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Abstract7

This study presents a catchment characteristic sensitivity analysis concerning the non-linearity8

of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first ap-9

proach involved, for each catchment, regression of a power-law to flow rate gradient data for10

recession events only. This approach was referred to as the recession analysis (RA). The second11

approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-12

recession events). The rainfall-runoff model was developed by combining a power-law stream-13

flow routing function with a one parameter probability distributed model (PDM) for soil moisture14

accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear15

regression was used to derive regionalization equations for the three parameters. An advantage of16

the RM approach is that it utilizes much more of the observed data. Results from the RM approach17

suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater18

non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest19

that non-linearity is linked to low evaporative demand. The difference in results is attributed to20

the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more21

non-linear response when applying the RM approach to catchments that exhibit a strongly dual22
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storm-flow base-flow response. The study also highlights the value and limitations in a regionl-23

ization context of aggregating storm-flow and base-flow pathways into a single non-linear routing24

function.25
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1. Introduction27

Rainfall-runoff modeling has long been recognized as an important methodology for improv-28

ing our hydrological understanding of river catchments. Rainfall-runoff models are typically used29

to forecast river flow data for a given set of precipitation and potential evapotranspiration data30

(Wagener et al., 2001). Such models often have unknown model parameters that can be obtained31

by calibrating the models to observed river flow data (Wagener et al., 2001). For ungauged catch-32

ments (where no record of flow observations exist), model parameters can be estimated using33

regionalization relationships (Young, 2006).34

Regionalization relationships are typically obtained by calibrating a rainfall-runoff model to35

multiple catchments and developing statistical relationships between the model parameters and36

non-flow data dependent parameters, often referred to as catchment characteristics (Young, 2006).37

Commonly used catchment characteristics include a range of different variables such as catchment38

area, soil-type, drainage path length, altitude and aridity (McIntyre et al., 2005; Young, 2006; Ye39

et al., 2014).40

The efficacy of regionalization relationships is often compromised by inter-dependence be-41

tween the model parameters themselves. This is because the inter-dependence increases the vari-42
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ance in the model parameter estimates. Furthermore it is difficult to develop a statistical relation-43

ship with catchment characteristics that maintains the complexity of the inter-dependence (McIn-44

tyre et al., 2005). These issues become worse with increasing number of model parameters. Vari-45

ous strategies have been proposed to manage these issues, including regionalization schemes that46

encompass the parameter inter-dependencies, or remove them, or screening of candidate rainfall-47

runoff model structures that achieve an acceptable balance between simplicity and capability (Lee48

et al., 2005).49

Most rainfall-runoffmodels comprise at least two components (Wagener et al., 2001): (1) a soil50

moisture accounting process, used to calculate actual evapotranspiration and runoff generation; (2)51

a routing function, which transforms the runoff data into an estimate of flow rate at the catchment52

outlet. The soil moisture accounting process typically requires at least two model parameters, one53

for the capacity of the soil moisture store and another to help describe how actual evapotranspira-54

tion and runoff generation change as the catchment becomes progressively dryer (Lee et al., 2005).55

The routing function is commonly based on a network of stores each with a defined relationship56

between storage and outflow. Most commonly, at least when using daily rainfall-runoff data, the57

network comprises of two linear stores in parallel, conceptually representing the storm-flow and58

base-flow responses. This routing model requires three parameters: two residence times (one for59

each store) and a weighting factor defining the proportion of the runoff generation going to each60

store (Lee et al., 2005).61

The perceived requirement of two residence times is often attributed to the existence of two62

modes of behavior: base-flow and storm-flow (Shaw et al., 2010; Beven, 2012). Base-flow is63

considered to be due to a slower acting set of hydrological pathways associated with subsurface64

3



flow. Conversely, storm-flow is considered to be a faster component associated with flow through65

surface channel networks. From a calibration perspective, base-flow is required to satisfy the low66

flow rates observed during dry periods whereas storm-flow is required to simulate the high flow67

episodes that follow specific storm events.68

Although conceptually simple, using a soil moisture store combined with two linear routing69

stores has had mixed success in terms of well-identified regionalization relationships. Challenges70

that have been encountered include the co-dependence of the weighting factor and the storm-flow71

residence time, and the high uncertainty in the base-flow residence time (Lee, 2006). Only using72

one non-linear routing store, with two parameters rather than three, is one approach to seeking a73

more identifiable regionalization relationship. A number of studies have demonstrated that a single74

non-linear store can match the performance of more complex routing functions in some types of75

gauged catchment (McIntyre, 2013).76

The most commonly used non-linear routing store equation (e.g. Wittenberg, 1999; McIntyre77

et al., 2011; McIntyre, 2013; Ye et al., 2014) takes the form of a well established concept, that78

river flow can be approximated as a power law of the volume of water stored in the catchment, i.e.79

(Horton, 1945; Brutsaert and Nieber, 1977)80

q = aVb (1)

were q [LT−1] is the river flow rate per unit area of catchment, V [L] is the volume of water stored81

per unit area of catchment and a [L1−bT−1] and b [-] are empirical coefficients.82

Considering overland sheet flow, Horton (1945) shows that under laminar conditions (using83
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Poiseuille’s law) b = 3 and under turbulent conditions (using the Manning formula), b = 5/3. Al-84

ternatively, assuming that flow occurs through an unconfined aquifer, Brutsaert and Nieber (1977)85

show (using Darcy’s law in conjunction with the Dupuit assumption, i.e., the Boussinesq equation)86

that b = 2.87

The power law equation is commonly substituted into a mass conservation statement for the88

catchment. During recession periods (i.e., periods of negligible runoff generation), application of89

the chain-rule leads to a direct relationship between flow rate and the rate in change of flow rate90

dq
dt
= −αqβ (2)

where t [T] is time and α [L1−βTβ−2] and β [-] can be found from:91

α = a1/bb and β =
2b − 1

b
(3)

and the following inverse relationships apply:92

a = [α(2 − β)]1/(2−β) and b =
1

2 − β (4)

