
Future Generation Computer Systems 75 (2017) 58–71
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Improved routing algorithms in the dual-port datacenter networks
HCN and BCN
Alejandro Erickson a, Iain A. Stewart a,∗, Jose A. Pascual b, Javier Navaridas b

a School of Engineering and Computing Sciences, Durham University, Science Labs, South Road, Durham DH1 3LE, UK
b School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK

h i g h l i g h t s

• Improved routing algorithms for the datacenter networks HCN and BCN are proposed.
• New routing algorithms are derived from algorithms for WK-recursive networks.
• Routing algorithms are simulated for a variety of traffic patterns and workloads.
• Our routing algorithms massively improve on existing ones.

a r t i c l e i n f o

Article history:
Received 9 January 2017
Received in revised form
4 April 2017
Accepted 5 May 2017
Available online 11 May 2017

Keywords:
Datacenters
Datacenter networks
HCN
BCN
One-to-one routing
WK-recursive networks
Performance metrics

a b s t r a c t

We present significantly improved one-to-one routing algorithms in the datacenter networks HCN and
BCN in that our routing algorithms result in much shorter paths when compared with existing routing
algorithms.We also present amuch tighter analysis of HCN and BCN by observing that there is a very close
relationship between the datacenter networks HCN and the interconnection networks known as WK-
recursive networks. We use existing results concerning WK-recursive networks to prove the optimality
of our new routing algorithm for HCN and also to significantly aid the implementation of our routing
algorithms in both HCN and BCN. Furthermore, we empirically evaluate our new routing algorithms for
BCN, against existing ones, across a range of metrics relating to path-length, throughput, and latency
for the traffic patterns all-to-one, bisection, butterfly, hot-region, many-all-to-all, and uniform-random,
and we also study the completion times of workloads relating to MapReduce, stencil and sweep, and
unstructured applications. Not only do our results significantly improve routing in our datacenter
networks for all of the different scenarios considered but they also emphasize that existing theoretical
research can impact upon modern computational platforms.

© 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
c

1. Introduction

Datacenters are becoming pervasive within the global com-
putational infrastructure and the sizes of these datacenters are
expanding rapidly, with some of the largest operators manag-
ing over a million servers across multiple datacenters. As to how
these servers are interconnected via the datacenter network (DCN)
is a fundamental issue, the consideration of which involves a
mix of mathematics, computer science, and engineering. More-
over, just as with the design of interconnection networks for

∗ Corresponding author.
E-mail addresses: alejandro.erickson@gmail.com (A. Erickson),

i.a.stewart@durham.ac.uk (I.A. Stewart), jose.pascual@manchester.ac.uk
(J.A. Pascual), javier.navaridas@manchester.ac.uk (J. Navaridas).

http://dx.doi.org/10.1016/j.future.2017.05.004
0167-739X/© 2017 The Authors. Published by Elsevier B.V. This is an open access arti
distributed-memory multiprocessors or networks-on-chips, there
is no ‘silver bullet’ solution, for there is a wide range of design pa-
rameters to consider, some of which are conflicting.

The traditional architecture of a DCN is ‘switch-centric’
whereby the primary structure is a topology (usually tree-based)
of switches with the switches possessing interconnection intelli-
gence. The DCNs Fat-Tree [1], VL2 [2], and Portland [3] are typical
of such DCNs. Amore recent and alternative architecture is ‘server-
centric’ whereby the interconnection intelligence resides within
the servers and the switches are dumb crossbars (so, there are no
switch-to-switch links). The DCNs DCell [4], FiConn [5], BCube [6],
MDCube [7], HCN and BCN [8], and GQ∗ [9] are typical of server-
centric DCNs.

The server-centric architecture possesses a number of advan-
tages when compared with the more traditional switch-centric
architecture: tree-based switch-centric DCNs tend to be such

le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2017.05.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.05.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:alejandro.erickson@gmail.com
mailto:i.a.stewart@durham.ac.uk
mailto:jose.pascual@manchester.ac.uk
mailto:javier.navaridas@manchester.ac.uk
http://dx.doi.org/10.1016/j.future.2017.05.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71 59
that ‘root’ switches quickly become a bottleneck; the underlying
topologies of server-centric topologies are better suited to support
traffic patterns prevalent in datacenters (such as one-to-all and all-
to-all); the switches in server-centric DCNs can be chosen to be
commodity switches as they require no intelligence; and multi-
ple network interface controller (NIC) ports on servers in server-
centric DCNs can be utilized so that more varied topologies can be
constructed (see, for example, [10,8,11] for more information).

Whilst multiple NIC ports can be used when building server-
centric DCNs, commodity servers usually only have a small number
of NIC ports, often only two. This can be problematic as a primary
aim of DCN design is to incorporate a large number of servers
within the datacenter. For example, when one builds the DCNs
DCell, BCube, and MDCube, one finds that the number of NIC ports
required increases as the number of servers rises. On the other
hand, FiConn and GQ∗, for example, is such that no matter how
many servers there are, each server needs only two NIC ports; such
server-centric DCNs are referred to as dual-port.

Motivated by the need to limit the number of NIC ports on
servers (so that commodity servers might be used), Guo et al. in-
troduced and evaluated the dual-port DCNs HCN and BCN [8]. The
general construction is that the DCN HCN is a recursively-defined
family of networks, with the DCN BCN built using (copies of) the
DCN HCN by including an additional layer of interconnecting links.
After defining the DCNs HCN and BCN, Guo et al. developed a num-
ber of routing algorithms (including one-to-one, multipath, and
fault-tolerant algorithms) and evaluated HCN and BCN, primarily
in comparisonwith FiConn and according to a number of basicmet-
rics.

We pursue the analysis of the DCNs HCN and BCN in this paper.
In particular, we present significantly improved one-to-one rout-
ing algorithms in bothHCN and BCN, in that our routing algorithms
result in much shorter paths than those in [8] (our analysis is both
theoretical and empirical). We also present a much tighter anal-
ysis of HCN and BCN by observing that there is close relationship
between the DCN HCN and the interconnection networks known
asWK-recursive networks, which originated in [12] andwhich have
beenwell studied as general interconnection networks.We use ex-
isting theoretical results concerningWK-recursive networks to de-
velop our routing algorithms and prove the optimality of our new
routing algorithm for HCN (in terms of path length), as well as to
significantly aid the implementation of our routing algorithms in
both HCN and BCN. Not only do we develop routing algorithms
for HCN and BCN that are theoretical improvements over existing
routing algorithms butwe undertake an extensive empirical evalu-
ation of our algorithms, against existing ones, for DCNs of a range of
realistic sizes, under a range of traffic patterns and workloads, and
across a range ofmetrics. In particular,we considermetrics relating
to hop-length, throughput, and latency for the (‘static’) traffic pat-
terns all-to-one, bisection, butterfly, hot-region, many-all-to-all,
and uniform-random, and we also study the completion times of
(‘dynamic’) workloads relating to MapReduce, stencil and sweep,
and unstructured applications, where these workloads have data
associated with flows and might involve some causality between
flows.We also study how the connection rule used to build BCNout
of copies of HCN, of which there are currently two in the liter-
ature (though potentially many more), impacts upon the result-
ing DCN BCN, in terms of the above empirical analysis. Our sim-
ulations are undertaken with our own purpose-built flow-based
simulator INRFlow [13]. A novel aspect of our simulations is that
whereas the ‘static’ simulation of routing algorithms on the above
traffic patterns is the normwithin the server-centric research com-
munity, INRFlow allows us to simulate our routing algorithms on
the above ‘dynamic’ workloads (insofar as we are aware, this pa-
per contains the first such ‘dynamic’ simulations on server-centric
DCNs).
Our results are extremely encouraging, for we almost univer-
sally obtain improvements. Not only do we obtain theoretically-
improved algorithms but our empirical analysis suggests that
there are significant gains to be made by the practical deploy-
ment of our new routing algorithms in HCN and BCN. For exam-
ple, when compared with the routing algorithm BdimRouting for
BCN (from [8]), our primary new routing algorithm for BCN, namely
NewBdimRoutingγ , achieves hop-length savings for all DCNs stud-
ied and across all traffic patterns, averaging at around a 25% im-
provement.What is more, a practical version ofNewBdimRoutingγ ,
namelyNewBdimRouting1, wherewe curtail the inherent search for
shorter paths within NewBdimRoutingγ , is shown to give a perfor-
mance comparable with that of NewBdimRoutingγ . Our algorithm
NewBdimRouting1 also achieves a significant improvement in both
throughput and latency when compared with BdimRouting in the
different scenarios: as regards throughput, on average this im-
provement is by 36% and 55% for the two throughput metrics we
consider; and as regards latency, on average this improvement
is by 10%. Our algorithm NewBdimRouting1 also obtains improve-
ments for all the different ‘dynamic’ workloads mentioned above.

This paper is structured as follows. In the next section, after
detailing the essential concepts of server-centric DCNs, we give
precise definitions of the DCN HCN, and exhibit the link with WK-
recursive networks, and theDCNBCN. In Section 3,wedevelopnew
one-to-one routing algorithms for HCN, prove their optimality, and
explain how they can be very easily implemented. Our new one-
to-one routing algorithms for BCN are developed in Section 4. In
Section 5, we explain the framework for and reasoning behind our
experiments, and in Section 6, we supply and evaluate the results
we obtain. Our conclusions and directions for further research are
presented in Section 7. A preliminary version of this paper where
the analysis only considered HCN appeared as [14].

2. Server-centric datacenter networks

In this section we define the graph-theoretic abstractions that
we use to obtain our results on server-centric DCNs. A server-
centric DCN is built from commodity off-the-shelf (COTS) switches
and servers, interconnected by cable links. It is distinguished from
other types of datacenters in that very low capability is required
of the switches, which act as simple, non-blocking crossbars, and
any routing algorithms and network protocols are implemented
within the servers. Thus, we abstract a server-centric DCN as a
graph G = (S ∪W , E), where u ∈ S is a server-node, representing
a server, and w ∈ W is a switch-node, representing a switch,
and each link in E represents a physical link of the DCN. The only
requirement, imposed by the simplicity of the switches we are
modelling, is that no two switch-nodes are connected by a link;
as such, E ∩ (W × W) = ∅. As we shall see, our DCNs come in
parameterized families. Henceforth, we use the term DCN to refer
to both a family member and the family itself.

