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The conserved magnetic flux of U(1) electrodynamics coupled to matter in four dimensions is
associated with a generalized global symmetry. We study the realization of such a symmetry at finite
temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form
current around thermal equilibrium. This can be thought of as a systematic derivation of relativistic
magnetohydrodynamics, constrained only by symmetries and effective field theory. We construct
the entropy current and show that at first order in derivatives, there are seven dissipative transport
coefficients. We present a universal definition of resistivity in a theory of dynamical electromagnetism
and derive a direct Kubo formula for the resistivity in terms of correlation functions of the electric
field operator. We also study fluctuations and collective modes, deriving novel expressions for the
dissipative widths of magnetosonic and Alfvén modes. Finally, we demonstrate that a non-trivial
truncation of the theory can be performed at low temperatures compared to the magnetic field: this
theory has an emergent Lorentz invariance along magnetic field lines, and hydrodynamic fluctuations
are now parametrized by a fluid tensor rather than a fluid velocity. Throughout, no assumption is
made of weak electromagnetic coupling. Thus, our theory may have phenomenological relevance for

dense electromagnetic plasmas.
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thermal equilibrium state of the system. In this paper
we would like to apply such a symmetry-based approach
to the study of magnetohydrodynamics, i.e. the long-
distance limit of Maxwell electromagnetism coupled to
light charged matter at finite temperature and magnetic
field.


mailto:grozdanov@lorentz.leidenuniv.nl
mailto:d.m.hofman@uva.nl
mailto:n.iqbal@uva.nl

To that end, we first ask a question with a seemingly
obvious answer: what are the symmetries of U(1) elec-
trodynamics coupled to charged matter? One might be
tempted to say that there is a U(1) current j!| associ-
ated with electric charge. There is indeed such a diver-
genceless object, related to the electric field-strength by
Maxwell’s equations:

iV FrY = 57 (1.1)

gz H = Jel- .
However, the symmetry associated with this current is a
gauge symmetry. Gauge symmetries are merely redun-
dancies of the description, and thus are presumably not
useful for organizing universal physics.

The true global symmetry of U(1) electrodynamics is
actually something different. Consider the following an-
tisymmetric tensor

1
JH = —elPIE,,. (1.2)
It is immediately clear from the Bianchi identity (i.e. the
absence of magnetic monopoles) that V,J*” = 0. This
is not related to the conservation of electric charge, but
rather states that magnetic field lines cannot end.

What is the symmetry principle behind such a con-
servation law? It has recently been stressed in [24] that
just as a normal 1-form current J* is associated with
a global symmetry, higher-form symmetries such as J*”
are associated with generalized global symmetries, and
should be treated on precisely the same footing. We first
review the physics of a conventional global symmetry,
which we call a O0-form symmetry in the notation of [24]:
with every O-form symmetry comes a divergenceless 1-
form current j* , whose Hodge dual we integrate over a
codimension-1 manifold to obtain a conserved charge. If
this codimension-1 manifold is taken to be a time slice,
then the conserved charge can be conveniently thought
of as counting a conserved particle number: intuitively,
since particle world-lines cannot end in time, we can
“catch” all the particles by integrating over a time slice.
The objects that are charged under 0-form symmetries
are local operators which create and destroy particles,
and the symmetry acts (in the U(1) case) by multiplica-
tion of the operator by a 0-form phase A that is weighted
by the charge of the operator ¢: O(z) — ¢*O(x).

Consider now the less familiar but directly analogous
case of a 1-form symmetry. A 1-form symmetry comes
with a divergenceless 2-form current J#, whose Hodge
star we integrate over a codimension-2 surface to ob-
tain a conserved charge Q = |, g*J.  This conserved
charge should be thought of as counting a string num-
ber: as strings do not end in space or in time, an inte-
gral over a codimension-2 surface is enough to “catch”
all the strings', as shown in Figure 1. The objects that

1 Note that the dynamics of string-like degrees of freedom has

are charged under 1-form symmetries are 1-dimensional
objects such as Wilson or ’t Hooft lines. These 1d ob-
jects create and destroy strings, and the symmetry acts
(in the 1-form case) by multiplication by a 1-form phase
A, integrated along the contour C of the 't Hooft line:
W(C) — exp (iq [, Apdzt) W(O).

FIG. 1: Integration over a codimension-2 surface S
counts the number of strings that cross it at a given
time.

In the case of electromagnetism, the 2-form current is
given by (1.2), and the strings that are being counted
are magnetic field lines. We could also consider the dual
current F'*¥ itself, which would count electric flux lines:
however from (1.1) we see that F* is not conserved in
the presence of light electrically charged matter, because
electric field lines can now end on charges. Thus, elec-
trodynamics coupled to charged matter has only a sin-
gle conserved 2-form current. This is the universal fea-
ture that distinguishes theories of electromagnetism from
other theories, and the manner in which the symmetry is
realized should be the starting point for further discus-
sion of the phases of electrodynamics.? For example, this
symmetry is spontaneously broken in the usual Coulomb
phase (where the gapless photon is the associated Gold-
stone boson), and is unbroken in the superconducting
phase (where magnetic flux tubes are gapped). We refer
the reader to [24] for a detailed discussion of these issues.

In this paper, we discuss the long-distance physics of
this conserved current near thermal equilibrium, applying
the conventional machinery of hydrodynamics to a theory
with a conserved 2-form current and conserved energy-
momentum. We are thus constructing a generalization
of the (very well-studied) theory that is usually called
relativistic magnetohydrodynamics. To the best of our
knowledge, most discussions of MHD separate the mat-
ter sector from the electrodynamic sector. It seems to us

been discussed in the context of superfluid hydrodynamics in the
interesting recent paper [25]. In that case strings arise as solitons
and, unlike in our work, interact through long range forces.

2 In electrodynamics in 2+1 dimensions this point of view is some-
what more familiar, as the analog of J#¥ is a conventional 1-form
“topological” current J5+1 =elVPFyp.



that this separation makes sense only at weak coupling,
and may often not be justified: for example, the plasma
coupling constant I', defined as the ratio of potential to
kinetic energies for a typical particle, is known to attain
values up to O(10?) in various astrophysical and labora-
tory plasmas [26]. Experimental estimates of the ratio of
shear viscosity to entropy density (where a small value
is widely understood as being a universal measure of in-
teraction strength [4]) in such plasmas at high T’ obtain
minimum values that are O(1) — O(10) [27]. These sug-
gest the presence of strong electromagnetic correlations.

Our discussion will not make any assumptions of weak
coupling and should therefore be valid for any value of
I': we will be guided purely by symmetries and the prin-
ciples of the effective field theory of hydrodynamics. Be-
yond the (global) symmetries, the construction of the
hydrodynamic gradient expansions also requires us to
choose relevant hydrodynamic fields (degrees of freedom),
which, as we will discuss, crucially depend on the sym-
metry breaking pattern in the physical system at hand.
In particular, in addition to conventional hydrodynam-
ics at finite temperature, we will also study a variant
of magnetohydrodynamics at at very low temperatures.
This theory has an emergent Lorentz invariance associ-
ated with boosts along the background magnetic field
lines, and the parametrization of hydrodynamic fluctu-
ations is considerably different. Interestingly, at T = 0
leading-order corrections to ideal hydrodynamics only en-
ter at second order, thus showing the direct relevance of
higher-order hydrodynamics (see e.g. [6, 8, 9, 11]). While
this treatment does not include the typical light modes
that emerge at T = 0, it does capture a universal self-
contained sector of magnetohydrodynamics.

We now describe an outline of the rest of this paper.
In Section IT we discuss the construction of ideal hydro-
dynamic theory at finite temperature. In Section III we
move beyond ideal hydrodynamics: we work to first or-
der in derivatives, and demonstrate that there are seven
transport coefficients that are consistent with entropy
production, describing also how they may be computed
through Kubo formulas. In Section IV we study linear
fluctuations around the equilibrium solution and derive
the dispersion relations and dissipative widths of gap-
less magnetohydrodynamic collective modes. In Section
V we study the simple extension of the theory associ-
ated with adding an extra conserved 1-form current (e.g.
baryon number). In Section VI we turn to the theory
at strictly zero temperature, where we discuss novel phe-
nomena that can be understood as arising from a hydro-
dynamic equilibrium state with extra unbroken symme-
tries. We conclude with a brief discussion and possible
future applications in Section VII.

Previous study of the hydrodynamics of a fluid of
strings includes [28]. While this work was being written
up, we came to learn of the interesting paper [29], which
also studies a dissipative theory of strings and makes the
connection to MHD. Though the details of some deriva-
tions differ, there is overlap between that work and our

Sections IT and III.

Note added: In the original version of this work on
the arXiv there was an inaccurate count of transport co-
efficients; we thank the authors of [30] for bringing this
issue to our attention.

II. IDEAL MAGNETOHYDRODYNAMICS

Our hydrodynamic theory will describe the dynamics
of the slowly evolving conserved charges, which in our
case are the stress-energy tensor T#” and the antisym-
metric current J*¥.

A. Coupling external sources

For what follows, it will be very useful to couple the
system to external sources. The external source for the
stress-energy tensor is a background metric g,,, and we
also couple the antisymmetric current J#*” to an external
2-form gauge field source b,, by deforming the micro-
scopic on-shell action Sy by a source term:

ST = So + AS[El, AS[H] = / /=g b J™. (2.1)

The currents are defined in terms of the total action as

iy = 2 05
) = = @) (22)
T (g) = %5 (2.3)

\/7_79 5bw(33) ’

Demanding invariance of this action under the gauge
symmetry opb = dA with A a 1-form gauge-parameter
results in

V" =0. (2.4)
Similarly, demanding invariance under an infinitesimal
diffeomorphism that acts on the sources as a Lie deriva-
tive deg = Leg, 0¢b = L¢b, gives us the (non)-
conservation of the stress-energy tensor in the presence
of a source:

V,.T" = H",,J", (2.5)
where H = db. The term on the right-hand side of the
equation states that an external source can perform work
on the system.

We now discuss the physical significance of the b-field
source. A term by; = p should be thought of as a chemical
potential for the charge J*, i.e. a string oriented in the
i-th spatial direction.

