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SUMMARY 
Lamellar supramolecular assemblies are a common feature of fibrous gels 
formed by small molecules such as peptides and ureas. Competition between 
gelation and crystallisation is highly solvent-dependent, and may be governed 
by the dynamics of nascent lamellae in solution. We hypothesise that gel fibrils 
are formed when the scrolling of lamellae outpaces multilayer stacking. To test 
this model, extensive crystallographic data on model picolyl bis(urea)s were 
correlated with their gelation abilities. The majority of structures are lamellar, 
and gels involving fibrous aggregates form concomitantly alongside solvate 
structures. A distinguishing feature of these solvate crystals is that the lamellae 
are decorated with unequal numbers of picolyl groups on their upper and lower 
faces. Atomistic molecular dynamics (MD) simulations show that this asymmetry 
causes isolated lamellae to scroll spontaneously into fibrils, whereas 
symmetrical lamellae adopt flat, crumpled or saddle-like morphologies. 
Scrolling represents a general mechanism for gel formation, affording networks 
of unbranched fibres with monodisperse diameters dictated by the equilibrium 
curvature of the folding lamellae. 

Keywords: Gel, supramolecular, hierarchical, lamellar, self-assembly, scrolling. 

The Bigger Picture 

Gels are extremely important soft materials with everyday applications in areas such as 

soaps, lubricants, catalysis and oilfield chemistry. While gels are commonly based on 

polymers, there is a great deal of interest in small molecule gelators that aggregate through 

non-covalent interactions such as hydrogen bonding and -stacking to give 3D sample-

spanning fibrous assemblies. The emergent complexity of gel structure is very difficult to 

predict and gelators are commonly discovered by trial and error. The properties of a gel 

depend on the structural evolution of its fibre network, but the mechanisms governing fibre 

growth are not currently understood. In this work we show that homogeneous gel fibres arise 

from the scrolling of sheet-like rafts of hydrogen bonded gelators whenever opposite sides 

of the sheet possess different surface energies. Based on this observation, we propose a 

general predictive mechanism for gel self-assembly. 

INTRODUCTION 
Low-molecular-weight gelators (LMWGs) are a varied and versatile family of molecules,1 

with potential applications in catalysis,2 medicine3 and crystal growth.4 Increasing interest in 

LMWGs as alternatives to polymeric materials may be partly attributed to a growing 

understanding of their gelation mechanisms. Fibrous aggregation of an LMWG can be 

represented as a hierarchical process, beginning with the growth of one- or two-dimensional 

assemblies through supramolecular polymerisation (step 1). These assemblies develop into 

extended fibrils (step 2), which further entangle to generate the final gel network (step 3). By 

analogy with the levels of organisation in folded peptides,5 the products of steps 1, 2 and 3 

may be termed primary, secondary and tertiary structures respectively (Figure 1).6 The 

primary structure of a gel describes the connectivity, symmetry and dimensionality of 

supramolecular motifs, and can often be reliably modelled on patterns of hydrogen bonding 

and stacking interactions in the gelator crystal structure(s).7 However, it is more difficult to 

describe the architectures of secondary and tertiary structures at a molecular level. In 

particular, no general mechanism has been proposed to link the structure of a supramolecular 



 
 
 
assembly to the morphology of the resulting aggregate. Addressing this deficiency would 

allow the gelation capacity of a molecule to be predicted based on its favoured 

supramolecular motifs, provide a robust theoretical foundation for analyses of gel 

aggregation, and facilitate the rational design of LMWGs to suit particular applications. 

Herein, we make use of insights from single-crystal diffraction and molecular dynamics 

(MD) simulations to develop a simple, predictive model of gel formation, wherein 

monolayers of gelator molecules scroll spontaneously into unbranched fibrils due to 

topological asymmetry in the hydrogen bonding network. 

 

Figure 1 Stages in the hierarchical self-assembly of fibrous gels, according to the model 

proposed in this study. Small molecules self-assemble into lamellar structures (step 1), which 

subsequently give rise to cylindrical fibrils through scolling and layering (step 2). Fibrils 

undergo branching and entanglement to form a 3D network of larger fibres, which entrap 

solvent to produce a sample-spanning gel (step 3). Separate sheets and fibres are coloured 

differently for clarity. 

With the aid of empirical structure-property relationships,8 crystal engineering principles9 and 

insights from spectroscopic and scattering experiments,10-12 it is now possible to tune the 

physical properties of a wide variety of supramolecular gels. However, predicting the self-

assembly behaviour of a potential LMWG a priori remains a challenge.13 LMWGs can be 

designed in a modular fashion by incorporating functional groups known to give rise to 

fibrous assemblies, but the resulting gels may be affected in surprising ways by even small 

modifications to the gelator, solvent or preparation method. For example, gelation may 

depend on the enantiopurity of a chiral molecule,14 the relative orientations of hydrogen 

bonding motifs,15 the cooling rate of the gelling solution16 or the properties of peripheral 

functional groups. Among gelators with an uneven balance of hydrogen bond donor and 

acceptor groups, the availability of water in an organic solvent is of particular importance due 

to the enhanced probability of hydrated solid forms.17-20 Hydration may limit the potential for 

gel formation, by offering access to higher-symmetry packing modes with more optimal 

arrangements of hydrogen bonding motifs.21 

Competition between gelation and crystallisation processes is a key feature of many LMWG 

systems. A gel often consists of microcrystals with a high aspect ratio,22 and even non-

crystalline gels may form alongside a non-gelating crystalline phase or undergo 

crystallisation with the passage of time.23-25 Although the crystal structure of a gelator might 

offer some indication of how molecules interact in the gel phase,26-28 the assumption of a 

structural relationship between the two materials is not always justified.29,30 Nonetheless, it is 

likely that the dominant supramolecular motifs in crystals are preserved in the corresponding 

gels, and play a central role in determining the materials’ optical, microstructural and 

rheological characteristics.31 Indeed, Anderson et al. found that the calculated minimum-

energy structures for hydrated melamine-uric acid co-crystals match the powder X-ray 



 
 
 
diffraction patterns of the corresponding sonogels, and feature the most stable hydrogen 

bonding motifs identified through ab initio calculations.28 

The likelihood of gelation is often strongly dependent on the solvent environment. Solvent 

molecules may co-assemble with an LMWG to produce aggregates with enhanced 

thermodynamic stability.28,32 Additionally, solvation effects in the precursor sol may favour 

gelation by promoting self-assembly of the necessary supramolecular motifs. For example, 

carboxylic acid dimer synthons form more readily in the absence of competing hydrogen 

bonding species,33 and the self-association of hydrophobic moieties may be strengthened by 

the use of a more polar solvent.34 Owing to the large surface areas of nanoscale particles, a 

nascent gel aggregate may outcompete the nuclei of materials with higher bulk stability due 

to stabilising interactions with the surrounding solvent.35 Similarly, solvation of growing 

surfaces may lead to large differences in their relative surface energies, producing the 

anisotropic growth conditions required for gel formation.36 

To aid the identification of effective LMWGs, it is important to develop detailed 

computational models of the gelation process. Provided the system is well-parameterised and 

the force-field carefully chosen, MD simulations can replicate the key results of more 

realistic but computationally expensive calculation techniques. MD studies have been used to 

map the self-assembly pathways of peptides,37-39 lipids40,41 and polysaccharides,42 as well as 

generalised polymers,43-45 rod-shaped molecules46,47 and colloidal particles.48,49 Simulations 

have captured the formation of experimentally observable structures such as β-sheets, 

cylindrical micelles and phospholipid bilayers, and provided realistic illustrations of their 

interactions with solvents, ions and biologically relevant additives. As well as accurately 

reproducing measurable physical properties, such as critical gelator concentrations (CGCs), 

phase transition temperatures and packing coefficients, MD models have been used to probe 

less accessible parameters, including surface tensions, self-diffusion coefficients and 

molecular conformations.40,50,51 Furthermore, some studies have yielded useful predictions. 

