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Abstract 

The lens fiber major intrinsic protein (otherwise known as aquaporin-0 (AQP0), 

MIP26 and MP26) has been examined by mass spectrometry (MS) in order to 

determine the speciation of acyl modifications to the side chains of lysine residues 

and the N-terminal amino group. The speciation of acyl modifications to the side 

chain of one specific, highly conserved lysine residue (K238) and the N-terminal 

amino group of human and bovine AQP0 revealed, in decreasing order of abundance, 

oleoyl, palmitoyl, stearoyl, eicosenoyl, dihomo--linolenoyl, palmitoleoyl and 

eicosadienoyl modifications. In the case of human AQP0, an arachidonoyl 

modification was also found at the N-terminus. The relative abundances of these 

modifications mirror the fatty acid composition of lens phosphatidylethanolamine 

lipids.  This lipid class would be expected to be concentrated in the inner leaflet of the 

lens fiber membrane to which each of the potential AQP0 lipidation sites is proximal. 

Our data evidence a broad lipidation profile that is both species and site independent, 

suggesting a chemical-based ester aminolysis mechanism to explain such 

modifications. 

 

1. Introduction 

Membrane-associated peptides are known to undergo intrinsic lipidation reactions by 

acyl transfer from membrane lipids [1]. The benchmark peptide for this process is 

melittin, which is lipidated in synthetic liposomes on the N-terminal amino group and 

on the side chains of internal lysine and, less commonly, serine residues
 
[2,3]. In the 

intrinsic lipidation reactions of melittin, little selectivity is found for the aminolysis 

reaction with the sn-1 and sn-2 glyceryl esters, and the acyl group distribution of the 

lipidated products reflects the fatty acyl composition of the liposomal membrane. In 

principle, membrane-embedded proteins should be susceptible to similar reactions in 

situ, but this is still an open question and the importance of non-ezymatic acylations is 

still being established [4]. Lipidation events that do not correspond to any of the 

known consensus sequences for enzyme-mediated modifications and exhibit an acyl 

group profile that reflects the lipid composition of the proximal membrane leaflet 

would be the first evidence for non-enzymatic lipidation. The eye lens contains some 

of the oldest proteins in the mammalian body and integral membrane proteins, such as 

AQP0, are excellent candidates to test this hypothesis. There are two known lipidation 

sites in AQP0 one at the N-terminus and the other at Lys-238 (Fig. S1-S3) [5–7]. 

Neither match consensus sequences for enzymatically mediated lipidation events.  In 

vitro palmitoylation of AQP0 has been shown to be a post-translational, rather than a 

co-translational, event [8]. The longevity of lens proteins such as AQP0 in the plasma 

membrane of lens fiber cells [7], and the fact that all intracellular organelles are 
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removed during lens fiber cell differentiation [9], provides conditions under which 

modifications by acyl transfer from the membrane lipids will accrue [10]. In this 

paper we examine the lipidation profile of AQP0 from bovine and human lenses, with 

the specific objective of determining the acyl group diversity at these known 

lipidation sites.  

 

2. Materials and Methods 

Materials. Bovine eye lenses were obtained from Linden Burradon Food Supply (FSA 

Approval No. 2056) from calves of age 6–12 months. Human lenses (22 years old) 

were obtained from the Bristol Eye Bank with national research ethics committee 

approval and were used as recommended by the Declaration of Helsinki and 

following the procedures recommended under the Human Tissue Authority license to 

the University of Durham. Proteomics grade trypsin from porcine pancreas was used 

(Sigma-Aldrich, Dorset, UK). 

 

Lens Membrane Extraction. A sequential extraction procedure designed for integral 

membrane proteins [11] and adapted to purify lens membranes highly enriched in 

AQP0 [5,12] was used. Lenses were decapsulated and aqua-dissected by stirring in a 

buffer composed of 10 mM sodium phosphate (pH 7.4), 100 mM NaCl and 5 mM 

EDTA (buffer 1) to remove sequentially the youngest (cortical) fiber cells through to 

the oldest (nuclear) fiber cells. Cells were centrifuged and resuspended successively 

in buffers containing high salt, ammonium bicarbonate, urea and sodium hydroxide. 