For our purposes we can obtain some intuition by con-
sidering the theory of electrodynamics coupled to such
an external source, i.e. consider using (1.2) to write the
current as

JH = Py A (2.6)



with A the familiar gauge potential from electrodynam-
ics.> Then the coupling (2.1) becomes after an integra-
tion by parts:

AS[b] = / A2/ —gAGjos G0 = TP Dby, (2.7)

The field strength H associated to b can be interpreted as
an erternal background electric charge density to which
the system responds.

For example, consider a cylindrical region of space V'
that has a nonzero value for the chemical potential in the
z direction:

bra () = Loy (a), (2.8)
where 0y (z) is 1 if x € V and is 0 otherwise. Then from
(2.7) we see that we have

Jext (%) = ndov (@), (2.9)

i.e. we have an effective electric current running in a
delta-function sheet in the ¢ direction along the outside
of the cylinder. Thus the chemical potential for produc-
ing a magnetic field line poking through a system is an
electrical current running around the edge of the sys-
tem, as one would expect from textbook electrodynam-
ics. In our formalism the actual magnetic field created by
this chemical potential is controlled by a thermodynamic
function, the susceptibility for the conserved charge den-
sity Jt*.

We will sometimes return to the interpretation of b as
charge source to build intuition: however we stress that in
general when there are light electrically charged degrees
of freedom present the A(z) defined in (2.6) does not
have a local effective action and is not a useful quantity
to consider.

B. Hydrodynamic stress-energy tensor and current

We now turn to ideal hydrodynamics at non-zero tem-
perature. We first discuss the equilibrium state. Recall
that the analog of a conserved charge () for our 2-form
current is its integral over a codimension-2 spacelike sur-
face S with no boundaries, as shown in Figure 1.

Q:/S*J.

@ counts the number of field lines crossing S at any in-
stant of time and is thus unaltered by deformations of S
in both space and time. A thermal equilibrium density
matrix is then given (for a particular choice of S) by

(2.10)

o) =exo (<3 (H-0Q)) . (221

3 We choose conventions whereby €tzy> = 1.

where p is the chemical potential associated with the 2-
form charge. This density matrix can be generated by a
Euclidean path integral with an appropriate component
of b turned on, e.g. the S is the zy plane then we would
use by, = 5.

Elementary arguments, which we spell out in detail in
Appendix A, then give us the form of the stress-energy
tensor and the conserved higher rank current in thermal
equilibrium®:

Ty = (e +p)ufu” +pg" — uph"h",
J(’g; = 2pulthl,

satisfying the conservation equations in the ideal limit

(2.12)

p (2.13)

pv uy
V“T( )y = 0, VHJ(O) =0.

We have labeled this expression with a subscript 0, as
this will be only the zeroth order term in an expansion
in derivatives. Here u* is the fluid velocity as in conven-
tional hydrodynamics. h* is the direction along the field

lines, and we impose the following constraints:

uyut = —1, huh* =1, hyut = 0. (2.14)
It will also often be useful to use the projector onto the

two dimensional subspace orthogonal to both u and h:
ARV = g + utu” — hPRY, (2.15)

with trace A¥, = 2. In (2.12), p is the conserved flux
density, and p is the pressure. There is no mixed u*h”
term, as this can be removed with no loss of generality
by a Lorentz boost in the (u, k) plane.’

Note the presence of the h*h” term in the stress-energy
tensor, representing the tension in the field lines. Its co-
efficient in equilibrium is pp. It is a bit curious from the
effective field theory perspective that this coefficient is
fixed and is not given by an equation of state, like p, for
example. There is a quick thermodynamic argument to
explain this fact. Consider the variation of the internal
energy for a system containing field lines running perpen-
dicularly to a cross section of area A, with an associated
tension 7 and a conserved charge () given by the flux
through the section:

dU = TdS — pdV + T AdL + pLdQ, (2.16)

4 Equilibrium thermodynamics in the presence of magnetic fields
has also recently been studied in [31]; that work differs from ours
in that the magnetic fields there are fixed external sources for a
conventional 1-form current, whereas in our case the magnetic
fields are themselves the fluctuating degrees of freedom of a 2-
form current.

We note that the form of the stress-energy tensor (2.12), in-
cluding constraints (2.14), is precisely that of anisotropic ideal
hydrodynamics with different longitudinal and transverse pres-
sures (with respect to some vector) [32, 33]. In that case, up
measures the difference between the two pressures. The role of
this additional vector is now played by h*.

ot
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TABLE I: Charges under discrete symmetries of 2-form
current and hydrodynamical degrees of freedom.

where L is the length of the system perpendicular to A.
Because @ is a charge defined by an area integral, it is
given by Q = pA and the factor of L in front of d@ is
the correct scaling with the height of the system. Now
perform a Legendre transform to the Landau grand po-
tential:

&=U—TS — uLQ, (2.17)
d® = —sVdT — pdV — pVdpu + (1 — up) AdL,  (2.18)

where s is the entropy density. Notice that ® is the quan-
tity naturally calculated by the on-shell action and we
expect it to scale with volume in local Quantum Field
Theory. This scaling is spoiled by the term proportional
to dL unless 7 = up. This condition is, therefore, en-
forced by extensivity.

The thermodynamics is, thus, completely specified by
a single equation of state, i.e. by the pressure as a func-
tion of temperature and chemical potential p(T, u). The
relevant thermodynamic relations are

e+p="Ts+ up, dp = sdT + pdu, (2.19)
with s the entropy density. Here we have made use of
the volume scaling assumption.

The microscopic symmetry properties of J do not ac-
tually determine those of h* and p, only that of their
product. In this work we assume the charge assignments
in Table I, which are consistent with magnetohydrody-
namical intuition and are particularly convenient. Note
that that all scalar quantities (such as p and p) are taken
to have even parity under all discrete symmetries, and
charge conjugation is taken to flip the sign of h. These
symmetries will play a useful role later on in restricting
corrections to the entropy current.

Hydrodynamics is a theory that describes systems that
are in local thermal equilibrium but can globally be far
from equilibrium, in which case the thermodynamic de-
grees of freedom become space-time dependent hydrody-
namic fields. Thus the degrees of freedom are the two vec-
tors u”, h* and two thermodynamic scalars which can be
taken to be p and T, leading to seven degrees of freedom.
The equations of motion are the conservation equations
(2.5) and (2.4). As J is antisymmetric, one of the equa-
tions for the conservation of J does not include a time
derivative and is a constraint on initial data. This con-
straint is consistently propagated by the remaining equa-
tions of motion, thus leaving effectively six equations for
six variables, and the system is closed.

We now demonstrate that the equations of motion of
ideal hydrodynamics result in a conserved entropy cur-
rent. Consider dotting the velocity u into the conserva-
tion equation for the stress-energy tensor (2.5). Using
the thermodynamic identities (2.19) we find

u, V, T = =TV, (su") — no, (put)

— pp (u, V,hY) W = 0. (2.20)

We now project the conservation equation for J along
hH:

h, vV, J" =V, (pu) — ph* (V,u"h,) = 0. (2.21)

Inserting this into (2.20) and using V,(u"h,) = 0 to
rearrange derivatives we find

V,(sut) = 0. (2.22)

We thus see that the local entropy current su* is con-
served, as we expect in ideal hydrodynamics.

We now turn to the interpretation of the other compo-
nents of the hydrodynamic equations. The projections of
(2.5) along h, and A,,, respectively, are

hy (e + p)uV u” + VVp] = V. (upht) = 0,
Avo (e +p)u"Vyu” + V¥p — pph#V k"] = 0.

(2.23)
(2.24)

These are the components of the Euler equation for fluid
motion in the direction parallel and perpendicular to the
background field.

Similarly, the evolution of the magnetic field is given
by the projection of the conservation equation for J+**
along h, in (2.21) and along A,, below:

Ao (WP ,hY — BV u”) = 0. (2.25)

The equation states that the transverse part of the mag-
netic field is Lie dragged by the fluid velocity.

This is the most general system that has the sym-
metries of Maxwell electrodynamics coupled to charged
matter. In particular, unlike conventional treatments of
MHD, we have made no assumption that the U(1) gauge
coupling ¢? is weak. Indeed it appears nowhere in our
equations: in theories with light charged matter, the fact
that ¢ runs means that it does not have a universal sig-
nificance and will not appear as a fundamental object in
hydrodynamic equations.

To make contact with the traditional treatments of
MHD, consider expanding the pressure in powers of p,

e.g.

1
p (i, T) = po(T) + 59(T)*p* + -
Here po(T) should be thought of as the pressure of the
matter sector alone. The expansion is given in powers
of p?, as the sign of p is not physical®. If we stop at

(2.26)

6 In this theory, the sign of the magnetic field is carried by the
direction of the h* vector.



this order and then further assume that the coefficient
of the p? term is independent of temperature g(T) = g,
then the theory of ideal hydrodynamics arising from this
particular equation of state is entirely equivalent to tra-
ditional relativistic MHD with gauge coupling given by
g. From our point of view, this is then a weak-magnetic-
field limit of our more general theory. Note that this
weak-field limit is entirely different from the hydrody-
namic limit that we are taking throughout this paper,
and there is an entirely consistent effective theory even
if we do not take the weak-field limit. We discuss some
physical consequences of keeping higher order terms in
this expansion (which will be generically present in any
interacting theory, even if their coefficient may be small
under particular circumstances) later on in this paper.

Nevertheless, if we truncate the expansion for the pres-
sure as in (2.26) then we find from (2.19): p = g%y and
e = o+ £3 with &g = T7po(T) — po. The ideal hy-
drodynamic theory of our 2-form current is now entirely
equivalent to conventional treatments of ideal MHD, as
presented in e.g. [34]. As s ~ Orp, the T-independence
of g and thus of the pu-dependent piece of the pressure
essentially means that the magnetic field degrees of free-
dom carry no entropy.

III. FIRST-ORDER HYDRODYNAMICS

Hydrodynamics is an effective theory, and thus (2.12)
are only the zeroth order terms in a derivative expansion.
We now move on to first order in derivatives: to be more
precise, the full stress-energy tensor is given by

TR = TR TR (3.1)

() (
T = dgy (3:2)

(€]

where the zeroth order term is given by the ideal MHD
expressions in (2.12), and our task now is to determine
the first-order corrections as a function of the fluid vari-
ables such as the velocity and magnetic field. The num-
bers that parametrize these corrections are the transport
coefficients such as viscosity and resistivity. The physics
of dissipation and entropy increase enter at first order in
the derivative expansion: as usual in hydrodynamics, the
possible tensor structures that can appear (and thus the
number of independent transport coefficients) are greatly
constrained by the requirement that entropy always in-
creases.