For instance, simulations of a triblock amphiphilic peptide highlight the potential for β-sheets 

to stack in a perpendicular fashion, producing soluble dimeric assemblies that could play an 

active role in neurological pathologies such as Alzheimer’s disease.37 

Lamellar structures are a common outcome in the self-assembly of hydrogen-bonding 

LMWGs. Crystalline materials arise when the stacking of lamellae occurs at a comparable 

rate to lateral growth, and may thus be favoured by high concentrations of nascent lamellae.52 

Gels, by contrast, are formed when disruption of long-range ordering results in extended 

fibrils and other anisotropic structures.38,53-55 MD simulations of polymer sheets decorated 

with grafted tether coils indicate that curved morphologies are generated, in preference to 

multilayer stacks, when the upper and lower faces of the sheets are structurally dissimilar.56-59 

In general, fibril formation is attributed to hydrophobic effects, comparable to those observed 

in surfactant micelles.60 For example, simulations of an amphiphilic alkyl dipeptide conjugate 

in water revealed the spontaneous self-assembly of cylindrical fibrils, with the extended alkyl 

residues encapsulated within the core of the aggregate.38 Folding of lamellae may also be 

driven by the formation of hydrogen bonds or π-π stacking motifs, as contraction of the sheet 

on the convex face reduces the distance between interacting moieties.56,61 The direction of 

folding and radius of curvature are dictated by the stiffness of the sheet62 and the sizes and 

solvent affinities of the tether coils. While rigid sheets are unable to bend, those with smaller 

bending and tensile moduli may undergo both local and global deformation, producing 

crumpled, tubular and spheroidal morphologies.63,64 

 

Modelling the development of lamellae into fibrous structures is a challenging task. 

Deformation of lamellae in solution may take place over tens or hundreds of nanoseconds, 

exceeding the timescales that can be easily probed in large-scale atomistic simulations. 

Moreover, model lamellae generated from randomly distributed gelator molecules are 

unlikely to reproduce all of the structural features affecting the aggregation pathway. A 

popular approach is to develop a coarse-grained representation of the system, identifying 



 
 
 
molecular parameters that can be tuned to reproduce key physical characteristics.65 

Alternatively, the computational task may be simplified by comparing the simulated 

dynamics of pre-constructed, idealised aggregates.61,66-70 Initial configurations may be 

justified based on the geometry of the LMWG, the relative energies of model assemblies, or 

the arrangements of molecules in single-crystal structures. By adopting an atomistic 

approach, and comparing the results for multiple lamellar systems, it is possible to test the 

impact of minor structural modifications and pinpoint the dominant contributions to the self-

assembly outcome. 

The aim of this investigation is to model key stages in the development of fibrous gels from 

hydrogen bonding LMWGs. In particular, we seek to explain why gel fibres are often 

unbranched and monodisperse, and how the formation of such structures can outcompete 

alternative crystallisation pathways. The focus of the study is a series of three isomeric 

bis(urea)s with picolyl end groups, 1a-c. A number of experimental techniques, including 

small-angle neutron scattering,71 powder X-ray diffraction72 and scanning tunnelling 

microscopy,70,73 have revealed lamellar structures in bis(urea) materials comparable to the β-

sheets of peptide systems.74 It is well documented that ureas self-assemble into continuous 

arrays of hydrogen bonds known as α-tape motifs,75 which can readily give rise to anisotropic 

aggregates.76 Simulations have been used to predict the morphologies and surface 

compositions of molecular clusters and demonstrate the influence of particular residues and 

supramolecular motifs on fibre propagation.54,68 However, there have been few attempts to 

combine the results of atomistic simulations, single-crystal diffraction studies and coarse-

grained models to provide a general and predictive description of gel formation. 

An advantage of LMWGs comprising urea functionalities is their tendency to crystallise from 

a variety of organic solvents and exhibit many topologically distinct hydrogen bonding 

networks (Supplemental Information, Figures S26-36).70,77-79 Compounds 1a-c are of 

particular interest, as the limited flexibility of the sterically bulky spacer promotes the 

formation of unusual α-tape topologies.80 Moreover, as in the extensively studied 3-pyridyl 

analogue,81-83 the potential competition between hydrogen bond acceptors results in a diverse 

range of supramolecular outcomes. Although gels are formed only by 1c in a small number of 

solvents, all of the compounds can access multiple lamellar crystal forms that may serve as 

starting points for simulating the aggregation process. We hypothesise that lamellar crystals 

are formed by stacking of preformed lamellae in solution, and aim to determine whether 

spontaneous deformation of such assemblies could lead to the concomitant fibrous aggregates 

experimentally observed. Examining a library of crystal structures offers insight into the 

influence of solvent on the molecular arrangement, and allows coarse structural features to be 

correlated with the presence or absence of a gel phase, highlighting useful trends that may 

facilitate the development of more effective LMWGs.  

RESULTS AND DISCUSSION 

Synthesis and structural characterisation 
Compounds 1a-c were synthesised by adding a diisocyanate to a chloroform solution of 

excess picolylamine (Supplemental Information, Figures S1-S12). The compounds were 

recrystallised from a range of polar solvents (Table 1) to produce single crystals of sufficient 

quality for analysis by single-crystal X-ray diffraction. In version 5.37 of the Cambridge 

Structural Database (CSD),84 the majority of crystal structures comprising bis(urea)s linked 

by α-tape motifs consist of one-dimensional hydrogen bonded supramolecular polymers 

(Tables S3 and S4). However, nearly all the structures in this study consist of layers of 

molecules linked by two-dimensional networks of α-tapes. This pattern of motifs is likely 

favoured in order to minimise steric clashes between the bulky spacer moieties of 

neighbouring molecules. Similarly, it is sometimes preferable for the achiral molecules to 

crystallise in chiral space groups or exhibit one or more polar axes, corresponding to a 

common orientation of the urea moieties or a head-to-tail arrangement of asymmetric 

lamellae. 

Bis(urea)s may form supramolecular polymers with a wide variety of conformations,85 but the 

network of α-tapes will typically conform to a common pattern of connectivity. The 

topologies of the bis(urea) networks are categorised by assigning a common letter to 

molecules sharing a pair of tapes (Figure 2). For example, bis(urea)s adopting a “brick wall” 

arrangement are tape-sharing with molecules in alternating rows, so the repeat unit of each α-

tape is denoted [AB]. All lamellar bis(urea) crystal structures so far reported display one of 

just two network topologies: [AB] and [AABB] (Tables S3 and S4). However, the suitability 

of lamellae for gel formation also depends on their symmetry and morphology, which may be 

strongly perturbed by changes to the molecular structure or solvent environment. Although 



 
 
 
the crystal structures of compounds 1a-c generally consist of lamellae with similar 

supramolecular motifs, altering the configuration of the picolyl group can greatly affect the 

interlayer interactions and favourability of solvate formation. 