Note, from Eq. (3), it can be seen that lim
b→∞
β = 2.93

For a given set of discrete flow measurements, qn [LT−1], the coefficients α and β can be94

obtained by linear regression of an approximate form of Eq. (2) (Brutsaert and Nieber, 1977):95

ln

(
qn−1 − qn

tn − tn−1

)
= lnα + β ln

(qn + qn−1

2

)
(5)
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The potential for reducing uncertainty in regionalization relationships makes the single non-96

linear store model a potentially attractive replacement for more complex routing models. How-97

ever, there have been few empirical studies to explore how catchment characteristics control non-98

linearity in flow routing and whether the strength of these relationships permits a regional model99

to be proposed.100

Ali et al. (2014) constructed a physically based hill-slope model to explore relationships be-101

tween α, β and their physically based model parameters, by fitting Eq. (5) to results from multiple102

realizations of the physically based model. Step-wise linear regression analysis suggested that α103

and β were most sensitive to topographic slope, surface hydraulic conductivity, and the vertical104

exponential rate of decay for saturated hydraulic conductivity.105

Ye et al. (2014) fitted Eq. (5) to recessions from daily flow data series from 50 river catch-106

ments from the eastern United States. They then provided a sensitivity analysis for α and β with107

respect to a range of different catchment characteristics including aridity index, drainage area,108

topographic slope, drainage density, soil water storage capacity, mean and standard deviation of109

surface saturated hydraulic conductivity and vertical exponential rate of decay for saturated hy-110

draulic conductivity. It was found that α showed a strong sensitivity to a number of catchment111

characteristics including soil water storage capacity and surface saturated hydraulic conductivity.112

In contrast, β showed sensitivity only to aridity index and the rate of decay for saturated hydraulic113

conductivity.114

The developed regression relationships of Ye et al. (2014) suggest that the non-linearity of115

catchment recession response increases with decreasing aridity and increasing soil hydraulic con-116

ductivity decline with depth. The highlighted importance of aridity here is cited as representing117
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an important inconsistency with the results obtained by studying the hill-slope model in the Ali et118

al. (2014) study.119

A difficulty with the approach used by the Ye et al. (2014) study is that the application of Eq.120

(5) requires that much of the data set is ignored so as to ensure that all flow data used can be121

solely attributed to recession. Furthermore, there are many different methods available within the122

literature for excluding flow data in this way (e.g. Brutsaert and Nieber, 1977; Rupp and Selker,123

2006; Kirchner, 2009), and these can lead to variations in α and β on the order of those expected124

by varying catchment characteristics (Stoelzle et al., 2013).125

In this article 120 UK catchments, previously studied by McIntyre et al. (2005) and Young126

(2006), are revisited to further explore the role of catchment characteristics on non-linearity in127

rainfall-runoff response. This study builds on the existing work of Ye et al. (2014) by considering128

a broader range of catchment characteristics, commonly associated with the UK flood estimation129

handbook (Robson and Reed, 1999). A particular question arising with the UK data set is whether130

the lumping of storm- and base-flow responses into one conceptual store, as opposed to the con-131

ventional parallel stores used in the UK, can lead to meaningful relationships between parameters132

α and β and the CCs. While intuitively the answer is ’no’, the lack of nationally available CCs133

describing hydrogeology means that regionalization of a base-flow residence time parameter is134

problematic anyway (Lee et al., 2005; Lee, 2006), and whether the recession and non-recession135

response can be modelled more holistically and parsimoniously on a national scale using the sin-136

gle non-linear store is therefore a valid question. Furthermore, to explore the impact of excluding137

non-recession data, two modelling approaches are adopted:138

(1) Recession analysis. The first approach involves fitting Eq. (5) to recession data extracted139
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from each of the 120 UK catchments, analogous to Ye et al. (2014).140

(2) Rainfall-runoff modelling. The second approach involves obtaining values of α and β141

by calibrating a rainfall-runoff model using Eq. (1) in conjunction with the so-called PDM soil142

moisture accounting procedure (Moore, 2007). The advantage of this second approach is that both143

recession and non-recession data are incorporated into estimates of α and β and it avoids arbitrary144

assumptions about when precipitation and evaporation can be neglected.145

The structure of this article proceeds as follows. The sources of data for the 120 UK catch-146

ments are discussed. The relevant governing equations and methodologies associated with the two147

modelling approaches above are described in detail. Calibration, validation and regression results148

are presented for four selected catchments. Results from step-wise linear regression analysis for α149

and β with respect to the aforementioned catchment characteristics for all 120 catchments and for150

both modeling approaches are then presented and discussed.151

2. Data and methodology152

2.1. Data153

The data used in this study represents 120 of the catchments previously presented by Young154

(2006). Each catchment contains a full set of daily precipitation, qr [LT−1], monthly Penman Mon-155

teith reference crop potential evaporation, Ep [LT−1], and daily river flow data, q [LT−1], for the156

period from 01/01/1979 to 31/12/1996. Statistical information regarding catchment characteris-157

tics of the catchments studied are presented in Table 1. Selected catchments represent a uniform158

coverage across the UK (consider Fig. 1 of Young (2006)), do not include any highly urbanised159

catchments, and represent (in a UK context) a broad range of altitudes and size.160
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River flow data were obtained from the UK National River Flow Archive maintained by the161

Centre for Ecology and Hydrology. Daily precipitation data were previously derived by Young162

(2006) for each catchment using the UK Meteorological Office daily precipitation library and a163

modified version of the Triangular Planes interpolation methodology (Young, 2006). Monthly164

averaged Penman Monteith reference crop potential evaporation was derived for each catchment165

from monthly averaged daily minimum and daily maximum temperature data from 1979 to 1996,166

also available from the UK Meteorological Office, using the method described in Example 20167

of Allen et al. (1998). See Young (2006) for detail with regards to the derivation of the various168

catchment characteristics.169

2.2. Recession analysis170

Considering the various recession analysis methods discussed in the literature, including those171

of Brutsaert and Nieber (1977), Rupp and Selker (2006), Kirchner (2009) and Stoelzle et al.172

(2013), the following method was adopted and applied.173

A set of flow rate gradient decline, Jm [LT−2], corresponding flow rate, Qm [LT−1], and potential174

net precipitation (an estimate of the minimum possible net precipitation assuming actual evapo-175

ration = potential evaporation), Qnet,m, are obtained using the expressions (Brutsaert and Nieber,176

1977):177

Jm =
qn−1 − qn

tn − tn−1
(6)

Qm =
qn−1 + qn

2
(7)
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Qnet,m =

(qr,n−1 + qr,n

2

)
−

(
Ep,n−1 + Ep,n

2

)
(8)

where n denotes the n-th day in the time series of data.178

Observations where Jm < ω (Rupp and Selker, 2006) and Qm < 10×Qnet,m (Kirchner, 2009) are179

excluded so as to ensure that only recession data are incorporated into the subsequent regression180

study, where ω is a threshold associated with numerical precision. Following the ideas presented181

by Rupp and Selker (2006), ω is set to five times the precision of the flow data for each catchment.182