A routing algorithm1 takes a pair of server-nodes, (src, dst), as
input and outputs a path, P , in G from src to dst . The path-length
of P is equal to the number of links P contains, and the hop-length
of P is equal to the number of hops it contains, where a hop is a
link joining two server-nodes or a path of path-length 2 from a
server-node to another server-node through a switch-node. Hop-
length is the primary distance-related performance metric used
in evaluations of server-centric DCNs (see, e.g., HCN and BCN [8],
DCell [4], FiConn [5], BCube [6], MDCube [7], and GQ∗ [9]), for the
reason that packets must travel up and down the protocol stack
of each intermediate server to reach the service that will route
them to the next server, rendering negligible the time spent at each
switch. We work with hop-length in this paper.

1 Strictly speaking, this is a unicast routing algorithm, but we do not discuss any
other sort in this paper.

60 A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71
2.1. The DCN HCN

Let us define the DCN HCN(n, h) from [8], where n ≥ 2 and
h ≥ 0. The parameter n is the degree (or radix) of the switch-
nodes, each of which is connected to α master-nodes and β slave-
nodes (so called in [8]2), and h is the depth of the recursion in the
construction ofHCN(n, h). In the context of theDCNsHCNandBCN,
it is always the case that n = α + β .

For ease of notation, let Gh (temporarily) denote HCN(n, h) (we
suppress the parameter n for convenience). The graph G0 is the n-
star graph, comprising a switch-node adjacent to n server-nodes
(of which α are master-nodes and β are slave-nodes). Label the
master-nodes 0, 1, . . . , α − 1.

For h ≥ 1, construct the graph Gh from α disjoint copies of Gh−1,
labelled Gh−1

0 ,Gh−1
1 , . . . ,Gh−1

α−1. Label any master-node of Gh with
the h-tuple3 u = uhuh−1 · · · u0, where uh is the index of the copy of
Gh−1 containing themaster-node, and uh−1 · · · u0 is the label of the
master-node within Gh−1

uh (implicit in the definition of the labels of
master-nodes is that 0 ≤ ui < α, for each 0 ≤ i ≤ h). Note how
for 0 ≤ γ < h, there are various copies of Gγ within Gh so that
each of these can be canonically labelled uhuh−1 . . . uγ+1 according
to its place in the recursive hierarchy.

We use the labels of master-nodes to define the level h links that
join master-nodes in different disjoint copies of Gh−1 so as to form
Gh. A pair of master-nodes forms a level h link in Gh, where h ≥ 1,
if, and only if, the labels u and w of these master-nodes are such
that

u = uh u′hu
′

h · · · u
′

h  
h times

and w = u′h uhuh · · · uh  
h times

,

where uh ≠ u′h. Consequently, for every 1 ≤ j ≤ h, there are links
joining the master-nodes with labels

uhuh−1 · · · uj+1uj wjwj · · ·wj  
j times

and

uhuh−1 · · · uj+1wj ujuj · · · uj  
j times

,

for which uj ≠ wj.
As well as labels for the master-nodes, we also define labels

for the switch-nodes and slave-nodes. The switch-node adjacent
to the α master-nodes uhuh−1 · · · u1u0, for 0 ≤ u0 < α, is given
the label uhuh−1 · · · u1, and the β slave-nodes adjacent to this
switch-node are labelled uhuh−1 · · · u1y, for α ≤ y < α + β . In
consequence, the graph Gh has: α master-nodes of degree 1; αhβ
slave-nodes of degree 1; α(αh

− 1) master-nodes of degree 2; and
αh switch-nodes of degree n. Henceforth, we identify nodes with
their labels.

We shall need twoalternative identifiers. Letv = uhuh−1 · · · u1y
be a slave-node of Gh. We define an identifier for v within Gh as

uidh(v) =


h

i=1

uiα
i−1


β + (y− α). (1)

The function uidh is a bijective mapping of the slave-nodes of Gh to
the set {0, 1, . . . , αhβ − 1}. Consider some copy B of Gγ within Gh,
where 0 ≤ γ < h. We define an identifier for Bwithin Gh as

hidγ (B) =


h

i=γ+1

uiα
i−(γ+1)


. (2)

2 We regret the imagery invoked by the terms ‘master’ and ‘slave’; however, we
have elected to retain this terminology from [8] for clarity.
3 Throughout this paper we write xkxk−1 · · · x0 to denote the (k + 1)-tuple

(xk, xk−1, . . . , x0).
Fig. 1. The DCN HCN(8, 2).

The function hidγ is a bijective mapping of copies of Gγ within Gh

to the set {0, 1, . . . , αh−γ
− 1}.

We now revert back to our original notation and refer to Gh as
HCN(n, h). The DCN HCN(8, 2) can be visualized as in Fig. 1, where
α = 4 and β = 4. The slave-nodes are in white, the master-
nodes are in black, and, aswehave described above, the label of any
master-node is obtained by appending a number from {0, 1, 2, 3}
to the label of the adjacent switch-node.

Notice that the slave-nodes play no part in the construction of
HCN(n, h), besides the fact that there are β of them within each
copy of HCN(n, 0). They are, however, used in Section 2.2 when
we construct the DCN BCN.

2.1.1. WK-recursive networks
Observe that if the slave-nodes are ignored in HCN(n, h)

and each switch-node is replaced with a clique on its adjacent
α master-nodes then the resulting graph is isomorphic to the
WK-recursive network WK(α, h), first defined in [12]. To our
knowledge, this observation is novel (and first mentioned in the
preliminary version of our paper [14]).

Replacing the switch-nodes in HCN(n, h) with α-cliques is, in
fact, a very natural abstraction for developing routing algorithms
in server-centric DCNs: the links used in a route within WK(α, h)
correspond to hops in the corresponding route in HCN(n, h). Thus,
path-length in WK(α, h) corresponds exactly to hop-length in
HCN(n, h).

WK-recursive networks have been extensively studied since
they were first defined and, as we shall see later, we can use
the analysis of these networks in order to better understand the
topological properties of the DCNs HCN and BCN.

Formally, theWK-recursive networkWK(α, h) is defined so that:
it has node-set {0, 1, . . . , α − 1}h+1; and there are links

(ihih−1 . . . i2i1x, ihih−1 . . . i2i1x′),

where i1, i2, . . . , ih, x, x′ ∈ {0, 1, . . . , α − 1}, with x ≠ x′, as well
as links

(ihih−1 · · · ij+1ij ij′ ij′ · · · ij′  
j times

, ihih−1 · · · ij+1ij′ ijij · · · ij  
j times

),

where 0 < j ≤ h and ij ≠ i′j .

2.2. The DCN BCN

We construct BCN(α, β, h, γ) (as in Sections 3.2 and 3.3 of [8])
by using slave-nodes to interconnect disjoint copies of HCN(n, h)

A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71 61
Fig. 2. The network BCN(α, β, h, γ) when h ≥ γ .

as explained below. Let h ≥ 0, γ ≥ 0, α ≥ 2, and n = α + β be
given.

Let us outline BCN(α, β, h, γ) where h ≥ γ , since in the case
for which h < γ , the DCNs BCN(α, β, h, γ) and HCN(n, h) are
defined to be identical. We begin by taking αγ β+1 disjoint copies
of HCN(n, h). Recall, from Section 2.1, that each copy of HCN(n, h)
is composed of αh−γ disjoint copies of HCN(n, γ). We now define
a perfect matching amongst the slave-nodes of all the copies of
HCN(n, γ) so that there is exactly one link joining each such pair
of copies of HCN(n, γ). However, we impose restrictions on this
matching.

For brevity, let s = αγ β , let t = αh−γ
−1, and let B0, B1, . . . , Bs

be the s + 1 disjoint copies of HCN(n, h) within BCN(α, β, h, γ).
Within each Bu, for 0 ≤ u ≤ s, let Bv

u be the copy of HCN(n, γ) such
that hidγ (Bv

u) = v (recall that 0 ≤ v ≤ t). For a slave-node x in Bv
u ,

define id(x) = (u, v, uidγ (x)).
We now add slave-node-to-slave-node links to complete the

construction of BCN(α, β, h, γ). For each fixed v, add links
to construct a perfect matching of pairs of slave-nodes in
Bv
0, B

v
1, . . . , B

v
s , such that for each i and j, where i ≠ j, there is

exactly one link joining Bv
i with Bv

j . The overall scheme can be
visualized in Fig. 2.

There are various different matchings that might be employed
and we consider the two that were highlighted in [8], called slave-
connection-rule-1 and slave-connection-rule-2. They are defined as
follows. Fix 0 ≤ v ≤ t and let 0 ≤ i < j ≤ s.
• Slave-connection-rule-1: the sub-networks Bv

i and Bv
j are

joined by the link joining the slave-node x for which id(x) =
(i, v, j− 1) and the slave-node y for which id(y) = (j, v, i).
• Slave-connection-rule-2: the sub-networks Bv
i and Bv

j are
joined by the link joining the slave-node x for which id(x) =
(i, v, j− i− 1) and the slave-node y for which id(y) = (j, v, s−
j+ i).

The two connection rules can be visualized in Fig. 3(a) and (b),
respectively. Slave-connection-rule-1 is essentially identical to the
connection rule used to define DCell in [4], and slave-connection-
rule-2 is a connection rule derived in [15] but more recently used
in Generalized DCell in [16]. Of course, there are many more such
matching connection rules that might be considered.

In consequence, the DCN BCN(α, β, h, γ), for h ≥ γ , has:
(αγ β + 1)α master-nodes of degree 1; (αγ β + 1)αhβ slave-nodes
of degree 2; (αγ β + 1)α(αh

− 1) master-nodes of degree 2; and
(αγ β + 1)αh switch-nodes of degree n.

3. One-to-one routing in the DCN HCN

Wefirst describe the one-to-one routing algorithm forHCN(n, h)
called FdimRouting that was derived in [8] before describ-
ing an improved one-to-one, minimal routing algorithm called
NewFdimRouting . In essence, the algorithm FdimRouting is that ob-
tained in [17, Section 3.1] and the algorithm NewFdimRouting is
actually that obtained in [17, Section 3.2].

Throughout this paper, for a given routing algorithm R and
server-nodes src and dst , a path from src to dst computed by
R is denoted by R(src, dst), and the hop-length of the path by
|R(src, dst)|.