At the conclusion of the extraction procedure, membrane pellets were stored in buffer 

1 containing 0.02% sodium azide (w/v) as a preservative and kept at 4 °C until 

analysis. 

 

Intact Protein Analysis. Bovine AQP0 was solublized in buffer 1 by the addition of 

0.8% perfluorooctanoic acid (w/v) before centrifugation (mini centrifuge, 1 min). The 

supernatant was analyzed by reverse phase LC using an Xbridge BEH300 C4 column 

(3.5 µm particle size, 2.1 mm internal diameter, 150 mm length, Waters Ltd., USA) 

with a flow rate of 200 µl/min and a linear gradient (A:B) of 95:5 to 5:95 over 10 

min, then 0:100 for 5 min, where A is water and B is MeCN, both containing 0.1% 

formic acid (FA). An LC-FT-ICR mass spectrometer equipped with a 7 T magnet 

(LTQFT from ThermoFisher) was used to acquire positive ion mass spectra. Spectra 

were deconvolved using the Qual Browser software (ThermoFinnigan) and an 

overlapping time window approach. 

 

Trypsin Digestion. An aliquot of 100 µl of resuspended AQP0 in buffer 1 plus 0.02% 

sodium azide was combined with 10 µl each of DTT (100 mM) and trypsin (0.2 

mg/ml in 50 mM acetic acid) and incubated at 37 ˚C for 24 h. All AQP-0 digests were 

analyzed using an Xbridge C18 column (3.5 µm particle size, 2.1 mm internal 

diameter, 100 mm length, Waters UK). LC-FT-ICR analyses of b-AQP0 used the 

conditions described for intact protein analysis. LC-QToF MS (MS/MS and MS
E
) 

data were acquired on a Synapt G2-S (Waters) instrument, with time-of-flight (ToF) 

analyser. These separations used an Acuity UPLC
TM

 system at a flow rate of 400 

µl/min, gradient (A:B): 95:5 to 5:95 over 8 min. Tandem MS was performed by 

collision induced dissociation in the trap region of the triwave. MS/MS of an isolated 

precursor ion or MS
E
 for the all ions were acquired with a trap collision energy ramp 

of 30–50 eV. 
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3. Results 

Analysis of the Intact Protein 

Intact bovine AQP0 (b-AQP0) was isolated from the outer part (cortex) of the lens by 

decapsulation followed by aqua-dissection. This section of the lens was selected to 

minimize potential complications that could arise from the presence of truncated 

protein; the extent of protein truncation increases in older fractions towards the 

nucleus of the lens [5,13]. The intact protein was analyzed by ESI-FT-ICR MS, 

yielding a spectrum (Fig. 1) containing several isotopomer envelopes, from which a 

number of b-AQP0 modifications can be discerned.   

 

 
Figure 1 - Charge state deconvolved spectrum (neutral mass) of b-AQP0 from the 

outer lens cortex. The spectrum was obtained using an FT-ICR instrument. Magnified 

regions A, B and C of the main spectrum are presented in the corresponding panels. 

Labels in panels A-C indicate the length of acyl chain addition to b-AQP0 producing 

the observed mass, with the arithmetic mean of the peak (modelled as a Gaussian 

distribution) indicated in parentheses. For the raw LC-MS trace see Fig. S4. 

 

The most abundant species, with an average mass 28225.6, corresponds to an increase 

by 2.9 Da of the calculated mass of b-AQP0 (28225.7, based on sequence). This 

increase is accounted for by known deamidations of Asn/Gln residues in AQP0 [5]. 

