
Accepted Manuscript

Improved routing algorithms in the dual-port datacenter networks
HCN and BCN

Alejandro Erickson, Iain A. Stewart, Jose A. Pascual, Javier Navaridas

PII: S0167-739X(17)30013-4
DOI: http://dx.doi.org/10.1016/j.future.2017.05.004
Reference: FUTURE 3452

To appear in: Future Generation Computer Systems

Received date: 9 January 2017
Revised date: 4 April 2017
Accepted date: 5 May 2017

Please cite this article as: A. Erickson, I.A. Stewart, J.A. Pascual, J. Navaridas, Improved
routing algorithms in the dual-port datacenter networks HCN and BCN, Future Generation
Computer Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.future.2017.05.004

Improved Routing Algorithms in the
Dual-port Datacenter Networks HCN and BCN

Alejandro Ericksona, Iain A. Stewarta,∗, Jose A. Pascualb, Javier Navaridasb

aSchool of Engineering and Computing Sciences, Durham University, Science Labs, South Road, Durham DH1 3LE, U.K.
bSchool of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

Abstract

We present significantly improved one-to-one routing algorithms in the datacenter networks HCN and BCN
in that our routing algorithms result in much shorter paths when compared with existing routing algorithms.
We also present a much tighter analysis of HCN and BCN by observing that there is a very close relationship
between the datacenter networks HCN and the interconnection networks known as WK-recursive networks.
We use existing results concerning WK-recursive networks to prove the optimality of our new routing
algorithm for HCN and also to significantly aid the implementation of our routing algorithms in both HCN
and BCN. Furthermore, we empirically evaluate our new routing algorithms for BCN, against existing ones,
across a range of metrics relating to path-length, throughput, and latency for the traffic patterns all-to-one,
bisection, butterfly, hot-region, many-all-to-all, and uniform-random, and we also study the completion times
of workloads relating to MapReduce, stencil and sweep, and unstructured applications. Not only do our
results significantly improve routing in our datacenter networks for all of the different scenarios considered
but they also emphasise that existing theoretical research can impact upon modern computational platforms.

Keywords: datacenters; datacenter networks; HCN; BCN; one-to-one routing; WK-recursive networks;
performance metrics.

1. Introduction

Datacenters are becoming pervasive within the
global computational infrastructure and the sizes
of these datacenters are expanding rapidly, with
some of the largest operators managing over a mil-
lion servers across multiple datacenters. As to how
these servers are interconnected via the datacenter
network (DCN) is a fundamental issue, the con-
sideration of which involves a mix of mathematics,
computer science, and engineering. Moreover, just
as with the design of interconnection networks for
distributed-memory multiprocessors or networks-
on-chips, there is no ‘silver bullet’ solution, for there
is a wide range of design parameters to consider,
some of which are conflicting.

∗Corresponding author
Email addresses: alejandro.erickson@gmail.com

(Alejandro Erickson), i.a.stewart@durham.ac.uk (Iain A.
Stewart), jose.pascual@manchester.ac.uk (Jose A.
Pascual), javier.navaridas@manchester.ac.uk (Javier
Navaridas)

The traditional architecture of a DCN is ‘switch-
centric’ whereby the primary structure is a topology
(usually tree-based) of switches with the switches
possessing interconnection intelligence. The DCNs
Fat-Tree [2], VL2 [12], and Portland [21] are typ-
ical of such DCNs. A more recent and alterna-
tive architecture is ‘server-centric’ whereby the in-
terconnection intelligence resides within the servers
and the switches are dumb crossbars (so, there are
no switch-to-switch links). The DCNs DCell [14],
FiConn [18], BCube [13], MDCube [27], HCN and
BCN [15], and GQ∗ [9] are typical of server-centric
DCNs.

The server-centric architecture possesses a num-
ber of advantages when compared with the more
traditional switch-centric architecture: tree-based
switch-centric DCNs tend to be such that ‘root’
switches quickly become a bottleneck; the underly-
ing topologies of server-centric topologies are bet-
ter suited to support traffic patterns prevalent in
datacenters (such as one-to-all and all-to-all); the
switches in server-centric DCNs can be chosen to

Preprint submitted to Journal of LATEX Templates May 7, 2017

be commodity switches as they require no intel-
ligence; and multiple network interface controller
(NIC) ports on servers in server-centric DCNs can
be utilized so that more varied topologies can be
constructed (see, for example, [5, 15, 19] for more
information).

Whilst multiple NIC ports can be used when
building server-centric DCNs, commodity servers
usually only have a small number of NIC ports, of-
ten only two. This can be problematic as a primary
aim of DCN design is to incorporate a large number
of servers within the datacenter. For example, when
one builds the DCNs DCell, BCube, and MDCube,
one finds that the number of NIC ports required in-
creases as the number of servers rises. On the other
hand, FiConn and GQ∗, for example, is such that
no matter how many servers there are, each server
needs only two NIC ports; such server-centric DCNs
are referred to as dual-port .

Motivated by the need to limit the number of NIC
ports on servers (so that commodity servers might
be used), Guo et al. introduced and evaluated the
dual-port DCNs HCN and BCN [15]. The general
construction is that the DCN HCN is a recursively-
defined family of networks, with the DCN BCN
built using (copies of) the DCN HCN by includ-
ing an additional layer of interconnecting links. Af-
ter defining the DCNs HCN and BCN, Guo et al.
developed a number of routing algorithms (includ-
ing one-to-one, multipath, and fault-tolerant algo-
rithms) and evaluated HCN and BCN, primarily in
comparison with FiConn and according to a num-
ber of basic metrics.

We pursue the analysis of the DCNs HCN and
BCN in this paper. In particular, we present signif-
icantly improved one-to-one routing algorithms in
both HCN and BCN, in that our routing algorithms
result in much shorter paths than those in [15] (our
analysis is both theoretical and empirical). We also
present a much tighter analysis of HCN and BCN
by observing that there is close relationship between
the DCN HCN and the interconnection networks
known as WK-recursive networks , which originated
in [25] and which have been well studied as general
interconnection networks. We use existing theoret-
ical results concerning WK-recursive networks to
develop our routing algorithms and prove the op-
timality of our new routing algorithm for HCN (in
terms of path length), as well as to significantly
aid the implementation of our routing algorithms in
both HCN and BCN. Not only do we develop rout-
ing algorithms for HCN and BCN that are theoret-

ical improvements over existing routing algorithms
but we undertake an extensive empirical evalua-
tion of our algorithms, against existing ones, for
DCNs of a range of realistic sizes, under a range of
traffic patterns and workloads, and across a range
of metrics. In particular, we consider metrics re-
lating to hop-length, throughput, and latency for
the (‘static’) traffic patterns all-to-one, bisection,
butterfly, hot-region, many-all-to-all, and uniform-
random, and we also study the completion times
of (‘dynamic’) workloads relating to MapReduce,
stencil and sweep, and unstructured applications,
where these workloads have data associated with
flows and might involve some causality between
flows. We also study how the connection rule used
to build BCN out of copies of HCN, of which there
are currently two in the literature (though poten-
tially many more), impacts upon the resulting DCN
BCN, in terms of the above empirical analysis. Our
simulations are undertaken with our own purpose-
built flow-based simulator INRFlow [8]. A novel as-
pect of our simulations is that whereas the ‘static’
simulation of routing algorithms on the above traf-
fic patterns is the norm within the server-centric
research community, INRFlow allows us to simu-
late our routing algorithms on the above ‘dynamic’
workloads (insofar as we are aware, this paper con-
tains the first such ‘dynamic’ simulations on server-
centric DCNs).