3.1. Routing with FdimRouting

The one-to-one routing algorithm for HCN(n, h) from [8],
named FdimRouting , proceeds as follows. We first describe the
algorithm for master-nodes. Let src and dst be master-nodes in
HCN(n, h), and letγ be the smallest parameter such that src and dst
are contained in the same sub-network HCN(n, γ) of HCN(n, h). If
γ = 0 then src and dst are connected to the same switch (and they
may be identical); otherwise, let Ba and Bb be the distinct copies of
HCN(n, γ − 1) containing src and dst , respectively, where a and b
are the indices, from the set {0, 1, . . . , α − 1}, of Ba and Bb within
the copy ofHCN(n, γ) that contains them. Let (dst ′, src ′)be the link
that joins Ba to Bb, with dst ′ in Ba and src ′ in Bb. FdimRouting builds
a path from src to dst by recursively building a path from src to dst ′
within Ba and from src ′ to dst within Bb, and then joining these two
paths by the link (dst ′, src ′).

Given src and dst , the labels of dst ′ and src ′ are easily derived
from the definition of HCN(n, h). All four of these master-nodes
(a) Slave-connection-rule-1. (b) Slave-connection-rule-2.

Fig. 3. Slave-node links in BCN(2, 2, 1, 1).

62 A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71
are contained in the same copy of HCN(n, γ), so they must begin
with the same prefix, uhuh−1 · · · uγ+2uγ+1 (the prefix is empty in
the degenerate case where γ = h). The nodes dst ′ and src ′ join Ba

and Bb, and so we have

dst ′ = uhuh−1 · · · uγ+2uγ+1a bb · · · b  
γ times

src ′ = uhuh−1 · · · uγ+2uγ+1b aa · · · a  
γ times

.

Under our identification of HCN(n, h) (with its slave-nodes
removed) with WK(α, h), this algorithm from [8] is actually just
the routing algorithm for WK(α, h) from [17, Section 3.1].

It was shown in Theorem 4 in [8] that FdimRouting yields a
path joining any two master-nodes of HCN(n, h) of length at most
2h+1
− 1. Consequently, the length of a shortest path between any

two master-nodes of HCN(n, h) is at most 2h+1
− 1. Whilst this

upper bound was noted in [8], it was left unresolved as to whether
the length of a shortest path between any two master-nodes of
HCN(n, h) is exactly 2h+1

−1 in the worst-case. However, that this
is the case was proven in [17] (we translate from the language of a
WK-recursive network to that of a DCN HCN).

Lemma 3.1 ([17, Lemma 2.1]). Let n ≥ 2 and h ≥ 1. There exist
source and destination master-nodes of HCN(n, h) such that the hop-
length of a shortest path from the source to the destination is exactly
2h+1
− 1.

It is trivial to implement the algorithm FdimRouting as a source-
routing algorithm so that it has O(h2h) time complexity (and
not O(2h) as was stated in [17,8]; for even writing the route
takes O(h2h) time where we assume that n = O(1)). Also, it
is not difficult to see that FdimRouting can be implemented as
a distributed-routing algorithm so that the time taken for each
interim master-node to compute the next master-node on the
route is O(h).

3.2. Routing with NewFdimRouting

As was noted in [17, Section 3.2], the routing algorithm
FdimRouting is not a minimal routing algorithm and can be
improved. Consider applying the routing algorithm FdimRouting to
the source master-node (0, 1, 1) and the destination master-node
(2, 1, 1) of HCN(5, 2) (where α = 3 and β = 2). The resulting path
is:

(0, 1, 1)→ (0, 1, 2)→ (0, 2, 1)→ (0, 2, 2)→
(2, 0, 0)→ (2, 0, 1)→ (2, 1, 0)→ (2, 1, 1).

However, the path

(0, 1, 1)→ (1, 0, 0)→ (1, 0, 2)→
(1, 2, 0)→ (1, 2, 2)→ (2, 1, 1)

is shorter.
The algorithm given as Algorithm 1, which we call GetShortest,

was proven in [17, Section 3.2] to yield aminimal routing algorithm
forWK(α, h) aswe now explain.We think of all routing algorithms
for WK(α, h) as also being routing algorithms for HCN(n, h) when
the slave-nodes are ignored, and vice versa.

Let the nodes u = uhuh−1 · · · u0 and v = vhvh−1 · · · v0
of WK(α, h) be distinct. The algorithm GetShortest(u, v) out-
puts either a path or a value from {0, 1, . . . , α − 1}. If
GetShortest(u, v) outputs the path P then we define the path
NewFdimRouting(u, v) as P (in this case, the path P is actually
the path FdimRouting(u, v)). Alternatively, ifGetShortest(u, v) out-
puts the value z ∈ {0, 1, . . . , α − 1} then we define the path
NewFdimRouting(u, v) as follows. Let
Algorithm 1
Require: u = uhuh−1 · · · u0 and v = vhvh−1 · · · v0 are distinct
nodes in WK(α, h).
function GetShortest(u, v)

P ← FdimRouting(u, v)
l← |P|
i← largest index such that ui ≠ vi
for z ∈ {0, 1, . . . , α − 1} \ {ui, vi} do

luz ← |FdimRouting(u, uhuh−1 · · ·

· · · ui+1ui zz · · · z  
i times

)|

lvz ← |FdimRouting(v, vhvh−1 · · ·

· · · vi+1vi zz · · · z  
i times

)|

lz = luz + lvz + 2i
+ 1

end for
if l ≤ min{lz : ui ≠ z ≠ vi} then

return P
else

return z, where
lz = min{lz : ui ≠ z ≠ vi}

end if
end function

• Pu be the path

FdimRouting(u, uhuh−1 · · · ui+1ui zz · · · z  
i times

)

• Q be the path

FdimRouting(uhuh−1 · · · ui+1z uiui · · · ui  
i times

,

vhvh−1 · · · vi+1z vivi · · · vi  
i times

)

• Pv be the path

FdimRouting(vhvh−1 · · · vi+1vi zz · · · z  
i times

, v).

The pathNewFdimRouting(u, v) is defined as Pu+link1+Q+link2+
Pv , where linkj is the link joining the terminals of the appropriate
paths, for j ∈ {1, 2}.

It is not the case that FdimRouting has to be executed in the for-
loop of Algorithm 1 in order to obtain lu and lv; for, by [17, Lemma
3.3], the following is true.

Theorem 3.2. The length of a shortest path joining the nodes zz · · · z  
h+1 times

and uhuh−1 · · · u0 of the WK-recursive networkWK(α, h) is
i=0,1,...,h where ui≠z

2i.

Consequently, we can calculate the length of a shortest path,
along with which route it takes, without computing any actual
path; a simple numeric calculation suffices. Once we have this
information,we can build the actual path as specified by the output
value z.

Let us now return to when at least one of our source and
destination nodes in HCN(n, h) is a slave-node (this was left
blurred in [8]). W.l.o.g., suppose that our source is a slave-node.
We calculate the length of a shortest path between every master-
node adjacent to the same switch-node as the source and: the
destination node, if the destination is a master-node; or to every
master-node one hop from the destination node, if the destination
is a slave-node. We take the resulting path of minimal hop-length

A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71 63
as our shortest path.We note that Theorem 3.2 assists significantly
with this computation.

As we noted above, FdimRouting can be implemented as both
a source-routing and a distributed-routing algorithm. This is also
true for NewFdimRouting . When implemented as a source-routing
algorithm, the repeated numeric computations (so as to ascertain
the path to take) take O(h) time (recall, n is assumed to be O(1));
so, the complexity remains at O(h2h). When implemented as a
distributed-routing algorithm, as well as carrying the source and
the destination within the packet header, the value z, output from
GetShortest, must also be carried.When it is, the time taken for each
interim node to compute the next node on the route remains at
O(h).

4. One-to-one routing in the DCN BCN

In this section we describe the routing algorithms for the DCN
BCN as derived in [8], followed by a novel, improved routing
algorithm.

4.1. Routing with BdimRouting

We first describe the routing algorithm BdimRouting from [8].
Let src and dst be server-nodes in BCN(α, β, h, γ), where h ≥ γ
(src might be a master-node or a slave-node, as might dst). Recall
that BCN(α, β, h, γ) is composed of disjoint copies of BCN(n, γ),
labelled Bv

u , for each (u, v) ∈ {0, 1, . . . , s} × {0, 1, . . . , t}, as
depicted in Fig. 2 (s and t are as defined in Section 2.2). If src and dst
reside in the same copy of HCN(n, h), then BdimRouting(src, dst)
returns the path returned by FdimRouting(src, dst). Thus, we
assume that src is in Bv

u and dst is in Bv′

u′ , for some u ≠ u′ (note
that we might have that v = v′).

Let (x, x′) be the unique slave-node-to-slave-node link joining
Bv
u to Bv

u′ (see Section 2.2). The routing algorithm BdimRouting re-
turns the path FdimRouting(src, x)+ (x, x′)+ FdimRouting(x′, dst).
Alternatively, (x, x′) can be the unique link joining Bv′

u to Bv′

u′ ; note
that if v = v′ then the two alternatives produce identical paths.

Of course, we can immediately improve BdimRouting by us-
ing the algorithm NewFdimRouting instead of the algorithm
FdimRouting; however, irrespective ofwhetherweuse FdimRouting
or NewFdimRouting , the algorithms outlined above do not neces-
sarily yield shortest paths within BCN(α, β, h, γ). A concrete ex-
ample as to why this is the case is given in [14], but we shall
now move forward with a more sophisticated improvement of
BdimRouting .

4.2. Routing with NewBdimRouting

The routing algorithm BdimRouting from [8], employed within
BCN(α, β, h, γ), where h ≥ γ , and outlined above, is such that
if the source is in Bu and the destination is in Bu′ , where u ≠
u′, then the route derived remains entirely within Bu and Bu′ .
NewBdimRouting , described as Algorithm2, performs an intelligent
search to find a proxy copy of HCN(n, h), Bu′′ , through which a
shorter path can be routed.We discuss the intelligent construction
of the set of proxies at the end of this section, so that this search
feature appears merely in the form of the set Proxies in Algorithm
2; for the moment, think of Proxies as including all possibilities for
u′′, of which there are αγ β − 1.