In this study, the precision of each catchment data set is taken to be the minimum absolute non-zero183

value of Jm for each catchment. Values of α and β are then obtained by applying linear regression184

with Eq. (5). Regression is only applied to data from the period 1981 to 1991 to be consistent with185

the calibration period used in the rainfall-runoff modeling described below.186

2.3. Rainfall-runoff modelling187

A disadvantage of the above approach is that much of the high flow rate data is excluded due188

to its association with high net precipitation events. As discussed by Stoelzle et al. (2013), the189

data exclusion method adopted can strongly affect the derived values of α and β. To explore this190

further, α and β are re-estimated by calibrating a rainfall-runoff model to the entire set of flow191

data.192

Following the work of McIntyre (2013), the non-linear routing function associated with Eq.193

(1) is coupled with a one parameter PDM soil moisture accounting procedure (Moore, 2007). The194

governing equations, solution procedures and calibration procedures are described below.195
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2.3.1. Soil moisture accounting196

Let S [L] represent the total volume of water stored in soil across the catchment per unit area.197

A mass conservation statement for S takes the form198

dS
dt
= qr − Ea − qro − qin − qvp (9)

where qr [LT−1], Ea [LT−1], qro [LT−1], qin [LT−1] and qvp [LT−1] are the rates of precipitation,199

actual evapotranspiration, surface runoff, canopy interception and vertical percolation per unit200

area, respectively.201

The simplest possible model for Ea is to assume202

Ea =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, S = 0

Ep, S > 0

(10)

In the past, many researchers have assumed that Ea/Ep increases linearly with S instead of Eq.203

(10) (e.g. Chiew et al., 1993; Lamb and Kay, 2004; McIntyre et al., 2005; Lee et al., 2005; Moore,204

2007). However, in this study it was found that Eq. (10) generally led to better model performance205

(in terms of Λ, as calculated using Eq. (13)).206

To determine how much runoff occurs, the so-call probability distributed model (PDM) of207

Moore (2007) is imposed using a one parameter exponential distribution function. From the208

derivation provided in Appendix A it is shown that209
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qro =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(S/S max)(qr − qin), 0 ≤ S < S max

qr − Ea − qin − qvp, S = S max

(11)

where S max [L] is a calibration parameter, which represents both a maximum possible value of S210

and the mean local storage capacity within the catchment (assuming that local storage capacity is211

exponentially distributed across the catchment, see Appendix A).212

Interception for woodland canopies is calculated using the interception model described by213

Gash et al. (1995), parameterized using the leafed and leafless canopy parameters obtained from214

Table 5 of Herbst et al. (2008). The proportion of woodland cover for each catchment is obtained215

from data provided by NRFA (2016). Following Sorensen et al. (2014), interception losses from216

non-woodland regions are ignored.217

For simplicity, qvp is assumed to be implicitly included in qr. Furthermore, the time-lag asso-218

ciated with snow melt is assumed negligible (McIntyre et al., 2005; Young, 2006).219

2.3.2. Runoff routing220

The surface runoff, qro, is routed to the catchment outlet using the mass conservation statement221

dV
dt
= qro − q (12)

where V [L] is the volume of water stored per unit area of catchment and q [LT−1] is the river flow222

rate per unit area of catchment found from Eq. (1).223
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2.3.3. Parameter estimation224

The above set of equations is solved using an Euler explicit time-stepping scheme as described225

in Appendix B. The resulting model has just three unknown parameters to be determined for each226

catchment including: α, b, S max. It results in a more efficient optimisation of the parameters to227

find b as opposed to β because β has to be < 2 (recall Eq. (3)), whereas b is unconstrained.228

Optimal parameter values are found by minimizing an objective function, Λ [-], found from229

Λ =

⎡⎢⎢⎢⎢⎢⎣
N∑

n=0

(
ln qo,n − ln qm,n

)2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

N∑
n=0

(
ln qo,n − ln qo,n

)2
⎤⎥⎥⎥⎥⎥⎦
−1

(13)

where N [-] are the number of data points in the calibration period, qo,n [LT−1] is the observed flow230

data, qo,n is the mean observed river flow rate for the calibration period and qm,n is the simulated231

river flow rate data, using the rainfall-runoff model described above. Note that (1 − Λ) represents232

the so-called Nash and Sutcliffe (1970) efficiency criterion for natural logs of discharge (here-233

after referred to as NSE). It is appropriate to use logs here because of the special interest in river234

recession behavior.235

Because there are only three unknown parameters, it is reasonable to use a local minimiza-236

tion algorithm. For this study, the local minimization routine FMINSEARCH, available in MAT-237

LAB, is used. Seed values adopted for all catchments when starting FMINSEARCH were 0.1238

mm1−βday2−β, 1.0 and 10 mm for α, β and S max, respectively.239

The rainfall-runoff model is initialized with S = S max/2 and V = Vmax/2. Data used for240

calibration is taken from the period of 1981 to 1991. There is then a two year warm-up period,241

from 1979 to 1981. The remaining data, from 1991 to 1997, is used for validation purposes.242
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3. Results243

3.1. Recession Analysis244

Plots of observed flow rate gradient, Jm, against discharge rate, Qm, are shown for four different245

catchments as green dots in Fig. 1. These example catchments are chosen to represent a range of246

catchment types in terms of the expected base-flow index, BFIHOST, and average annual rainfall,247

SAAR. Subplots a) and d) show results for catchments with low and high BFIHOST, respectively248

(see Table 2 for actual values of BFIHOST). Subplots b) and c) show catchments with intermediate249

values of BFIHOST. Subplots a) and c) show results for catchments with high SAAR. Subplots b)250

and d) show results for catchments with relatively low SAAR. While these four examples provide251

a limited sample of the range of hydrological responses over all 120 catchments, they provide a252

useful representation of the type of results obtained from the wider analysis.253

Large values of BFIHOST indicate catchments with a large groundwater component. Ground-254

water catchments tend to have relatively larger summer flows and are less responsive to individual255

precipitation events, and hence have lower maximum flows, as compared to surface water domi-256

nated catchments. This is clearly indicated by comparing Figs. 1 a) and d).257

The red dots shown in Fig. 1 represent those events that have been classified as recession258

events (i.e., Jm ≥ ω and Qm ≥ 10 × Qnet,m). It is clear that these rules eliminate the majority of259

the data. Furthermore, the selected recession data do not contain the higher Qm ranges. The red260

solid straight lines result from fitting Eq. (5) to the recession data using linear regression, hereafter261

referred to as the recession analysis (RA).262

As a first attempt to understand how the fitting parameters are controlled by catchment char-263
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acteristics (CC), the following study was conducted using the cumulative distribution functions264