Our results are extremely encouraging, for we al-
most universally obtain improvements. Not only
do we obtain theoretically-improved algorithms but
our empirical analysis suggests that there are signif-
icant gains to be made by the practical deployment
of our new routing algorithms in HCN and BCN.
For example, when compared with the routing al-
gorithm BdimRouting for BCN (from [15]), our
primary new routing algorithm for BCN, namely
NewBdimRoutingγ , achieves hop-length savings for
all DCNs studied and across all traffic patterns,
averaging at around a 25% improvement. What
is more, a practical version of NewBdimRoutingγ ,
namely NewBdimRouting1, where we curtail the in-
herent search for shorter paths within NewBdim-
Routingγ , is shown to give a performance compa-
rable with that of NewBdimRoutingγ . Our algo-
rithm NewBdimRouting1 also achieves a significant
improvement in both throughput and latency when
compared with BdimRouting in the different sce-
narios: as regards throughput, on average this im-
provement is by 36% and 55% for the two through-
put metrics we consider; and as regards latency,

2

on average this improvement is by 10%. Our al-
gorithm NewBdimRouting1 also obtains improve-
ments for all the different ‘dynamic’ workloads men-
tioned above.

This paper is structured as follows. In the next
section, after detailing the essential concepts of
server-centric DCNs, we give precise definitions of
the DCN HCN, and exhibit the link with WK-
recursive networks, and the DCN BCN. In Sec-
tion 3, we develop new one-to-one routing algo-
rithms for HCN, prove their optimality, and explain
how they can be very easily implemented. Our new
one-to-one routing algorithms for BCN are devel-
oped in Section 4. In Section 5, we explain the
framework for and reasoning behind our experi-
ments, and in Section 6, we supply and evaluate the
results we obtain. Our conclusions and directions
for further research are presented in Section 7. A
preliminary version of this paper where the analysis
only considered HCN appeared as [24].

2. Server-centric datacenter networks

In this section we define the graph-theoretic ab-
stractions that we use to obtain our results on
server-centric DCNs. A server-centric DCN is built
from commodity off-the-shelf (COTS) switches and
servers, interconnected by cable links. It is distin-
guished from other types of datacenters in that very
low capability is required of the switches, which act
as simple, non-blocking crossbars, and any rout-
ing algorithms and network protocols are imple-
mented within the servers. Thus, we abstract a
server-centric DCN as a graph G = (S ∪ W, E),
where u ∈ S is a server-node, representing a server,
and w ∈ W is a switch-node, representing a switch,
and each link in E represents a physical link of the
DCN. The only requirement, imposed by the sim-
plicity of the switches we are modelling, is that no
two switch-nodes are connected by a link; as such,
E∩(W ×W) = ∅. As we shall see, our DCNs come
in parameterized families. Henceforth, we use the
term DCN to refer to both a family member and
the family itself.

A routing algorithm1 takes a pair of server-nodes,
(src, dst), as input and outputs a path, P , in G from
src to dst. The path-length of P is equal to the
number of links P contains, and the hop-length of

1Strictly speaking, this is a unicast routing algorithm, but
we do not discuss any other sort in this paper.

P is equal to the number of hops it contains, where
a hop is a link joining two server-nodes or a path of
path-length 2 from a server-node to another server-
node through a switch-node. Hop-length is the pri-
mary distance-related performance metric used in
evaluations of server-centric DCNs (see, e.g., HCN
and BCN [15], DCell [14], FiConn [18], BCube [13],
MDCube [27], and GQ∗ [9]), for the reason that
packets must travel up and down the protocol stack
of each intermediate server to reach the service that
will route them to the next server, rendering negli-
gible the time spent at each switch. We work with
hop-length in this paper.

2.1. The DCN HCN

Let us define the DCN HCN(n, h) from [15],
where n ≥ 2 and h ≥ 0. The parameter n is the de-
gree (or radix) of the switch-nodes, each of which is
connected to α master-nodes and β slave-nodes (so
called in [15]2), and h is the depth of the recursion
in the construction of HCN(n, h). In the context of
the DCNs HCN and BCN, it is always the case that
n = α + β.

For ease of notation, let Gh (temporarily) denote
HCN(n, h) (we suppress the parameter n for con-
venience). The graph G0 is the n-star graph, com-
prising a switch-node adjacent to n server-nodes (of
which α are master-nodes and β are slave-nodes).
Label the master-nodes 0, 1, . . . , α− 1.

For h ≥ 1, construct the graph Gh from α disjoint
copies of Gh−1, labelled Gh−1

0 , Gh−1
1 , . . . , Gh−1

α−1. La-
bel any master-node of Gh with the h-tuple3 u =
uhuh−1 · · ·u0, where uh is the index of the copy of
Gh−1 containing the master-node, and uh−1 · · ·u0

is the label of the master-node within Gh−1
uh

(im-
plicit in the definition of the labels of master-nodes
is that 0 ≤ ui < α, for each 0 ≤ i ≤ h). Note
how for 0 ≤ γ < h, there are various copies of Gγ

within Gh so that each of these can be canonically
labelled uhuh−1 . . . uγ+1 according to its place in
the recursive hierarchy.

We use the labels of master-nodes to define the
level h links that join master-nodes in different dis-
joint copies of Gh−1 so as to form Gh. A pair
of master-nodes forms a level h link in Gh, where

2We regret the imagery invoked by the terms ‘master’ and
‘slave’; however, we have elected to retain this terminology
from [15] for clarity.

3Throughout this paper we write xkxk−1 · · ·x0 to denote
the (k + 1)-tuple (xk , xk−1, . . . , x0).

3

h ≥ 1, if, and only if, the labels u and w of these
master-nodes are such that

u = uh u′hu′h · · ·u′h︸ ︷︷ ︸
h times

and w = u′h uhuh · · ·uh︸ ︷︷ ︸
h times

,

where uh 6= u′h. Consequently, for every 1 ≤ j ≤ h,
there are links joining the master-nodes with labels

uhuh−1 · · ·uj+1uj wjwj · · ·wj︸ ︷︷ ︸
j times

and

uhuh−1 · · ·uj+1wj ujuj · · ·uj︸ ︷︷ ︸
j times

,

for which uj 6= wj .
As well as labels for the master-nodes, we also

define labels for the switch-nodes and slave-nodes.
The switch-node adjacent to the α master-nodes
uhuh−1 · · ·u1u0, for 0 ≤ u0 < α, is given the la-
bel uhuh−1 · · ·u1, and the β slave-nodes adjacent
to this switch-node are labelled uhuh−1 · · ·u1y, for
α ≤ y < α + β. In consequence, the graph Gh has:
α master-nodes of degree 1; αhβ slave-nodes of de-
gree 1; α(αh − 1) master-nodes of degree 2; and αh

switch-nodes of degree n. Henceforth, we identify
nodes with their labels.