Of course, Theorem 3.2 makes the implementation of
NewBdimRouting trivial, so that the search for an optimal choice of
Bu′′ to route through involves examining the hop-length of exactly
one path for each candidate proxy in Proxies. When implemented
as a source-routing algorithm, and given our comments earlier as
regards the implementation of NewFdimRouting , once Bu′′ is found,
Algorithm 2 The routing algorithm NewBdimRouting in
BCN(α, β, h, γ), where h ≥ γ . Note that we may have v = v′ (be-
low). The call to BdimRouting(src, dst) employs NewFdimRouting
in place of FdimRouting .

Require: src and dst are server-nodes in Bv
u and Bv′

u′ , respectively.
function newBdimRouting(src, dst)

if u = u′ then
return NewFdimRouting(src, dst)

end if
Q ← BdimRouting(src, dst)
for u′′ ∈ Proxies do

(x, x′′)← link joining Bv
u to Bv

u′′

(y′′, y)← link joining Bv′

u′′ to Bv′

u′
Pu′′ ← NewFdimRouting(src, x)
+(x, x′′)+ NewFdimRouting(x′′, y′′)
+(y′′, y)+ NewFdimRouting(y, dst)

end for
return a path of shortest hop-length in
{Pu′′ : u′′ ∈ {0, 1, . . . , s} \ {u, u′}} ∪ {Q }

end function

NewBdimRouting constructs that chosen path in O(h2h) steps; for
it is essentially 3 repetitions of NewFdimRouting . As regards the
implementation of NewBdimRouting as a distributed-routing al-
gorithm, again the time complexity is O(h). However, the packet
header must also carry the 3 different z’s corresponding to the 3
executions of NewFdimRouting , as well as a parameter detailing
which Bu′′NewBdimRouting transits through.

4.3. Selecting proxies and alternative routing

An exhaustive search through candidate proxies Bu′′ , for each
u′′ in {0, 1, . . . , s} \ {u, u′}, together with the associated overheads
of this search, can be avoided, albeit with a potential loss of path
quality.We construct the set Proxies, used in Algorithm2, following
methods analogous to those developed in [18]. In short, for the
recursively-definedDCNs considered in [18], namely (Generalized)
DCell and FiConn, only proxies ‘within a small radius’ of src or
dst are considered, where ‘within a small radius’ is interpreted
as within some recursive copy with the recursion parameterized
by the radius. For us, this locality translates as follows. Fix γ ≥
r ≥ 0 and let Bu (resp. Bu′) be the copy of HCN(n, h) within
BCN(α, β, h, γ) in which src (resp. dst) lies. Moreover, let Bu,r
(resp. Bu′,r) be the copy of HCN(n, r) within Bu (resp. Bu′) in which
src (resp. dst) lies. Define the set Ar = {u′′ : 0 ≤ u′′ ≤ s, u′ ≠
u′′ ≠ u, there is a link from a slave-node of Bu,r to a slave-node
of Bu′′}, with the set A′r defined analogously but w.r.t. dst and Bu′,r
as opposed to src and Bu,r . Set Proxies = Ar ∪ A′r . We shall call
the version of NewBdimRouting that constructs Proxies in this way
NewBdimRouting r , where r is the ‘radius’ parameter. Clearly, if
r = γ then we obtain the exhaustive search. Consequently, we
can think ofNewBdimRouting as being a suite of routing algorithms,
with one algorithm for each 0 ≤ r ≤ γ .

In choosing a value for r , above, there is clearly a trade-
off between the breadth of search and the overheads associated
with undertaking this search: the wider the search, the more
chance of finding a shorter path, but the longer this search takes
to undertake. In [18], it was found that restricting searches to
‘small radius’ led to significant performance gains yet did not
unduly compromise the quality of the resulting paths found.
Consequently, buoyed by the results of [18], we have proceeded
analogously here. As such, we compare NewBdimRoutingγ and
NewBdimRouting1 in our experimental analysis.

The (suite of) routing algorithm(s) NewBdimRouting serves as a
prototype for a class of routing algorithms that search for shortest

64 A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71
paths. With the notation of Algorithm 2, at present we route:
from src in Bv

u to Bv
u′′ , via a slave-node-to-slave-node link; then

on through Bu′′ to Bv′

u′′ ; and finally, via a slave-node-to-slave-node
link, from Bv′

u′′ to dst in Bv′

u′ . Alternatively, we might route: from
src in Bv

u to Bv′′

u , for some v′′; then via a slave-node-to-slave-node
link to Bv′′

u′′ , for some u′′; then on through Bu′′ to Bv′

u′′ ; and finally,
via a slave-node-to-slave-node link, to dst in Bv′

u′ . In short, there
are other as yet unexplored ‘dimensions’ within which to search
for shorter paths. Of course, more searching leads to additional
computational overheads. Another alternative is to build paths that
pass through not just Bu, Bu′′ , and Bu′ , for some u′′, but through
Bu, Bu′′ , Bu′′′ , and Bu′ , for some u′′ and u′′′, in the search for yet
shorter paths. Of course, this increases the searching overheads
given that not only do potential values for u′′ have to be explored
but potential values for u′′′ also. We leave the search for efficiently
implementable improvements to the approach we take here as a
direction for future research and return to this comment in our
conclusions.

5. Methodology

We undertake an exhaustive empirical analysis of our newly
proposed routing algorithm NewBdimRouting r , for specific values
of r , by comparing its performance with that of BdimRouting in
BCN(α, β, h, γ), over a range of parameter values, for a range of
traffic patterns andworkloads, andwith regard to a comprehensive
set of metrics. Our metrics cover hop-length, network throughput,
and latency, as well as the overall completion time of various
workloads.

Our topologies come in two batches. In Batch A, we include the
DCNs BCN(α, β, h, γ), for (α, β) ∈ {(7, 2), (6, 3), (5, 4), (4, 5),
(3, 6), (2, 7)} and for h ∈ {3, 4}, where 1 ≤ γ ≤ h (we detail
results primarily for h = 3 as trends are replicated for h = 4
and the resulting sizes of some of the DCNs when h = 4 are
too big to be practically relevant). We are guided here by the em-
pirical analysis undertaken in [14] where these parameters are
chosen so that we might observe performance trends as the pa-
rameter values involved gradually increase or decrease. We ob-
tain a wide range of DCNs in terms of the number of server-
nodes; for example, even when h is fixed at 3, BCN(2, 7, 3, 1) has
1080 server-nodes whereas BCN(6, 3, 3, 3) has 1,261,656 server-
nodes. We also study both slave-connection rules defined earlier,
and we use 1-BCN and 2-BCN, respectively, to specify a partic-
ular connection rule (with BCN used when we have no need to
specify the actual slave-connection rule used). Although we fo-
cus on BCN (for h ≥ γ) in this paper, we have indeed also ver-
ified the experiments from [14], comparing NewFdimRouting to
FdimRouting in the topologies HCN(9, h), for 3 ≤ h ≤ 8, using
our new, independently-developed software tool (see Section 5.1).

In our second batch of topologies, Batch B, we experiment
with more realistic topologies in that we reflect readily avail-
able denominations of switch-ports, namely 24 and 32. The
topologies within this second batch are BCN(3, 21, 3, γ) and
BCN(3, 29, 3, γ), for 1 ≤ γ ≤ 3, as well as BCN(12, 12, 2, 1) and
BCN(12, 12, 3, 0). While there are many combinations of parame-
ters that yield networks of realistic size and switch-radix, we are
guided by the results of our experiments on the topologies of Batch
A and consequently choose higher values of β and lower values of
h for the topologies within the second batch. Again, we get a good
spread of DCNs in terms of the number of server-nodes, with these
numbers ranging from 41,472 to 677,376.

We now describe our software tool and the details of our
experiments.
5.1. Software tool: INRFlow

We conduct our experiments with the open-source software
tool Interconnection Networks Research Flow Evaluation Frame-
work (INRFlow) [13]. INRFlow is a flow-level network simu-
lation framework for analysing network topologies and routing
algorithms under various traffic patterns, workloads, and fault-
conditions. For us, a traffic pattern is a set of pairs of source and
destination nodes, whereas we think of a workload as consisting
of a set of flows, possibly with some temporal causality imposed
on these flows, with a flow being a source–destination pair to-
gether with a bandwidth reflecting the amount of data intended
to be transported from the source to the destination. We often
simply refer to traffic patterns as workloads; that is, we think of
source–destination pairs as unitary flows and so that there are no
temporal causalities between the flows. INRFlow constructs the
network topology and workload at runtime, routes the flows spec-
ified by the workload, using the specified routing algorithm, and,
finally, reports statistics.

INRFlow has a static and a dynamic mode. In static mode,
flows are routed simultaneously and a link’s capacity is assumed
to be shared equally among all the flows routed through it. Static
mode can handle very large networks and serves to report on
raw performance metrics where the causal relationships between
flows are not important, such as the mean hop-length of a routing
algorithm or preliminary estimations of the throughput. This is
the mode commonly found in experimental work within the
server-centric DCN literature. However, the static mode does not
always accurately reflect network traffic due to its lack of temporal
modelling. For this reason, we extend our experimental work
by simulating in dynamic mode. In dynamic mode, the links of
the network have capacities and each flow is specified with a
bandwidth reflecting the data that must be routed. In addition, the
workloads might prescribe causal relationships between flows, so
that some flows must finish before others begin. Dynamic mode
provides a more realistic, flow-level simulation of general real-
world workloads, as well as a good estimation of the completion
times of a collection of application-inspired workloads.

As we mentioned earlier, the conclusions of our preliminary
experiments in [14] are broadly verified; INRFlowwas developed
independently from the purpose-built tool used in [14]. Note that
the tool in [14] does not store the topology in memory, unlike
INRFlow, so we are unable to reproduce specific experiments on
very large networks; however, we do reproduce the overall trends
observed in [14].

5.2. Traffic patterns and workloads

In order to ascertain the performance of our routing algorithms
under various conditions, we experiment with a variety of traffic
patterns and workloads, most of which are common in the
literature and representative of traffic scenarios arising from scale-
out, tenanted, cloud-oriented datacenters (as well as smaller,
private datacenters), running a number of simultaneous data-
intensive applications, such asHadoop (see, e.g., [19]) or Spark (see,
e.g., [20]).

We use INRFlow’s static engine to measure statistics related
to path (hop-)length, network throughput, and latency, under the
following wide variety of traffic patterns and workloads.