A. Transport coefficients

We follow the standard procedure to determine these
corrections [35]. We begin by writing down the most

general form for the first-order terms:
Tl = e utu” + 6f AM 4 67 h*hY + 20 pY)
+ 2kWy”) 4t

J = 25pult bl + 2mtpl 4 2l 4 v

1) (3.3)

Here ¢#, k#*, m#*, and n* are transverse vectors (i.e. or-
thogonal to both u# and h*), t*¥ is a transverse, traceless
and symmetric tensor, and s*” is a transverse, antisym-
metric tensor.

Next, we exploit the possibility to change the hy-
drodynamical frame. In hydrodynamics, there is no
intrinsic microscopic definition of the fluid variables
{u*, h*, u, T}. Each field can therefore be infinitesimally
redefined, as e.g. u(z) — w*(x) + du*(x). The micro-
scopic currents and the stress-energy tensor must remain
invariant under this operation, and thus the redefinition
alters the functional form of the relationship between the
currents and the fluid variables. In conventional hydro-
dynamics of a charged fluid this freedom is often used
to set T(‘f)’u,, = 0 (Landau frame) or jé‘l) = 0 (Eckart
frame). We will use the scalar redefinitions of y and T to
set dp = de = 0 and the vector redefinitions of u* and h*
to set k* = n* = 0. We now have the simpler expansion:

TH = §f AP 4 SRR + 260RY) £, (3.4)

Jhy = 2mle 4 s (3.5)
Our task now is to determine the form of the reduced
set {0 f, o7, O*, mH tHY s#} in terms of derivatives of the
fluid variables.

To proceed, we require an expression for the non-
equilibrium entropy current S*. The textbook approach
to this problem is to postulate a standard “canonical”
form for this entropy current, motivated by promoting
the thermodynamic relation T's = p + € — up to the fol-
lowing covariant expression:

TS* =put — T uy — uJ" hy,. (36)

Up to first order in derivatives, this is equivalent to

1
St =sut — =THy JEYh,

1
7Ly — 7J0) (3.7)

We will take this to be our entropy current. As in con-
ventional hydrodynamics [36], one can show that it is
invariant under frame redefinitions of the sort described
above.

Next, we directly evaluate the divergence V,5*. Using
the contraction of the conservation equations (2.5) and
(2.4) with u#, we find after some straightforward algebra:

VSt =— [T(*gvu (%)

hyp usH?
ny Ty b Nz
+J(1)<VM(T>+T )}

(3.8)



We see that entropy is no longer conserved, as one ex-
pects for a dissipative theory. The second law of ther-
modynamics in its local form states that entropy should
always increase. Thus the right-hand side of Eq. (3.8)
should be a positive definite quadratic form for all con-
ceivable fluid flows. For the vector and tensor dissipa-
tive terms, positivity implies that the right-hand side is
simply a sum of squares, requiring that the dissipative
corrections take the following form:

= —2’17HA”UhVV(guV), (3.9)

1
L (A“PA”" - 2A””A’”> Vo),  (3.10)

mH

h,
—2r | AMBRY (Tv[ﬁ (TW> + Uy ”BV), (3.11)

s = =20  AFPAYT (uV [pho) + HY pun) - (3.12)
where the four transport coefficients 1, | and 7, | must
all be positive.

In the bulk channel parametrized by 0 f and §7 mixing
is possible. The most general allowed form that is con-
sistent with positivity is parametrized by three transport
coefficients (| || x:

5f = —CLAMN i, — G h BV oy,
o1 = —Cx APV u,, — CURPRYY

Note that this mixing matrix is symmetric, in that the
mixing term (x is the same for d f and d7. This follows
from an Onsager relation on mixed correlation functions,
as we explain in Section III B below.”

Further demanding that the right-hand side of (3.8)
be a positive-definite quadratic form imposes two con-
straints on the bulk viscosities, which may be written
as

CL>0 ¢ =¢
There are no further constraints that we know of. At first
order we thus have seven transport coefficients ¢, | «,
n., and ry . If we were to allow all coefficients per-
mitted by symmetries, we would instead have concluded
that there were eleven independent transport coefficients
consistent with the parity assignments under h* — —h*,
illustrating the constraints enforced by the second law of
thermodynamics.

We now turn to the interpretation of these trans-
port coefficients. It is clear that ¢, |« and 7, are
anisotropic bulk and shear viscosities respectively: for a
charged fluid in a fixed external magnetic field one finds

(3.15)

7 In the first version of this paper on the arXiv, the possibility of
a nonzero (x was not taken into account, leading to an incorrect
count of transport coefficients. This inaccuracy was pointed out
to us by the authors of [30], and we thank them for bringing this
to our attention.

instead seven independent viscosities [37], where the dif-
ference in counting arises from the fact that we have im-
posed a charge conjugation symmetry h* — —h*.

The transport coefficients r| | can be interpreted as
the conventional electrical resistivity parallel and perpen-
dicular to the magnetic field. To understand this, first
note that the familiar electric field E* is defined in terms
of the electromagnetic field strength as E* = FHu,,.
Using (1.2) we find

1
E, = —§€ngu"Jp"

1
= ——Eupott” (2m[ph‘7] + 577+ ) ;

5 (3.16)

where the ellipsis indicates further higher-order correc-
tions. Note that a nonzero electric field enters only at
first order in hydro: an electric field is not a low-energy
object, as the medium is attempting to screen it.

Next, we note that a resistivity is conventionally de-
fined as the electric 1-form current response to an applied
external electric field. However, our formalism instead
naturally studies the converse object, i.e. the 2-form cur-
rent response J¥ in a field theory with a total action S[b]
deformed by a fixed external b-field source (which can
be interpreted as an external electric current via (2.7)).
Thus, we need to perform a Legendre transform to find
the analog of the quantum effective action I'[J], which is
a function of a specified 2-form current J:

I[J] = S[b] — / d*an/=g b, T (3.17)
Here, S[b] is defined to be the on-shell action in the pres-
ence of the b-field source, and b is implicitly determined
by the condition that J = 6,5 = J, i.e. that the sta-
tionary points of the action coincide with the specified
value for J. We now write J in terms of a vector poten-
tial A using (2.6) and define the electrical 1-form current
response j' via

oT[J)

@ = 10

= P70 (3.18)

Note the sign difference with respect to the external fixed
source jl, defined in (2.7). This arises from the Legendre
transform and is the difference between having a fixed
external source and a current response.

We now need to determine the relationship between
the electric field (3.16) and the response 1-form current
(3.18). Consider a static and homogenous fluid flow with

ut(x) = 6ol h*(z) = 8%, (3.19)
in the presence of a homogenous but time-dependent b
field source byy(t), by.(t). From (3.18), in the fixed J
ensemble, this b-field can be interpreted as an electrical
current response j = —2b,,, j° = 2b,,. Now inserting
the expansion (3.11) and (3.12) into (3.16) and neglecting



the fluid gradient terms, we find that the electric field
created by this current source is

E.=nj, E,=ryj" (3.20)
Thus, 7,1 are indeed anisotropic resistivities as claimed.

Finally, we discuss a technical point: our starting point
for the discussion of dissipation was the canonical form
for the non-equilibrium entropy current (3.7). It is now
well-understood that this form for the entropy current is
not unique: for example, in the hydrodynamics of fluids
with anomalous global symmetries (and thus with par-
ity violation), the second law requires that extra terms
must be added to the entropy current, resulting eventu-
ally in extra transport coefficients corresponding to the
chiral magnetic and vortical effects [1, 2]. It was how-
ever shown in [38] that for a parity-preserving fluid with
a conserved 1-form current all ambiguities in the entropy
current can be fixed by demanding that entropy produc-
tion on an arbitrary curved background be positive. We
have performed a similar analysis for the 2-form current.
Here, charge-conjugation invariance acts as h* — —h*,
and this symmetry together with positivity of entropy
production on curved backgrounds is sufficient to show
that the form of the entropy current exhibited in (3.7) is
unique.

B. Kubo formulae

We now derive Kubo formulae—i.e. expressions in
terms of real-time correlation functions—for these trans-
port coefficients. We follow an approach described in [5]
which we briefly review below.

It is a standard result in linear response theory that in
the presence of a perturbation out of equilibrium by an
infinitesimal source, the response is given of the system is
given by the retarded correlator of the operator coupled
to the source. For example, if we turn on a small b-field
source, we find:

(M (w, k) = =GP (w, k)bpe (w, k), (3.21)
where G';”7 (w, k) is the retarded correlator of J.

However, above we saw that in the presence of an in-
finitesimal perturbation around a static flow (3.19) by
a time-varying but spatially homogenous b-field source
bay(t), by-(t), the response within the hydrodynamic the-
ory was

T = =2 by (t), T = —2r1bya(t).  (3.22)
Equating these two relations we find the following Kubo

formulas for the parallel and perpendicular resistivities:

. Gﬂvyﬂ?y w ) Gwz,wz w
ruzlmbi‘”_( ), m_:hrr})i‘”_( )
w— —ww w— —w

(3.23)

We will return to the physical interpretation of this
formula shortly. First, we derive Kubo formulas for the

viscosities. To do this, we consider perturbing the spatial
part of the background metric slightly away from flat
space:

gi; =0+ hij(t),  gu=0, gu=-1 (3.24)

where h;; < 1. The response of the stress-energy tensor
to such a perturbation is given in linear response theory
by
- 1 .
(T (w. k) = — 3Gz (@, W)hu(w. k). (3.25)
The hydrodynamic response to such a source is given by

(3.9) to (3.14) where the full contribution comes from the
Christoffel symbol

1.
;. (3.26)

Vg = —T; 5

ijUt =

Matching the response in each tensor channel just as
above we find the following set of Kubo relations:

TZ,TZ TY,TY
n = lim TT (W), nL = lim —IT (W)’
w—0 —w w—0 — W
(3.27)
. GZ52% (4, TT,TT
CH:th(), (1L +mnL = lim TT.( )7
w—0 —iw w—0 —iW
(3.28)
(x = lim XL —— ©) _ iy —Ir ) (3.29)
w—0 —w w—0 —w

These are a straightforward anisotropic generalization of
the usual formulas for the bulk and shear viscosity. Our
normalization for the anisotropic bulk viscosity has been
chosen so that no dimension-dependent factors enter into
the Kubo formula; however this is not the standard nor-
malization. Note that we present two equivalent formulas
for the mixed bulk viscosity (x; the equality of these two
correlation functions is guaranteed by the Onsager rela-
tions for off-diagonal correlation functions. Indeed, it is
this Onsager relation that sets to zero a possible anti-
symmetric transport coefficient in (3.13)—(3.14).%

We now turn to a discussion of the resistivity formula
(3.23). Unlike the hydrodynamics of a conventional 1-
form current where we generally obtain a Kubo formula
for the conductivity, here we find a Kubo formula directly
for its inverse, the resistivity, in terms of correlators of
the components of the antisymmetric tensor current cor-
responding to the electric field. The resistivity is the
natural object here: in a theory of dynamical electro-
magnetism, we examine how an electric field responds to
an external current flow, not the other way around.