We shall need two alternative identifiers. Let v =
uhuh−1 · · ·u1y be a slave-node of Gh. We define an
identifier for v within Gh as

uidh(v) =

(
h∑

i=1

uiα
i−1

)
β + (y − α). (1)

The function uidh is a bijective mapping of the
slave-nodes of Gh to the set {0, 1, . . . , αhβ − 1}.
Consider some copy B of Gγ within Gh, where
0 ≤ γ < h. We define an identifier for B within
Gh as

hidγ(B) =

h∑

i=γ+1

uiα
i−(γ+1)

 . (2)

The function hidγ is a bijective mapping of copies
of Gγ within Gh to the set {0, 1, . . . , αh−γ − 1}.

We now revert back to our original notation and
refer to Gh as HCN(n, h). The DCN HCN(8, 2)
can be visualized as in Fig. 1, where α = 4 and β =
4. The slave-nodes are in white, the master-nodes
are in black, and, as we have described above, the
label of any master-node is obtained by appending a
number from {0, 1, 2, 3} to the label of the adjacent
switch-node.

01
1

23

0

03
1

23

0
02

1

23

0

00
1

23

0
11

1

23

0

13
1

23

0
12

1

23

0

10
1

23

0

21
1

23

0

23
1

23

0
22

1

23

0

20
1

23

0
31

1

23

0

33
1

23

0
32

1

23

0

30
1

23

0

Figure 1: The DCN HCN(8, 2).

Notice that the slave-nodes play no part in the
construction of HCN(n, h), besides the fact that
there are β of them within each copy of HCN(n, 0).
They are, however, used in Section 2.2 when we
construct the DCN BCN.

2.1.1. WK-recursive networks
Observe that if the slave-nodes are ignored in

HCN(n, h) and each switch-node is replaced with
a clique on its adjacent α master-nodes then the
resulting graph is isomorphic to the WK-recursive
network WK(α, h), first defined in [25]. To our
knowledge, this observation is novel (and first men-
tioned in the preliminary version of our paper [24]).

Replacing the switch-nodes in HCN(n, h) with
α-cliques is, in fact, a very natural abstraction
for developing routing algorithms in server-centric
DCNs: the links used in a route within WK(α, h)
correspond to hops in the corresponding route in
HCN(n, h). Thus, path-length in WK(α, h) corre-
sponds exactly to hop-length in HCN(n, h).

WK-recursive networks have been extensively
studied since they were first defined and, as we shall
see later, we can use the analysis of these networks
in order to better understand the topological prop-
erties of the DCNs HCN and BCN.

Formally, the WK-recursive network WK(α, h) is
defined so that: it has node-set {0, 1, . . . , α−1}h+1;
and there are links

(ihih−1 . . . i2i1x, ihih−1 . . . i2i1x
′),

4

where i1, i2, . . . , ih, x, x′ ∈ {0, 1, . . . , α − 1}, with
x 6= x′, as well as links

(ihih−1 · · · ij+1ij ij′ ij′ · · · ij′︸ ︷︷ ︸
j times

,

ihih−1 · · · ij+1ij′ ijij · · · ij︸ ︷︷ ︸
j times

),

where 0 < j ≤ h and ij 6= i′j.

2.2. The DCN BCN

We construct BCN(α, β, h, γ) (as in Sections 3.2
and 3.3 of [15]) by using slave-nodes to intercon-
nect disjoint copies of HCN(n, h) as explained be-
low. Let h ≥ 0, γ ≥ 0, α ≥ 2, and n = α + β be
given.

Let us outline BCN(α, β, h, γ) where h ≥ γ,
since in the case for which h < γ, the DCNs
BCN(α, β, h, γ) and HCN(n, h) are defined to be
identical. We begin by taking αγβ + 1 disjoint
copies of HCN(n, h). Recall, from Section 2.1, that
each copy of HCN(n, h) is composed of αh−γ dis-
joint copies of HCN(n, γ). We now define a perfect
matching amongst the slave-nodes of all the copies
of HCN(n, γ) so that there is exactly one link join-
ing each such pair of copies of HCN(n, γ). However,
we impose restrictions on this matching.

For brevity, let s = αγβ, let t = αh−γ − 1,
and let B0, B1, . . . Bs be the s + 1 disjoint copies
of HCN(n, h) within BCN(α, β, h, γ). Within each
Bu, for 0 ≤ u ≤ s, let Bv

u be the copy of HCN(n, γ)
such that hidγ(Bv

u) = v (recall that 0 ≤ v ≤ t). For
a slave-node x in Bv

u, define id(x) = (u, v, uidγ(x)).
We now add slave-node-to-slave-node links to

complete the construction of BCN(α, β, h, γ). For
each fixed v, add links to construct a perfect match-
ing of pairs of slave-nodes in Bv

0 , Bv
1 , . . . , Bv

s , such
that for each i and j, where i 6= j, there is exactly
one link joining Bv

i with Bv
j . The overall scheme

can be visualised in Fig. 2.
There are various different matchings that might

be employed and we consider the two that were
highlighted in [15], called slave-connection-rule-1
and slave-connection-rule-2. They are defined as
follows. Fix 0 ≤ v ≤ t and let 0 ≤ i < j ≤ s.

� Slave-connection-rule-1: the sub-networks
Bv

i and Bv
j are joined by the link joining the

slave-node x for which id(x) = (i, v, j − 1) and
the slave-node y for which id(y) = (j, v, i).

B0
0

B1
0

Bt
0

B0
1

B1
1

Bt
1

B0
s

B1
s

Bt
s

HCN(n, h) HCN(n, h) HCN(n, h)

···

···

···

· · ·

HCN(n, γ)

links

· · ·
links

· · ·
links

Figure 2: The network BCN(α, β, h, γ) when h ≥ γ.

� Slave-connection-rule-2: the sub-networks
Bv

i and Bv
j are joined by the link joining the

slave-node x for which id(x) = (i, v, j − i − 1)
and the slave-node y for which id(y) = (j, v, s−
j + i).

The two connection rules can be visualised in
Figs. 3a and 3b, respectively. Slave-connection-
rule-1 is essentially identical to the connection rule
used to define DCell in [14], and slave-connection-
rule-2 is a connection rule derived in [3] but more
recently used in Generalized DCell in [17]. Of
course, there are many more such matching con-
nection rules that might be considered.

In consequence, the DCN BCN(α, β, h, γ), for
h ≥ γ, has: (αγβ + 1)α master-nodes of de-
gree 1; (αγβ + 1)αhβ slave-nodes of degree 2;
(αγβ + 1)α(αh − 1) master-nodes of degree 2; and
(αγβ + 1)αh switch-nodes of degree n.