All-to-one: A destination server dst is chosen, uniformly at
random, and every server sends a flow to dst .

Bisection: The network is split uniformly at random into two
halves and every server in each half sends a flow to every
server in the other half (see [21]).

A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71 65
Butterfly: Every server sends a flow only to a small subset of
servers, as opposed to sending to all of them as in a full
all-to-all communication. In more detail, the servers are
arbitrarily numbered 1, 2, . . . ,N , and for any 1 ≤ k ≤
⌊log(N − 1)⌋, servers are paired together as follows: the
servers are split into batches of 2k contiguously-named
servers; and within themth batch, server 2(m−1)k+ i is
paired with server 2(m−1)k+ k+ i, for 1 ≤ i ≤ k. Every
server sends a flow to every one of the (atmost) ⌊log(N−
1)⌋ servers it has been paired with. See [22] for more
details. The butterfly pattern represents an optimized,
binary implementation of collective operations.

Hot-region: One million flows are generated so that each source
server is selected uniformly at random and where each
destination server is chosen according to a hot-region
pattern, whereby 1

4 of the traffic (on average) goes to 1
8

of the network, with the rest uniform. The hot-region is
chosen by arbitrarily naming the servers 1, 2, . . . ,N and
taking the hot-region to be the servers 1, 2, . . . , ⌊N8 ⌋.

Many-all-to-all: For a given size s, the network is partitioned
uniformly at random into g = ⌈N/s⌉ groups of servers,
each of size atmost s. Each server sends a flow to all other
servers in its group. In this paper we take s = 1000.

Uniform-random: Onemillion flows are generated inwhich both
the source and the destination are chosen uniformly at
random.

After assessing the raw performance improvements achieved
by our routing algorithms, in terms of hop-length, throughput, and
latency, we evaluate how these raw performance improvements
translate to more realistic scenarios using INRFlow’s dynamic
engine and a collection of new, application-inspired workloads.
These new workloads cover more representative and realistic
network traffic scenarios that can be found in existing datacenters.
Note that this is beyond what is normally undertaken as current
practicewithin the server-centric community. Our newworkloads,
along with a brief justification, can be described as follows.

MapReduce: Our MapReduce workflow is such that we partition
the servers into equal-sized groups so that every server
is allocated to a group; this partitioning is undertaken
uniformly at random. Within each group, a root server,
chosen uniformly at random, undertakes a broadcast to
the group, so as to partition the original data amongst
all servers. Once a server has received its data from the
root, it performs the ‘mapping’ of the data and ‘shuffles’
it to the other servers via a one-to-all group broadcast.
Once a server has received all ‘mapped’ flows from the
other servers in its group, it ‘reduces’ its data and sends its
results back to the group root. The completion time of the
MapReduce workflow is measured as the time required
to complete all the communications in all of the groups.

MapReduce is the main application model used in the context
of datacenter systems for big data analytics (see, e.g., [23]). Were
we to work only with one group consisting of all of the servers,
MapReduce would be computationally infeasible; consequently,
we partition the servers into groups of 1000 servers. It is common
practice in datacenters where storage is distributed across subsets
of servers to partition the servers into groups uniformly at random,
so as to reduce the effects of correlated server failures (see,
e.g., [24]).

Stencil and sweep: In these workloads, we assume that there
is a virtual topology imposed upon the servers, in the
form of a d-dimensional grid (this virtual grid is imposed
on the servers arbitrarily). Each server sends data to its
neighbours in this virtual topology. We illustrate stencil
and sweep for d = 2 but the general case is analogous.
In the sweep workflow, the corner server (0, 0) sends to
its neighbours with all other servers waiting until they
have received data from all their ‘lower order (left and
above)’ neighbours before sending data to their ‘higher
order (right and below)’ neighbours (the wavefront can
be visualized as progressing diagonally through the grid
from the top-left). In the stencil workflow, all servers
send to their neighbours and wait to receive data from
all of their neighbours. This constitutes a round. When a
server has received data fromeach of its neighbours it can
embark on the next round.

Many scientific and engineering parallel applications operate
over huge d-dimensional matrices; consequently, we can arrange
things so that each server deals with a small sub-matrix of the
whole. This partitioning yields a good locality of communication by
requiring that servers need only communicate with those servers
that are neighbouring in the inherited virtual grid topology. In our
workloads, we assume that a single application is using the whole
of the datacenter, and for the purposes of this paper, we consider
d = 2, 3. We varied the number of rounds in the stencil workflow
but found that this did not affect the results. Additional details as
regards stencil and sweep can be found in [22].

Unstructured applications: We consider workloads following
the uniform-random and hot-region patterns, described
above, but where we have enhanced causality. We
generate flows as prescribed in each workload; however,
we divide the flows into phases, uniformly at random,
so that each phase has a fixed number of flows. We
experimented with the number of flows in each phase
being 1000, 10,000, 100,000, and 1 million, so that the
total number of flows is always 10 million. Each phase
requires all the flows from the previous phase to be
delivered before it can begin. The smaller the phase size,
the more tightly-coupled the application, i.e., the higher
the causality.

Unstructured workloads often arise when considering system
management traffic, system schedulers based on work-stealing
(see, e.g., [25]), or graph analytics applications (a key application
area within datacenters; see, e.g., [26]).

Note that there are numerous other traffic patterns and
workloads that we might consider such as patterns relating to
multicasting or broadcasting. However, our chosen traffic patterns
and workloads are representative and cover many others. For
example, if one considers one-to-many then one sees that it is
embedded within uniform-random and hot-region as because of
the large number of flows that we generate, a single source is likely
to have a number of associated destinations. Also, one-to-many is
naturally embedded within MapReduce. There is nothing really to
be gained by extending our chosen range of traffic patterns and
workloads.

5.3. Hop-length experiments

Weundertake three types of hop-length experiment, alongwith
a study of the efficiency of proxy selection in Algorithm2. Our focus
is primarily on the uniform-random traffic pattern butwe also look
at some of the other traffic patterns defined above.

First, we adopt the uniform-random traffic pattern and
compare the mean hop-lengths of four routing algorithms
for BCN(α, β, h, γ), namely: the newly introduced algorithms
NewBdimRouting1 and NewBdimRoutingγ ; the previously known
algorithm BdimRouting; and a breadth-first search algorithm (BFS).
Moreover, we do this for both of our slave-connection rules.

66 A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71
Our algorithm BFS provides a benchmark (note that although we
can provide shortest paths via a brute-force application of our
algorithm BFS, purely for statistical purposes, no efficient shortest-
path routing algorithm is known for the DCN BCN; moreover,
the implementation of a BFS as a DCN routing algorithm is
computationally infeasible).We experimentwith DCNs fromBatch
A and Batch B.

In our second hop-length experiment, we stay with the
uniform-random traffic pattern and look at the distribution of
hop-lengths for the routing algorithms NewBdimRouting1 and
BdimRouting in BCN(3, 21, 3, 3) (from Batch B) with the slave-
connection-1 rule, again against the benchmark provided by BFS.
We choose NewBdimRouting1 due to its very good performance
against NewBdimRoutingγ in our first batch of experiments (there
is an obvious reduction in implementation overheads too), and the
slave-connection-2 rule, given our initial success in comparison
with the slave-connection-1 rule.

In our third hop-length experiment, for each of the traf-
fic patterns all-to-one, bisection, butterfly, hot-region, many-
all-to-all, and uniform-random, we compare BdimRouting and
NewBdimRouting1 in DCNs selected from Batch A and Batch B, with
respect to the percentage savings made on average as regards the
hop-lengths of the paths generated by the two algorithms.

Finally, moving away from explicit hop-lengths, we also
consider how often NewBdimRouting1 and NewBdimRoutingγ find
a shorter path by routing through a proxy Bu′′ instead of going
directly from Bu to Bu′ , as described in Algorithm 2. We do this for
DCNs selected from Batch A and Batch B.

We say more about our experimental configurations when we
evaluate our hop-length experiments in Section 6.1.

5.4. Throughput experiments

Many datacenter applications rely on frequent, data-heavy
communications through the network, which puts network
throughput at the forefront of performance requirements. We
measure throughput via two metrics, one of which is a general-
ization of the aggregate bottleneck throughput, introduced in [6].
In [6], the aggregate bottleneck throughput (ABT) is defined (only)
for the all-to-all traffic pattern as the total number of flows mul-
tiplied by the throughput of a bottleneck flow, where a bottleneck
flow is a flow that receives the smallest throughput. However, it is
not entirely clear as to the exact intentions behind the ABT defi-
nition. For example, calculations in [6,11] are undertaken not ac-
cording to the loads on links in the paths underpinning flows ac-
cording to some specific routing algorithm but: according to the
average hop-length of paths and via an appeal to symmetry within
the DCN in [6] (here, the DCN is DCell); and according to ‘theoret-
ical’ shortest-path routing algorithms in [11] (‘theoretical’ in the
sense that calculations, in the DCNs DCell and BCube, are under-
takenby graph-theoretic simulations of some shortest path routing
algorithms; indeed, an optimal and efficient shortest-path routing
algorithm forDCell is as yet unknown).Moreover, the ABT is geared
entirely towards all-to-all workloads, whereaswewish to examine
different routing algorithms as regards throughput with regards to
alternative workloads.

Given the above discussion, we adapt the ABT so that it better
suits our purpose. Our generalization of ABT to arbitrary traffic
patterns, which (for distinction) we call the aggregate restricted
throughput (ART), is defined as Fb/fbot , where F is the number of
flows in a given traffic pattern, b is the bandwidth of a link, and fbot
is the number of flows that are routed through the bottleneck link
(it is assumed that flows are shared over any link evenly and that
every flow carries the same load). Intuitively, the ART measures
the throughput when all flows are routed at the speed of the
(slowest) bottleneck flow; this simulates applications that are
Table 1
The DCNs BCN(α, β, h, γ) considered in our throughput and completion-time
experiments.

BCN (α, β, h, γ) Server-nodes Switch-nodes Links

(2,7,3,3)a 4,104 456 12,198
(2,7,4,4) 16,272 1,808 48,590
(3,21,3,3) 368,064 15,336 1,102,488
(3,29,3,3) 677,376 21,168 2,029,776
(3,6,3,3)a 39,609 4,401 118,338
(3,6,4,4) 355,023 39,447 1,063,608
(4,5,3,3) 184,896 20,544 553,404
(5,4,3,3) 563,625 62,625 1,688,370
(6,3,3,3) 1,261,656 140,184 3,781,074
a Dynamic experiments focus only on those marked.

tightly coupledwith flows andwhichmustwait for the completion
of all flows.