(CDF) of α and β resulting from RA for each of the 120 catchments.265

Note that SPRHOST was excluded from the analysis because it was found to be strongly cor-266

related with BFIHOST (i.e., had a correlation coefficient, |R| > 0.9). Similarly, DPLBAR and LDP267

were excluded because they were found to be strongly correlated with AREA (i.e., had correlation268

coefficients, |R| > 0.9). Furthermore, ALTBAR and DPSBAR were excluded because they were269

found to be strongly correlated with SAAR (i.e., had correlation coefficients, |R| > 0.7). Although270

this step avoided highly correlated pairs of CCs, a number of significant correlations between271

CCs remain that will be considered when interpreting the physical controls on non-linearity. The272

correlation coefficients between the CCs discussed above are presented for reference in Table 3.273

Each of the retained CCs in Table 1 was ranked (from lowest to highest CC value) for the274

120 catchments and separated out into lower, middle and higher third sub-samples. CDFs for α275

and β were then constructed using the catchments corresponding to each of the three thirds for276

each of the CCs. The Kolmogorov–Smirnov (KS) statistic (Ang and Tang, 1975, p. 277–280)277

was assessed for each of the CCs by measuring the maximum difference between the CDFs of the278

lower and upper third sub-samples. The CCs were then ranked in terms of KS for both the α and β279

CDFs. Those CCs that exhibit high KS values can be viewed as having a greater control over the280

distribution of values of α and/or β.281

Figs. 2a, b and c show the CDFs for the three most sensitive CCs in terms of α from the RA.282

Figs. 2d, e and f show the CDFs for the three most sensitive CCs in terms of β from the RA. The283

associated KS values are provided in brackets alongside the x-axis labels.284

The results suggest that α is most sensitive to BFIHOST, URBEXT and FARL. Most of the285
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sensitivity appears to be due to BFIHOST. The high BFIHOST catchments correspond to low α286

values. When β = 1, α can be thought of as the reciprocal of a residence time for a catchment.287

The results therefore suggest that high BFIHOST corresponds to higher residence times, which288

one would expect.289

The dependence on FARL can be explained in a similar manner: FARL is an index of flood290

attenuation due to lakes and reservoirs, where catchments with larger values of FARL have fewer291

lakes and reservoirs connected to the stream network. Therefore, higher values of FARL tend to292

have lower residence times, equivalent to higher values of α, as shown in Figure 2c. Figure 2b293

shows that more urbanised catchments are associated with higher residence times. This may be294

explained by the fact that urbanised catchments tend to have lower FARL values due to artificial295

storage (the URBEXT-FARL correlation in Table 3 is -0.4) leading to longer residence times.296

Furthermore, highly urbanised catchments have been excluded from the dataset, so the strong297

independent effect of urbanisation on flow residence time, which would tend to reduce residence298

times, is not seen in this analysis.299

For β, the largest values correspond to low PEANN, low URBEXT and high AREA. The idea300

that low evaporation and high precipitation leads to greater non-linearity is consistent with the301

finding of Ye et al. (2014) that β decreases with increasing aridity. The dependence of URBEXT302

mirrors the dependence on PEANN, which is likely to be due to the correlation between these303

two CCs (Table 1) rather than any independent effect of URBEXT. For catchments with large304

areas, there is a greater likelihood of a storm-flow recession being superimposed on a base-flow305

recession. This would cause periods of steeper recessions to be included, and so may explain the306

increasing β values with increasing AREA.307
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It is also interesting to note from Fig. 2 that the regression analysis of recession data has led308

to the estimation of β values greater than 2 for several catchments, leading to negative values of309

b (recall Eq. (4)), which is physically unrealistic. Also, Fig. 2 shows that the higher range of310

PEANN catchments do not lead to linear responses, but to β values less than 1.0. This is not311

consistent with the values of β applicable to idealised hydrological systems, and is likely to be due312

to flood plain storage in low slope catchments (PEANN is negatively correlated with DPSBAR,313

R = −0.44).314

Regionalization equations were also constructed using step-wise linear regression. Following315

one of the approaches adopted by Ye et al. (2014), additional parameters were added until the316

so-called Bayesian Information Criterion (BIC) (i.e., Eq. (12) of Ye et al. (2014)) was minimized.317

Catchments with β ≥ 2 were excluded from this process.318

The step-wise linear regression procedure used can be described in more details as follows:319

(1) determine the correlation coefficients of each CC with the parameter of concern (α, β etc.);320

(2) select the CC with the highest absolute correlation coefficient; (3) develop a linear regression321

relationship between this plus any previously selected CC(s) and the parameter of concern; (4) cal-322

culate the BIC; (5) determine the correlation coefficients of the remaining CCs with the residuals323

between the developing regionalization relationship and the parameter of concern; (6) repeat steps324

2 to 4; (7) if the new BIC is less than the previous BIC repeat steps 5 to 7, otherwise consider the325

current form of the regionalization relationship to be optimal.326

The resulting regionalization equations took the form:327
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α =
0.8014 AREA−0.1788

exp(3.792 BFIHOST)
(14)

β =
13.53 AREA0.08887

exp(0.00492 PEANN + 0.6063 BFIHOST)
(15)

which had correlation coefficients, R, of 0.78 and 0.62, respectively. The most sensitive CCs328

identified in Fig. 2 (i.e., BFIHOST for α and PEANN for β) are present in Eqs. (14) and (15).329

But the regionalization equations also elude to a high dependency of α on AREA and a high330

dependency of β on BFIHOST. Of particular note is the absence of URBEXT from both Eqs. (14)331

and (15).332

For comparison, the recession lines resulting from Eqs. (14) and (15) are displayed for each333

of the four example catchments shown in Fig. 1 as red dashed lines. The comparison between the334

regionalization and original recession models is less favorable in Figs. 1b and d.335

3.2. Rainfall-runoff modeling336

Also shown, as black solid straight lines in Fig. 1, are the recession lines derived by calibrating337

the aforementioned rainfall-runoff model to the full set of flow data, during the calibration period338