3. One-to-one Routing in the DCN HCN

We first describe the one-to-one routing algo-
rithm for HCN(n, h) called FdimRouting that was
derived in [15] before describing an improved one-
to-one, minimal routing algorithm called NewFdim-
Routing. In essence, the algorithm FdimRouting is
that obtained in [4, Section 3.1] and the algorithm
NewFdimRouting is actually that obtained in [4,
Section 3.2].

Throughout this paper, for a given routing algo-
rithm R and server-nodes src and dst, a path from
src to dst computed by R is denoted by R(src, dst),
and the hop-length of the path by |R(src, dst)|.

5

3
2

1
0

Bv
2

3
2

1
0

Bv
1

3210

Bv
0

3
2

1
0Bv

3

3
2

1
0

Bv
4

(a) Slave-connection-rule-1.

3
2

1
0

Bv
2

3
2

1
0

Bv
1

3210

Bv
0

3
2

1
0Bv

3

3
2

1
0

Bv
4

(b) Slave-connection-rule-2.

Figure 3: Slave-node links in BCN(2, 2, 1, 1).

3.1. Routing with FdimRouting
The one-to-one routing algorithm for HCN(n, h)

from [15], named FdimRouting, proceeds as follows.
We first describe the algorithm for master-nodes.
Let src and dst be master-nodes in HCN(n, h),
and let γ be the smallest parameter such that src
and dst are contained in the same sub-network
HCN(n, γ) of HCN(n, h). If γ = 0 then src and dst
are connected to the same switch (and they may be
identical); otherwise, let Ba and Bb be the distinct
copies of HCN(n, γ − 1) containing src and dst, re-
spectively, where a and b are the indices, from the
set {0, 1, . . . , α− 1}, of Ba and Bb within the copy
of HCN(n, γ) that contains them. Let (dst′, src′) be
the link that joins Ba to Bb, with dst′ in Ba and
src′ in Bb. FdimRouting builds a path from src to
dst by recursively building a path from src to dst′

within Ba and from src′ to dst within Bb, and then
joining these two paths by the link (dst′, src′).

Given src and dst, the labels of dst′ and src′

are easily derived from the definition of HCN(n, h).
All four of these master-nodes are contained in the
same copy of HCN(n, γ), so they must begin with
the same prefix, uhuh−1 · · ·uγ+2uγ+1 (the prefix is
empty in the degenerate case where γ = h). The
nodes dst′ and src′ join Ba and Bb, and so we have

dst′ = uhuh−1 · · ·uγ+2uγ+1a bb · · · b︸ ︷︷ ︸
γ times

src′ = uhuh−1 · · ·uγ+2uγ+1b aa · · ·a︸ ︷︷ ︸
γ times

.

Under our identification of HCN(n, h) (with its
slave-nodes removed) with WK(α, h), this algo-

rithm from [15] is actually just the routing algo-
rithm for WK(α, h) from [4, Section 3.1].

It was shown in Theorem 4 in [15] that Fdim-
Routing yields a path joining any two master-nodes
of HCN(n, h) of length at most 2h+1 − 1. Conse-
quently, the length of a shortest path between any
two master-nodes of HCN(n, h) is at most 2h+1−1.
Whilst this upper bound was noted in [15], it was
left unresolved as to whether the length of a shortest
path between any two master-nodes of HCN(n, h)
is exactly 2h+1−1 in the worst-case. However, that
this is the case was proven in [4] (we translate from
the language of a WK-recursive network to that of
a DCN HCN).

Lemma 3.1. [4, Lemma 2.1] Let n ≥ 2 and h ≥ 1.
There exist source and destination master-nodes of
HCN(n, h) such that the hop-length of a shortest
path from the source to the destination is exactly
2h+1 − 1.

It is trivial to implement the algorithm Fdim-
Routing as a source-routing algorithm so that it
has O(h2h) time complexity (and not O(2h) as was
stated in [4, 15]; for even writing the route takes
O(h2h) time where we assume that n = O(1)).
Also, it is not difficult to see that FdimRouting can
be implemented as a distributed-routing algorithm
so that the time taken for each iterim master-node
to compute the next master-node on the route is
O(h).

3.2. Routing with NewFdimRouting
As was noted in [4, Section 3.2], the routing al-

gorithm FdimRouting is not a minimal routing al-

6

gorithm and can be improved. Consider applying
the routing algorithm FdimRouting to the source
master-node (0, 1, 1) and the destination master-
node (2, 1, 1) of HCN(5, 2) (where α = 3 and β =
2). The resulting path is:

(0, 1, 1)→ (0, 1, 2)→ (0, 2, 1)→ (0, 2, 2)→
(2, 0, 0)→ (2, 0, 1)→ (2, 1, 0)→ (2, 1, 1).

However, the path

(0, 1, 1)→ (1, 0, 0)→ (1, 0, 2)→
(1, 2, 0)→ (1, 2, 2)→ (2, 1, 1)

is shorter.
The algorithm given as Algorithm 1, which we

call GetShortest , was proven in [4, Section 3.2] to
yield a minimal routing algorithm for WK(α, h) as
we now explain. We think of all routing algorithms
for WK(α, h) as also being routing algorithms for
HCN(n, h) when the slave-nodes are ignored, and
vice versa.

Algorithm 1

Require: u = uhuh−1 · · ·u0 and v = vhvh−1 · · · v0

are distinct nodes in WK(α, h).
function GetShortest(u, v)

P ← FdimRouting(u, v)
l ← |P |
i← largest index such that ui 6= vi

for z ∈ {0, 1, . . . , α− 1} \ {ui, vi} do
luz ← |FdimRouting(u, uhuh−1 · · ·

· · ·ui+1ui zz · · · z︸ ︷︷ ︸
i times

)|

lvz ← |FdimRouting(v, vhvh−1 · · ·
· · · vi+1vi zz · · · z︸ ︷︷ ︸

i times

)|

lz = luz + lvz + 2i + 1
end for
if l ≤ min{lz : ui 6= z 6= vi} then

return P
else

return z, where
lz = min{lz : ui 6= z 6= vi}

end if
end function

Let the nodes u = uhuh−1 · · ·u0 and v =
vhvh−1 · · · v0 of WK(α, h) be distinct. The al-
gorithm GetShortest(u, v) outputs either a path
or a value from {0, 1, . . . , α − 1}. If GetShort-
est(u, v) outputs the path P then we define the path

NewFdimRouting(u, v) as P (in this case, the path
P is actually the path FdimRouting(u, v)). Alter-
natively, if GetShortest(u, v) outputs the value z ∈
{0, 1, . . . , α− 1} then we define the path NewFdim-
Routing(u, v) as follows. Let

� Pu be the path

FdimRouting(u, uhuh−1 · · ·ui+1ui zz · · · z︸ ︷︷ ︸
i times

)

� Q be the path

FdimRouting(uhuh−1 · · ·ui+1z uiui · · ·ui︸ ︷︷ ︸
i times

,

vhvh−1 · · · vi+1z vivi · · · vi︸ ︷︷ ︸
i times

)

� Pv be the path

FdimRouting(vhvh−1 · · · vi+1vi zz · · · z︸ ︷︷ ︸
i times

, v).