We introduce here the aggregate unrestricted throughput (AUT)
(similar to the metric LFTI, proposed in [27]) which is defined as
Fb/fave, where fave is the average number of flows in each link.
Intuitively, the AUT measures the throughput in applications that
are loosely coupled with flows, where each flow can be processed
as it arrives. Note that, for us, in both ART and AUT, the bottleneck
flow is with respect to the actual routing algorithm employed,
rather than BFS or an analysis undertaken with average hop-
lengths and appealing to symmetry within the DCN.

Our throughput experiments focus on the topologies given in
Table 1 and the six initial traffic patterns given in Section 5.2.
Our hop-length experiments show that proxy routing offers the
strongest performance gains for high values of β , as well as high
values of γ . Our goal, following these observations, is to evaluate
such parameters more deeply, and thus our narrower selection of
topologies in these experiments is so guided.

5.5. Latency experiments

While datacenters tend to be used as stream-processing
systems, and so are typically more susceptible to throughput
variations, there are also many datacenter applications which are
more sensitive to latency; these include real-time operations or
applications with tight user interactions such as real-time game
platforms, on-line sales platforms, and search engines.

For this reason, we also look at the end-to-end latency for
BdimRouting and NewBdimRouting1 (just as with our hop-length
experiments,weworkwith the uniform-randompattern).Webase
our analysis on the latencies imposed by the different steps of the
communication: the protocol stack latency; the propagation latency;
the data transmission latency; and the routing latency at the servers.
We measure the latency introduced by each of these steps and
model the average zero-load latency by considering each step in
conjunction with the average hop-length between the servers.

All of the transmission-latencies, i.e., protocol stack, propagation,
and data, are measured using the standard UNIX ping utility,
whereas the routing latency is measured within INRFlow. These
measurements are carried out independently under low load
conditions in the same server, a 32-core AMD Opteron 6220 with
256 GB of RAM and running Ubuntu 14.04.1 SMP OS. The server
and its neighbour are located in the same rack and are connected
with short (<1 mtr.) electrical wires to a 24-port 1 Gb Ethernet
switch. This platform is used because it is a good representative of
COTS hardware. In this configuration, we actually measure lower
bounds on transmission latencies, since we do not consider other
instrumentation needed for a server-centric architecture over and
above short wires and protocol stack latency. We measure the
routing latency with INRFlow in all the selected topologies in
Table 1.

Note that routing time measured with INRFlow provides a
conservative estimate of routing latency that benefits BdimRouting

A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71 67
Fig. 4. Percentage hop-length savings of NewBdimRouting and BFS (bars) over BdimRouting , and the mean percentage of Bu′′ s (lines) which yield a path for
NewBdimRouting that is shorter than the one computed by BdimRouting .
and penalizes NewBdimRouting1. In a real-world implementation
of NewBdimRouting1, where latency is truly critical, a number of
optimizations could be applied that would reduce the overheads
ofNewBdimRouting1 relative to those of BdimRouting; for example,
using a cache of recent destinations and proxies at each server-
node, or even full table look-ups. Thus, since our measured
routing latency is an upper bound, and our measured transmission
latency is a lower bound, the real proportion of routing latency
to transmission latency would be smaller than it is in our
measurements. Consequently, hop-length reduction will have a
greater impact on the overall latency.

5.6. Completion-time experiments

Our primary objective is to design routing algorithms that re-
duce the overall execution time of application-like workloads. This
requires a more sophisticated modelling in which flows are gen-
erated and consumed according to realistic application operation
and the maintenance of causal relationships between them. Given
that dynamic execution is much more computationally intensive,
we restricted our analysis to a few topologies only (marked with a
‘a’ in Table 1), but the consistency of the results with those of the
other experiments described in this section suggests that dynamic
experiments in other topologies will yield similar results. In order
to give some real scale and motivated by the capability of many
low-cost COTS hardware components, we use flows of size 1 Gb
and (uniform) link bandwidths of 1 Gbps.

6. Experimental evaluation

We now give an evaluation of the experimental results
we obtained when we undertook the experiments laid out in
Sections 5.3–5.6.

6.1. Hop-length evaluation

As regards our first hop-length experiment, the bar charts
in Fig. 4(a)–(d) detail the percentage hop-length savings of the
different versions of NewBdimRouting , benchmarked against BFS,
over BdimRouting (note that in Fig. 4(a), NewBdimRouting1 and
NewBdimRoutingγ are one and the same; note also that in the
legend for Fig. 4(a)–(d), and elsewhere, we use the abbreviation
nB for NewBdimRouting). With reference to Section 5.3, the charts
in Fig. 4(a)–(d) result from the generation of 1 million uniform-
random flows. Both NewBdimRoutingγ and NewBdimRouting1
yield hop-length gains when compared with BdimRouting , and
NewBdimRouting1 performs almost as well as NewBdimRoutingγ

in spite of not undertaking as extensive a search for proxies.
Our experiments also confirm the trends observed in [14] that
for a fixed switch-node radix n, the hop-length savings decrease
marginally with decreasing β; in addition, as γ approaches h,
the savings are much more pronounced. Perhaps surprisingly,
the slave-connection rule also has a significant effect: both
NewBdimRoutingγ and NewBdimRouting1 make far greater gains in
2-BCN(α, β, h, γ) than they do in 1-BCN(α, β, h, γ). For example,
the percentage gain of NewBdimRouting1 over BdimRouting in
1-BCN(3, 6, 3, 3) is just over 14%, whereas it is around 26% in
2-BCN(3, 6, 3, 3).

The high performance gains for γ = h are tempered somewhat
by weak performance gains when γ is small in comparison with h.
This latter remark can be seen to apply for both smaller and larger
DCNs; for example, with BCN(6, 3, 3, 1), which has 36,936 server-
nodes, and with BCN(12, 12, 2, 1), which has 501,120 server-
nodes (the improvement is less than 3% for both slave-connection
methods). The reason for this weakness is evidenced in the plots
for HCN in [14], which show that, in spite of the proven (hop-
length) optimality of NewFdimRouting , the gains within HCN(n, h)
are not large. Therefore, the majority of the improvement that
NewBdimRouting has to offer is gained bymaking a strategic choice
of Bu′′ , which results in three paths within copies of HCN(n, h) that
are shorter than the two paths in the copies of HCN(n, h) that are
employed by BdimRouting . When γ is small, the number of copies
of HCN(n, h) in BCN(α, β, h, γ) (namely βαγ

+ 1) is lessened so
that there are fewer choices for Bu′′ (see Algorithm2); furthermore,
the potential for hop-length savings using NewBdimRouting is
inherently limited because if src is in Bv

u and dst is in Bv′

u′ , the
distance from Bv

u′′ to Bv′

u′′ within any copy Bu′′ of HCN(n, h) needs to
be covered regardless of the choice of Bu′′ . The above also explains

68 A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71
Fig. 5. Bar charts of hop-lengths for BdimRouting , BFS, and NewBdimRouting1 .
the degrading performance for fixed radix n and decreasing β: as
β decreases, so do the number of choices for Bu′′ . As a result, there
is less potential for reductions in hop-length to be gained this way.

However, it appears that there is potential for strong gains even
when γ is small, evidenced by the performance of BFS plotted
in Fig. 4(a) and (b). We discuss alternative routing algorithms in
Sections 4.3 and 7, with the caveat that they may incur too much
search overhead to be efficient.

As regards our second hop-length experiment, the plots
in Fig. 5(a) and (b) are bar charts showing the normalized
distribution of hop-lengths of the paths that were routed using
BdimRouting , BFS, and NewBdimRouting1 in 1-BCN(3, 21, 3, 3) and
2-BCN(3, 21, 3, 3), respectively (in the legend, and elsewhere, we
use the abbreviation B for BdimRouting). Again, with reference
to Section 5.3, the charts in Fig. 5(a) and (b) result from the
generation of 1 million uniform-random flows. We present our
results only for BCN(3, 21, 3, 3) as it is a practically feasible
DCN (the total number of server-nodes is 368,064 and it can be
implemented with 24-port switches); in any case, we found that
the trend of our results is replicated for other DCNs. We choose
the routing algorithm NewBdimRouting1 as it is a more practical
version of NewBdimRoutingγ and performed almost as well as
NewBdimRoutingγ in our first experiment. As expected, bar charts
for NewBdimRouting1 are skewed to the left, but notice the long
tails. This shows that even when NewBdimRouting1 makes some of
the greatest gains, there are still long paths that are not shortened.

Notice that even-length paths occurmuchmore frequently than
odd-length paths. Paths in BCN alternate between hops that pass
through switch-nodes and hops that do not, so the parity of the
hop-length of a path is dependent upon whether neither, both, or
exactly one of its terminal hops includes a switch-node. The data
show that having exactly one terminal hop include a switch-node
is unlikely in all three of the routing algorithms plotted.

As regards our third hop-length experiment, we use topologies
selected from Batch A and Batch B, with the slave-connection-
rule-2 (given its success against the slave-connection-rule-1), and
additional traffic patterns, as per Section 5.2. In the results in
Fig. 6, we can see that the hop-length reduction when using
NewBdimRouting1 instead of BdimRouting is by at least 15%, but can
be as high as 42%. On average, we see a little over 25% savings. It
is worth noting that the results obtained with the different traffic
patterns are rather consistent regardless of the actual pattern.
The only exception is butterfly where the improvement seems
to be much better than in the others; all-to-one also presents
greater variability but not asmuch as butterfly. This shows that the
hop-length improvements obtainedbyusingNewBdimRouting1 are
maintained across a wide variety of traffic patterns.