8 The Kubo formulae (3.23) and (3.27)—(3.29) agree with those pre-
sented in [30]. We thank Pavel Kovtun for discussions regarding
these matters.



To the best of our knowledge, such a Kubo formula
for the resistivity in terms of electric field correlations is
novel. Traditionally, in order to compute a resistivity one
instead computes the conductivity of the 1-form global
current that is being gauged, and then takes the inverse of
the resulting number “by hand”. This procedure—which
essentially treats a gauge symmetry as a global one—is
probably only physically reasonable at weak gauge cou-
pling. On the other hand, the Kubo formula above per-
mits a precise universal definition for the resistivity in
a dynamical U(1) gauge theory, independently of the
strength of the gauge coupling. It is interesting to study
its implications.

For example, we might see whether it agrees with the
traditional prescription. Consider a weakly coupled U(1)
gauge theory with action

S[A, ¢] = /d4x <912F2 + A5t [¢]) : (3.30)
where j! is a 1-form current that is built out of other
matter fields (schematically denoted by ¢), that has
been weakly gauged. The considerations here do not in-
volve the background magnetic field and so we turn it
to zero. Within this theory we may compute the finite-
temperature correlator of the electric field to compute
the resistivity through (3.23).

G (i)
A +

FIG. 2: Sum over current-current insertions to compute
electrical resistivity.

One first attempt to do so might involve summing the
series of diagrams shown in Figure 2. The geometric sum
leads to an answer of the schematic form

9° Gy (W)
1- <jeljel(w)> QQG’Y’Y(W) ’

where G, is the free photon propagator for spatial po-
larizations and (je;je;) is the correlation function of the
electrical current. The photon propagator at zero spatial
momentum has a pole at w — 0: at low frequencies we
now zoom in on this pole to find for the resistivity r:

(EB(w)) ~ —(~iw)®

(3.31)

1 1
re~(—ilw)————— ~ —, 3.32
) @) " o (8.32)
where we have used the standard Kubo formula for the 0-
form global conductivity (jejei(w — 0)) = —iwo. Thus,

within this approximation scheme, it is indeed true that
the resistivity (defined via our Kubo formula) is equal
to the inverse of the conductivity of the current that is
being gauged.®

SO

FIG. 3: Example of new diagram that contributes to
electrical resistivity.

Note, however, that this class of diagrams is not the
only set of diagrams that one should include. One might
also imagine diagrams of the form Figure 3: computa-
tionally they arise from the fact that the photon is now
dynamical, and thus the classification of diagrams as
“one-particle-irreducible” has changed. Such diagrams
will contribute to (3.23): as they simply do not exist in
the theory of the global 1-form current j.;, they will nec-
essarily modify the conclusion above, changing r away
from o~!. We have not attempted a systematic study
of such diagrams, but it would be very interesting to
understand their effect. It seems likely that they can
be suppressed at weak gauge coupling, justifying the ap-
proximation scheme above, but it is an important open
issue to demonstrate precisely when this is possible.

IV. APPLICATION: DISSIPATIVE ALFVEN
AND MAGNETOSONIC WAVES

In this section, we study the collective modes of the
relativistic MHD theory constructed above. We will lin-
early perturb the background solution and determine the
dispersion relations w(k) of the resulting modes. We
organize the fluctuations in the following way: without
loss of generality, we fix the direction of the background
magnetic field by setting the h* field to point in the z-
direction, h* = (0,0,0,1) (note that its size is fixed by
the normalization of h*). Furthermore, we can use a
residual SO(2) symmetry to fix the 4-momentum as

k' = (w,q,0,k) = (w, ksin 6,0, k cos 0), (4.1)
so that 6 measures the angle between the direction of the
background magnetic field and momentum of the hydro-
dynamic waves. The background velocity field is fixed to

9 Here we have been somewhat cavalier with details. To make these
considerations precise, one should imagine performing the sum
over bubbles in Euclidean signature, then analytically continuing
to the retarded propagator at frequency w via wg — —iw before
taking the small frequency limit. We have assumed here that no
subtleties arise in this continuation.



u = (1,0,0,0) at rest and the background temperature
and chemical potential are kept general and space-time
independent. We then linearly perturb u*, h*, T and u
as

ut—s ut A Gyt e witigrTiks (4.2)
hH—s hH 4 ShH e—iw&+iqac-f—ikz7 (43)
T — T+ 0T ¢~ "itiartihz, (4.4)
= u+5u efiwt+iqz+ikz' (45)
Note that linearized constraints (2.14) impose that
udut =0, h,oht =0, wu,dht +h,6u=0. (4.6)

For a background source without curvature, i.e. H" , =
0, the fluctuations can be organized into two classes:

e Transverse Alfvén waves with

hy6ul= u,6h* = 0, (4.7)
kdut= k,6h* = 0, (4.8)
5T =6 =0. (4.9)

Note that the fluid displacement is perpendicular
to the background magnetic field; thus, they can
be thought of as the usual vibrational modes that
travel down a string with tension. These modes
were first discovered in the magnetohydrodynamic
context by Alfvén in [39]. For an introductory
treatment, see e.g. [40].

e Magnetosonic waves with du* and Jh* contained in
the space spanned by {u*, h* k*}. These are more
closely related to the usual sound mode in a finite
temperature plasma. We will see that there are two
branches of this kind: “fast” and “slow”.

We first study Alfvén waves. Solving the conservation
equations (2.4) and (2.5), we find the dispersion relation
for Alfvén waves to O(k?) to be

i 1 2 2
= dugk — = —— (nLsin® 0 20
W= FTvak 2(€+p(m in® ¢ + 1 cos” 0)

+ £ (rocos® 6 + 7| sin®0) )KJ2, (4.10)
p
where the parameter that enters the Alfvén phase veloc-
ity is

v4 = V3 cos? 6, Vi = glipp.

(4.11)

The expression for the speed of the wave is standard. Re-
call that pp is the tension in the field lines; in the nonrel-
ativistic limit (¢ + p) is dominated by the rest mass, and
this becomes the textbook formula for the speed of wave
propagation down a string. We are not however aware
of much previous discussion of dissipative corrections to
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Alfven waves; [41] studied a dissipative fluid perturba-
tively coupled to electrodynamics, and our expression re-
duces to their angle-independent result if we assume an
isotropic shear viscosity and no resistivity.

When the magnetic field is perpendicular to the direc-
tion of momentum, i.e. cos? = 0, the Alfvén wave ceases
to propagate and becomes entirely diffusive, as is usually
the case for transverse excitations in standard hydrody-
namics. Note that the width of the mode depends on
the momentum perpendicular to the strings; elementary
treatments of MHD often assume that the Alfvén wave
has no dependence on the perpendicular momentum at
all, which is sometimes taken as license to make it ar-
bitrarily high, allowing Alfvén waves that are arbitrarily
well-localized in the plane perpendicular to the field (see
e.g. [40]). Here, we see that this is an artefact of the
ideal hydrodynamic limit.

Turning now to the magnetosonic waves, a straightfor-
ward but somewhat tedious calculation shows that the
dispersion relations for the two magnetosonic waves are
given by

w= :I:anfiTnz, (4.12)
where
1

+ \/[(Vf, —V32)cos? 6 + VEsin® 0] ® 4 44 cos? B sin? 0}.

Note that “fast” magnetosonic waves have a + sign before
the square-root in Eq. (4.13) and “slow” magnetosonic
waves have a — sign. Above, we have defined the follow-
ing quantities:

2 SX

s2x + p?c — 2psA
Vi = , 4.15
5= = DE ) (19)
. 2

T(ex = A)*(e+p)’
and the susceptibilities:

7@ _ 0Os

oo 98 7357@
- ou’ - oT’

=5~ T (4.17)

X

It is easy to see that the formulae above predict gener-
ically the existence of a two fully dissipative modes at
§ = Z, namely the “slow” magnetosonic mode and the
Alfvén mode. We can interpret Vg as the speed of the
“fast” magetosonic mode at # = 7, a kind of speed of
sound for the system. At 8 = 0, on the other hand, one
magnetosonic mode has the same speed as the Alfvén
mode while the other one has velocity V. We plot these
velocities as a function of the angle 6 for some interesting
examples below.

The dissipative parts of these modes can be calculated

in a straightforward manner by going to one higher order



in derivatives using the formalism above. Unfortunately,
explicit expressions are rather cumbersome to write in
print. We quote below only the values for 7 at 8 = 0 and
) = 5, where we indicate which mode the width applies
to by specifying the value of the phase velocity at that

angle'’:
L/ UM)
Va0 =0) =~ [ TLEY 418
rma0=0 =g (A (419
1
= —— 4.1
T(Vo,0=0)= 5, (4.19)
2
STl (m, nteen
2 \sT T282x+pc—2ps)\)
(4.20)
m 1 /¢ +n
9_, -
(VS’ 2( e+p
T

(cTp + pAp — sTX — sux)?
T2(ex — A2)(s2x + p%c— 2psA)
(4.21)

While the coefficient (x enters into the dispersion re-
lations of magnetosonic waves, its coefficient is propor-
tional to sin®@cos?#, which implies that the magne-
tosonic dispersion relations have neither any dependence
on the bulk viscosity (x at # = 0 nor at § = 7/2. Notice
that the dissipative part (4.18) coincides exactly with the
6 — 0 limit of (4.10). This is expected, as in this limit
there is an enhanced SO(2) rotational symmetry around
the shared axis of background magnetic field and momen-
tum, relating the modes in question. As a result of this
coincidence the results presented allow the measurement
of only 5 of the 7 dissipative coefficients. As it turns
out, if we allow measurements at arbitrary angles, then
(x can be determined, but the value of 1, can’t be mea-
sured from the study of dissipation of linear modes alone.
By introducing sources, one can of course use the Kubo
formulae previously discussed to determine all transport
coefficients.