 

Figure 2 The two most common topologies of lamellar α-tape networks. Within each α-tape, 

molecules are labelled with a common letter if they are also connected via a second α-tape. 

These “tape-sharing” bis(urea)s are represented schematically as white (A) or black (B) 

spacers linking two urea moieties, with dashed lines indicating hydrogen bonds. 

Non-solvated assemblies 
In their non-solvated crystal structures, compounds 1a and 1b both display an [AB] packing 

arrangement. However, the morphologies of the lamellar networks differ due to the variable 

ability of picolyl groups to form hydrogen bonds. In crystals of 1a (structure I, Table 1) 

obtained by recrystallisation of 1a from nitromethane or 3-picoline, the spacer of the 

bis(urea) is nearly parallel to the lamellar plane. Thus, lamellae are relatively thin, with an 

interlayer spacing dlayer of 7.553(1) Å and lamellar area Amol of 83.55(2) Å2 per molecule. 

This packing mode is favoured because the bis(urea)s do not form the common 𝑅2
1(6) urea-

urea motifs,86 but instead interact via single urea-urea and picolyl-urea hydrogen bonds 

(Figure 3). The resulting 𝑅2
1(11) motifs force the picolyl and urea groups to lie in 

approximately the same plane, with no significant interactions between neighbouring 

lamellae. Such an arrangement of hydrogen bonds is not possible in crystals of 1b and 1c, as 

it is not geometrically feasible for the nitrogen atoms of 3- and 4-picolyl groups to approach 

the hydrogen bond donors of adjacent urea-urea motifs. 

 

Figure 3 Lamellar hydrogen bonding network in structure I, viewing down the normal axis 

of the lamellar plane. Molecules of 1a are linked by urea-urea and picolyl-urea interactions 

(dashed lines). 

Table 1. Summary of crystallographic data 



 
 
 

The geometry of a bis(urea) lamella may also be influenced by the symmetry of the α-tape 

network. In the non-solvated crystal forms of 1b (structures II and III, Table 1), the 

configurations of α-tapes are markedly different. Structure II was crystallised from an 

acetonitrile solution and comprises α-tapes in the relatively common antiparallel arrangement 

(Figure 4a). There are no other significant supramolecular motifs within each lamellar 

bis(urea) network. However, pairs of lamellae are linked by bifurcated urea-urea-picolyl 

hydrogen bonds, which lead to pronounced asymmetry in the 𝑅2
1(6) urea-urea motifs. Since 

molecules are not constrained to lie in the plane of the α-tape network, the bis(urea) 

assemblies are thicker than those in structure I and more highly interdigitated, with dlayer = 

11.704(2) Å and Amol = 53.86(1) Å2. 

A second polymorph of 1b (structure III) was crystallised from nitrobenzene. Owing perhaps 

to competitive solvent-urea hydrogen bonding during the self-assembly process, the material 

does not exhibit any significant picolyl-urea interactions. In addition, the structure consists of 

polar α-tape networks, in which all interconnected urea groups exhibit the same orientation 

(Figure 4b). It has been suggested that syn-parallel tapes are less favourable than antiparallel 

networks as a result of destabilising dipole interactions between neighbouring ureas.87 

However, examination of bis(urea) crystal structures in the CSD88 (Table S2) reveals that 

around 40% of bis(urea)s with urea-urea interactions exhibit a parallel intramolecular 

arrangement of urea groups (Table S3). Indeed, while structure III lacks the additional 

interlamellar hydrogen bonding of structure II, its density is 3% higher due to more efficient 

interdigitation of neighbouring lamellae (dlayer = 10.857(2) Å, Amol = 56.30(1) Å2). It appears 

that each polymorph of 1b represents a different compromise, providing a stable balance 

 
1a (I) 1b (II) 1b (III) 1b·2H2O (IV) 1c·(C6H7N) (V) 1c·0.5(C6H7N) (VI) 

Formula C26H32N6O2 C26H32N6O2 C26H32N6O2 C26H36N6O4 C32H39N7O2 C58H71N13O4 

Formula weight 460.57 460.57 460.57 496.61 553.70 1014.27 

Space group P21 P212121 Pbca P21/c P21 P-1 

a / Å 11.1606(17) 9.3865(12) 12.1736(15) 20.9540(16) 9.2277(6) 15.1050(18) 

b / Å 9.0613(14) 11.4758(14) 9.2491(12) 15.2334(12) 11.2568(7) 18.340(2)  

c / Å 12.6316(19) 23.407(3) 43.427(5) 18.0568(14) 15.1469(9) 20.543(2)  

α / ° 90 90 90 90 90 88.283(3) 

β / ° 101.436(5) 90 90 110.150(3) 105.978(2) 76.761(3) 

γ / ° 90 90 90 90 90 89.450(3) 

V / Å3 1252.1(3) 2521.3(5) 4889.7(10) 5411.0(7) 1512.59(16) 5537.1(11)  

Z 2 4 8 8 2 4 

Dcalc / g cm-3 1.222 1.213 1.251 1.219 1.216 1.217 

Rint 0.0711 0.1270 0.1571 0.1615 0.0690 0.1020 

R1 [I ≥ 2σ (I)] 0.0615 0.0533 0.0881 0.1202 0.0487 0.0848 

wR2 [all data] 0.1660 0.1150 0.1960 0.3240 0.1098 0.2147 

 
1c·0.5(C6H7N) (VII) 1a·0.5PhNO2·0.25H2O (VIII) 

1c·1.25PhNO2·

0.25H2O (IX) 
1c·2MeNO2 (X) 1c·2MeCN (XI) 

Formula C58H71N13O4 C116H140N26O13 C134H155N29O19 C28H38N8O6 C28H38N8O6 

Formula weight 1014.27 2106.53 412.64 582.66 542.68 

Space group I2/a P21/c P-1 Fdd2 Fdd2 

a / Å 16.000(14)  15.2876(11) 15.6876(10)  29.2830(14)  28.9722(16)  

b / Å 36.172(3)  35.975(3) 18.4655(12)  34.2175(16)  34.2485(19)  

c / Å 20.309(2) 20.6493(15) 22.7146(14) 12.0618(6)  12.1561(7)  

α / ° 90 90 82.8733(19) 90 90 

β / ° 106.865(4) 103.288(3) 87.1357(18) 90 90 

γ / ° 90 90 83.168(2) 90 90 

V / Å3 11248.6(18)  11052.4(14) 6478.6(7)  12085.8(10)  12061.9(12)  

Z 8 4 2 16 16 

Dcalc / g cm-3 1.198 1.266 1.269  1.281  1.195  

Rint 0.0876 0.0898 0.1135 0.0597 0.0636 

R1 [I ≥ 2σ (I)] 0.0665 0.0587 0.0935 0.0676 0.0426 

wR2 [all data] 0.1983 0.1367 0.2904 0.1777 0.0927 



 
 
 
between the competing demands of picolyl-urea hydrogen bonding and crystal packing 

efficiency. 

 

Figure 4 Lamellar networks in the non-solvated polymorphs of 1b, viewing along the 

lamellar planes and perpendicular to the α-tapes. Adjacent α-tapes are antiparallel in structure 

II (a) and syn-parallel in structure III (b). 