(1981 to 1991), hereafter referred to as the rainfall-runoff modeling (RM). Recession lines in339

these examples and from RM in general are much steeper than those generated by RA (the red340

solid straight lines, as discussed in the previous section). Steeper gradients imply higher β values341

(recall Eq. (5)). Incorporating the higher discharge rate data, associated with non-recession events,342

generally leads to a more non-linear models. At the same time, using the RM limits the beta343
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values to be physically consistent with the single store model and hence eliminates the previously344

mentioned instances where β ≥ 2.345

Fig. 3 shows time-series plots of flow for the four catchments previously presented in Fig. 1.346

Note that the time-period shown includes only the validation period (1991 to 1997). The observed347

data are presented as a green thick line. The results from the calibrated rainfall-runoff models are348

presented as blue lines. Relevant parameter values along with NSE values for both calibration and349

validation periods are presented in Table 2.350

The four catchments represent examples of quite different rainfall-runoff response. It is clear351

that the three-parameter rainfall-runoffmodel is able to capture many aspects of the flow dynamics,352

beyond just the recession events, for a range different BFIHOST values. However, the model tends353

to underestimate the peak flow rates, although this latter point may be more to do with the fact that354

we are using daily as opposed to (say) hourly precipitation data (Wang et al., 2009). The model355

is also poor at predicting significant flow events during the summer periods for catchment b) (i.e.,356

Fig. 3b), which represents a relatively dry catchment with only a moderate fraction of base-flow357

(recall Table 2).358

Figs. 4a, b and c show the CDFs for the top three most sensitive CCs in terms of α derived359

from RM. Figs. 4d, e and f show the CDFs for the top three most sensitive CCs in terms of β360

derived from RM. Figs. 4g, h and i show the CDFs for the top three most sensitive CCs in terms361

of the PDM parameter, S max, derived from RM. Again, the associated KS values are provided in362

brackets alongside the x-axis labels.363

As with the RA results presented in Fig. 2a, it is clear from Fig. 4a that higher BFIHOST364

leads to lower α values. Something that is uncommon to the RA results presented in Fig. 2365
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however, is that for the RM results, β shows a strong dependence on BFIHOST as well, with low366

BFIHOST leading to a more linear response (see Fig. 4d). It is also found that β is smaller for367

wetter catchments (i.e., high SAAR). However, it is also clear from Fig. 4 that β becomes largely368

insensitive to BFIHOST when BFIHOST > 0.433 and largely insensitive to SAAR when SAAR369

< 1151 mm.370

From Figs. 4g, h and i, it can be seen that the lowest S max values are found in catchments with371

high precipitation (high SAAR), low evaporation (low PEANN) and close to zero urban extent372

(i.e., URBEXT < 0.0015), which is consistent with other regionalisation studies (Lee et al., 2006;373

Kjeldsen et al., 2005).374

The results in Fig. 4 are difficult to interpret without looking in more detail at the distribution of375

the parameter values and their relationships with each other and CCs. Hence, to explore rainfall-376

runoff model parameter sensitivity further, a series of univariate plots are presented in Fig. 5.377

There are reasonably high levels of correlation between α and BFIHOST as well as of S max with378

SAAR and PEANN (Figs. 5a,d and e). In contrast, the correlation between β and its two most379

sensitive CCs, BFIHOST and SAAR is quite weak (Figs. 5b and c). From Figs. 5g and h it is380

clear that there is very little cross-correlation between α and S max as well as β and S max. However,381

in Fig. 5i it can be seen that the correlation coefficient between β and α is relatively high (as382

compared to correlation with CCs) at −0.532. For comparison, the correlation coefficient between383

β and α values obtained from the recession analysis in the previous section was just −0.0095.384

Fig. 4 shows that many β values are close to the plausible maximum of 2.0 and considerably385

higher than values estimated for idealised hydrological systems. This indicates the widespread386

presence of wetness thresholds at which the flow velocities increase markedly, which includes387
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the transition from base-flow dominated to storm-flow dominated flows in catchments where both388

modes exist. This would partially explain why uni-modal catchments, with either very high or389

very low BFIHOST values, tend to have lower β values (Fig. 5b).390

In the same way as described in the previous sub-section, regionalization equations were also391

derived for α, b (β does not lend itself to regression here because so many values are close to the392

constraint of 2, therefore b was used instead) and S max from the RM data. These were as follows:393

α =
0.4533

BFIHOST1.758 SAAR0.4683
(16)

β = 2 − 4.581 × 10−7 SAAR1.569

BFIHOST0.9324
(17)

S max =
PEANN5.519 exp(13.71 FARL + 0.0004602 SAAR)

1.377 × 10−11 SAAR2.617 exp(4.295 DPLCV)
(18)

which have correlation coefficients, R, of 0.7310, 0.4979 and 0.7930, respectively. Note that the394

regionalization equation for b is written instead for β by virtue of Eq. (3) (see Eq. (17)).395

For comparison, the recession lines resulting from Eqs. (16) and (17) are displayed for each of396

the four example catchments shown in Fig. 1 as dashed black lines.397

Fig. 3 shows as redlines, flow predictions during the validation period using the rainfall-398

runoff model with α, β and S max calculated using Eqs. (16) to (18). From the provided validation399

and regionalization NSE values for the four catchments given in Table 2, it is apparent that the400

regionalization relationships are almost as effective as model calibration in terms of predicting401
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flow data at the four catchments studied. Considering the NSE values for all 120 catchments402

shows the generally small loss of performance when moving from using calibrated to regionalised403

parameters, for example the respective median NSE values across all 120 catchments are 0.79 and404

0.75.405

Fig. 6 shows how NSE values from the calibration period, the validation period with the406

calibration parameters and the validation period using the regionalization equations, Eqs. (16) to407

(18), vary with the most sensitive CCs. For all three sets of NSE values, it is found that the best408

performing models are in catchments with high precipitation (high SAAR). NSE values are not409

found to be that sensitive to other CCs.410

3.3. Comparison of RA and RM methods411

The plots of BFIHOST against SAAR and PEANN against AREA in Fig. 7 have been con-412

structed to further illustrate how β values and model performance vary over the associated parame-413

ter space. Figs. 7a and d were constructed as follows. The 120 catchments were ranked according414

to β values obtained from the RA method and then split into three groups with equal number of415

catchments. The green, blue and red markers in Figs. 7a and d represent those catchments in416

groups with the lowest, intermediate and highest values of β, respectively (as indicated by the leg-417

end). The plots in Figs. 7b and e were constructed in an identical way except using β values from418

the RM method. Figs. 7c and f were also constructed in the same way except using NSE values419

from the RM method during the validation period (as opposed to β values).420

From Figs. 7a and b, it is apparent that both the RA and RM method lead to the highest β421

values in catchments with relatively low rainfall (500 mm < SAAR < 1500 mm) and moderate422
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Table 1: Minimum, mean and maximum values of the catchment characteristics for 120 catchments studied. Defini-
tions are from Robson and Reed (1999) and Young (2006).