Using this species as a reference, a number of modified proteins with increased mass 

can be identified (Table S1). Included amongst these is a species with a mass increase 

of 79.9 relative to the major species, corresponding to the known phosphorylation 

product of bovine AQP0 [14,15]. Human AQP0 (h-AQP0) is similarly 

phosphorylated [5,13]. Further modifications producing mass increases in the range 

expected for acyl addition are apparent. These include C16 and C18 (Table S1, entries 

2 and 3), for which palmitoyl (C16:0) and oleoyl (C18:1) have previously been 

described [5], and C20. Higher mass acyl adducts are apparent, corresponding to 

chain lengths of C22, C26 and C28. The latter two, however, are of very low 

intensity. It is unclear whether a C24 adduct is present as the expected mass for this 

adduct is close to that expected for addition of both oleoyl and phosphate groups to b-
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AQP0. The latter species is expected to be present based on the observation of its 

oxidized form (Table S1, entry 8). In addition to these modifications, two further 

modifications of low abundance can be identified, corresponding to the addition of 

C36 and C56 (Table S1, entries 11 and 12). Given the high relative abundance of the 

oleoyl adduct, the most likely assignments for these are 2 × C18 and 2 × C18 + C20. 

Further species of higher mass (29100–29900 Da) could not be readily identified and 

are presented in Fig. S5.  

 

Analysis of Trypsin Digests 

Intact b-AQP0 was subjected to trypsin proteolysis followed by LC-MS analysis of 

the resulting mixture. Amongst the peptides produced (Fig. S6-S7, Table S2), two sets 

corresponding to acyl modification at different sites on b-AQP0 were apparent (Fig. 

2). For both sets of peptides, the order of elution of the acyl adducts, with retention 

time increasing with saturated chain length, and decreasing with increasing 

unsaturation, is in line with experiments on other systems [1,2,16]. 

 

 
Figure 2 - Acyl-modified peptides from trypsin digests of b-AQP0 analyzed by LC-

MS (FT-ICR). A, summed mass spectrum over the retention time (r.t.) range 7.4–8.0 

min. The inset shows the r.t. range 7.85–9.0 min; B, mass spectrum over the r.t. range 

9.5–10.9 min. The inset shows the r.t. range 10.6–10.8 min; C, sum of the extracted 

ion currents (EICs) in the m/z ranges 997.5–999, 1006–1008 and 1014–1016 (K238 + 

C16:1–C20:0); D, summed EICs in the m/z ranges 970.5–971.7, 972.4–975.2, 998.2–

1016.8 and 1022.2–1028.7 (N-terminus + C16:1–C20:0). Asterisks indicate non-

acylated trypsin digest products. These are filtered out from the EIC in panel D. 

 

The series of peptides that eluted first (Fig. 2A,C, Fig. S9, Table 1) corresponds to 

acylation of K238 of the protein. At this position, palmitoyl, oleoyl and stearoyl 

adducts of the 234–259 sequence are clearly resolved. Within this sequence, there is a 

single internal, highly conserved lysine (K238)
 
[5] that, as expected [2], is not cleaved 

by trypsin when lipidated. The ion abundances of these acyl adducts are in the order 

oleoyl > palmitoyl > stearoyl. In addition to these products, ions of low abundance 

corresponding to C20 adducts could be detected, albeit with high error. Given the 

weakness of the signals, this high error is unsurprising, but nevertheless the presence 

of a signal at m/z 1014.23737 (z=3) is consistent with the presence of either C20:3 or 

C20:4.  
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The second series of peptides, (Fig. 2B,2D, Fig. S8), gives singly charged ions 

matching residues 1–5 of b-AQP0 corresponding to acylation at the N-terminus. The 

acyl modifications, in decreasing order of ion abundance (Table 1, Table S3), are: 

oleoyl (C18:1) >> palmitoyl (C16:0) > stearoyl (C18:0) > eicosenoyl (C20:1) > 

dihomo--linolenoyl (C20:3) ≈ palmitoleoyl (C16:1) > eicosadienoyl (C20:2). The 

acyl groups found at the N-terminus reassuringly account for many of the species 

detected in the whole protein spectrum (Fig. 1). Acyl modifications with chain lengths 

longer than C20 were not detected in trypsin digests because they are much less 

abundant and therefore likely fall below the detection threshold. An almost identical 

set of peptides was produced following trypsin digestion of b-AQP0 isolated from the 

lens nucleus (Fig. S10, Table S4). 