Solvated assemblies 
By crystallising as solvates, compounds 1a-c can acquire a more balanced ratio of hydrogen 

bond donors to acceptors.89 Recrystallisation of 1b from wet methanol produced a dihydrate 

(structure IV), which displays an [AABB] network of α-tapes. The water molecules form a 

linear trimer, and bridge adjacent lamellae via one urea-water and two picolyl-water 

hydrogen bonding motifs (Figure 5). 

 

Figure 5 A pair of lamellar networks in the dihydrate of 1b, structure IV, viewing along the 

lamellar planes and perpendicular to the α-tapes. Hydrogen-bonded water trimers (shown in 

space-filling representation) link pairs of lamellae via interactions with the pendant picolyl 

groups. Disorder in the picolyl groups and the fourth water molecule in the asymmetric unit 

are omitted for clarity. 

Solvate formation by compounds 1a-c is not restricted to solvents that are strong hydrogen 

bond donors. Indeed, compound 1c forms crystalline solvates with both 3- and 4-picoline, 

guests that are unable to engage in strong hydrogen bonding with the picolyl end groups. The 

4-picoline solvate (structure V) consists of an [AB] α-tape network. One NH group in half of 

the urea groups forms a hydrogen bond with the picoline guest molecule (Figure 6a), but the 

picolyl end groups of the bis(urea) are not involved in any significant supramolecular motifs. 

By contrast, crystallisation of 1c from 3-picoline affords two concomitant polymorphic 

solvates that both exhibit interacting picolyl moieties. In structure VI, [AABB] bis(urea) 

lamellae are arranged as bilayers linked by picolyl-picolyl π-π stacking motifs (Figure 6b). In 

structure VII, bis(urea) molecules are organised into an unprecedented [AAAABBBB] 

network, and there is one example each of picolyl-urea and solvent-urea hydrogen bonding 

(Figure 6c). 

Optimisation of hydrogen bonding and crystal close packing is sometimes best achieved 

through the formation of a ternary crystal structure. Nitrobenzene solvates of 1a and 1c 

(structures VIII and IX respectively) may be crystallised from wet nitrobenzene, and both 

systems incorporate molecules of water alongside the main crystallisation solvent. The two 



 
 
 
structures both comprise lamellar bis(urea) networks bridged by picolyl-water hydrogen 

bonds. Furthermore, the asymmetric units of both structures are unusually large: in addition 

to four bis(urea) molecules and one molecule of water, there are two symmetry-independent 

nitrobenzene molecules in structure VIII and five in structure IX. Despite these similarities, 

the molecular arrangements of the crystals are starkly different. Tape networks in structure 

VIII exhibit an [AAAABBBB] topology, and the faces of the lamellae are symmetry 

equivalent, even though the picolyl groups of each bis(urea) molecule are oriented in the 

same direction (Figure 7a). Lamellae in structure IX, meanwhile, consist of [AABB] repeat 

units, in which half of the tape motifs are fragmented into discrete tetramers of interacting 

ureas (Figure 7b). The missing urea-urea hydrogen bonds are replaced with picolyl-urea 

interactions which, due to the asymmetric arrangement of bis(urea) molecules, are confined 

to one side of the lamellar network. Likewise, most of the bis(urea) molecules adopt a 

roughly C-shaped conformation, such that one face of the lamella accommodates three 

quarters of the picolyl end groups. 

 

Figure 6 Major supramolecular motifs in the picoline solvates of 1c: (a) hydrogen bonding 

between 4-picoline and a urea group in structure V (N-N distance 3.200(4) Å); (b) solvent-

picolyl and picolyl-picolyl π-π stacking in structure VI (centroid separations 3.848(2) and 

3.799(4) Å and plane-to-plane angles of 8.95(13) and 0.0o respectively); (c) hydrogen 

bonding between 3-picoline and a urea group in structure VII (N-N bond distance 3.1330(2) 

Å), showing the unusual subunit of four tape-sharing molecules. Solvent is shown in a space-

filling representation and the centroids and mean planes of π-π stacked rings are marked. 

Additional solvent molecules in structures VI and VII and the extensive disorder in structure 

VII are omitted for clarity. 

Fragmentation of α-tape motifs generates “free” NH and carbonyl groups that can interact 

with bis(urea)s in adjacent tape networks. In structure IX, matching faces of neighbouring 

lamellae are linked by bifurcated picolyl-urea-picolyl hydrogen bond motifs. It is evident, 

however, that an alternative polar (head-to-tail) stacking of lamellae would allow for the 

formation of additional urea-urea hydrogen bonds. Arrangements of this type are observed in 

the isostructural nitromethane and acetonitrile solvates of 1c (structures X and XI 

respectively). The structures may be viewed as stacks of [AABB] lamellae in which half of 

the α-tapes have been fragmented, allowing the urea groups to interact with those of 

neighbouring lamellae to produce a three-dimensional network (Figure 7c). Every bis(urea) 

molecule forms a pair of urea-urea motifs with one of its neighbours. However, no two non-

adjacent molecules are tape-sharing, because the tapes formed by each bis(urea) are aligned 

with different diagonals of the (100) plane. To the best of our knowledge, non-parallel α-

tapes have never been observed in a bis(urea) system and are almost unprecedented among 

related compound classes. Indeed, an extensive search of the CSD reveals just one other 

structure in which α-tapes adopt a non- parallel arrangement: form II of tolbutamide (CSD 

refcode ZZZPUS05), a highly polymorphic mono(urea) used in hypoglycemia treatment.90 



 
 
 

 

Figure 7 Varying orientations of α-tapes, viewing down a: (a) antiparallel α-tapes in two 

lamellae of structure VIII; (b) fragmented tape motifs in two lamellae of structure IX; (c) 

non-parallel α-tapes in structure X. For clarity, solvent is omitted and only half of the urea 

groups are shown in space-filling representation. 

Structures X and XI are the only examples of three-dimensional hydrogen bonded networks 

in this study. In structures I-IX, lamellae may be categorised according to the presence of 

asymmetry between the upper and lower faces. While bis(urea) networks in structure IX are 

the most dramatically asymmetric, structure VII also displays an uneven packing 

arrangement: half of the picolyl groups on one lamellar face lie roughly parallel to the 

lamella, while all of those on the opposite side adopt an extended conformation. Similarly, 

structure III contains two symmetry-independent α-tapes, which occur on different sides of 

the lamellar plane. In all other systems, the faces of lamellae are symmetry equivalent. It is 

hypothesised that the symmetries of the crystalline systems are shared by the solution-phase 

lamellae from which they develop. As in micellar assemblies,60 asymmetric features may 

promote high-curvature aggregate morphologies, causing fibrous structures to be favoured 

over crystalline materials under certain self-assembly conditions. 

Gelation vs crystallisation 
Gels of small molecules are typically prepared by cooling a solution of the gelator beyond the 

point of saturation. Although compounds 1a and 1b dissolve readily in a number of solvents 

upon heating, cooling or evaporation of the solutions produces crystalline precipitates and not 

gels. By contrast, boiling a nitrobenzene solution of 1c in a sealed vial and allowing the 

solution to cool to room temperature produces a gel if the concentration exceeds the critical 

gelator concentration (CGC) of 0.5% (w/v) (Figure S15). Gelation of 1% (w/v) solutions 

typically occurs over 10-20 minutes, whereas 0.5% (w/v) solutions form weak or partial gels 

over 1-2 hours. Crystals of the hydrated nitrobenzene solvate IX occur concomitantly within 

the gels and are usually small and polycrystalline in nature. Crystallisation is relatively slow 

and leads to a marked increase in opacity as the gel is left to stand. 