A. Magnetohydrodynamics at weak field

In order to recover the familiar results from standard
magnetohydrodynamics, we can take the small chemi-
cal potential limit, which corresponds to weak magnetic
fields. This is the regime in which the standard treatment
is valid.

In the weak field limit, we can expand the equation of

10 Note that depending on the equation of state and the specific
values of u and T (which determine the relative numerical mag-
nitudes of V4 and Vp) it can be either the fast or the slow magne-
tosonic mode that has phase velocity coinciding with the Alfvén
wave at § = 0, as can be seen explicitly in Figures 4a and 4b.
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state as (cf. (2.26))

1
Pueat (1, T) = po(T) + 5g*(T)p* + -+,

5 (4.22)

where po(T) and ¢(T') are temperature-dependent func-

tions that control the leading order behavior. In this
limit, to leading order,
2,2
vy = 93; cos?f + -, (4.23)
2 —
(UM)fast - CT +- (424)
(U]Q\/[)slow = g M C082 6 + T (425)

sT

This agrees with the standard treatment (for a rela-
tivistic discussion, see e.g. [41]). Notice that the slow
magnetosonic mode and the Alfvén wave are indistin-
guishable to this order. If we want to separate them we
need to go to higher order in the expansion. One nice
example when one can do this and obtain concrete ex-
pressions is in the case where p is much larger than any
other scale in the problem (while still being much smaller
than 72). In this case, we have no other scale and the
expansion of the equation of state to the necessary order
is:

Byt
u + 171 + -
where a, g and § are dimensionless constants. We find
the leading pu? effects on the velocities of modes to be

4pa 9

i 5 (4.26)

Pweak (,U, T)

2 2
szg,u

4= cos? O+, (4.27)

(U?W)fast = % %fjl’f sin @ + - -, (4.28)
(v?\/f)slow = 927,15 cos? O 4 -, (4.29)

vy — (UIQVI)SIOW =9 ;2 ap 5,8 sin” 26 + - (4.30)

In each of the expressions, we have kept only the first non-
trivial term to illustrate the angular dependence. The
factor of 1 in the leading order expression for (1)12\/[)fast
is characteristic of the sound mode of conformal fluids in
4 dimensions. The fact that sound is the fastest mode
is in agreement with our expectations at high tempera-
tures where propagation is by nature diffusive. Note that
both the Alfvén and the slow magnetosonic wave speeds
start at O(u?), which is the small expansion parameter
in this limit. Thus, they propagate very slowly indeed.
We present some illustrative plots of these dispersion re-
lations in Figure 4a.

B. Magnetohydrodynamics at strong field

The situation is quite different for a fluid in which mag-
netic fields are strong. Here, our formalism can make



concrete predictions away from the weak coupling limit.
For concreteness let us assume, similarly as in the pre-
vious discussion, that T2 is much larger than any other
scale in the problem, while still much smaller than p. In
that case we can write the equation of state in a small
temperature expansion (strong magnetic field) as:

12 a/ /8/ T8
Pstrong (,U,T) = LMQ + fT4 + < 3 4+,

4.31
2 4 8 1 (4:31)

where ¢’, ' and 3’ are dimensionless constants. The ex-
pansion above is shown to the second subleading order to
highlight that this expansion is, despite similarities, in-
deed different from (4.26). The fact that the leading or-
der terms agree (in form, but not numerical coefficients)
between the two expansions is a coincidence due to our
working in 4 dimensions.

From the above equation of state, we can calculate the
mode velocities to first non-trivial order in temperature
corrections:

U2—COSQ(9—G/ 4cos29—l—~-~ (4.32)
A g2 ) )
14
9 a'T 2
v P . 4.33
( M)fast 9/2/~L2 24 Sin2 0 ( )
1
(UJQVI)SIOW =3 cos® 0 (4.34)

T*cos? 6 ( 2

3a’? sin® 0
- gg/2a//-’[12 9 1L w2 T

2 +sin? 6

There are a few interesting features of these expres-
sions. For propagation in the direction of the magnetic
field lines, the Alfvén wave now has the same velocity as
the fast magnetosonic mode, instead of having the same
velocity as the slow mode, which was the case in the
large temperature expansion. Furthermore, the speed of
these modes is that of light in the strict 7" — 0 limit.
This feature is completely general and independent of
the particular no-scale assumption for the Alfvén wave.
Another important difference is that Alfvén modes can
only propagate along magnetic field lines while fast mag-
netic modes propagate in any direction.

The slow magnetosonic mode is somewhat peculiar.
Notice that the 3’ coefficient contributes at an earlier or-
der in 7" than in the other modes. A more striking related
feature is that the leading factor of % is not universal and
depends strongly on the power of the leading temperature
contribution. If, for example, a’ had been zero, we would
have found that the zero temperature velocity squared of
the slow mode in the direction of the magnetic field lines
was instead % Therefore, the high magnetic field limit
is non-universal for this mode. The reason behind this is
that this mode is the only one that contains 7" fluctu-
ations as p > T2. It is an interesting question weather
a universal hydrodynamic theory can be built that only
describes the physics of fluctuating chemical potentials
at fixed temperature if 1 > T?. We answer this question
in the affirmative in section VI.
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We present some representative plots of the velocities
in the strong-field expansion in Figure 4b.

C. Cyclotron mode

Lastly, let us mention that by introducing a non-trivial
curvature for the source of our generalized charge, we can
recover the familiar cyclotron mode of plasma physics in
the presence of a finite electric charge. At zero spatial
momentum in the presence of a spatial and isotropic ex-
ternal field H;j, = ne;j, we find that the system can
undergo cyclotron motion with frequency

2n
/ Ts.
1% 1+W

V. MAGNETOHYDRODYNAMICS WITH A
BARYON NUMBER

w==+ (4.35)

The theory that we have developed above demon-
strates the essential physics in the hydrodynamics of con-
served flux tubes. However, for phenomenological appli-
cations we should extend it slightly to also include a con-
ventional O-form global symmetry (e.g. baryon number).
This turns out to be entirely straightforward, and thus
we present here only results without derivations.

We denote the baryon number current by B*. We
have V,B* = 0, and we denote its conserved charge and
chemical potential by np and pp. The thermodynamic
relations of interest are:

(5.1)
(5.2)

€+p=upnp+up+Ts,
dp=sdT + pdu+npdup.

At the level of ideal hydrodynamics, the relations (2.12)
remain unaltered, and the expression for the baryon cur-
rent is

Bég) = ngu”. (5.3)
The conservation equation for T#" is modified to include
a contribution from an external gauge field Fp = dAp
that couples to the baryon current:

VI = HY,, JP + FiB,,. (5.4)

Just as before, the ideal hydro equations result in a con-
served entropy current su* at the ideal hydrodynamic
level.

If we move to first order hydro, the canonical form for
the entropy current is

B oqpvy Popu
7wl = 7Bay

We expand the first order correction to the baryon cur-
rent as

SH = gyt — lT’Wu

T (1) v (55)

Bé‘l) = dnput + ght + f*, (5.6)



V2

0.5 1.0 1.5

a) Velocities from high temperature equation of
state (4.26) with u/T? =04, a=g= = 1.
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b) Velocities from high field equation of state
(4.31) with T?/p =04, d =g’ =8’ = 1.

FIG. 4: Sample plots illustrating velocity squared of Alfven wave v% (solid black line), fast magnetosonic wave
(v3,)fast (dotted line), and slow magnetosonic wave (v3;)siow (dashed line) as a function of angle 6 between the
momentum of the wave and the background magnetic field.

with dnp and ¢ first-order scalars and f* a transverse
vector. It is convenient to use scalar redefinitions of the
baryon chemical potential to set dnpg = 0; then an en-
tropy analysis similar to that above results in the follow-
ing expressions:

g = —oyh" (Tau (“TB) - Ffj,uV) : (5.7)
fH=—o AW (Ta,, (/%3) - F,ff,u") 7 (5.8)

where the transport coefficients o | are simply conven-
tional global (if anisotropic) conductivities for the baryon
current.

VI. RELATIVISTIC MHD AT ZERO
TEMPERATURE

In this section, we turn our attention to MHD at zero
temperature. What do we mean by this? Normally, a
system at T = 0 is outside the hydrodynamic limit as
there is no way to properly define a long wave-length
limit compared with typical decay widths. Another way
of stating this fact is the following: at T' = 0 there is no
dissipation and this leads to long-lived excitations that
do not arise necessarily as a consequence of conserva-
tion laws, leading to the presence of gapless modes that
need to be included in the description of these systems.
Also common is the pressence of gapless Goldstone modes
when there is a broken symmetry.

There is however a physical situation of interest that
can be described from a hydrodynamic perspective. Con-
sider a system at a very low temperature compared with
the scale set by p. Is there a universal description of this
system? The answer is typically no. The reason is that
there are finite energy excitations around this equilib-
rium state that require understanding of the finite tem-
perature theory. An example of this feature is given by

the physics of the slow magnetosonic mode described in
section IV B. The situation is even more severe if more
light modes need to be included as 7" — 0. One can, in-
stead, consider a subsector of the theory where temper-
ature fluctuations are not allowed. In this case, we are
effectively studying a small part of the Hilbert space at
energies £ ~ pu@. In order to do this we can then restrict
to T' = 0 in our equation of state and study the universal
properties implied by the conservation of charge. Notice
that an important feature of this system is that entropy
is typically zero (i.e. the number of states we are consid-
ering is not exponentially large) according to the third
law of thermodynamics. A curious counter-example to
this seem to be holographic systems at finite density for
standard conserved 1-form currents [42]. We will be ag-
nostic about this for now and come back to this issue at
the end of this section around equation (6.36).