 

Table 1 - Acylated species formed by trypsin digests of b-AQP0 

r.t. / min * m/z obs † m/z calc † Error / 

ppm 

Peak Area / 

a.u. min‡ 

Assignment § 

7.41 997.56054 997.56018 0.36 163 ± 38 [234–259] + C16:0 

7.54 1006.23225 1006.23207 0.18 602 ± 81 [234–259] + C18:1 

7.57 1014.23737 1014.23207 5.23 6 ± 5 [234–259] + C20:3 

7.60 1014.89735 1014.90395 -6.51 10 ± 8
 

[234–259] + C20:2  

7.92 1006.90355 1006.90395 -0.39 93 ± 28 [234–259] + C18:0 

9.55 1014.60672 1014.60564 1.07 484 ± 177 [1–5] + C18:1 + O 

9.64 970.57932 970.57942 -0.11 158 ± 93 [1–5] + C16:1 

9.82 1020.60260 1020.59507 7.38 96 ±70 [1–5] + C20:4 

10.05 972.59505 972.59507 -0.03 1559 ± 346 [1–5] + C16:0 

10.20 1022.61037 1022.61072 -0.34 160 ± 93 [1–5] + C20:3 

10.22 998.61091 998.61072 0.19 6809 ± 810 [1–5] + C18:1 

10.40 1024.62703 1024.62637 0.64 106 ± 74 [1–5] + C20:2  

10.68 1000.62708 1000.62637 0.71 883 ± 250 [1–5] + C18:0 

10.77 1026.64196 1026.64202 -0.06 457 ± 171 [1–5] + C20:1 

* time of maximum intensity in the EIC  

† observed and calculated m/z values are monoisotopic 

‡ errors are reported as the standard error of the mean (n=2) 

§ [1–5]: 
1
MWELR

5
, z=1; [234–259]: 

234
LSILKGSRPSESNGQPEVTGEPVELK

259
, 

z=3; all [234–259] matches contain one Asn or Gln deamidation 

 

Tandem MS experiments confirmed the lipidation site identities. Targeted 

fragmentation of oleoyl-modified b-AQP0[1–5] and b-AQP0[234–259] yielded 

several modified and unmodified b- and y-ions that were consistent with lipidation of 

the N-terminus and K238 respectively (Fig. 3A, C, Table S5, S6). LC-MS
E
 

experiments on the digests (performed on the QToF) yielded profiles with maxima for 

the intensities of unmodified ions shared by all lipidated peptides at retention times 

corresponding to the major acyl-modified peptides (Fig. 3B, D). The MS
1
 data from 

these experiments also reproduced the identifications from Table 1. Overall, the high 

mass accuracy obtained in the FTICR-MS experiments, plus the fragmentation 

patterns yielded by QToF tandem MS experiments, confirm that these peptides 

correspond to acyl modifications to the N-terminus and K238 of b-AQP0. The whole 

protein data (Fig. 1) suggest an additional lipidation site. This site could not be 

localised from the digest data, either because it was of too low abundance to detect, or 

because it resulted from lipidation on serine, which is harder to detect [2]. 
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Figure 3 - LC-MS/MS data for acyl-modified peptides from trypsin digests of b-

AQP0. A: MS/MS of oleoyl AQP0[1–5] (z=1, m/z 998.61). All b- and y-ion ladders 

are for z=1; B: summed extracted ion currents from an MS
E
 experiment for the 

unmodified b- and y-ions identified in part A; C: MS/MS of oleoyl AQP0[234–259] 