Abbreviations Definitions min. mean max.
ALTBAR Mean catchment altitude (m above sea level). 38 215 557
AREA Catchment drainage area (km2). 1.1 271 1700
ASPBAR Index representing the dominant aspect of catch-

ment slopes (mean aspect, clock wise 0-360o).
0.8 144 359

ASPVAR Index describing the invariability in aspect of
catchment slopes.

0.02 0.192 0.513

BFIHOST Base-flow index derived using the HOST classi-
fication.

0.238 0.496 0.937

DPLBAR Index describing catchment size and drainage
path configuration (km).

1.14 18.6 57.62

DPLCV Coefficient of variation of the drainage network
distances.

0.332 0.435 0.606

DPSBAR Index of catchment steepness (m/km). 13 97 306
FARL Index of flood attenuation due to reservoirs and

lakes.
0.92 0.99 1.00

LDP Longest drainage path (km). 2.7 35.0 121
PEANN 1961-1990 standard period average annual po-

tential evaporation (mm).
461 549 654

SAAR 1941-1970 standard period average annual rain-
fall (mm).

602 1093 2860

SPRHOST SPR (standard percentage runoff) derived using
the HOST classification.

6.9 37.4 58.3

URBEXT FEH index of fractional urban extent 0 0.010 0.127

quantities of base-flow (0.3 < BFIHOST < 0.7). Also shown as black dots are those catchments423

that had β values ≥ 2 (recall this only occurs using the RA method), which are also mostly located424

in this region. From Fig. 7c it can be seen that most of those catchments that scored relatively low425

NSE values from the RM method during the validation period are also located in this low SAAR426

and medium-range BFIHOST region.427

A medium-range BFIHOST is indicative of a catchment with both strong base-flow and storm-428

flow components (e.g., consider Figs. 3b and c). Arguably, a high β value is likely to arise429
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Table 2: Some details concerning the catchments used for the results presented in Figs. 1 and 3. Catchments a), b),
c) and d) are the catchments used to get the results in Figs. 1a, b, c, d and 3a, b, c, d, respectively. The α, β, S max are
parameters values obtained by calibrating the rainfall-runoffmodel to the flow data. Calibration NSE, Validation NSE
and Regionalization NSE are Nash-Sutcliffe efficiency values obtained during the calibration period, the validation
period using the calibrated parameters and the validation period using the regionalization relationships, respectively.

Catchment a) b) c) d)
Gauge number 80001 54018 55014 43005
AREA (km2) 197 170 203 326
BFIHOST 0.376 0.504 0.593 0.903
SAAR (mm) 1352 780 1062 768
PEANN (mm) 507 543 549 592
URBEXT 0.00040 0.00490 0.00230 0.01540
α (mm1−βdayβ−2) 0.114 0.091 0.032 0.016
β 1.681 1.976 1.985 1.799
S max (mm) 35.39 83.97 48.89 62.38
Calibration NSE 0.905 0.855 0.902 0.905
Validation NSE 0.898 0.845 0.923 0.921
Regionalization NSE 0.767 0.794 0.867 0.886

from such a catchment due to the forcing of this strongly dual-modal hydrological response to be430

represented by a single non-linear store. The results presented in Figs. 7 a and b suggest that this431

is particularly the case for dryer catchments (i.e., low SAAR). Furthermore, the low NSE values,432

associated with low SAAR and medium-range BFIHOST, in Fig. 7 c provides strong evidence433

that a single non-linear store is not suitable for regionalization in this subset of catchments.434

In Fig. 7d (and also Fig. 2d), it is apparent that high evaporative demand (i.e., high PEANN)435

leads to lower β values when considering the RA method. Consistent with this, Ye et al. (2014)436

found lower values of β to occur in flatter catchments with high aridity index. As discussed437

earlier, there is a moderately negative correlation between evaporative demand and steepness of a438

catchment.439

Fig. 7e and previous results show that many of the β values estimated using the RM method440
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Table 3: Correlation coefficients, R, for the catchment characteristics. See Table 1 for catchment characteristic defini-
tions.
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ALTBAR 1.0 0.1 -0.1 0.2 -0.5 0.1 0.2 0.7 0.2 0.1 -0.6 0.7 0.5 -0.4
AREA 0.1 1.0 -0.2 -0.4 0.1 0.9 0.1 0.1 -0.1 0.9 -0.3 -0.1 0.0 -0.1
ASPBAR -0.1 -0.2 1.0 -0.1 0.0 -0.2 0.1 -0.1 0.1 -0.2 0.2 0.0 0.1 -0.1
ASPVAR 0.2 -0.4 -0.1 1.0 -0.2 -0.5 0.1 0.1 0.1 -0.5 0.1 0.2 0.1 0.1
BFIHOST -0.5 0.1 0.0 -0.2 1.0 0.1 -0.2 -0.2 -0.1 0.1 0.4 -0.4 -0.9 0.1
DPLBAR 0.1 0.9 -0.2 -0.5 0.1 1.0 0.1 0.0 -0.2 1.0 -0.3 -0.2 -0.1 -0.1
DPLCV 0.2 0.1 0.1 0.1 -0.2 0.1 1.0 0.1 0.2 0.2 -0.1 0.2 0.2 -0.2
DPSBAR 0.7 0.1 -0.1 0.1 -0.2 0.0 0.1 1.0 0.2 0.0 -0.4 0.8 0.3 -0.4
FARL 0.2 -0.1 0.1 0.1 -0.1 -0.2 0.2 0.2 1.0 -0.2 0.1 0.1 0.1 -0.4
LDP 0.1 0.9 -0.2 -0.5 0.1 1.0 0.2 0.0 -0.2 1.0 -0.3 -0.1 -0.1 -0.1
PEANN -0.6 -0.3 0.2 0.1 0.4 -0.3 -0.1 -0.4 0.1 -0.3 1.0 -0.3 -0.5 0.3
SAAR 0.7 -0.1 0.0 0.2 -0.4 -0.2 0.2 0.8 0.1 -0.1 -0.3 1.0 0.5 -0.2
SPRHOST 0.5 0.0 0.1 0.1 -0.9 -0.1 0.2 0.3 0.1 -0.1 -0.5 0.5 1.0 -0.2
URBEXT -0.4 -0.1 -0.1 0.1 0.1 -0.1 -0.2 -0.4 -0.4 -0.1 0.3 -0.2 -0.2 1.0

are close to the physically plausible upper bound value of 2.0. This result is likely to be due441

to the β parameter’s role in fitting the rising limb and peak of the hydrograph as well as the442

recessions, rather than strong non-linearity in either of these parts of the hydrograph. The highest443