The program above can be carried out in standard hy-
drodynamics of conserved 1-form currents. See Appendix
B for a short discussion. The physics of this system is,
however, conceptually not fundamentally different from
usual hydrodynamics at T" # 0. The reason is that the
symmetry breaking pattern of a theory at finite density
but T = 0 is identical to the T" # 0 situation. It is always
the case that the SO(3,1) Lorentz symmetry is broken
down to SO(3). This is because the charge density still
selects a rest frame, even at T = 0.

The situation is much more interesting in our descrip-
tion of magnetohydrodynamics. At T'# 0 and p = 0 we
have the usual symmetry breaking pattern SO(3,1) —
SO(3). At p # 0, more symmetries are broken: the pres-
ence of background magnetic fields leads to the choice
of a preferred spatial direction, further breaking Lorentz
symmetry as SO(3,1) — SO(2) and leading to the richer
theory described in the previous sections. What happens
at T'= 0 and p # 07 Interestingly, the situation is dif-
ferent from the case discussed before. At T" = 0, there
is only an anti-symmetric tensor turned on in the back-



ground responsible for the magnetic field. This configura-
tion is invariant under Lorentz boosts along the magnetic
field lines. Therefore, in this case we have an enhanced
symmetry SO(3,1) — SO(1,1) x SO(2) with respect to
the finite temperature case.

This novel symmetry breaking pattern implies that
the thermodynamic variables necessary to describe the
system are completely different from the discussion in
Section II. In what follows we describe this new theory.
There are concrete applications of this formalism in the
understanding of systems at strong magnetic fields, such
as some astrophysical systems.

A. Effective degrees of freedom

The relevant hydrodynamic fields are a scalar chemical
potential 1 and an antisymmetric u,,, field that parame-
terizes the rest frame enjoying SO(1,1) x SO(2) symme-
try. We normalize it as

(6.1)

U ut”’ = =2

As in usual hydrodynamics, the normalization is possi-
ble as p carries this information. What is crucial, how-
ever, is the sign above, signalling that the tensor above
is “mostly” in the plane acted on by SO(1,1). This is
similar to the familiar u,u" = —1 constraint. We would
like, however, u*” to satisfy a stronger constraint and live
entirely in the plane acted on by the SO(1,1), so there
exists a frame where the charge is entirely at rest. This
is enforced in a covariant manner by further demanding
that

uuy, ,uf? = uh.

(6.2)
It will be convenient to introduce a symmetric tensor
QM = ul . (6.3)

The tensor € is the SO(1,1)-invariant metric on the
2d subspace spanned by the magnetic field. It projects
any index onto this subspace. We will also make use of
the projector orthogonal to this subspace, which projects
onto the SO(2)-invariant sector:

M = gt — Q1 (6.4)

with trace II¥, = QF, = 2. Henceforth, we will focus on
the theory in flat space, g, = 7,,. It will also be useful
to visualise our construction in a Cartesian coordinate
system aligned to the magnetic field by setting u** =
—u*t = 1, while all remaining components are zero. The
SO(1,1) group then acts on (¢, z) and leaves invariant the
metric Q,,,. SO(2) acts on (z,y) and leaves invariant the
metric I, .

We can now write down the most general stress-energy
tensor and the antisymmetric conserved 2-form in flat
space:

T(‘S'; = —c QM 4+ pIIH",

6.5
Jégl; = pumjv ( )

14

where ¢, p and p are functions of u only. It is also im-
portant to note that the thermodynamic relation (2.19)
has now become

e+p=up, dp = pdp. (6.6)

We can recover the zero temperature hydrodynamic
theory of (6.5) from the finite temperature theory (2.12)
by the following identification of the hydrodynamic vari-

ables:
u? = 2ulrp, (6.7)

keeping p finite and sending T to zero. In this language,
the symmetric SO(1,1) and SO(2) metrics are

QW = hHhY — utu”, (6.8)
" = gt + ufu” — h*hY = A*Y, (6.9)
where A" is the finite temperature projector from Eq.

(2.15).

At T? < pu, we, therefore, expect a universal subsec-
tor of hydrodynamics to satisfy, in the ideal limit, the
dynamical conservation equations

VNT(‘(‘;)’ =0,

VHJ(‘B'; =0,
with the constituent relations (6.5).

As always, it is important to check that this system of
equations closes and is not overdetermined. The system
we are considering has a priori 5 degrees of freedom given
by the scalar p and the four degrees of freedom in u,,
subject to the constraints (6.1) and (6.2). These four
degrees of freedom can be viewed, in terms of symmetries,
as the non-trivial action of the Lorentz group on a tensor
preserving the SO(1,1) x SO(2) symmetries.

On the other hand, we see that the system above con-
sists, naively, of eight equations of motion. This presents
a danger, as the system of equations could be overdeter-
mined. This is, however, not so. One of the equations
(the time component of the charge conservation) is actu-
ally a constraint, as in the T # 0 case. This constraint is
consistently propagated by the other equations of motion.
Thus, enforcing this constraint removes two equations of
motion and one degree of freedom, still leaving an excess
of two equations. For this system to not be overdeter-
mined they need to be trivial. Luckily this is exactly the
case for (6.5). Consider the equation

(6.10)
(6.11)

(Y, T") Qs + (VI Yy = 0. (6.12)

This equality is satisfied off-shell for any field w,,
satisfying the constraints (6.1) and (6.2), and thus the
two equations of motion that it contains are redundant.
Therefore, the system of equations under consideration
is consistent as a full set of non-linear partial differential
equations. Interestingly, as we elaborate on in Appendix
B, (6.12) can be viewed as the natural zero-temperature
generalization of the equation for the conservation of the
entropy current at finite temperature.



B. Beyond ideal hydrodynamics

We now move beyond ideal hydrodynamics. From the
structure of available tensors, it is clear that there are
no suitable one-derivative structures as they would have
an odd number of indices. Therefore T(’f)' = J(“ll; = 0.
The leading order corrections only enter at the level of
second-order hydrodynamics. This observation, which
follows only from available tensor structures is consistent
with the fact that at T = 0, the theory is expected to
be non-dissipative. Since first-order corrections to ideal
hydrodynamics are normally purely dissipative, such cor-
rections should be absent.

To determine the form of the potential second-order
corrections, we first discuss the decomposition of an ar-
bitrary tensor under SO(2) x SO(1,1). Using a,b, ... for
SO(1,1) indices and i, 7,... for SO(2) indices, an anti-
symmetric tensor s*¥ breaks into three blocks: s* and
5%, which are tensors under SO(1,1) and SO(2) respec-
tively, as well as the off-diagonal elements s* that trans-
form as a product of vectors under SO(1,1) and SO(2)
(denoted as v®wv). A similar classification holds for sym-
metric tensors t*¥, except that we can also extract out
the scalar traces of the tensors t* and t%.

The three projectors onto the tensor representation of
SO(1,1), SO(2), and vector representations of SO(1,1)®
SO(2) are

SO(1,1) : P(}:Jy)pa = Q0% (6.13)
S0(2) : P(lﬁl)pa = T, 1%, (6.14)

VR : Plyype = 2,1, + 119,07, (6.15)

with traces P(/iz)upa = on7 Pg‘[)upg = HPU and Pﬁ'f))upo =

0. Hence, the symmetric and traceless projectors of an
arbitrary matrix M*#" onto the three sectors are

s 1
SO(1,1) : (P((jj)lja - 29“"QPU>MP", (6.16)
SO . (pv) 1 1224 po
(2) : Pty = 510" e | M7, (6.17)
VU P MP7, (6.18)

and the antisymmetric parts follow from P[W]MM P? in
all three cases.

We now use this classification to parametrize the most
general correction to (6.5), i.e. the analog of (3.3) at zero
temperature:

T(’g = — Je QM + 6p TIM
nuv Y nv
+tsoa,1) T lsoe) T tuae

J(‘;l; = dp ut” + ’SZ'VO(Q) + sﬁ(’év,

(6.19)

Here, a two-index object with the SO(2) or the SO(1,1)
subscript indicates that the object transforms as a tensor
under the appropriate group, whereas the v ® v subscript
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indicates that it transforms as a product of vectors under
SO(2) and SO(1,1). Note that in the antisymmetric
sector, any putative Sl,st'l(l)(l,l) is proportional to ©**, and
thus any corrections from those terms have been included
in the dp u"” term.

We now note, paralleling the discussion around (3.3),
that we may exploit the possibility to change the hydro-
dynamic frame under a scalar redefinition y — p+d0u and
an antisymmetric tensor redefinition u*” — u*¥ + dur”.
The redefinitions are subject to two constraints: firstly,
the perturbation of the normalization constraint (6.1) re-
sults in

U our” = 0. (6.20)

Secondly, the perturbation of the subspace constraint
(6.2) can be written in the following form:

(v

_ o phr
(Myps — 28

(w)po

) SuP? = 0, (6.21)
This annihilates the part of du*” living in the SO(1,1)
and SO(2) tensor blocks, meaning that it lives entirely
in the (antisymmetric part of the) vector ® vector block.
This automatically implies the first constraint, i.e. Eq.
(6.20).

By using the scalar redefinitions of u, we may elimi-
nate a single scalar correction in (6.19), which we take
to be dp. Furthermore, using the antisymmetric tensor
redefinition of u*”, we may further remove the vector ®
vector term s, . Thus, we find the simpler frame-fixed
structure of corrections to the conserved hydrodynamic
tensors to be

T{g = — §e QM + §p TIM

+ 500, T 500 T toww (6.22)

Tty = Sso(2)
These expressions are analogous to the finite tempera-
ture expressions in Eq. (3.5). The task is now to deter-
mine these six corrections in terms of the available second
derivative objects. For the purposes of this paper, we will
only focus on terms that play a role in linearized hydro-
dynamics and enter into linear dispersion relations. As
is well known in the hydrodynamics literature [6, 9, 11],
a full nonlinear analysis even at a two derivative order
typically involves tens of possible structures.