(z=3, m/z 1006.23). The b-ion ladder is for z=1 and the y-ion ladder for z=2; D: 

summed extracted ion currents from an MS
E
 experiment for the unmodified b- and y-

ions identified in part C. In A and C, oleoyl-modified ions are indicated by asterisks; 

other b- and y- ions matching the parent peptide are indicated by double daggers (see 

Tables S5, S6). In B and D, vertical dashed lines indicate the retention times for acyl 

modified species, including palmitoyl (P), oleoyl (O) and stearoyl (S).  

 

Similar analyses were conducted for h-AQP0 isolated from the outer cortex of the 

human lens (Fig. S11, Table S7). The N-terminal residues of h-AQP0 and b-AQP0 

are identical, resulting in similar lipidated peptides (Fig. S12, Table S8), with the 

following acyl modifications found in decreasing order of abundance: oleoyl >> 

palmitoyl > stearoyl > arachidonoyl ≈ palmitoleoyl > eicosenoyl. In addition to these 

species, oxidized counterparts resulting from the addition of between one and three 

oxygens were abundant. Indeed, dihomo-γ-linolenoyl (C20:3) modifications were 

only detected in the oxidized form. Such oxidations were anticipated, as methionine 

and tryptophan oxidations have been documented previously for h-AQP0 [5,13]. For 

both the arachidonoyl and dihomo-γ-linolenoyl adducts, however, two different 

oxidized products were detected, a pattern not repeated with other acyl groups. This 

suggests that oxidation occurs at sites within the chain when the acyl group is 

polyunsaturated. Analysis of the lipidation profile of h-AQP0 peptides containing 

K238 was more challenging due to the presence of significant levels of other 

modifications, including phosphorylation, deamidation, oxidation and truncation (at 

residues 243, 246 and 259) [5,13,15]. Spectral complexity increased, with more 

instances of spectral overlap, decreasing the ion count for each lipidated species. 

Peptides in the 229–263 sequence of h-AQP0, spanning K238, were lipidated with 

oleoyl, palmitoyl and arachidonoyl groups (Fig. S13-S14, Table S9). A stearoyl-

modified product was also present, although this peptide was not completely resolved 
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chromatographically from its oleoyl-modified counterpart. In addition, two oxidized 

peptides with highly unsaturated acyl chains, C22:5 and C20:5, were tentatively 

identified. Lipidated versions of truncated sequences were present, indicating that 

truncation and lipidation are not mutually exclusive events. 

 

4. Discussion 

A key prediction concerning non-enzymatic acyl transfer from membrane lipids to a 

target protein is that the lipidation profile will resemble the fatty acid profile of the 

membrane leaflet proximal to the target site. The two potential acylation sites in 

AQP0, the N-terminus and K238, are both adjacent to the cytoplasmic leaflet of lens 

cortex plasma membranes based on the available crystallographic data [17] and 

therefore their lipidation profiles would be expected to match that profile. Our own 

calculations predict that the 214–263 sequence of h-AQP0 forms a lipid-binding 

amphipathic helix (Fig. S15, Table S10). K238 lies at the boundary between polar and 

non-polar surfaces of the helix, a feature that is known to promote acyl transfer from 

lipids to peptides that localize interfacially [1]. 

 

The asymmetry of lens membranes is not well characterized, but it is expected that the 

younger cells in the outer part of the cortex retain the leaflet asymmetry typical of 

most mammalian plasma membranes, with phosphatidylethanolmine (PE), 

phosphatidylserine (PS) and phosphatidylinositol (PI) lipids enriched in the 

cytoplasmic leaflet and phosphatidylcholine (PC) and sphingolipids such as 

sphingomyelin (SM) enriched in the exoplasmic leaflet[18,19]. As a consequence, 

acyl transfer from the membrane to AQP0 would be expected produce a distribution 

of acyl groups that reflects the acyl composition of PE and PS, and to a lesser extent 

(due to their low abundance), PI lipids. 