The path NewFdimRouting(u, v) is defined as Pu +
link1 + Q + link2 + Pv, where linkj is the link
joining the terminals of the appropriate paths, for
j ∈ {1, 2}.

It is not the case that FdimRouting has to be
executed in the for-loop of Algorithm 1 in order
to obtain lu and lv; for, by [4, Lemma 3.3], the
following is true.

Theorem 3.2. The length of a shortest path join-
ing the nodes zz · · · z︸ ︷︷ ︸

h+1 times

and uhuh−1 · · ·u0 of the

WK-recursive network WK(α, h) is
∑

i = 0, 1, . . . , h where ui 6= z

2i.

Consequently, we can calculate the length of a
shortest path, along with which route it takes, with-
out computing any actual path; a simple numeric
calculation suffices. Once we have this information,
we can build the actual path as specified by the
output value z.

Let us now return to when at least one of our
source and destination nodes in HCN(n, h) is a
slave-node (this was left blurred in [15]). W.l.o.g.,
suppose that our source is a slave-node. We cal-
culate the length of a shortest path between every
master-node adjacent to the same switch-node as

7

the source and: the destination node, if the destina-
tion is a master-node; or to every master-node one
hop from the destination node, if the destination is
a slave-node. We take the resulting path of mini-
mal hop-length as our shortest path. We note that
Theorem 3.2 assists significantly with this compu-
tation.

As we noted above, FdimRouting can be imple-
mented as both a source-routing and a distributed-
routing algorithm. This is also true for NewFdim-
Routing. When implemented as a source-routing
algorithm, the repeated numeric computations (so
as to ascertain the path to take) take O(h) time
(recall, n is assumed to be O(1)); so, the complex-
ity remains at O(h2h). When implemented as a
distributed-routing algorithm, as well as carrying
the source and the destination within the packet
header, the value z, output from GetShortest , must
also be carried. When it is, the time taken for each
interim node to compute the next node on the route
remains at O(h).

4. One-to-one Routing in the DCN BCN

In this section we describe the routing algorithms
for the DCN BCN as derived in [15], followed by a
novel, improved routing algorithm.

4.1. Routing with BdimRouting

We first describe the routing algorithm Bdim-
Routing from [15]. Let src and dst be server-nodes
in BCN(α, β, h, γ), where h ≥ γ (src might be a
master-node or a slave-node, as might dst). Re-
call that BCN(α, β, h, γ) is composed of disjoint
copies of BCN(n, γ), labelled Bv

u, for each (u, v) ∈
{0, 1, . . . , s} × {0, 1, . . . , t}, as depicted in Fig. 2 (s
and t are as defined in Section 2.2). If src and
dst reside in the same copy of HCN(n, h), then
BdimRouting(src, dst) returns the path returned by
FdimRouting(src, dst). Thus, we assume that src
is in Bv

u and dst is in Bv′
u′ , for some u 6= u′ (note

that we might have that v = v′).
Let (x, x′) be the unique slave-node-to-slave-

node link joining Bv
u to Bv

u′ (see Section 2.2).
The routing algorithm BdimRouting returns the
path FdimRouting(src, x) + (x, x′) + FdimRouting
(x′, dst). Alternatively, (x, x′) can be the unique
link joining Bv′

u to Bv′
u′ ; note that if v = v′ then the

two alternatives produce identical paths.

Of course, we can immediately improve Bdim-
Routing by using the algorithm NewFdimRout-
ing instead of the algorithm FdimRouting; how-
ever, irrespective of whether we use FdimRout-
ing or NewFdimRouting, the algorithms outlined
above do not necessarily yield shortest paths within
BCN(α, β, h, γ). A concrete example as to why this
is the case is given in [24], but we shall now move
forward with a more sophisticated improvement of
BdimRouting.

4.2. Routing with NewBdimRouting
The routing algorithm BdimRouting from [15],

employed within BCN(α, β, h, γ), where h ≥ γ, and
outlined above, is such that if the source is in Bu

and the destination is in Bu′ , where u 6= u′, then
the route derived remains entirely within Bu and
Bu′ . NewBdimRouting, described as Algorithm 2,
performs an intelligent search to find a proxy copy
of HCN(n, h), Bu′′ , through which a shorter path
can be routed. We discuss the intelligent construc-
tion of the set of proxies at the end of this section,
so that this search feature appears merely in the
form of the set Proxies in Algorithm 2; for the mo-
ment, think of Proxies as including all possibilities
for u′′, of which there are αγβ − 1.

Algorithm 2 The routing algorithm NewBdim-
Routing in BCN(α, β, h, γ), where h ≥ γ. Note that
we may have v = v′ (below). The call to BdimRout-
ing(src, dst) employs NewFdimRouting in place of
FdimRouting.

Require: src and dst are server-nodes in Bv
u and

Bv′
u′ , respectively.

function newBdimRouting(src, dst)
if u = u′ then

return NewFdimRouting(src, dst)
end if
Q← BdimRouting(src, dst)
for u′′ ∈ Proxies do

(x, x′′)← link joining Bv
u to Bv

u′′

(y′′, y)← link joining Bv′
u′′ to Bv′

u′

Pu′′ ← NewFdimRouting(src, x)
+(x, x′′) + NewFdimRouting(x′′, y′′)
+(y′′, y) + NewFdimRouting(y, dst)

end for
return a path of shortest hop-length in
{Pu′′ : u′′ ∈ {0, 1, . . . , s} \ {u, u′}} ∪ {Q}

end function

Of course, Theorem 3.2 makes the implementa-
tion of NewBdimRouting trivial, so that the search

8

for an optimal choice of Bu′′ to route through
involves examining the hop-length of exactly one
path for each candidate proxy in Proxies. When
implemented as a source-routing algorithm, and
given our comments earlier as regards the imple-
mentation of NewFdimRouting, once Bu′′ is found,
NewBdimRouting constructs that chosen path in
O(h2h) steps; for it is essentially 3 repetitions of
NewFdimRouting. As regards the implementation
of NewBdimRouting as a distributed-routing algo-
rithm, again the time complexity is O(h). However,
the packet header must also carry the 3 different
z’s corresponding to the 3 executions of NewFdim-
Routing, as well as a parameter detailing which Bu′′

NewBdimRouting transits through.