We expand the effective degrees of freedom to linear
order,

w— o+ o, Upy = Upy + Oy, (6.23)

where we take p and w,, to be constant. Note that to
linear order we can write all structures efficiently in mo-
mentum space spanned by k*. Furthermore, it will come
in handy to make use of the decomposition into SO(1,1)
and SO(2) indices. Following the notation above

Upy — Uab , (624)
5ul“, — 5“[(11’] s (6.25)
K — (wq"). (6.26)



We find in this approximation the following allowed ten-

sor structures!!:

e = Ca,y (@ ou™ ugpw®], (6.27)
op = C(z) [(Ii Su Uab wb] ) (6.28)
a1 = N [2%‘ ou (WY
—0%q; 6u ueg w?] (6.29)
tgjo@) =72 [QCIU u gy
—T1Y g, 5u™ gy ] (6.30)

ai _ jia _ bj,, a,i
tv®1; - tv@v =1 [qjéu Uy q ]

+11 [(5ubi uy wwe| + v [(5ubi ubaqjqj] ,(6.31)
ng(Z) =0, (6.32)
with transport coefficients parameterized by ((11), ((2),
M(1,1)s 1(2)s Yo, V1, V2. Note that at linear order no anti-
symmetric tensors in the SO(2) sector remain after using
the equations of motion of the ideal system. The details
behind this construction are described in Appendix C.
Importantly, it turns out that not all of these correc-
tions are permitted for a consistent system: we discuss
this in the next section.

C. Application: Modes of the system

To find the modes of MHD at zero temperature, we
apply the same procedure as in Section IV. We choose
coordinates such that the background is given by u!* =
—u?' = 1 and the other components equal to zero. In
our covariant notation from before, we identify ¢, z with
a,b,...and x,y with 4, 7,....

As in the previous case, we can always use the SO(2)
symmetry to rotate the ¢ momentum into the z axis.
But in this case we can also make use of the SO(1,1)
symmetry acting on the (¢, z) plane. Differently from the
SO(2) case, here, there are two different representations
of SO(1,1) that we can consider'?. An SO(1,1) vector
w® can be:
ww, =0,

e lightlike:

e timelike: w®w, < 0.

Let us first consider the lightlike case and choose

wt = w, w* = w, ¢ = ¢q ¢ = 0. Solving the system

11 Here we have demanded that corrections to the energy momen-
tum tensor should be even under upy, — —uuw, Su® — —fu?,
as the ideal term. This is consistent with the charge assignments
in Table I.

12 In principle, one could also have spacelike representations
wwq > 0. They correspond, however, to dissipative modes not
present in this non-dissipative 7' = 0 theory.
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of equations, we find this choice is a solution for excita-
tions in the Alfvén channel,

uttq; = dutw, =0, Su=0. (6.33)
Notice that this implies that Alfvén waves have disper-
sion relations manifestly independent of ¢. Using the fa-
miliar representation familiar from the finite temperature

case,

k' = (w,q,0,k) = (w, ksin 6,0, k cos 0), (6.34)
we obtain the dispersion relation
wa =k =rcosh. (6.35)

This dispersion relation is also manifestly independent
of all transport coefficients. One might have expected
that higher derivative corrections could have modified it,
making the Alfvén mode into a timelike representation
of SO(1,1). This is not the case, however. Furthermore,
it is simple to see that this situation persists to all orders
in derivatives. A correction to the linear equations of
motion appears in the form of a vector linear in du’®. In
order to make a vector, one of these two indices needs to
be contracted, but for Alfvén waves all contractions van-
ish and the dispersion relation cannot be corrected at any
order in derivatives. The result (6.35) is, therefore, com-
pletely universal in any magnetohydrodynamical theory
at high enough i > T? and it agrees with our large p ex-
pansion (4.32). The mode corresponds to the transverse
fluctuation of magnetic field lines. This fluctuation can
only move in the direction of the magnetic field and at
the speed of light as seen from (6.35).

Now, consider the second, timelike case. It is now pos-
sible to use the symmetries to choose w! = w, w?* = 0,
q° = q, ¢ = 0. These modes correspond to magnetosonic
excitations. In this case the higher derivative corrections
do contribute to the dispersion relation.

There remains an important point that constrains
these higher derivative corrections. In the previous dis-
cussion concerning the ideal fluid at T' = 0, it was of cru-
cial importance that two equations in the system (6.12)
happened to be trivial for the system not to be overdeter-
mined. This property of the differential equations is lost
once the higher derivative corrections are included. It ap-
pears that ensuring the system to not be overdetermined
is a more dramatic version of the usual requirements that
apply to the divergence of the entropy current (in stan-
dard hydrodynamics) and severely restricts the possible
number (and signs) of transport coefficients.

A complete resolution of the issue and enumeration
of the resulting constraints on second order coefficients
would demand understanding the full non-linear behavior
of the theory, which lies outside the scope of this article.
For linear perturbations, it is interesting to remark that
the formerly trivial equation (6.12) can be written as a



total divergence:

(VuTH) Qs + (Vo JHY ) gy ~

Vi (T Qun + 07wy =p Q") . (6:36)
Therefore, a sufficient but not necessary condition for
consistency at the linear level is to demand that the term
inside the divergence vanish identically. This is some-
what reminiscent of a third law of thermodynamics at
T = 0. This condition would have the effect of setting
C1,1) = N1 = vo = v1 = vy = 0, leaving only ((2)
and 72y available. Unfortunately, this condition is not
sufficient at the non-linear level; terms that have been
omitted from (6.36) can spoil the consistency relation.

Therefore in this article we take a more conservative
stance and simply demand the minimal condition for the
linear system to be self-consistent. Explicit solution of
the equations of motion for the magnetosonic mode yields
the necessary condition:

Vg = —Va + L (V1 — N, + <(171)) ) (6.37)
X
and gives the following dispersion relation:
wy = * L q <1
X
2y [(Cu,n — ) = % (o + ’7(2))} q2> :
(6.38)
where y = g—z. Boosting this result in the (¢, z) plane,
we get
wy =+ (va + aMm?’) , (6.39)
with
oy = \/cos2 0+ 2 sin?0 (6.40)
1224
and
sint 6
o

213X cos? 6 + L sin% 0
X
1ix
x [(Cu,l) “ian) =S (Co) + )| - (6.41)

In the particular case when no other scale enters the

problem, we must have 2 = 1 and the formulae above

agree with (4.34). In this case, the speed of the univer-
sal magnetosonic mode is that of light in the ideal limit,
but it can be corrected at higher order in the derivative
expansion. As expected, this must impose causality con-
straints on the transport coefficients.
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VII. CONCLUSIONS AND OUTLOOK

In this work, we have systematically developed the
hydrodynamic theory of a 2-form current at finite tem-
perature, describing the dynamics of a finite density of
strings as it relaxes towards thermal equilibrium. As we
have emphasized, the conventional theory of relativistic
magnetohydrodynamics fits into this general class of the-
ories, where the density of strings represents magnetic
flux. Thus our work may be viewed as a construction of
a generalized theory of MHD from the point of view of
symmetries and effective field theory, making no refer-
ence to any sort of weak electromagnetic coupling. For a
particular choice of equation of state (one in which tem-
perature and chemical potential decouple entirely) our
theory reduces to conventional MHD, but this choice is
not required on effective field theory grounds.

We also worked to first order beyond ideal hydrody-
namics, finding that there are a total of seven transport
coefficients that can be interpreted as anisotropic resis-
tivities and viscosities. Along the way, we provide a pre-
cise definition of a resistivity for a dynamical U(1) gauge
theory and explain how this resistivity can be computed
microscopically from Kubo formulas involving correlation
functions of the electric field operator. It is interesting
to note that we expect that our universal resistivity will
precisely coincide with the inverse of the conventionally
defined conductivity of the “gauged” electric current only
at weak electromagnetic coupling.

While our theory is conceptually satisfying, it also
makes precise physical predictions. For example, as a
first step, we studied small fluctuations around ther-
mal equilibrium, identifying within our framework well-
known magnetohydrodynamic modes. We systematically
study of the dissipation of these modes, obtaining (to
the best of our knowledge) novel physics, such as angle-
dependent dissipation of Alfvén and magnetosonic waves.
In principle, these predictions are open to experimental
verification.

We then turned to a truncation of the theory at low
temperatures: this involves an emergent Lorentz symme-
try along the background magnetic field lines, and as a
result hydrodynamic fluctuations involve a fluid tensor
rather than a fluid velocity. This leads to an interesting
generalization of hydrodynamics. We initiated the study
of this new framework, working out the structure of lin-
ear perturbations and listing possible higher derivative
corrections to second order in fluid momenta. We find it
particularly interesting that a consistency condition on
the closure of the differential equations appears to play a
role analogous to the constraints imposed by the second
law of thermodynamics in conventional hydrodynamics.
This deserves further exploration.

There are many directions for future research. One
could imagine studying this hydrodynamic theory from
holography, by developing the magnetohydrodynamic
analog of the fluid-gravity correspondence [7]. The dual
of the 2-form current will now be a 2-form gauge field



propagating in a five-dimensional bulk. It turns out that
the background black hole solution corresponding to an
equilibrium fluid is S-dual to the black holes studied in
[43], and our theory could be tested by studying pertur-
bations around this background.

A further direction is to understand the formulation
of MHD, in light of our work, in the language of the
effective field theory of Goldstone bosons for space-time
symmetry breaking along the lines of [44]. As generalized
global symmetries provide new examples with potentially
novel symmetry breaking patterns, these theories provide
a natural arena to test the power of the formulation in
[44]. Such a framework may allow for the systematic
study of fluctuations. It would also be interesting to go
to higher orders in hydrodynamics and to understand any
possible instabilities in the long-distance hydrodynamic
theory in our formalism.!3

Finally, we stress that our theory differs from that of
traditional MHD, as it separates the universal constraints
of symmetry and the effective theory of hydrodynamics
from non-universal artefacts that arise from assuming a
weak electromagnetic coupling. As we explain in the in-
troduction, the effective strength of electromagnetic in-
teractions in sufficiently dense plasmas can be very large
indeed, and it would be very interesting to explore if our
generalized theory of strings could be experimentally rel-
evant for plasma physics.
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Appendix A: Ideal fluid partition function and
thermodynamics

In this Appendix, we follow [10, 45] to derive the equi-
librium form of the ideal stress-energy tensor and current
(2.12)

T(’é’; = (e + p)utu” +pg"” — pp h*h",

JH = 2pulrptl

(0) (A1)

from a partition function. This is done by writing down
the form of the most general Euclidean partition func-
tion in the presence of static (but spatially dependent)

13 See [21] for a recent discussion of stability of (Navier-Stokes)
hydrodynamics in connection with the Israel-Stewart theory.
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metric and 2-form gauge field sources. Gauge and diffeo-
morphism invariance constrain the form of this partition
function, providing an efficient way to derive constraints
the hydrodynamic stress-energy tensor and currents. As
we are performing a static Euclidean computation this
only allows access to objects that can be probed by equi-
librium fluid flows.