The major lipid classes of bovine lens membranes are, in decreasing order of 

abundance, PC ≈ PE ≈ SM > PS > PI (when PE plasmalogens are included in the PE 

fraction) [20,21]. Cholesterol is also a major component[22,23]. As a whole, the 

abundance of the major fatty acid constituents of bovine lens lipids decreases in the 

order C16:0 > C18:1 > C24:1 > C18:0 > others [24]. Of the others, C14:0, C16:1, 

C20:0–4, C22:0–2, and C24:0 have been described[25,26]. Small quantities of other 

potential acyl donors are present, including PE plasmalogens, and lyso-lipids (lyso-PC 

and lyso-PE) [24]. All of the C24:1 (nervonoyl) fatty acyl groups are associated with 

SM in the form of an amide and therefore will not undergo uncatalysed acyl transfer 

reactions with proteins. A closer inspection reveals that C18:1 (oleoyl) is the major 

acyl group associated with PE and PS, whereas C16:0 (palmitoyl) is mostly associated 

with PC. Specifically, the acyl composition in weight% for bovine lens PE lipids 

decreases in the order C18:1 (63.8) >> C16:0 (12.9) > C18:0 (9.5) > C16:1 (3.3) > 

C22:0 + C22:3 (2.9) > C20:1 (1.9) [24]. Similar trends are found by MS-based 

lipidomics [27]. PS lipids have a fatty acyl composition that is broadly similar to that 

of PE. 

 

Human lens membranes are significantly more enriched in cholesterol and 

sphingolipids than bovine lens membranes [20,21]. Within the sphingolipids, there is 

a pronounced shift to longer and more saturated alkyl chains [27], which is reflected 

in the fatty acid distribution for the membrane as a whole [28]. In contrast to bovine 

lens membranes, however, the predominant glycerophospholipid class is PE, with the 

abundance of lipid classes being PE > PC > PS >> PI. In the PE and PS lipid classes, 

ether and vinyl ether linked plasmalogens represent the major lipid types [27].
 
The 
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content of ester-linked fatty acyl groups within the PE lipids, i.e. those that are 

“transferrable” by aminolysis, decreases in the order C18:1 >> C20:4 > C18:0 > 

C16:0 > C22:3 ≈ C22:4 > C22:6 ≈ C22:5 ~ C16:1. In the PS lipids, the trend is 

broadly similar: C18:1 >> C18:0 > C20:4 ≈ C16:0 > C22:6 ≈ C20:1. It is notable that 

we have detected h-AQP0 modifications with the majority of these fatty acyl groups, 

including some, such as C22:5, that are absent from b-AQP0. This species difference 

can be considered also as evidence for non-enzymatic lipidation. 

 

If lipidation occurs from the membrane, the abundance of each acyl modification of 

AQP0 should correlate with the amount of that acyl group that is transferrable from 

host membranes. The quality of this correlation is striking for each family of acyl 

modified peptides from AQP0 ([234-259] for b-AQP0, [229-263] for h-AQP0, [1-5] 

for both) when the fatty acyl composition of the major PE component of lens cortex is 

considered (Fig. 4). Bovine AQP0 in particular produces extremely strong 

correlations for both lipidation sites. These correlations are equally good when a 

different dataset is used for the PE acyl composition (Fig. S16, Table S11).   

 

 

 

Figure 4 - Correlations (shown as points) between the peak areas of lipidated peptides 

from b-AQP0 (A) and h-AQP0 (B), modified at the N-terminus (circles) and K238 

(diamonds), and the transferrable (ester-linked) fatty acyl content of lens PE (PE in A, 

PE plasmalogen in B). Peak areas (AN and AK238 for N-terminal and K238 

modifications respectively) were calculated from the EIC of each species, using the 

monoisotopic ion in A and the full isotopomer envelope in B. The acyl content was 

calculated using the data of Deeley et al [27] (Table S12-S13). Error bars are 2 × 

SEM (n=4 for acyl content, n=2 and 4 for peak areas in A and B respectively). The 

line and the R
2
 statistic are from linear regression analysis. The -value is the Pearson 

correlation coefficient and the p-value a t-test of the correlation coefficient. 