4.3. Selecting proxies and alternative routing

An exhaustive search through candidate proxies
Bu′′ , for each u′′ in {0, 1, . . . , s} \ {u, u′}, together
with the associated overheads of this search, can be
avoided, albeit with a potential loss of path quality.
We construct the set Proxies, used in Algorithm 2,
following methods analogous to those developed
in [7]. In short, for the recursively-defined DCNs
considered in [7], namely (Generalized) DCell and
FiConn, only proxies ‘within a small radius’ of src
or dst are considered, where ‘within a small radius’
is interpreted as within some recursive copy with
the recursion parameterized by the radius. For us,
this locality translates as follows. Fix γ ≥ r ≥ 0 and
let Bu (resp. Bu′) be the copy of HCN(n, h) within
BCN(α, β, h, γ) in which src (resp. dst) lies. More-
over, let Bu,r (resp. Bu′,r) be the copy of HCN(n, r)
within Bu (resp. Bu′) in which src (resp. dst) lies.
Define the set Ar = {u′′ : 0 ≤ u′′ ≤ s, u′ 6= u′′ 6= u,
there is a link from a slave-node of Bu,r to a slave-
node of Bu′′}, with the set A′

r defined analogously
but w.r.t. dst and Bu′,r as opposed to src and Bu,r.
Set Proxies = Ar ∪ A′

r. We shall call the ver-
sion of NewBdimRouting that constructs Proxies
in this way NewBdimRoutingr , where r is the ‘ra-
dius’ parameter. Clearly, if r = γ then we obtain
the exhaustive search. Consequently, we can think
of NewBdimRouting as being a suite of routing al-
gorithms, with one algorithm for each 0 ≤ r ≤ γ.

In choosing a value for r, above, there is clearly
a trade-off between the breadth of search and the
overheads associated with undertaking this search:
the wider the search, the more chance of finding
a shorter path, but the longer this search takes
to undertake. In [7], it was found that restricting

searches to ‘small radius’ led to significant perfor-
mance gains yet did not unduly compromise the
quality of the resulting paths found. Consequently,
buoyed by the results of [7], we have proceeded
analogously here. As such, we compare NewBdim-
Routingγ and NewBdimRouting1 in our experimen-
tal analysis.

The (suite of) routing algorithm(s) NewBdim-
Routing serves as a prototype for a class of routing
algorithms that search for shortest paths. With the
notation of Algorithm 2, at present we route: from
src in Bv

u to Bv
u′′ , via a slave-node-to-slave-node

link; then on through Bu′′ to Bv′
u′′ ; and finally, via

a slave-node-to-slave-node link, from Bv′
u′′ to dst in

Bv′
u′ . Alternatively, we might route: from src in Bv

u

to Bv′′
u , for some v′′; then via a slave-node-to-slave-

node link to Bv′′
u′′ , for some u′′; then on through Bu′′

to Bv′
u′′ ; and finally, via a slave-node-to-slave-node

link, to dst in Bv′
u′ . In short, there are other as yet

unexplored ‘dimensions’ within which to search for
shorter paths. Of course, more searching leads to
additional computational overheads. Another al-
ternative is to build paths that pass through not
just Bu, Bu′′ , and Bu′ , for some u′′, but through
Bu, Bu′′ , Bu′′′ , and Bu′ , for some u′′ and u′′′, in
the search for yet shorter paths. Of course, this in-
creases the searching overheads given that not only
do potential values for u′′ have to be explored but
potential values for u′′′ also. We leave the search
for efficiently implementable improvements to the
approach we take here as a direction for future re-
search and return to this comment in our conclu-
sions.

5. Methodology

We undertake an exhaustive empirical analysis
of our newly proposed routing algorithm NewB-
dimRoutingr, for specific values of r, by compar-
ing its performance with that of BdimRouting in
BCN(α, β, h, γ), over a range of parameter values,
for a range of traffic patterns and workloads, and
with regard to a comprehensive set of metrics. Our
metrics cover hop-length, network throughput, and
latency, as well as the overall completion time of
various workloads.

Our topologies come in two batches. In Batch A,
we include the DCNs BCN(α, β, h, γ), for (α, β) ∈
{(7, 2), (6, 3), (5, 4), (4, 5), (3, 6), (2, 7)} and for h ∈
{3, 4}, where 1 ≤ γ ≤ h (we detail results primar-
ily for h = 3 as trends are replicated for h = 4

9

and the resulting sizes of some of the DCNs when
h = 4 are too big to be practically relevant). We
are guided here by the empirical analysis under-
taken in [24] where these parameters are chosen
so that we might observe performance trends as
the parameter values involved gradually increase
or decrease. We obtain a wide range of DCNs in
terms of the number of server-nodes; for example,
even when h is fixed at 3, BCN(2, 7, 3, 1) has 1, 080
server-nodes whereas BCN(6, 3, 3, 3) has 1, 261, 656
server-nodes. We also study both slave-connection
rules defined earlier, and we use 1-BCN and 2-BCN,
respectively, to specify a particular connection rule
(with BCN used when we have no need to specify
the actual slave-connection rule used). Although
we focus on BCN (for h ≥ γ) in this paper, we
have indeed also verified the experiments from [24],
comparing NewFdimRouting to FdimRouting in the
topologies HCN(9, h), for 3 ≤ h ≤ 8, using our
new, independently-developed software tool (see
Section 5.1).

In our second batch of topologies, Batch B,
we experiment with more realistic topologies in
that we reflect readily available denominations of
switch-ports, namely 24 and 32. The topolo-
gies within this second batch are BCN(3, 21, 3, γ)
and BCN(3, 29, 3, γ), for 1 ≤ γ ≤ 3, as well
as BCN(12, 12, 2, 1) and BCN(12, 12, 3, 0). While
there are many combinations of parameters that
yield networks of realistic size and switch-radix, we
are guided by the results of our experiments on
the topologies of Batch A and consequently choose
higher values of β and lower values of h for the
topologies within the second batch. Again, we get
a good spread of DCNs in terms of the number
of server-nodes, with these numbers ranging from
41, 472 to 677, 376.

We now describe our software tool and the details
of our experiments.

5.1. Software tool: INRFlow

We conduct our experiments with the open-
source software tool Interconnection Networks Re-
search Flow Evaluation Framework (INRFlow) [8].
INRFlow is a flow-level network simulation frame-
work for analysing network topologies and rout-
ing algorithms under various traffic patterns, work-
loads, and fault-conditions. For us, a traffic pattern
is a set of pairs of source and destination nodes,
whereas we think of a workload as consisting of a
set of flows, possibly with some temporal causal-
ity imposed on these flows, with a flow being a

source-destination pair together with a bandwidth
reflecting the amount of data intended to be trans-
ported from the source to the destination. We often
simply refer to traffic patterns as workloads; that
is, we think of source-destination pairs as unitary
flows and so that there are no temporal causalities
between the flows. INRFlow constructs the network
topology and workload at runtime, routes the flows
specified by the workload, using the specified rout-
ing algorithm, and, finally, reports statistics.
INRFlow has a static and a dynamic mode. In

static mode, flows are routed simultaneously and
a link’s capacity is assumed to be shared equally
among all the flows routed through it. Static mode
can handle very large networks and serves to re-
port on raw performance metrics where the causal
relationships between flows are not important, such
as the mean hop-length of a routing algorithm or
preliminary estimations of the throughput. This
is the mode commonly found in experimental work
within the server-centric DCN literature. However,
the static mode does not always accurately reflect
network traffic due to its lack of temporal mod-
elling. For this reason, we extend our experimental
work by simulating in dynamic mode. In dynamic
mode, the links of the network have capacities and
each flow is specified with a bandwidth reflecting
the data that must be routed. In addition, the
workloads might prescribe causal relationships be-
tween flows, so that some flows must finish before
others begin. Dynamic mode provides a more re-
alistic, flow-level simulation of general real-world
workloads, as well as a good estimation of the com-
pletion times of a collection of application-inspired
workloads.