We should first define what is meant by “equilibrium”.
In conventional fluid dynamics, to have an equilibrium
solution one requires a timelike Killing vector £ to define
the direction of fluid flow u* ~ &*. We will also require
an additional spacelike Killing vector ¢ to define the di-
rection of the strings h* ~ (*. Note that with no loss
of generality we may take £ - ( = 0. Provided that these
two vectors have vanishing Lie bracket, L = 0, it is
straightforward to show that such a field profile satisfies
the equations of motion arising from the conservation of
(A1), corresponding to a fluid at rest with the strings
oriented in the direction of (.

As £ and (¢ have vanishing Lie bracket, we can take
them to define a coordinate system (¢,z). Thus we may
write the background Lorentzian background metric of
the form

ds® = 9ij (zk) dz'da?
+ gab (2°) (da® — A} (azk) dz') (dxb — A (xk) dz').
(A2)

Where here a, b run over t, z and i, j run over the remain-
ing coordinates. Furthermore, since £-¢ = 0, we may take
the metric in the (¢,z) directions to be diagonal,

Gapdztda® = —gudt® + g..dz>2. (A3)
We are now interested in accessing the physics of this
equilibrium flow from a Euclidean partition function.
Thus, consider the Wick rotation of (A2) to Euclidean
signature. We identify Euclidean time with period T(;1
and we identify the z coordinate with period Ly. We fur-
ther expand all quantities in derivatives in the remaining
x' directions.

What is the gauge-invariant data on which the parti-
tion function can depend? To lowest order in derivatives,
it can depend on the proper distances around the time
and z cycles:

gtt(ﬂﬂi)
Ty '’

Gzz (xi)LOa (A4)

as well as the gauge-invariant Wilson “sheet”, corre-
sponding to the integral of the background source B,
over the (t, z) torus:

W(z') = /Btz(xi)dtdz = Btz(xi)%j.

(A5)

Now to the lowest order in derivatives the partition func-



tion will take the form:

logZ =W
1
-7 / d*x\/=gP (Tov g“,Lo\/gzz,Btz\/g”gZZ> ;

(A6)

where we have chosen to take as an independent variable
the Wilson sheet normalized by the proper distances, and
where everything depends on the transverse coordinates
x'. Now if we assume that the z coordinate distance L
is much bigger than the other scales in the problem we
can neglect the dependence of the partition function on

it, and conclude that

W(L — 00) = Ti / d*ov/=gP (To\/9", Bi /9" 97 )

i (AT)
For notational convenience we will denote the two argu-
ments of P by a and § respectively. Now we use the
definitions of the stress-energy tensor in terms of func-
tional derivatives with respect to sources:

2Ty OW
Ty (x) = —ﬁma (A8)
JH (z) = To oW (A9)

Vg 0bu(x)’

to conclude:

T = —g' (73 — Vg0, P — \/Q”?Btzaﬁp) )

(A10)
T =Pg¥, (A11)
T = ¢g** (P — g“gzthzagP> , (A12)
Jtz gt g7#0gP. (A13)

These expressions have precisely the form of the ideal
hydrodynamic stress-energy tensor postulated in (A1),
with the identifications:

p(z) = P(x), (A14)
e =—P +g"¥To0,P + /gt g??0sP, (A15)
p= 5P, (A16)
gttg** By, . (A17)

If we further identify
T= V gttT07 § = 6(17Da (A18>

we find that the expression for the energy is actually the
thermodynamic identity
e+p=Ts+ pp. (A19)

Note that the relation dp = sdT + pdu is now automati-
cally satisfied.
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It was shown in [10, 45] that, in general, such consid-
erations can be extended to higher orders in the deriva-
tive expansion, and provide an alternative route to de-
riving the constraints on transport that arise from the
local form of the second law. It would be interesting to
understand whether this is the case for the higher-form
current studied in this paper.

Appendix B: Hydrodynamics of a 1-form current at
zero temperature.

Here, we discuss the physics of a zero-temperature
standard hydrodynamics with a 1-form conserved cur-
rent, rather than the 2-form theory (cf. Section VI). As
this is a simpler version of the theory discussed in Section
VI, we will be somewhat brief.

The theory has a conserved stress-energy tensor and
1-form U(1) current. The degrees of freedom are a nor-
malized fluid velocity and the chemical potential p. At
the ideal level the stress-energy tensor and current are
given by

Ty = (e +p)uru” +pg",  ji =pu", (Bl

where the relevant thermodynamic relations are just as
in (6.6)

e+p = pp, dp = pdy. (B2)
We note that there are a total of four degrees of free-

dom (in 4 spacetime dimensions). However, there are
five equations of motion:

VT =0,

Vi) =0 (B3)
Thus, this system naively appears overconstrained. This

is an illusion, as in fact the combination of equations
(VuTH ) uy + pV " =0 (B4)

holds off-shell, i.e. for any stress-energy tensor and cur-
rent that are parametrized in terms of fluid variables as
in (B1). Thus, this equation is redundant, and we have
four dynamical equations for four degrees of freedom.

It is interesting to note that in the usual finite tem-
perature theory of ideal hydrodynamics, (B4) is instead
(off-shell) equal to the divergence of the entropy current.
Thus, it is tempting to think of the vanishing of the en-
tropy at zero temperature as the key principle that allows
a consistent zero-temperature hydrodynamics.

We do not describe solutions to the set of equations
(B3) in great detail, except to state that they admit a
linearly dispersing sound mode with dispersion relation

2_ P _dp
s — T X= > -
X dp
It would be interesting to develop this theory further,
e.g. to go beyond ideal hydrodynamics, or to understand
whether it can be related to fluctuations of holographic
finite density systems at zero temperature such as those
studied in [46, 47]. We leave these questions to future
work.

w? = 02k v (B5)



Appendix C: Classification of tensor structures in
MHD at zero temperature

In order to write all possible higher order (in deriva-
tives) modifications of the constitutive relations (6.5),
one needs to construct all possible tensors of the desired
type out of the building blocks provided by the effective
degrees of freedom. In our case, after linearization (6.23),
these are

6uai; Uab, wavqia 6:“ (Cl)

Notice that we have used the same notation as in the
main section of this paper where SO(1,1) indices are
given by a,b,... and SO(2) indices by 4,7,.... the fact
that du® is in a bi-fundamental representation is a direct
consequence of the constraint (6.2).

An expansion in derivatives is an expansion in w® and
¢*. To first order, it is straightforward to see that no
two index object can be constructed with the above in-
gredients. This implies that at 7" = 0 we can’t correct
our ideal equations to first order. The situation becomes
more interesting at second order.

As in standard hydrodynamics, the classification of
tensor structures for higher derivative corrections is
greatly simplified by making use of ideal equations of
motion. Because this is a perturbative construction per-
formed order by order, one can always use lower order
equations of motion in constraining higher order terms.

The ideal equations of motion can be efficiently writ-
ten by projecting them onto SO(1,1) and SO(2) vector
equations. First, consider the conservation of the anti-
symmetric current J*¥:

SO(1,1) 1 xwpu’ dp = pg; Su™, (C2)
S0(2) : (C3)

The first of the above equations states that any SO(1,1)
derivative of du can be expressed in terms of the deriva-
tives of du®. The second equation states that we cannot
contract éu® with w®.

The conservation of T#¥ can also be decomposed and
expanded to linear order to yield

pwadu® = 0.

S0O(1,1) :
SO(2) :

px W S = g p i buuy’,
pq'Sp = ppuwaduy’.

The first equation above is identical to the SO(1, 1) equa-
tion arising form J#¥ conservation. This was pointed out
around (6.12) and is a crucial feature that allows for the
consistency of the equations. The SO(2) equation im-
plies that SO(2) derivative of du can be written in terms
of derivatives of du®. A straightforward consequence is
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that by using the above remarks, we can disregard du
completely in building our higher derivative corrections,
as this is not an independent quantity.

One can also consider further constraints that appear
at the level of two derivatives by considering the “inte-
grability” conditions:

0=wlwtlsy = L qi 5u0iuc[awb}7 (C6)
X
0= q[iqj]éﬂ = ,uu“bwadub[iqj], (07)
s o :
gt = ﬁ g; 6uPluy g’ = uPwpdu,'w®.  (C8)

These constraints end up reducing the number of inde-
pendent antisymmetric and bi-fundamental tensors.

Armed with the above constraints, we can classify all
tensors quadratic in derivatives, (or quadratic in powers
of w?, q'). Notice that because we build only linear struc-
tures and du has been excluded from the building blocks
as a consequence of the ideal equations of motion, the
tensor du® must appear exactly once in all tensor struc-
tures. Lastly, we consider a theory respecting the charge
assignments of table I. This implies that all corrections
to the energy momentum tensor 7"” must be even under
(W = —Upy, 0u™ — —6u) , while corrections to the
current J*¥ must be odd.

Using these rules, we construct all possible scalars and
tensors:

e (even) scalars: du®q;u, wy,

e (even) symmetric traceless SO(1,1) tensors:
2q; du’? uc(a Wb — Qg U ueq w?,

e (even) symmetric traceless SO(2) tensors:
2¢" 1) ugp wb — II9 g, Su wgp W,

e (even) bi-fundamental tensors:  gjéublu,%q’,

Sub? U wwe, Sub? ub“qjqj ,
e (0odd) antisymmetric SO(2) tensors: none.

These structures match exactly the expressions (6.27-
6.32). A few comments are important regarding details
in the construction of the above structures. First, one
could have guessed that a new symmetric SO(1, 1) tensor
can be built by acting on the one above on both indices
with u%,. The tracelessness condition implies this new
tensor is equal to the one presented above. Also, one
could have naively constructed a fourth bi-fundamental
tensor, but this one can be expressed in terms of the ones
above by the “integrability” constraints. Lastly, parity
under (u,, — —uW,(Su“i — —du®) is responsible for
the absence of SO(2) antisymmetric tensors. Even if the
parity condition were to be relaxed, the constraints would
still prohibit this structure.
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