 
 
 
The microstructures of the nitrobenzene gels of 1c were examined by scanning electron 

microscopy (SEM). SEM images of the platinum-coated xerogels reveal a network of 

unbranched fibres and entrapped rod- and plate-shaped microcrystals (Figures 8a, 8b and 

S19). The diameters of the fibres are variable with a maximum value in the region of 60 nm. 

The majority of fibres consist of approximately monodisperse fibrils 20 nm in thickness. 

Given that a small fraction of fibres are thicker and more crystalline in appearance, it is 

possible that aggregation of the bis(urea) affords a variety of assemblies, diverging from the 

lamellar crystal structure in a continuous fashion.27 A fibrous material can also be obtained 

from nitromethane alongside octahedral single crystals (Figures 8c, 8d and S16). The 

nitromethane solvate of 1c, structure X, displays a more isotropic habit than the nitrobenzene 

solvate due to the presence of a three-dimensional network of α-tapes. Likewise, the fibres in 

this system are shorter and less abundant, and coalesce into a gelatinous precipitate of 

isolated clusters rather than a sample-spanning gel. 

 

Figure 8 SEM micrographs of platinum-coated xerogels prepared from 1% (w/v) gels of 1c. 

Fibres in the nitrobenzene gel (a) entrap rod-shaped crystals of solvate IX (b). Fibres in the 

nitromethane partial gel are shorter but of similar diameter (c), while concomitant crystals of 

the 1c nitromethane solvate X exhibit an octahedral habit (d). 

The rheological properties of the nitrobenzene gel of 1c were characterised by oscillatory 

shear rheometry. The stress-strain profile of a 2% (w/v) gel at an oscillation frequency ω = 1 

Hz reveals the expected viscoelastic behaviour at low shear stresses, marked by a storage 

modulus G′ one order of magnitude larger than the loss modulus G″ (Figure 9). The material 

exhibits an initial G′ value of 21-25 kPa and undergoes liquefaction at a yield stress of 

approximately 240 Pa, which are typical values for a moderately rigid small-molecule gel. 

The frequency response of the material is also characteristic of a true gel: G′ is almost 

independent of ω, as predicted by the soft glassy rheological (SGR) model of shear 

deformation (Figures S13a and S13b).91 



 
 
 

 

Figure 9 Oscillatory stress sweep profile of a 2% (w/v) gel of 1c in nitrobenzene. The gel 

passes the inversion test (inset) but collapses spontaneously on standing, perhaps due to 

ongoing crystallisation. 

It is not clear to what extent the structure of the gel fibres resembles that of the hydrated 

nitrobenzene solvate of 1c, structure IX. The powder X-ray diffraction pattern of a dried 1% 

(w/v) gel reveals sharp reflections attributable to a crystalline phase, but poorly matches the 

calculated pattern of structure IX (Figure S14). It is possible that the microcrystals observed 

alongside single crystals of structure IX correspond to alternative solvate structures, or that 

additional crystalline phases are formed by desolvation or recrystallisation when drying takes 

place. Neither the dried or wet gels display broad reflections with the characteristic 

distribution of a lamellar aggregate.69 However, it is noted that gel fibrils are only 2-4 times 

wider than the interlayer spacing in structure IX, so the presence of locally ordered layers is 

unlikely to give rise to a clear diffraction pattern. Given that lamellae are observed in the vast 

majority of crystals formed by 1c, it is reasonable to assume that molecules in the gel are also 

incorporated into lamellar assemblies. Indeed, neutron scattering data for similar gels under 

thin-film shearing are consistent with a lamellar structure, and confirm that the d-spacings of 

the lamellae and radii of the gel fibres are comparable in magnitude.71 

Structure IX is a hydrated system, in which water contributes hydrogen bonds to bridge the 

picolyl groups of neighbouring lamellae. Given that hydration is expected to favour 

multilayer assemblies by strengthening interlamellar interactions, the competition between 

gelation and crystallisation in this system is likely to be influenced by the availability of 

water. Systematic testing reveals that a 1% (w/v) solution of 1c can only undergo gelation at 

water concentrations less than 0.3% (w/v). This threshold scales roughly linearly with the 

quantity of gelator, reaching values of 0.5 and 0.7% (w/v) respectively for gelator 

concentrations of 2 and 3% (w/v). Thus, it can be deduced that inhibiting gel formation 

requires around six water molecules per molecule of gelator, corresponding to 25 times the 

quantity that may be incorporated into crystals. Precipitates above the CGC of the gelator 

tend to consist of small plates or polycrystalline materials, regardless of whether gelation 

takes place. In a 0.2% (w/v) solution, however, the presence of up to 1% (w/v) of water 

typically results in large plates suitable for analysis by single-crystal X-ray diffraction. 

Higher water concentrations cause the size and quality of crystals to be markedly reduced, 

while concentrations significantly below 0.2% (w/v) do not induce observable precipitation 

(Figures S17 and S18). 

Nitrobenzene gels of 1c are metastable under ambient conditions and, in 2 cm3 vials, tend to 

collapse over several days. Intriguingly, however, this process is greatly accelerated if the gel 

is prepared in a larger vial. In other small-molecule systems, relationships between 

aggregation outcome and container size have been linked to variations in nucleation rate and 

fibre density.92 To monitor this effect in a quantitative fashion, 3 cm3 of a 1% (w/v) solution 

were added directly to a mould on the geometry stage at 20oC, and subjected to a shear stress 

of 1 Pa with ω = 1 Hz. 𝐺′ increased for approximately 10 minutes but decreased 

spontaneously thereafter, suggesting that disruption of the gel coincides with the increased 

precipitation of crystalline material (Figure S13c). Notably, the gel may be regenerated after 

collapse via heating-cooling cycles in a sealed vial. Thus, destabilisation of the gel is not 

attributable to the gradual uptake of environmental water, as this would lead to a permanent 

loss of gelation behaviour. 



 
 
 
Lamellar self-assembly 
A requirement for the formation of fibrous gels is that self-assembly occur preferentially in 

one or two directions. Lamellar networks of bis(urea)s are likely to adopt this mode of 

aggregation, as crystal growth generates new urea-urea motifs only if it occurs parallel to the 

lamellar plane. One way to quantify this anisotropy is to perform MD simulations of 

differently sized crystallites and assess how the inclusion of additional layers of molecules 

affects the energy of the system. It is noted that the majority of crystal structures display 

similar urea-urea hydrogen bonding synthons and only weak interactions between 

neighbouring lamellae. Thus, identifying favoured growth axes in one such system would 

strongly support the possibility of isolated lamellar assemblies, which can expand into large-

scale anisotropic aggregates rather than stacking to produce a multilayer crystallite.  

To probe the behaviour of bis(urea) assemblies in the absence of solvent, and minimise the 

time required for equilibration of the system, atomistic MD simulations were performed in a 

vacuum under constant-NVT conditions. Crystallites of between 1200 and 3600 molecules 

were simulated in GROMACS 4.6.293 using the General Amber Force Field (GAFF),94 with 

charges and interaction parameters assigned via the Antechamber package.95 The initial 

structures were obtained from single-crystal data, bounded with a 50 nm cubic periodic box 

and subjected to an initial energy minimisation step via a steepest-descent procedure. 