As we mentioned earlier, the conclusions of our
preliminary experiments in [24] are broadly veri-
fied; INRFlow was developed independently from
the purpose-built tool used in [24]. Note that the
tool in [24] does not store the topology in memory,
unlike INRFlow, so we are unable to reproduce spe-
cific experiments on very large networks; however,
we do reproduce the overall trends observed in [24].

5.2. Traffic Patterns and Workloads
In order to ascertain the performance of our rout-

ing algorithms under various conditions, we experi-
ment with a variety of traffic patterns and work-
loads, most of which are common in the litera-
ture and representative of traffic scenarios arising
from scale-out, tenanted, cloud-oriented datacen-
ters (as well as smaller, private datacenters), run-

10

ning a number of simultaneous data-intensive ap-
plications, such as Hadoop (see, e.g., [26]) or Spark
(see, e.g., [30]).

We use INRFlow’s static engine to measure statis-
tics related to path (hop-)length, network through-
put, and latency, under the following wide variety
of traffic patterns and workloads.

All-to-one: A destination server dst is chosen,
uniformly at random, and every server sends
a flow to dst.

Bisection: The network is split uniformly at ran-
dom into two halves and every server in each
half sends a flow to every server in the other
half (see [29]).

Butterfly: Every server sends a flow only to a
small subset of servers, as opposed to send-
ing to all of them as in a full all-to-all com-
munication. In more detail, the servers are
arbitrarily numbered 1, 2, . . . , N , and for any
1 ≤ k ≤ ⌊log(N − 1)⌋, servers are paired to-
gether as follows: the servers are split into
batches of 2k contiguously-named servers; and
within the mth batch, server 2(m − 1)k + i
is paired with server 2(m − 1)k + k + i, for
1 ≤ i ≤ k. Every server sends a flow to ev-
ery one of the (at most) ⌊log(N −1)⌋ servers it
has been paired with. See [20] for more details.
The butterfly pattern represents an optimised,
binary implementation of collective operations.

Hot-region: One million flows are generated so
that each source server is selected uniformly
at random and where each destination server
is chosen according to a hot-region pattern,
whereby 1

4 of the traffic (on average) goes to
1
8 of the network, with the rest uniform. The
hot-region is chosen by arbitrarily naming the
servers 1, 2, . . . , N and taking the hot-region to
be the servers 1, 2, . . . , ⌊N

8 ⌋.

Many-all-to-all: For a given size s, the network
is partitioned uniformly at random into g =
⌈N/s⌉ groups of servers, each of size at most
s. Each server sends a flow to all other servers
in its group. In this paper we take s = 1, 000.

Uniform-random: One million flows are gener-
ated in which both the source and the desti-
nation are chosen uniformly at random.

After assessing the raw performance improve-
ments achieved by our routing algorithms, in terms
of hop-length, throughput, and latency, we evaluate
how these raw performance improvements translate
to more realistic scenarios using INRFlow’s dynamic
engine and a collection of new, application-inspired
workloads. These new workloads cover more repre-
sentative and realistic network traffic scenarios that
can be found in existing datacenters. Note that this
is beyond what is normally undertaken as current
practice within the server-centric community. Our
new workloads, along with a brief justification, can
be described as follows.

MapReduce: Our MapReduce workflow is such
that we partition the servers into equal-sized
groups so that every server is allocated to
a group; this partitioning is undertaken uni-
formly at random. Within each group, a root
server, chosen uniformly at random, under-
takes a broadcast to the group, so as to par-
tition the original data amongst all servers.
Once a server has received its data from the
root, it performs the ‘mapping’ of the data and
‘shuffles’ it to the other servers via a one-to-all
group broadcast. Once a server has received
all ‘mapped’ flows from the other servers in its
group, it ‘reduces’ its data and sends its results
back to the group root. The completion time
of the MapReduce workflow is measured as the
time required to complete all the communica-
tions in all of the groups.

MapReduce is the main application model used in
the context of datacenter systems for big data ana-
lytics (see, e.g., [6]). Were we to work only with one
group consisting of all of the servers, MapReduce
would be computationally infeasible; consequently,
we partition the servers into groups of 1, 000 servers.
It is common practice in datacenters where storage
is distributed across subsets of servers to partition
the servers into groups uniformly at random, so as
to reduce the effects of correlated server failures
(see, e.g., [23]).

Stencil and sweep: In these workloads, we as-
sume that there is a virtual topology im-
posed upon the servers, in the form of a d-
dimensional grid (this virtual grid is imposed
on the servers arbitrarily). Each server sends
data to its neighbours in this virtual topology.
We illustrate stencil and sweep for d = 2 but
the general case is analogous. In the sweep

11

workflow, the corner server (0, 0) sends to its
neighbours with all other servers waiting until
they have received data from all their ‘lower
order (left and above)’ neighbours before send-
ing data to their ‘higher order (right and be-
low)’ neighbours (the wavefront can be visual-
ized as progressing diagonally through the grid
from the top-left). In the stencil workflow, all
servers send to their neighbours and wait to
receive data from all of their neighbours. This
constitutes a round. When a server has re-
ceived data from each of its neighbours it can
embark on the next round.

Many scientific and engineering parallel appli-
cations operate over huge d-dimensional matrices;
consequently, we can arrange things so that each
server deals with a small sub-matrix of the whole.
This partitioning yields a good locality of commu-
nication by requiring that servers need only com-
municate with those servers that are neighbouring
in the inherited virtual grid topology. In our work-
loads, we assume that a single application is using
the whole of the datacenter, and for the purposes
of this paper, we consider d = 2, 3. We varied the
number of rounds in the stencil workflow but found
that this did not affect the results. Additional de-
tails as regards stencil and sweep can be found in
[20].

Unstructured applications: We consider work-
loads following the uniform-random and hot-
region patterns, described above, but where we
have enhanced causality. We generate flows as
prescribed in each workload; however, we di-
vide the flows into phases, uniformly at ran-
dom, so that each phase has a fixed number
of flows. We experimented with the number
of flows in each phase being 1, 000, 10, 000,
100, 000, and 1 million, so that the total num-
ber of flows is always 10 million. Each phase
requires all the flows from the previous phase
to be delivered before it can begin. The smaller
the phase size, the more tightly-coupled the ap-
plication, i.e., the higher the causality.

Unstructured workloads often arise when consid-
ering system management traffic, system schedulers
based on work-stealing (see, e.g., [22]), or graph an-
alytics applications (a key application area within
datacenters; see, e.g., [16]).

