die length 

fixed at 5 mm and the l:d fixed at 2.5. The distance the flow has travelled after τR, calculated from the mean 

flow velocity and the Rouse time is shown on each curve. The corresponding values for reptation are off scale 
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above WR≈3  a) shows the flow in the before and after the die and b) shows an expanded view of the stretch 

relaxation after the die exit. 

The chain stretch undergoes an initial increase towards the die entry, reaching a maximum at 

this point. This is due to the acceleration of the polymer flow from the well into the 

contraction. The chain stretch relaxes rapidly after the die entry and is followed by a period 

of constant stretch due to shear at the capillary wall, producing the plateaux features in Fig 

8(a). Thirdly there is a sharp peak at the die exit. This is due to a strong extensional pull-off 

caused by the singularity at the die exit corner. This singularity is caused by the removal of 

the no-slip boundary wall condition and is always present even if the exit corner is rounded. 

The melt flow must leave the die wall at some point, which becomes a stagnation point for a 

local extensional flow. Lastly there is a period of rapid stretch relaxation upon which the 

stretch returns to approximately unity. At the higher shear rates the stretch drops below 1 

briefly after the die exit. This is a reversing flow effect in which polymer chains are 

contracted slightly by the decelerating flow. Analysis of the chain stretch contour plot in Fig. 

9 for a high flow speed highlights these features. The contours are most highly concentrated 

at the die entry and at the exit corner. 

 

FIG. 9 Computed contour map showing chain stretch values for PS281 along the die for WR=19. The contours 

are at an interval of λ=0.15. 

This analysis reveals that the significant increase in stretch at the die exit, driven by the 

corner singularities, has a larger effect chain stretch than the accumulated shear flow at the 

capillary wall. Since this work also indicates that extrudate swell is primarily a chain stretch 

phenomenon, it is not correct to ignore the effects of the die exit as the stretch at the die exit 

will be much greater than that predicted from the shear rate at the capillary wall alone.  
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FIG. 10 Computed chain stretch at the centre line of the die for PS281 at WR=19 for die lengths of 2, 5, 10 and 

20 mm (l:d ratios of 1,2.5 and 10 respectively). The distance the flow has travelled after τR, calculated from the 

mean flow velocity and the Rouse time is shown as a vertical line. The corresponding value for reptation occurs 

at a distance of ~76 mm. a) shows relaxation of stretch before and after the die and b) shows an expanded view 

of stretch relaxation after the die exit. 

Fig. 10 shows the chain stretch along the centre line for a variety of die lengths at WR=19. 

The decay in chain stretch occurs on a timescale governed by τR therefore this timescale is 

shown on the graph rather than τd. Along the centre line there is an increase in chain stretch at 

the die entry followed by a period of stress relaxation along the die. The amount of unrelaxed 

stress at the die exit decreases, unsurprisingly, with increasing die length. This will increase 

the swelling ratio for short dies, although only for high shear rates. For the 5 mm die used in 

the MPR the flow cannot be said to have fully reached steady state within the die as some 

effect of chain stretching at the die entry remains at the exit. At lower speeds however, 

(below WR≅10 for PS281) the die entry stretch will have decayed away before the die exit 

and the flow will have reached a steady state within the die. Any upstream flow effect is 

important at the centre line with no effect at the die wall. The chain stretch at the die wall has 

therefore reached a steady state value well before the die exit for all flow speeds. The die exit 

then has the effect of increasing the stretch at the die wall above the steady state value. 

Following the die exit there is a small peak in centre-line chain stretch where the material at 

the centre of the extrudate is stretched perpendicular to the flow direction by the expansion in 

this direction. This peak in stretch occurs at the point downstream of maximum swell and 

serves to pull the extrudate downwards slightly and lower the swelling ratio. As shown in 

Fig. 10 b) the position and magnitude of this peak do not depend upon the amount of 

unrelaxed stress at the die exit.  