β values tend to be in catchments with medium to high evaporative demand, which tend to have444

medium to high BFIHOST values, and also catchments with lower areas. We speculate that this445

is due to the presence of high flow peaks as well as strong base-flow responses in these types of446

catchment; while in catchments with very high or low values of BFIHOST and/or with larger areas,447

there are simpler responses and/or more potential for smoothing and spatial integration of flow448

signals upstream of gauging stations. Therefore, while the use of the parsimonious, 3-parameter449
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rainfall-runoff method may be valuable for regionalisation across some types of catchments and450

utilises much more of the rainfall-runoff data, interpretation of the β parameter in terms of physical451

processes is arguably better approached using the RA method.452

4. Summary and conclusions453

The objective of this study was to explore the role of catchment characteristics on non-linearity454

in rainfall-runoff response using daily precipitation, potential evapotranspiration and river flow455

data from 120 UK river catchments. Two approaches were taken for estimating the power-law456

parameters α and β describing the degree of apparent non-linearity in the catchments: The first457

approach involved regression of a power-law to flow rate gradient data for recession events only.458

Recession events were identified as those where the flow rate was greater than ten times the precip-459

itation minus the potential evapotranspiration. Recession events with flow rate gradients less than460

five times the precision of the flow data were excluded. This approach was referred to as the re-461

cession analysis (RA). The second approach involved calibrating a rainfall-runoffmodel to the full462

data set (both recession and non-recession events). The rainfall-runoff model was developed by463

combining a power-law streamflow routing function with a one parameter probability distributed464

model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff465

model (RM). The dependency of the estimated parameters on CCs was evaluated by looking at466

how strongly the parameter values changed between three ranges of each CC, and also by apply-467

ing step-wise linear regression.468

The RA approach suggests that β values are most sensitive to evaporative demand, with lower469

potential evaporation causing higher β values and thus greater non-linearity. This result is similar470
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to that found by Ye et al. (2014) following their application of RA to 50 catchments in the USA.471

Specifically, Ye et al. (2014) found that lower aridity index led to higher values of β (see their Eq.472

14b). Catchments (from the current study) with high potential evaporation often had β values less473

than one, signifying that recession rates become faster as these catchments become drier, which474

may be related to flood plain activation in wetter conditions.475

The RM approach led to contrasting results, with generally much higher β values, and with476

high base-flow, low rainfall, high potential evaporation catchments tending to cause the highest β477

values. The higher β values are likely to be because β has a role in enabling the rainfall-runoff478

model to match the high flows as well as the base-flows, especially in catchments where base-479

flow is significant but the model still struggles to match peak flows (e.g. Fig. 3d). Despite using480

a relatively parsimonious rainfall-runoff model, with only three parameters, the RM approach481

suffered more than the RA approach in terms of covariance between the α and β values. Its482

general performance on test catchments in terms of the NSE value is comparable to those achieved483

by regionalisation of less parsimonious models (McIntyre et al., 2005; Lee et al., 2006) (noting484

that the comparison is not direct because these other studies did not log-transform the flows prior485

to calculating the NSE).486

In conclusion, while there may be value in refining the 3-parameter rainfall-runoff model and487

exploring applicability further, the 2-parameter recession analysis gave values of β that have lower488

covariance, are more physically plausible and interpretable in terms of the CCs, and are explained489

better by the CCs in terms of regression correlation coefficient. The recession analysis found490

that catchments with low evaporative demand exhibit greater non-linearity, with values of β more491

consistent with theoretical values for idealized catchments, while dryer catchments have β values492
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close to one on average, but with wide variation around this value. This new knowledge of controls493

on non-linear recession behavior has potential value in improving regionalization of base-flow494

responses, which has consistently been a problem across UK catchments (Lee et al., 2006).495
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Appendix A. The probability distributed model (PDM)560

Building on work presented by Moore (2007), below is an explanation of the probability dis-561

tributed model (PDM) for relating the rate of runoff, qro [LT−1], with the volume of water stored562

in soil across the catchment per unit area, S [L].563

Let A [L2] be the area of the catchment. At any given time, a portion of this area, Ac [L2],564

contains water-logged land surface such that additional precipitation leads to the generation of565
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runoff. Moore (2007) considers the soil storage capacity at any point within the catchment, c [L],566

to be a random variable defined by a probability density function, f (c) [L−1]. Let C [L] be the567

maximum value of c observed within the area Ac. It can then be stated that Ac = F(C)A where568

F(C) [-] is the probability of c not exceeding C, defined as569

F(C) =
∫ C

0
f (c)dc (A.1)

Moore (2007) further argues that the rate of runoff, qro [LT−1], can therefore be estimated from570

qro = F(C)(qr − qin) (A.2)

where qr [LT−1] and qin [LT−1] are the rates of precipitation and canopy interception, respectively.571

The water storage level within the catchment is equal to c in the water-logged regions and572

assumed to be equal to C outside of these regions. It follows that S can be calculated from (Moore,573

2007)574

S =
∫ C

0
c f (c)dc +C

∫ ∞

C
f (c) =

∫ C

0
(1 − F(c))dc (A.3)

If c conforms to a single parameter exponential distribution, the F(c) function takes the form575

(Moore, 2007)576

F(c) = 1 − exp
(
−c

c

)
(A.4)

where c [L] represents the mean local storage capacity within the catchment.577
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Substituting Eq. (A.4) into Eq. (A.3) leads to578

S = c
[
1 − exp

(
−C

c

)]
= cF(C) (A.5)

from which it is noted that the maximum possible value of S , S max, is found from579

S max = c (A.6)

and from Eq. (A.2), that580

qro =
S

S max
(qr − qin), 0 ≤ S < S max (A.7)