Production runs were performed using a 1 fs time step, with random initial velocities 

assigned according to a Maxwell distribution at 300 K. The temperature was controlled via a 

Berendsen thermostat with a time constant of 0.1 ps.96 Although it fails to generate a correct 

canonical ensemble, the Berendsen thermostat was chosen as it effects efficient convergence 

of both temperature and potential energy, allowing the dynamics of many systems to be 

compared under isothermal conditions over extended timescales (Figure S22a). 

For each model crystallite, an initial equilibration was performed over 150 ps under constant-

NVT conditions. The simulation was then continued for an additional 150 ps, recording the 

potential energy of the system at 5 ps intervals. A short time period was allocated for the 

analysis as energies were found to converge rapidly under the simulation conditions. The 

mean potential energy over the final 150 ps period was equated to the equilibrium energy of 

the crystallite, Etot. The energy of each crystal face, Eface, was estimated by measuring the 

change in Etot upon varying the number of unit cells along the face normal axis. In a 

crystallite of N layers, there are (N–1) interfaces between layers. Thus, the value of Eface may 

be calculated from the gradient of the straight line obtained by plotting Etot/N against 1/N 

(Figure 10). The remaining energy in each layer, Ebulk, comprises the internal energy of the 

bulk lattice and surface energies of the edge faces, and largely determines the intercept value. 

𝐸tot

𝑁
=

−𝐸face

𝑁
+ (𝐸bulk + 𝐸face)                                               (1) 

To obtain a measure of the surface energy, γ, Eface must be divided by twice the area of the 

crystal face, since increasing N by one removes a free surface from both the original 

crystallite and the additional layer. It is possible that such values could be estimated more 

quickly by subtracting the energy of the simulated crystal bulk from that of a surface slab.35,36 

An advantage of the approach used in this study is that increasing N resembles the actual 

process of aggregation. Furthermore, the discrete crystallites are closer analogues to real 

assemblies than an infinite periodic lattice, and the calculation of a gradient through multiple 

points allows the precision of γ to be easily assessed. 

It is relatively difficult to obtain reliable estimates of γ for crystallites containing loosely 

bound solvent, or for pairs of parallel crystal faces that are not symmetry equivalent. For 

simplicity, therefore, γ values were estimated for structure II, which consists of non-solvated 

lamellae with no polar axes. Although the molecules in this structure show no gelation 

capability, they exhibit supramolecular motifs comparable to those of structure IX. This 

structure, in turn, crystallises concomitantly with nitrobenzene gels of 1c, and thus serves as 

the best available model for the gel fibril structure. Four data points were obtained for each 

lattice vector, and Etot was calculated as the average energy of 100 points spanning 150 ps, 

with a step size of 1 fs and 150 ps of equilibration time (Figure S20). 

The potential for anisotropic growth may be gauged from the relative magnitudes of γ parallel 

and perpendicular to the plane of the lamella. Along (100) and (010), the vectors parallel to 

the α-tape network, γ values of 124 ± 1 and 114 ± 2 mJ m-2 were obtained. The similarity in 

these values is unsurprising given that layers of molecules along both lattice vectors interact 

via strong urea-urea hydrogen bonds. By contrast, the lamellar plane itself is decorated with 

picolyl moieties, and half of these form picolyl-urea hydrogen bonds with neighbouring 

lamellae. The corresponding γ value, 88 ± 1 mJ m-2, is 23-29% smaller than the values for the 



 
 
 
other crystal faces. These results support the hypothesis that self-assembly in the absence of 

strong solvent-gelator interactions can produce isolated monolayers well suited to gel 

formation. More polar solvents may give rise to crystallisation, or the concomitant formation 

of crystals and gels, because surface solvent-urea interactions produce more isotropic γ values 

and a stronger tendency for three-dimensional self-assembly. Nonetheless, it is possible from 

estimates of γ in a vacuum to correctly predict the smallest and largest faces of the plate-

shaped crystals, which correspond to the (001) and (100) planes respectively of the bis(urea) 

lamellae (Figure S21). 

 

Figure 10 Plot to determine surface energy γ of the lamellar (001) plane in structure II. Error 

bars indicate the standard deviation of the energy values over the final 150 ps of each 300 ps 

simulation. The linear trend line was fitted by least-squares analysis and exhibits an R2 of 

0.9998, with an error in the gradient of 0.004%. The smallest model crystallite, shown in red, 

consists of 6 lamellae with 400 molecules per lamella. Illustrated in other colours are the 

seventh, eighth and ninth layers added to generate larger model crystallites. Surface energies 

of the (100) and (010) planes were estimated in a similar fashion. 

Scrolling simulations 
Comparison of the crystal structures for 1a-c reveals that lamellar hydrogen bonding 

networks are overwhelmingly favoured. In general, the gel fibres observed alongside crystals 

of structures IX and X are not crystalline, and there is no direct evidence that the molecules 

in these aggregates are packed in a lamellar fashion. However, surface energy calculations for 

a lamellar crystallite suggest that the growth in solution of expanded monolayer assemblies is 

highly feasible. Furthermore, gel formation is tentatively associated with crystalline lamellae 

displaying particular structural features, such as a lack of symmetry between the upper and 

lower surfaces. We hypothesise that both crystals and gels develop from lamellar assemblies 

in solution, and that gelation takes place when deformation of these structures results in a 

fibrous morphology. To identify the necessary conditions for fibre formation, it is useful to 

simulate the dynamics of multiple realistic lamellar configurations, which may conveniently 

be derived from single-crystal data. There is little justification, a priori, for assuming that 

crystalline lamellae are representative of those in solution. Nonetheless, this approach is 

remarkably successful in differentiating between systems that are weakly and strongly 

compatible with gel formation, and delivers a useful illustration of how unbranched, 

monodisperse fibrils might spontaneously arise. 

For each crystal structure in this study, the folding behaviour of a single bis(urea) lamella was 

assessed by means of MD simulations. The model lamellae consisted of 600 molecules 

(Table S1) and were simulated in a vacuum at 300 K for 1500 ps, under the constant-NVT 

conditions previously discussed. The size and timeframe of the system were chosen to 
minimise computational cost: the simulations capture all major structural changes, and the 

lamellae are sufficiently large to avoid significant edge effects. Solvent was omitted in order 

to reduce the time for equilibration and assess how lamellae deform in response to internal 

stresses alone. Likewise, we did not attempt to replicate the non-isothermal conditions of a 

real gelation process,54,68 since temperature changes may impact the system in different ways 

depending on the solvent, aggregate dimensions, gelator concentration and rate of cooling.  

Although the models do not account for effects such as viscosity, hydrophobicity and solvent-

urea hydrogen bonding, the results illustrate the impact of key structural variables on lamellar 

morphology and provide a simple baseline for understanding the deformation pathways of 

more realistic, explicit-solvent simulations.  



 
 
 
The bending modulus of a sheet scales roughly as the cube of its thickness τ.97,98 Thus, it was 

expected that thinner lamellae would undergo folding more readily and attain larger 

curvatures at equilibrium. The value of τ cannot be gauged directly from the spacing of 

lamellae in a crystal, dlayer, as this distance is strongly influenced by interdigitation and the 

presence of solvent. A more reliable value may be arrived at by noting that bis(urea) 

molecules in the non-solvated structures I-III occupy a roughly constant volume Vmol = 620 ± 

10 Å3. Accordingly, τ may be equated to Vmol/Amol, where Amol is the area per molecule in the 

lamella. It is clear from the simulation results that this analysis offers only a weak indication 

of lamellar flexibility (Figure 11). For example, lamellae from structures IV, VI and VIII, 

display nearly identical values of τ, but produce starkly different outcomes in their folding 

simulations. 