The evolution of the chain stretch in between the two trajectories of centre line and die wall 

interpolates between the two cases. Close to the die wall the stretch relaxes slightly along the 
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extruder before eventually reaching a steady state. Due to the increasing fluid velocity 

towards the centre line, the distance along the extruder required for chain stretch to relax to 

steady state increases with distance away from the die wall until the plateau features in chain 

stretch of Fig.8 to vanish completely and the profile for the 5:2 die shown in Fig. 10 is 

obtained. If the time the flow has spent within the die is calculated from the die length (of 

5 mm) and the speed of the flow at a given radius, we can define a Rouse Deborah number 

for the flow at a specific radius: 

 

 
( )

( )

R
RD r

l
V r


  (14) 

where the dimensionless radius r is the distance from the centre-line of the die divided by the 

die radius (of 1  mm), DR(r) is the Deborah number at radius r, l is the die length, and V(r) is 

the flow velocity at radius r. At WR = 19 DR(r)>1 for r<0.66. This means that for the 5:2 die 

used within the MPR the flow within a distance of 0.34 mm of the die wall has had time to 

relax via Rouse motion within the die. This radius decreases with decreasing WR until WR<10 

where even the flow at the centre-line has remained within the extruder longer than the Rouse 

time. The radius for reptation is closer to the wall than the diameter of a single simulation 

triangle and cannot be resolved. 

 

 

C. EXTRUDATE PROFILE 

The extrudate undergoes an initial expansion close to the die exit followed by a slight 

contraction after the maximum and then a period of roughly constant flow. The distance from 

the die at which the maximum B value occurs depends upon the flow speed. At speeds below 

the reptation Weissenberg number, the maximum occurs away from the die as the initial 

expansion due to chain stretching at the die exit is small. Between Wd and WR there is a region 

where swelling is small and the maximum swelling ratio occurs almost immediately after the 

die exit. (Fig. 11(a)) At higher speeds, the initial expansion out of the die is large and so the 

maximum occurs further from the die exit. (Fig. 11(b)). 
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FIG. 11 (a) Simulated extrudate swell profile showing the magnitude of the stress tensor at WR=0.23. (b)  

Simulated extrudate swell profile at WR=14.  

The predicted distance below the exit of the 5 mm long, 2 mm diameter die at which the 

steady state maximum occurs is shown in Fig. 12 as a function of WR. 

 

FIG. 12 The simulated distance below the die exit at which the maximum extrudate dimeter for the three 

polymers occurs. If the extrudate is flat for a long period then the lowest distance is plotted. 

The observed distance below the die exit at which the maximum swelling occurs exhibits a 

minimum slightly above WR and an increase after this point. The data for the three molecular 

weights show qualitatively the same trend although quantitatively differ significantly. This 

indicates that there is a flow driven element to this distance, i.e. how fast the flow can travel 
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the maximum outwards distance De as well as how fast the viscoelastic stress can relax after 

extrusion. Given that there is no intrinsic length scale to the viscoelastic properties of the 

fluid used as simulation inputs (barring gravity and surface tension effects) it would be 

expected that the distances in Fig. 12 would scale with die diameter, in the case that all 

velocities were scaled by the same factor.  This process defines a similarity-scaling for 

extrudate-swell, connecting, by equivalence, experiments at different space and velocity scale 

(but equal time scale), and with equal B values and profiles. 

It is impossible to take measurements at long distances away from the die exit within the 

current MPR setup. The viewable area is less than 5 mm therefore the maximum swelling 

ratio must be taken as the maximum reached within this window. This is not a large problem 

as the differences in diameter observed at distances far from the die in flowSolve are minimal 

and, as shown in Fig. 12, the maximum should always be reached by this point. 

Our quantitative comparisons of simulation and experiment have used the single-parameter B 

as an effective summary measure of extrudate swell, but it is important to understand that the 

method allows for a prediction and comparison of the entire spatial profile of the extrudate.  

In particular, the results shown in Fig. 11 indicate that a qualitative change in the profile 

accompanies the different regimes of behaviour in the function B(WR).  Example comparisons 

of the swelling profiles from theory and experiment in two different flow regimes are shown 

in Fig. 13. 

 

FIG. 13 Comparison of the swelling profiles obtained from simulation (right) and experiment (left) for PS281 at 

a) WR = 1 and b) WR = 5. 