Appendix B. Details of the Euler explicit time-stepping scheme581

The set of equations described in Section 2.3 are solved using an Euler explicit time-stepping582

scheme. In this way, it can be said from Eqs. (9) and (12) that583

S n+1 = S n + Δt(qr,n − Ea,n − qro,n − qin,n − qvp,n) (B.1)

Vn+1 = Vn + Δt(qro,n − qn) (B.2)

From Appendix C below it can be seen that stability of the scheme is ensured providing584

∂

∂S

(
−qr + Ea + qro + qin + qvp

)
<

1
Δt

(B.3)
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∂

∂V
(−qro + q) <

1
Δt

(B.4)

Substituting Eq. (11) into Eq. (B.3) and only considering 0 ≤ S ≤ S max, Eq. (B.3) can be seen585

to reduce to586

∂qro

∂S
=

qr − qin

S max
<

1
Δt

(B.5)

which, from further consideration of Eq. (11), shows that Eq. (B.1) will remain stable providing587

that when 0 ≤ S ≤ S max, it is imposed that588

qro <
S
Δt

(B.6)

For the routing function, substituting Eq. (1) into Eq. (B.3), Eq. (B.4) can be seen to reduce to589

abVb−1 <
1
Δt

(B.7)

Stability for the routing function requires more careful consideration as compared to the soil590

moisture accounting scheme because there is no natural upper limit for V (note that S max is the591

upper limit of S ) and therefore V is unconstrained. However, to force the stability criterion in Eq.592

(B.7) we can impose that V < Vmax where Vmax = (abΔt)1/(1−b), which is achieved as follows.593

Consider the auxiliary variables, qtrial [L] and Vtrial [L], found from:594

qtrial = aVb
n (B.8)
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Vtrial = Vn + Δt(qro,n − qtrial) (B.9)

The Vmax constraint can be applied by calculating qn and Vn+1 from:595

qn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
qtrial, Vtrial < Vmax

qro,n − (Vmax − Vn)
Δt

, Vtrial ≥ Vmax

(B.10)

Vn+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Vtrial, Vtrial < Vmax

Vmax, Vtrial ≥ Vmax

(B.11)

In this way, stability is ensured by routing excess runoff direct to the catchment outlet during596

exceptionally wet periods.597

Appendix C. Stability analysis for Euler explicit time-stepping schemes598

Consider a differential equation of the form599

d f
dt
= −g (C.1)

Applying an Euler explicit time-stepping scheme leads to a discrete solution of the form600

fn+1 = fn − Δtgn (C.2)

where Δt = tn+1 − tn.601

The approximate solution, f (tn) = fn, is related to the exact solution, f0, by602
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f = f0 + ε (C.3)

where ε is the error associated with the approximation.603

Substituting Eq. (C.3) into Eq. (C.2) leads to604

d f0
dt
+

dε
dt
= −g( f0 + ε) (C.4)

Applying a Taylor series expansion to g( f0 + ε) then leads to605

d f0
dt
+

dε
dt
= −g( f0) − ε ∂g

∂ f0
+ O(ε2) (C.5)

Recalling that f0 satisfies Eq. (C.1) exactly, Eq. (C.5) reduces to606

dε
dt
= −ε ∂g

∂ f0
+ O(ε2) (C.6)

Applying the Euler explicit time-stepping scheme and rearranging then leads to607

εn+1

εn
= 1 − Δt

[
∂g
∂ f0

]
n

+ O(ε2n ) (C.7)

from which it can be understood that Eq. (C.2) will remain stable providing608

∂g
∂ f
<

1
Δt

(C.8)
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Figure 1: Plots of discharge rate gradient, Jm, against discharge rate, Qm, for four selected catchments. The recession
data represents a subset of the observed data where discharge rate is at least ten times larger than the precipitation
minus the potential evapotranspiration. The red solid lines were obtained by regression analysis with the recession
data, i.e., the recession analysis (RA). The red dashed lines were obtained by using regionalization equations (Eqs.
(14) and (15)) derived from α and β parameters obtained by RA. The black solid lines were obtained by calibrating a
rainfall-runoff model (RM). The black dashed lines were obtained by using regionalization equations (Eqs. (16) and
(17)) derived from α and β parameters obtained from the RM calibration.
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Figure 2: Cumulative distribution functions (CDF) for α and β, as obtained during the recession analysis, separated
out in terms of the lower, middle and upper third ranges of the top three most sensitive catchment characteristics. PNE
stands for probability of non-exceedance. The KS values reported alongside the x-axis labels denotes the Kolmogorov-
Smirnov statistics between CDFs for the lower and upper thirds.
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Figure 3: Plots of discharge rate against time during the validation period for the four selected catchments, previously
presented in Fig. 1. The green lines are the observed discharge rate. The blue lines were obtained by calibrating the
three parameter rainfall-runoff model to data from the calibration period (1981 to 1991). The red lines were obtained
using the three parameter rainfall-runoffmodel in conjunction with the regionalization equations given in Eqs. (16) to
(18).
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Figure 4: Cumulative distribution functions (CDF) for α, β and S max, as obtained during the calibration of the rainfall-
runoff model, separated out in terms of the lower, middle and upper third ranges of the top three most sensitive
catchment characteristics. PNE stands for probability of non-exceedance. The KS values reported alongside the
x-axis labels denotes the Kolmogorov-Smirnov statistics between CDFs for the lower and upper thirds.
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Figure 5: Univariate plots of calibrated rainfall-runoffmodel parameters plotted against themselves and other sensitive
catchment characteristics. The R values denote the associated correlation coefficients.
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Figure 6: Cumulative distribution functions (CDF) for NSE values for the rainfall-runoff model, for the calibration
period, the validation period and the validation period using the regionalization equations, separated out in terms of
the lower, middle and upper third ranges of the top three most sensitive catchment characteristics. PNE stands for
probability of non-exceedance. The KS values reported alongside the x-axis labels denotes the Kolmogorov-Smirnov
statistics between CDFs for the lower and upper thirds.
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Figure 7: (a, b, c) Plots of BFIHOST against SAAR separated out in terms of the lower, middle and upper third
ranges for: a) β as obtained from the recession analysis (RA); b) β as obtained from the rainfall-runoff modelling
(RM) calibration; c) NSE values for the rainfall-runoff model during the validation period. (d, e, f) Plots of PEANN
against AREA separated out in terms of the lower, middle and upper third ranges for: d) β as obtained from RA; e) β
as obtained from the RM calibration; f) NSE values for RM during the validation period.
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