Finally, as regards our study of how common ‘good’ proxies are,
the lines plotted in Fig. 4(a)–(d) detail the percentages of Bu′′s (from
Proxies in Algorithm2)which yield a path for the respective version
of NewBdimRouting r that is shorter than the one obtained by
BdimRouting . These plots tell us that a higher concentration of good
choices of Bu′′ are reachable from within the copy of HCN(n, 1) in
Bu containing src or within the copy of HCN(n, 1) in Bu′ containing
Fig. 6. Mean hop-length savings with NewBdimRouting1 over BdimRouting for
different configurations of topology and traffic pattern.

dst forNewBdimRouting1 than forNewBdimRoutingγ ; that is, ‘good’
proxies are more heavily concentrated within a small radius. For
example, Fig. 4(c) shows that for 2-BCN(α, β, 3, 3) around 30%
of Bu′′s yield gains to NewBdimRouting1 over BdimRouting , yet
for NewBdimRoutingγ (i.e., an exhaustive search of the copies of
HCN(n, γ)) that number is as low as 5%. As we have already noted,
this reduction in the search space comes at only a very small cost
in hop-length savings, since the gains of NewBdimRouting1 are
generally quite similar to those of NewBdimRoutingγ .

6.2. Throughput evaluation

The hop-length savings on their own provide sufficient
motivation to useNewBdimRouting1 as theywill lead to substantial
savings in terms of network utilization and, in turn, energy
consumption. We move now to evaluate how the network
throughput is affected when using NewBdimRouting1. Fig. 7
shows that NewBdimRouting1 consistently yields higher AUT than
BdimRouting , by at least 17%, by an average of 36%, and by up to
72% (the slave-connection-rule-2 is used). Applications that are not
tightly coupled with data-communications benefit the most from
such a performance gain.

The performance improvements for ART are more volatile, but
they are very good for certain configurations. However, using
NewBdimRouting1 is counter-productive in a few cases as using it
can slightly reduce the overall throughput, by 1%–2%; nevertheless,
the average improvement is by over 55% and the best-case scenario
yields an outstanding throughput improvement of over 185%.

We also observe how the flows routed by NewBdimRouting1 are
distributed in 2-BCN(3, 6, 3, 3), where significant gains in hop-
length can be made. The bar chart, plotted in Fig. 8, showing the
normalized distribution of frequency of the number of flows in
links focuses on links with at least 160 flows (the proportion of
links with fewer than 160 flows is implicit). Here we see that
the bottleneck flow using NewBdimRouting1 is almost one-third
smaller than that of BdimRouting (1120 vs. 1520).

A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71 69
Fig. 7. AUT and ART with NewBdimRouting1 for different topology/traffic pattern
configurations, normalized to BdimRouting , i.e., the AUT and ART of BdimRouting is
1.

Fig. 8. Bar chart of link congestion, in number of flows, NewBdimRouting1 and
BdimRouting in the network 2-BCN(3, 6, 3, 3).

All in all, we find that the substantial improvements in
terms of path hop-length gained by using NewBdimRouting1
over BdimRouting are translated into similar (or even greater)
improvements in terms of network throughput.

6.3. Latency evaluation

We now undertake the experiments described in Section 5.5
as regards the latency incurred by using NewBdimRouting1 as
opposed to BdimRouting . We start by measuring the different
phases contributing to the overall network latency.

• The stack latency, Ls, is derived by measuring the round trip
time of both an empty frame (28 bytes for the headers) and a full
frame (1500 bytes, including the headers) sent to localhost.
In both cases Ls is 10 µs.
• To derive the propagation latency, Lp, we measure the round

trip of an empty frame sent to another server connected to the
Table 2
Average latencies for BdimRouting and NewBdimRouting1 in BCN(α, β, h, γ),
together with the number of proxies for NewBdimRouting1 .

BCN (α, β, h, γ) Bdim-Routing (ms) NewBdim-Routing1 (ms) Proxies

(2,7,3,3) 0.922 0.686 55
(2,7,4,4) 1.679 1.164 111
(3,21,3,3) 1.306 1.287 566
(3,29,3,3) 1.309 1.410 782
(3,6,3,3) 1.293 1.062 161
(3,6,4,4) 2.496 1.984 485
(4,5,3,3) 1.497 1.376 319
(5,4,3,3) 1.624 1.625 499
(6,3,3,3) 1.710 1.805 647

same 1 Gb Ethernet switch; this is 64 µs. Dividing by two and
subtracting Ls, we get an estimate of 22 µs for the propagation
latency.
• Similarly, we derive the data transfer latency, Ld, by measuring

the round trip time of a full-frame sent to the same neighbour
server; this is 140µs. Similarly, dividing by two and subtracting
Lp and Ls, we get 38 µs per full frame for the data transfer
latency.
• We measure the average per hop running time of each

algorithm, Lr , for each of the topologies when delivering a
million random flows. Our measuring framework has a time
resolution of nanoseconds.

Adding these measurements, we can compute the per-hop la-
tency, LH = Ls+Lp+Ld+Lr .Multiplying LH by the average pathhop-
length for each algorithm gives us an estimation of the zero-load
routing latency for the different routing algorithms and topologies
as per Table 2 (where the data result from the generation of 1 mil-
lion uniform-random flows). These experiments showhow inmost
cases, the improvements in path length result in lower latencies;
up to a 30% reduction with an average of 10%. There are, how-
ever, a couple of configurations where applying NewBdimRouting1
is slightly counter-productive in terms of latency: the latency of
NewBdimRouting1 in BCN(6,3,3,3) and BCN(3,29,3,3) is 5% and 7%
greater, respectively, than that of BdimRouting . The reason for this
slowdown is that the number of proxies to test is much larger
in NewBdimRouting1 than in BdimRouting (over 600 in these two
cases). This, in turn, renders the routing latency as dominant.

Nevertheless, note that, as explained above, using more
conservative values for transmission times as well as a more
optimized version of our code for the routing would still allow
NewBdimRouting1 to outperform BdimRouting .

6.4. Completion-time evaluation

The speed up when using NewBdimRouting1 for the different
application models as measured with our dynamic simulation
engine can be seen in Fig. 9. These results clearly show that
real applications can benefit hugely from the implementation of
advanced routing schemes such as NewBdimRouting1. MapReduce,
an essential application in the context of DCNs, can be executed
one order ofmagnitude fasterwhen compared to BdimRouting . The
other applications also obtain substantial speed-ups of between
1.2–3 times. In general, we can see that the lower the traffic
locality and causality, and the higher its intensity, the more
beneficial NewBdimRouting1 becomes. MapReduce features all
these characteristics and so benefits the most. Hot-region, stencil,
and uniform have lower intensity and so still benefit significantly.
Finally, the sweeppatterns havehigh levels of locality and causality
and thus the benefits are less noticeable.

With regards to the networks, we can see that a larger value
of β makes NewBdimRouting1 more beneficial because the higher
diversity it offers can be better employed by its more advanced

70 A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71
Fig. 9. Completion time for eight application-like workloads in two networks.
Results show the speed-up achieved using NewBdimRouting1 over BdimRouting .

routing scheme. The only exception to this rule is hot-region;
this was somehow unexpected as the throughput analysis above
suggests otherwise (see Fig. 7). This exception is due to the fact
that the causality introduced into the traffic does not allow the
network to fully exploit its full bandwidth capabilities; so, with a
non-uniform network utilization such as the one created by hot-
region, the hop-length (see Fig. 6) may have a greater influence by
reducing the likelihood of paths going through themore congested
areas of the network. At any rate, this unexpected behaviour
emphasizes the need for many-dimensional studies, such as the
one we perform here, that cover different aspects of the networks.

7. Conclusions

In this paper we have demonstrated, both theoretically and
empirically, that there are significant gains to be made as
regards one-to-one routing in the DCNs HCN and BCN by using
our newly-developed routing algorithms NewFdimRouting and
NewBdimRouting . Moreover, in many realistic scenarios the
implementation costs of employing these routing algorithms are
manageable. We have benefited from an observation that the
DCN HCN has (in essence) already appeared as WK-recursive
interconnection networks andwe have been able to utilize existing
research on WK-recursive networks. Our work spawns various
avenues for further research and we outline some of these now.

Wehave observed the general principle that shorter routes have
a consequent positive effect in terms of throughput, latency, and
completion time. Whilst NewFdimRouting is optimal in terms of
the hop-lengths of the routes it finds, the algorithms encompassed
within NewBdimRouting are not (see Fig. 5(a) and (b)). An obvious
question is: can we improve the hop-lengths of the routes found
by a one-to-one routing algorithm for BCN, so much so that these
lengths are optimal? Of course, there is a tension between the
complexity of a routing algorithm and the efficiency of its resulting
implementation. As we have remarked, extending our current
approach of exploring more proxies could well result in routing
algorithms that are practically infeasible (this infeasibility might
be lessened if routes that were computed had some degree of
permanency associated with them and it was worth investing the
effort to computer them). However, motivated by the situation as
regards routing in HCN and WK-recursive networks, there could
well be a combinatorial solution to this problem so that the
associated combinatorics yields an efficient implementation too;
that is, proxy searches can be replaced by a combinatorial analysis.
This line of research provides an exciting glimpse into the hitherto
mainly unexplored and exciting landscape within which modern
and future datacenter networks are developed using theoretical
underpinnings.
Whilst the research in this paper provides an extensive analysis
of our new one-to-one routing algorithms, there is much more
to routing in practical DCNs. For example, routing algorithms
need to be able to tolerate faults, to balance loads, and to be
energy efficient. In [8], while multiple paths between two server-
nodes were shown to exist, no multi-path routing algorithm was
presented. Also, the fault-tolerant routing algorithm in [8] is open
to additional analysis and enhancement. As such, we need to
explorewhetherwe candevelopnewmulti-path and fault-tolerant
routing algorithms for both HCN and BCN. As a first step, there
are opportunities to build upon the preliminary empirical analysis
presented in [8] and to more rigorously examine the fault-tolerant
routing algorithms there across a wider range of traffic patterns
and workloads, as we have done in this paper.

Load balancing and energy efficiency have yet to be examined
for HCN and BCN. As regards energy efficiency, this is an
often overlooked aspect of DCN performance that is becoming
increasingly important as the sizes of DCNs grows and more and
more energy is consumed. It has been reported that datacenters
accounted for 1.5% of global electricity usage in 2010 [28] with
their interconnection network accounting for between 10% and
50% of this usage [29,30]. Energy efficient routing algorithms re-
route depending upon current loads on links and servers (they
sometimes attempt to ‘turn off’ links so as to save energy) and
consequently might use paths that are not always the shortest.
This calls for a multi-path analysis. However, energy-efficient re-
routing is only possible when there is spare capacity in the system
and must be evaluated against the additional latency accrued and
the energy consumed by the additional links and servers used.
There is considerable scope for an examination of energy-efficient
routing in HCN and BCN.