 

Both lipidation sites produce better correlations for b-AQP0 than h-AQP0 due to the 

complexity of the additional posttranslational modifications seen with h-AQP0. 

Oxidative damage to polyunsaturated acyl groups (discussed above) will reduce the 

peak intensities of peptides modified with these acyl groups and will mean their 

abundance is under-represented. It is also apparent when considering Fig. 4B that for 

PE lipids, oleoyl (C18:1) is an order of magnitude more abundant than any other acyl 

group in both the lipidation and the lipid content data. This high oleoyl abundance 

reflects a very skewed spread of acyl content values. The correlation in Fig. 4B is 

therefore very sensitive to the magnitude of the oleoyl peak and the underlying 

correlation of the other points is much weaker when C18:1 is omitted. This is not the 
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case for the bovine data, for which strong correlations exist even when the C18:1 

point is not included (Fig. S17). The data point for C16:0 in Fig. 4B is notably 

different from the others, with a much higher prevalence in lipidated h-AQP0 than 

lens PE. As the transferrable C16:0 content of human lens PC is significantly higher, 

it may be that a mixed model of transfer from both PE and PC is more appropriate. 

Analysis of b-AQP0 from the lens nucleus revealed higher levels of N-terminal 

lipidation (compared to cortex b-AQP0) and similar levels of K238 lipidation, with 

good correlations between lipidation profile and PE composition (Fig. S18). This 

increase in lipidation levels in the post-mitotic cells of the lens nucleus, whilst a 

strong positive correlation with PE fatty acyl composition is retained, is additional 

evidence for non-enzymatic lipidation. Fig. 4 presents the best overall correlations for 

both proteins. Good correlations are produced for both proteins with other PE and PS 

components, but much poorer correlations are produced with PC and total fatty acid 

compositions (Fig. S19-S21). 

 

For AQP4, enzymatic palmitoylation was suggested to have a functional role in 

preventing the formation of square arrays [29]. We note that the sites for AQP0 

lipidation (M1 and K238) are adjacent to major N- and C-terminal truncation sites (2 

and 239) [30] in human AQP0. It has been suggested that lipidation might encourage 

the partitioning into ordered (detergent resistant) domains of the membrane [5], but 

we suggest the regulation of post-translational modifications and protein-protein 

interactions could also be feasible functional consequences of this non-enzymatic 

lipidation. It is notable also that K238 is highly conserved. 

 

Given the range of acyl modifications to AQP0 that we have found, alongside the 

moderate overall extent of modification, enzymatic lipidation of AQP0 would require 

an enzyme that exhibits both poor acyl group selectivity (but nevertheless favours 

oleoyl transfer) and low efficiency. Such an enzyme has not been described. It seems 

more probable that lipidation occurs via acyl group transfer from membrane lipids, as 

this method accounts both for the low efficiency of transfer and the differences we 

observed between human and bovine lipidation profiles. Here we have provided 

evidence that acyl group diversity at the modification sites of AQP0 closely matches 

that of PE lipids, which are a major constituent of the membrane leaflet proximal to 

both the N- and C-terminal AQP0 lipidation sites. 
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Graphical Abstract 

 
 

 

Highlights 

 Human and bovine aquaporin-0 are lipidated at the N-terminus and K238. 

 At each site, an array of acyl groups is found. 

 Acyl groups include C16:0, C16:1, C18:0, C18:1, C20:1, C20:2, C20:3, 

C20:4. 
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 Acyl group abundance correlates with the acyl content of lens PE lipids. 