The simulations show that large, global curvatures occur only if the faces of the lamella are 

structurally dissimilar. Lamellae in structure IX display marked asymmetry between their 

upper and lower faces and undergo extensive folding when simulated, attaining an 

equilibrium radius of curvature of roughly 2 nm. Furthermore, if the lamella is sufficiently 

large,99,100 the system exhibits scrolling behaviour, wherein the upper face of one part of the 

lamella is layered onto the lower face of a separate region. It is thought that this process 

resembles the dynamics of lamellae in solution, and is responsible for the formation of gel 

fibres alongside crystals of structure IX. Comparable scrolling has been observed in a number 

of materials comprising asymmetric lamellar structures, including asbestos chrysotile needles 

and crystalline polymers such as poly(ethylene), γ-poly(vinylidene fluoride) and Nylon 66.101 

 



 
 
 
Figure 11 Final frames from 1500 ps MD simulations of lamellar bis(urea) networks from 

structures I-IX. Simulations were performed in a vacuum at 300 K, with the temperature 

controlled via a Berendsen thermostat. To highlight the end groups of the molecules, nitrogen 

atoms in the picolyl groups are shown as blue spheres with a 1.3 Å radius and all other atoms 

as red spheres with a 0.6 Å radius. Lamellae were constructed based on atomic positions 

calculated from the single-crystal X-ray structures and equilibrated via a steepest-descent 

procedure prior to the production run. The morphologies displayed for structures III and VI 

were obtained after equilibrating the model lamellae within four-layer crystallites at 300 K 

(see text). All images are representative of the lamellar morphology after equilibration, once 

all significant large-scale deformation has taken place. Values of Amol were obtained from the 

single-crystal structures and τ was estimated as Vmol/Amol with Vmol = 620 Å3. 

The outcome of scrolling is likely dependent on the geometric details of the lamella involved. 

As predicted by models of uniform sheets,102 the time for equilibration scales with the 

dimensions of the system, as folding begins at the edges of lamella and produces only small 

displacements nearer the centre of the sheet. The rate of scrolling, meanwhile, is roughly 

constant at 10 nm ns-1 and does not vary significantly with the dimensions of the lamella 

(Figure S24). Unexpectedly, the axis of curvature is at 90o to the α-tape axis, and the face 

with the highest concentration of end groups forms the internal surface of the resulting fibril. 

The onset of scrolling, in which the lamella comes into contact with itself, is marked by a 

sharp decrease in potential energy and acceleration of folding (Figure 12). However, the 

process is not accompanied by any significant increase in hydrogen bonding (Figure S22b), 

suggesting that van der Waals forces and non-directional polar interactions are the major 

contributors to stabilisation. As observed in scrolling assemblies of amphiphilic copolymers, 

the decrease in energy exceeds the available thermal energy but is much less than the fusion 

energy of the system, so scrolling may proceed irreversibly without disrupting the hydrogen 

bonding network.59 

 

Figure 12 Changes in energy during MD simulations of lamellae with different modes of 

deformation, expressed per mole of bis(urea). Stabilisation energies are calculated relative to 

the maximum recorded energy values after 30 ps of simulation time, to allow the systems to 

equilibrate under constant-NVT conditions. Scrolling of a lamella from structure IX (right) 

begins at the edges of the system and is largely complete after 600 ps, producing a fibril 

roughly 7 nm in diameter. 

Simulations of scrolling represent a simple and appealing model for the initial stages of fibril 

formation. Folding and growth of a lamella occur concurrently, so a fibril is likely to develop 

if the structure reaches an appreciable size before further layers are added. In nitrobenzene 

solutions of 1c, it is proposed that scrolling and stacking of lamellae occur at similar rates, 

such that the competing processes of gelation and crystallisation are simultaneously observed. 

Comparable concomitant fibre growth alongside crystals of structure X at first seems 

surprising, as the bis(urea) molecules in this system are linked by a three-dimensional 

arrangement of hydrogen bonds. However, the bis(urea) network of structure X can be 

obtained by a continuous distortion of [AABB] lamellae, in which only one face is decorated 

with picolyl groups (Figure 13). MD simulations reveal that one such lamella can undergo 

spontaneous scrolling to form a fibril structure. As in the nitrobenzene system, the axis of 

curvature lies perpendicular to the α-tapes, and picolyl groups are located mostly on the 

inside of the fibril. We suggest that self-assembly in nitromethane initially generates [AABB] 

lamellae, which can either develop into fibrils or undergo stacking and recombination to form 



 
 
 
a three-dimensional network. According to this model, the balance between gelation and 

crystallisation is determined by the relative rates of scrolling and stacking and may be highly 

solvent-dependent. For example, no concomitant gel is observed alongside the acetonitrile 

solvate XI, even though this structure and the nitromethane solvate X are isomorphous 

materials. 

 

Figure 13 The three-dimensional network of α-tapes in structures X and XI can be divided 

into lamellae with an [AABB] repeat unit. Like those from structure IX, the lamellae are 

highly asymmetric and display scrolling behaviour in MD simulations. 

Scrolling of lamellae is driven by an internal pressure resulting from structural asymmetry. 

The lack of gel formation in most of the systems studied may be linked to the abundance of 

crystal structures comprising symmetric lamellae. MD simulations confirm that lamellae with 

faces that are symmetry equivalent show no significant bias in their axis of curvature or 

folding direction. Indeed, even thin lamellae such as those of structure I tend to adopt 

crumpled or saddle-like morphologies,63,64 and are thus deformed too little for scrolling 

behaviour to arise. Stabilisation due to folding is typically comparable to RT (Figure 12), and 

the incidence of multiple axes of curvature can further limit stabilisation. Crystallisation in 

such systems is the most favourable outcome, as there are no contacts between non-adjacent 

regions of the lamella to obstruct the growth of multilayer deposits. 

It is worth emphasising that lamellar asymmetry, while necessary for scrolling, does not 

guarantee that such deformations will take place. Picolyl groups in structure IV, for example, 

are distributed unevenly between the two sides of the lamellar network, but lamellae are not 

sufficiently flexible for scrolling to arise. Conversely, MD simulations may predict scrolling 

due to asymmetric features that would not persist in the solution state. It was noted that 

lamellae from structures III and VI resemble those of structure IX in their folding behaviour, 

despite only small differences in molecular packing between their upper and lower faces 

(Figure S25). While folding of polymer sheets may result from differing arrangements of 

otherwise identical surface groups,57 the geometric asymmetries in structures III and VI are 

induced largely by interactions with neighbouring lamellae, and are thus unlikely to emerge 

spontaneously before crystallisation takes place. 

To test whether the asymmetries in structures III and IV could impact the dynamics of 

lamellae in solution, crystallites consisting of four lamellae in a vacuum were allowed to 

equilibrate for 300 ps at 300 K. This procedure enables the molecules to access a range of 

conformations, but constrains the overall lamellae to remain approximately planar. 

Subsequent simulations of each equilibrated lamella in isolation reveal more localised 

folding, with complete scrolling occurring in only a fraction of cases (Figure S25). By 

contrast, pre-equilibration of lamellae from structure IX does not affect their scrolling 

behaviour. The results suggest that a lamella in solution could not retain the geometric 

asymmetries of structures III and VI, and so would not be predisposed to significant 

scrolling. The polar distribution of picolyl groups in structure IX, however, represents a 

topological asymmetry, which cannot be removed without disassembling the lamellae. Given 

the mobility of molecules in solution, only topological asymmetries need be considered when 

assessing the likelihood of scrolling. 