The simulated extrudate profile is roughly consistent with that from experiment. Some 

fluctuations in the extrudate diameter occur well below the die exit which are not predicted 
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by flowSolve. This is due to the onset of unsteady flow, known to occur at Rouse 

Weissenberg numbers greater than 1. [39] These fluctuations do not affect the magnitude of 

the swelling ratio however. 

D. SWELLING RATIOS 

Fig. 14 shows the results from the MPR compared with simulations. 

 

FIG. 14 Comparison of experimental data with theoretical predictions of extrudate swell for PS281 at Rouse 

Weissenberg numbers up to 50. Curves for finite and infinite extensibility predictions are overlaid on the data. 

A good agreement is seen up to WR~7 at which point the increase in extrudate swell with 

shear rate, 
R

dB

dW
 slows down. The simulations do not predict this, instead predicting a 

continued increase in swelling. Above this point the shear rates are too high and the polymer 

begins to leak out around the sides of the geometry and around the quartz viewing windows. 

Despite this, the simulations still match the experiments accurately well into the chain 

stretching regime.  

The effect of finite extensibility on the simulations is overlaid on Fig. 14. Without finite 

extensibility (using Equation (7) rather than Equation (11) for the stretching elements of the 

simulation) the simulations more quickly overestimate the swelling, failing to accurately 

model the swelling above WR=5. The finite chain stretch both restricts the steady state stretch 

at the wall and greatly decreases the magnitude of the increase at the die entry and exit. The 

initial chain stretch peak height seen in Fig. 8 for WR=19 is 3.3 whereas without finite 

extensibility it increases to 15. The exit chain stretch peak height increases from 3.1 to 9.9 
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upon the removal of finite extensibility. These increased chain stretch values obviously 

significantly increase the swelling ratios observed.  

The results from both experiments and simulations can be compared to Equation (1). The 

Normal stress differences are calculated from the dynamic moduli of the polymer using the 

Laun approximation:[40] 
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where ω, the frequency of oscillation of the rheometer, equals , the shear rate at the capillary 

wall. 

 

FIG. 15 Comparison of the theory of Tanner in Equation (1) to the monodisperse predictions of flowSolve and 

experimental data for PS281. 

The Tanner theory qualitatively predicts the behaviour of the data, predicting an upturn in B 

at roughly the correct value. It does not predict the upturn at low shear and rapidly starts to 

over predict the extrudate swell above the Rouse Weissenberg number. flowSolve does a 

better job quantitatively predicting the extrudate swell for this system. 

To check that this method worked for a different polymer the higher molecular weight 

polymer PS400 was used.  A lower shear rate range was used so as to span the same range 

above and below the Rouse Weissenberg number. The results are shown in Fig. 16. 
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FIG. 16 Comparison of the extrudate swell data for PS281 and PS400. (a) shows the data versus the MPR 

equivaent Newtonian wall shear rate. (b) shows the data scaled using the Rouse Weissenberg number of the two 

polymers. Only one theory prediction is shown on this graph for simplicity. 

The two data sets show the same trend, i.e. that the extrudate swell data falls onto a single 

curve when the shear rate is converted to the Rouse Weissenberg number. This confirms the 

flowSolve predictions from Fig. 7 where this single curve is predicted. 

A third polymer, with bimodal dispersity, was used to compare with these results. The 

material used is the Polymer Source polystyrene P627-S which has a similar Mw to PS281 

although a higher dispersity (See Table I) Analysis of the GPC data in Fig. 3 for the polymer 

shows that it is bimodal, with a peak at Mw=340 kDa and a smaller peak at 160 kDa. The 

extrudate swell results obtained for the bidisperse polymer are shown in Fig. 17 alongside the 

monodisperse prediction from flowSolve (using the parameters of Table I). 
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FIG. 17 Comparison of theoretical predictions for a monodisperse polymer of Mw 340 kDa corresponding most 

closely with the experimental data for the bidisperse polymer P627-S (parameters of Table I) The disagreement 

shows that the extrudate swell is very sensitive to molecular weight distribution. 

The predictions for a strictly monodisperse polymer surprisingly agree better to the 

experimental data at higher Weissenberg numbers although, as expected, worse at lower 

Weissenberg numbers. This is attributed to the polydispersity of the polymer since any 

difference in molecular weight is insignificant when normalised to WR.   