Finally, let us note the slightly surprising results we obtained as
regards the performance of the two slave-connection ruleswe con-
sidered in this paper.Wewere expecting comparable performance
but this was not the case. There are many more possible slave-
connection rules available for BCN (and, by extension, for DCell and
FiConn) and our preliminary results here show that more research
on relative performance of the various different connection rules
is warranted. Not only is research needed to empirically investi-
gate the different slave-connection rules but we need theoretical
research that will tell us why one slave-connection rule should be
better than another.

We close by noting that there are other aspects of routing that
onemight wish to evaluate that we have not considered here, such
as packet loss, jitter, link quality, and so on. Some of these aspects
are closer to ‘real’ performance butmight still be evaluated through
simulation. It is important that simulators are developed with the
sophistication to evaluate a range of DCNproperties at a reasonable
scale. We intend to contribute to this in future by enhancing the
functionality of our own simulation tool INRFlow.

Acknowledgements

This work has been funded by the Engineering and Physical
Sciences Research Council (EPSRC) through grants EP/K015680/1
and EP/K015699/1. Dr. Javier Navaridas is also supported by
the European Union’s Horizon 2020 programme under Grant
Agreement No. 671553 ‘ExaNeSt’.

References

[1] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center
network architecture, ACM SIGCOMM Comput. Commun. Rev. 38 (4) (2008)
63–74.

[2] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, S. Sengupta, VL2: A scalable and flexible data center network, ACM
SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 51–62.

http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref1
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref2

A. Erickson et al. / Future Generation Computer Systems 75 (2017) 58–71 71
[3] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, A. Vahdat, PortLand: A scalable fault-tolerant
layer-2 data center network fabric, ACM SIGCOMMComput. Commun. Rev. 39
(4) (2009) 39–50.

[4] C. Guo, H.Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: A scalable and fault-tolerant
network structure for data centers, ACM SIGCOMMComput. Commun. Rev. 38
(4) (2008) 75–86.

[5] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, J. Wu, Scalable and cost-effective
interconnection of data-center servers using dual server ports, IEEE/ACM
Trans. Netw. 19 (1) (2011) 102–114.

[6] C. Guo, G. Lu, D. Li, H.Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu, BCube: A high
performance, server-centric network architecture for modular data centers,
ACM SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 63–74.

[7] H. Wu, G. Lu, D. Li, C. Guo, Y. Zhang, MDCube: A high performance network
structure for modular data center interconnection, in: Proc. of 5th Int. Conf. on
Emerging Networking Experiments and Technologies, 2009, pp. 25–36.

[8] D. Guo, T. Chen, D. Li, M. Li, Y. Liu, G. Chen, Expandable and cost-effective
network structures for data centers using dual-port servers, IEEE Trans.
Comput. 62 (7) (2013) 1303–1317.

[9] A. Erickson, I.A. Stewart, J. Navaridas, A.E. Kiasari, The stellar transformation:
From interconnection networks to datacenter networks, Comput. Netw. 113
(2017) 29–45.

[10] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, A. Vasilakos, Survey on routing in
data centers: insights and future directions, IEEE Netw. 25 (4) (2011) 6–10.

[11] Y. Liu, J.K. Muppala, M. Veeraraghavan, D. Lin, M. Hamdi, Data Center
Networks: Topologies, Architectures and Fault-Tolerance Characteristics,
Springer, 2013.

[12] G.D. Vecchia, C. Sanges, Recursively scalable networks for message passing
architectures, in: Proc. of Int. Conf. on Parallel Processing and Applications,
1987, pp. 33–40.

[13] A. Erickson, A.E. Kiasari, J. Pascual Saiz, J. Navaridas, I.A. Stewart, Interconnec-
tion Networks Research Flow Evaluation Framework (INRFlow), 2016. [Soft-
ware] https://bitbucket.org/alejandroerickson/inrflow.

[14] I.A. Stewart, Improved routing in the data centre networks HCN and BCN, in:
Proc. of Second Int. Symp. on Computing and Networking, 2014, pp. 212–218.

[15] P.T. Breznay, M.A. Lopez, A class of static and dynamic hierarchical
interconnection networks, in: Proc. of Int. Conf. on Parallel Processing, Vol. 1,
1994, pp. 59–62.

[16] M. Kliegl, J. Lee, J. Li, X. Zhang, D. Rincon, C. Guo, TheGeneralizedDCell Network
Structures and their Graph Properties, Microsoft Research, 2009.

[17] G.-H. Chen, D.-R. Duh, Topological properties, communication, and computa-
tion on WK-recursive networks, Networks 24 (6) (1994) 303–317.

[18] A. Erickson, A.E. Kiasari, J. Navaridas, I.A. Stewart, Routing algo-
rithms for recursively-defined data centre networks, in: Proc. of Trust-
com/BigDataSE/ISPA, Vol. 3, IEEE, 2015, pp. 84–91.

[19] T. White, Hadoop: the Definitive Guide, O’Reilly Media, Inc., 2009.
[20] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica., Spark: cluster

computing with working sets, in: Proc. of 2nd USENIX Conf. on Hot Topics in
Cloud Computing, 2010.

[21] X. Yuan, S. Mahapatra, W. Nienaber, S. Pakin, M. Lang, A new routing scheme
for Jellyfish and its performance with HPC workloads, in: Proc. of Int. Conf.
on High Performance Computing, Networking, Storage and Analysis, 2013,
pp. 36:1–36:11.

[22] J. Navaridas, J. Miguel-Alonso, F. Ridruejo, On synthesizing workloads
emulating MPI applications, in: Proc. of IEEE Int. Symp. on Parallel and
Distributed Processing, 2008, pp. 1–8.

[23] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[24] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving,
G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E.
Tanda, J. Wanderer, U. Hölzle, S. Stuart, A. Vahdat, Jupiter rising: A decade of
clos topologies and centralized control in Google’s datacenter network, ACM
SIGCOMM Comput. Commun. Rev. 45 (4) (2015) 183–197.

[25] S. Perarnau, M. Sato, Victim selection and distributed work stealing
performance: A case study, in: Proc. of 28th Int. Parallel and Distributed
Processing Symp., 2014, pp. 659–668.
[26] S. Hong, H. Chafi, E. Sedlar, K. Olukotun, Green-marl: A DSL for easy and
efficient graph analysis, SIGARCH Comput. Arch. News 40 (1) (2012) 349–362.

[27] X. Yuan, S. Mahapatra, M. Lang, S. Pakin, LFTI: A new performance metric for
assessing interconnect designs for extreme-scale HPC systems, in: Proc. of
28th IEEE Int. Parallel and Distributed Processing Symp., 2014, pp. 273–282.

[28] P.X. Gao, A.R. Curtis, B. Wong, S. Keshav, It’s not easy being green, in: Proc. of
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2012, pp. 211–222.

[29] D. Abts, M.R. Marty, P.M. Wells, P. Klausler, H. Liu, Energy proportional
datacenter networks, SIGARCH Comput. Archit. News. 38 (3) (2010) 338–347.

[30] A. Greenberg, J. Hamilton, D.A. Maltz, P. Patel, The cost of a cloud: Research
problems in data center networks, ACM SIGCOMM Comput. Commun. Rev. 39
(1) (2008) 68–73.

Alejandro Erickson completed a 3-year postdoctoral
research position at Durham University, United Kingdom
in 2016, where he did research on various topological
aspects of interconnection networks, with an emphasis
on applications in datacenter networks. He received his
Ph.D. in Computer Science from the University of Victoria,
Canada in 2013 and his M.Math in Combinatorics and
Optimization from the University of Waterloo, Canada in
2008. Dr. Erickson has published in a broad range of topics,
including datacenter networks, computational geometry,
graph and matroid theory, enumerative combinatorics,

education, and mathematical art.

Iain A. Stewart received the M.A. and Ph.D. degrees in
mathematics from the University of Oxford, United King-
dom in 1983 and the University of London, United King-
dom in 1986. He is a professor in the School of Engineering
and Computing Sciences, DurhamUniversity, United King-
dom. His research interests include interconnection net-
works for parallel and distributed computing, computa-
tional complexity and finitemodel theory, algorithmic and
structural graph theory, theoretical aspects of artificial in-
telligence, GPGPU computing, and computational aspects
of group theory.

Jose A. Pascual obtained his M.Eng and Ph.D. in Com-
puter Science at the Department of Computer Architecture
and Technology of the University of the Basque Country
UPV/EHU. He is currently a postdoctoral researcher at The
University of Manchester. His research interests include
high-performance computing, scheduling for parallel pro-
cessing, and performance evaluation of parallel systems.

Javier Navaridas is a Lecturer in computer architecture in
the University ofManchester. Javier obtained hisM.Eng. in
Computer Engineering in 2005 and his Ph.D. in Computer
Engineering (Extraordinary Doctorate Award—top 5%
theses) in 2009, both from the University of the Basque
Country, Spain. Afterwards he joined the University of
Manchester with a prestigious Royal Society Newton
fellowship. Javier has a long publication record with more
than 40 papers on interconnects, parallel and distributed
systems, computer architecture, performance evaluation
and characterization of application’s behaviour. Javier is

currently leading the workpackage on interconnects of the ExaNeSt European
project.

http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref3
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref4
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref5
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref6
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref8
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref9
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref10
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref11
https://bitbucket.org/alejandroerickson/inrflow
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref16
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref17
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref18
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref19
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref23
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref24
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref26
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref29
http://refhub.elsevier.com/S0167-739X(17)30013-4/sbref30

	Improved routing algorithms in the dual-port datacenter networks HCN and BCN
	Introduction
	Server-centric datacenter networks
	The DCN HCN
	WK-recursive networks

	The DCN BCN

	One-to-one routing in the DCN HCN
	Routing with FdimRouting
	Routing with NewFdimRouting

	One-to-one routing in the DCN BCN
	Routing with BdimRouting
	Routing with NewBdimRouting
	Selecting proxies and alternative routing

	Methodology
	Software tool: INRFlow
	Traffic patterns and workloads
	Hop-length experiments
	Throughput experiments
	Latency experiments
	Completion-time experiments

	Experimental evaluation
	Hop-length evaluation
	Throughput evaluation
	Latency evaluation
	Completion-time evaluation

	Conclusions
	Acknowledgements
	References