 
 
 
Schematic model 
Scrolling of bis(urea) lamellae is analogous to the spontaneous curvature of micelle 

assemblies.60 The two faces of a lamella occupy equal areas in the crystal structure but 

become more compact once neighbouring layers are removed. Interdigitation of lamellae in 

structure IX, for example, serves to fill the space between picolyl groups on the lamellar 

surface, so these groups must pack more closely when only one lamella is present (Figure 

14). Bending occurs because one face of the lamella contracts more than the other, and is 

controlled by the sizes and packing efficiencies of the moieties involved. The axis of 

curvature is likely to lie parallel or perpendicular to the α-tapes since the groups either side of 

these axes are approximately symmetric. In addition, it is favourable for only one axis of 

curvature to exist, as bending about a second axis would cause stretching of the lamella and 

produce a high-energy dislocation where the axes intersect.103 It is worth noting that folding 

in other systems may occur about an axis not parallel to one of the lamella edges. Such 

processes tends to produce a helical morphology,97 but may ultimately give rise to hollow 

cylindrical fibrils if the pitch of the helix is less than or equal to the width of the lamella.104 

 

Figure 14 Lamellae in structure IX are arranged as symmetric bilayers. The faces of a single 

lamella, however, are asymmetric and must occupy different areas for optimal packing of the 

surface moieties. Thus, lamellae fold such that the face with the largest area is presented on 

the outer surface of the final structure. Cylindrical folding (centre right) can occur 

isotropically, as indicated by the uniform network of contour lines in the schematic 

illustration. By contrast, folding along two or more axes (centre left) leads to stretching of the 

surface and is energetically disfavoured. If the curvature is large enough, folding leads to 

scrolling of the lamella into a gel fibril (right), and prevents stacking to form a multilayer 

crystallite (left). 

The direction of scrolling plays an important role in determining the physical properties of a 

gel fibril. Supramolecular motifs that are aligned with the fold axis may contribute more 

strongly to tensile strength,105 and the moieties decorating the outer surface of the scrolled 

lamella are largely responsible for its adsorption behaviour.106,107 Models of uniform lamellae 

show that the axis of curvature is determined by the relative lengths of the lamella 

edges.102,108 However, real bis(urea) lamellae are not isotropic, and the simulations reveal that 

the favoured axis is that which offers the least resistance to bending deformations (Figure 

S23). Differences in the scrolling behaviour of lamellae from structures III and VI before and 

after equilibration (Figure S25) suggests that the geometry of scrolling is strongly influenced 

by molecular packing. Effects of this nature have been observed in supramolecular 

assemblies of rod-coil molecules, which adopt tubular morphologies only for particular 

combinations of in-plane bending moduli and respond sensitively to changes in molecular 

structure.63,69 

The fibrils formed in MD simulations adopt realistic cylindrical, unbranched morphologies, 

but they are between two and four times narrower than the majority of fibrils observed in 

SEM images. Wider structures could arise through continued scrolling about the fibril 

circumference or accretion of additional layers to an existing fibril. It is worth noting that the 

equilibrium curvature of a scrolled lamella represents the most stable morphology, in which 

the intermolecular forces within and between the lamella are optimally balanced. Since 

increasing the fibril diameter reduces the curvature of the outer layer, each new layer is 

further from its energetic minimum. Thus, it is likely that lamellae beyond a critical radius 

will detach from the fibril to gain further stabilisation via scrolling (Figure 15a). This 

hypothesis is supported by SEM images of the materials, which reveal little variation in fibril 



 
 
 
thickness (Figure 15b). Similar mechanisms have been proposed to explain the 

monodispersity of asbestos chrysotile needles101 and, perhaps more strikingly, the inability of 

cylindrical objects to support climbing plants below a threshold helical radius (Figure 15c).109 

Indeed, such curvature-induced destabilisation is likely the dominant mechanism by which 

self-assembled aggregates attain well-defined morphologies.110 For example, the dimensions 

of a helical fibre tend to be highly conserved because widening the structure leads to a rise in 

elastic strain, counterbalancing the favourable contribution of aggregate growth to the 

stability of the system.111 

 

Figure 15 Schematic energy plot (a) for concentrically layered lamellae, illustrating how the 

decreasing local curvature with increasing radius leads to detachment of lamellae beyond a 

threshold fibre thickness. This phenomenon is potentially responsible for the uniformity of 

fibres in nitrobenzene gels of 1c (b), and also underlies the inability of twining plants to wind 

several times around columns much larger than their helical diameter (c). 

Given the simplicity and generality of the underlying physics, scrolling may represent an 

important step in the self-assembly of many LMWGs. Gelation due to scrolling is particularly 

probable if molecules are incorporated into asymmetric lamellae, with small bending moduli 

and limited interlayer hydrogen bonding. A tendency to self-assemble in this manner is most 

readily identified, as in this study, by combining MD simulations and microscopic 

observations with an extensive analysis of single-crystal structures. However, the feasibility 

of scrolling can likely be predicted even in the absence of crystallographic data. Lamellar 

aggregates can be detected via a range of experimental techniques, and may sometimes 

develop spontaneously in MD simulations.67 Potential molecular arrangements may be 

extrapolated from studies of analogous compounds and ranked according to their stability in 

computational models.68 Indeed, it may be even be possible, for molecules of limited 

flexibility, to generate an exhaustive catalogue of realistic crystal structures, allowing 

experimental observations to be matched to energetic minima in the self-assembly 

landscape.112,113 Assessing the aggregation behaviour of a wider library of candidate LMWGs 

will lead to the identification of more general structure-property relationships, and provide a 

foundation for more detailed and predictive models of the gelation process. 

Conclusions 
Bis(urea)s are among the most popular examples of LMWGs, owing to their peptidomimetic 

characteristics and potent gelation capacities in a variety of organic solvents. The 

arrangement of hydrogen bonds in crystalline bis(urea)s is highly sensitive to both the solvent 

environment and end-group structure. Single-crystal diffraction studies have revealed that a 

series of picolyl-functionalised bis(urea)s form lamellar α-tape networks with a wide range of 

topologies. However, fibrous aggregates are observed only alongside crystals in which the 

bis(urea) lamellae are topologically asymmetric. The competition between two- and three-



 
 
 
dimensional self-assembly is decided largely by the relative surface energies of the crystal 

faces, which can be estimated through MD simulations of model assemblies. Crystallisation 

is favoured by factors that reduce this anisotropy, such as polar solvents that provide strong 

interlayer interactions and competitively bind to growing α-tapes. Gelation, meanwhile, 

occurs if multilayer aggregation is outpaced by the growth and folding of isolated 

monolayers. Atomistic simulations of single lamellae, based on the molecular arrangements 

of crystal structures, confirm that unbranched, monodisperse fibrils can develop from thin, 

asymmetric lamellae by spontaneous scrolling. Overall, this approach represents a simple, 

general and reliable method for predicting and analysing scrolling behavior in hydrogen 

bonded assemblies. The results offer useful insights into a crucial but underexplored stage of 

gel formation and could aid the identification of effective LMWGs from crystallographic data 

or predicted supramolecular assemblies. 
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