It is therefore necessary to use an understanding of the different relaxation times in a 

bidisperse blend to predict extrudate swell. To this end, the adjusted relaxation times in Table 

II were used to give a bidisperse prediction. 

A comparison of the data from the monodisperse and polydisperse polystyrenes is shown in 

Fig. 18. The two polymers have almost the same average number of entanglements so the 

difference is due to the polydispersity. The predictions for monodisperse and bidisperse 

polymers are overlaid on the data. It is evident from the improved agreement of the bidisperse 

prediction with the data at low WR, that an inflated Rouse time as discussed in Section III.A 

is required for fitting this blend. Deviations are still seen at low WR, which is likely to arise 

from the strict bimodal model we have used for this material, both of whose molecular weight 

distribution peaks are considerably broader than that of a model monodisperse sample. 

Although a molecular weight of 340 kDa is used for the long chain fraction a large number of 

chains are longer than this and would have a greater Rouse relaxation time. 
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FIG. 18 Comparison of the experimental swelling from PS281 and P627-S polystyrenes alongside the flowSolve 

predictions for each. The Weissenberg numbers for each polymer are calculated separately using the Rouse 

times from Table I.  In the case of P627-S parameters for the monodisperse model are in Table I and for the 

bidisperse model in Table II. 

The greatest difference between the two experimental data sets is seen at WR~0.6 with the 

data becoming closer at higher shear rates. The swelling ratios for the bidisperse case are 

consistently higher than that for the monodisperse case. This is due to the significant 

stretching of the long chains even at low WR. The difference is smaller later as the 281 kDa 

chains begin to be stretched above their Weissenberg number. 

 

V. CONCLUSIONS 

We have shown that a fully nonlinear model derived from the tube theory of entangled 

polymer melts, when computed in an extrusion geometry, is able to give quantitative account 

of the extrudate swell in monodisperse and bidisperse melts.  The use of monodisperse melts 

in both modelling and experiment allows features that are otherwise obscured by 

polydispersity to be resolved clearly. For example, a small reduction in extrudate swell from 

its Newtonian value occurs at flow rates that orient chains without any stretching.  However, 

the most significant molecular feature generative of extrudate swell is chain stretch.  The 

dominance of chain stretch generates data-collapse, to good approximation, as a function of 

the Rouse Weissenberg number of the flow. The swelling begins to increase as the Rouse 

Weissenberg number is exceeded, i.e. as chain stretch becomes significant, and swelling 

ratios fall onto a single curve beyond this point regardless of molecular weight. Accounting 
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for finite chain extensibility is essential in the prediction of extrudate swell above the Rouse 

Weissenberg number. Measurements of the swell profile in isothermal conditions within the 

MPR are well accounted for by the theory up to WR~7 although at higher flow speeds the 

theory over-predicted the swelling, even with finite chain stretch. This may be a signature of 

the dependence of monomer friction coefficient on chain orientation at high chain-stretching 

rates as discussed in [41].  

The multi-scale and spatially-resolved approach additionally sheds light on both the 

molecular and spatial causes of extrudate swell.  In particular, we find that a large 

contribution to the stress-state arises from the extensional flow at the die exit, rather than 

solely from accumulated shear stress within the die.  

The single stretching-mode Rolie-Poly model used for parameterising the polymers in 

flowSolve simulations is only valid in the monodisperse case. Additional modes, either 

stretching or non-stretching are required for accurate representation of melts with broader 

molecular weight distribution. These modes may need to be fitted to extensional rheology to 

ensure accurate representation of the non-linearity of the polymer within flowSolve. In the 

case of a bidisperse melt, an additional longer effective stretching time was required to 

account for low-rate extrudate swell, consistent with tube model predictions of slowed-down 

stretch relaxation in such systems. Future work will involve incorporating the non-linear 

rheology of polydisperse systems and branching into the simulations and comparing this to 

associated extrusion experiments. This should provide another step up in complexity toward 

that required for simulation of industrial melts. 

SUPPLEMENTARY MATERIAL 

See Supplementary Material for the description of how simulation mesh size affects the 

swelling ratio measurements mentioned in Section II. B. 
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