Note that there are numerous other traffic pat-
terns and workloads that we might consider such as

patterns relating to multicasting or broadcasting.
However, our chosen traffic patterns and workloads
are representative and cover many others. For ex-
ample, if one considers one-to-many then one sees
that it is embedded within uniform-random and
hot-region as because of the large number of flows
that we generate, a single source is likely to have a
number of associated destinations. Also, one-to-
many is naturally embedded within MapReduce.
There is nothing really to be gained by extending
our chosen range of traffic patterns and workloads.

5.3. Hop-length experiments
We undertake three types of hop-length experi-

ment, along with a study of the efficiency of proxy
selection in Algorithm 2. Our focus is primarily on
the uniform-random traffic pattern but we also look
at some of the other traffic patterns defined above.

First, we adopt the uniform-random traffic pat-
tern and compare the mean hop-lengths of four
routing algorithms for BCN(α, β, h, γ), namely:
the newly introduced algorithms NewBdimRout-
ing1 and NewBdimRoutingγ ; the previously known
algorithm BdimRouting; and a breadth-first search
algorithm (BFS). Moreover, we do this for both
of our slave-connection rules. Our algorithm BFS
provides a benchmark (note that although we can
provide shortest paths via a brute-force application
of our algorithm BFS , purely for statistical pur-
poses, no efficient shortest-path routing algorithm
is known for the DCN BCN; moreover, the imple-
mentation of a BFS as a DCN routing algorithm
is computationally infeasible). We experiment with
DCNs from Batch A and Batch B.

In our second hop-length experiment, we stay
with the uniform-random traffic pattern and look
at the distribution of hop-lengths for the routing
algorithms NewBdimRouting1 and BdimRouting in
BCN(3, 21, 3, 3) (from Batch B) with the slave-
connection-1 rule, again against the benchmark
provided by BFS . We choose NewBdimRouting1

due to its very good performance against NewBdim-
Routingγ in our first batch of experiments (there
is an obvious reduction in implementation over-
heads too), and the slave-connection-2 rule, given
our initial success in comparison with the slave-
connection-1 rule.

In our third hop-length experiment, for each of
the traffic patterns all-to-one, bisection, butterfly,
hot-region, many-all-to-all, and uniform-random,
we compare BdimRouting and NewBdimRouting1

in DCNs selected from Batch A and Batch B, with

12

respect to the percentage savings made on average
as regards the hop-lengths of the paths generated
by the two algorithms.

Finally, moving away from explicit hop-lengths,
we also consider how often NewBdimRouting1 and
NewBdimRoutingγ find a shorter path by routing
through a proxy Bu′′ instead of going directly from
Bu to Bu′ , as described in Algorithm 2. We do this
for DCNs selected from Batch A and Batch B.

We say more about our experimental configura-
tions when we evaluate our hop-length experiments
in Section 6.1.

5.4. Throughput experiments
Many datacenter applications rely on frequent,

data-heavy communications through the network,
which puts network throughput at the forefront of
performance requirements. We measure through-
put via two metrics, one of which is a generalization
of the aggregate bottleneck throughput, introduced
in [13]. In [13], the aggregate bottleneck throughput
(ABT) is defined (only) for the all-to-all traffic pat-
tern as the total number of flows multiplied by the
throughput of a bottleneck flow, where a bottleneck
flow is a flow that receives the smallest throughput.
However, it is not entirely clear as to the exact in-
tentions behind the ABT definition. For example,
calculations in [13, 19] are undertaken not accord-
ing to the loads on links in the paths underpinning
flows according to some specific routing algorithm
but: according to the average hop-length of paths
and via an appeal to symmetry within the DCN
in [13] (here, the DCN is DCell); and according
to ‘theoretical’ shortest-path routing algorithms in
[19] (‘theoretical’ in the sense that calculations, in
the DCNs DCell and BCube, are undertaken by
graph-theoretic simulations of some shortest path
routing algorithms; indeed, an optimal and effi-
cient shortest-path routing algorithm for DCell is
as yet unknown). Moreover, the ABT is geared en-
tirely towards all-to-all workloads, whereas we wish
to examine different routing algorithms as regards
throughput with regards to alternative workloads.

Given the above discussion, we adapt the ABT
so that it better suits our purpose. Our generaliza-
tion of ABT to arbitrary traffic patterns, which (for
distinction) we call the aggregate restricted through-
put (ART), is defined as Fb/fbot, where F is the
number of flows in a given traffic pattern, b is the
bandwidth of a link, and fbot is the number of flows
that are routed through the bottleneck link (it is
assumed that flows are shared over any link evenly

and that every flow carries the same load). Intu-
itively, the ART measures the throughput when all
flows are routed at the speed of the (slowest) bot-
tleneck flow; this simulates applications that are
tightly coupled with flows and which must wait for
the completion of all flows.

We introduce here the aggregate unrestricted
throughput (AUT) (similar to the metric LFTI, pro-
posed in [28]) which is defined as Fb/fave, where
fave is the average number of flows in each link. In-
tuitively, the AUT measures the throughput in ap-
plications that are loosely coupled with flows, where
each flow can be processed as it arrives. Note that,
for us, in both ART and AUT, the bottleneck flow
is with respect to the actual routing algorithm em-
ployed, rather than BFS or an analysis undertaken
with average hop-lengths and appealing to symme-
try within the DCN.

Our throughput experiments focus on the topolo-
gies given in Table 1 and the six initial traffic pat-
terns given in Section 5.2. Our hop-length experi-
ments show that proxy routing offers the strongest
performance gains for high values of β, as well as
high values of γ. Our goal, following these observa-
tions, is to evaluate such parameters more deeply,
and thus our narrower selection of topologies in
these experiments is so guided.

BCN server- switch- links
(α, β, h, γ) nodes nodes
(2,7,3,3)* 4,104 456 12,198
(2,7,4,4) 16,272 1,808 48,590
(3,21,3,3) 368,064 15,336 1,102,488
(3,29,3,3) 677,376 21,168 2,029,776
(3,6,3,3)* 39,609 4,401 118,338
(3,6,4,4) 355,023 39,447 1,063,608
(4,5,3,3) 184,896 20,544 553,404
(5,4,3,3) 563,625 62,625 1,688,370
(6,3,3,3) 1,261,656 140,184 3,781,074

Table 1: The DCNs BCN(α, β, h, γ) considered in our
throughput and completion-time experiments. Dynamic ex-
periments focus only on those marked ‘*’.

5.5. Latency experiments

While datacenters tend to be used as stream-
processing systems, and so are typically more sus-
ceptible to throughput variations, there are also
many datacenter applications which are more sen-
sitive to latency; these include real-time operations
or applications with tight user interactions such as

13

real-time game platforms, on-line sales platforms,
and search engines.

For this reason, we also look at the end-to-end
latency for BdimRouting and NewBdimRouting1

(just as with our hop-length experiments, we work
with the uniform-random pattern). We base our
analysis on the latencies imposed by the different
steps of the communication: the protocol stack la-
tency; the propagation latency; the data transmis-
sion latency; and the routing latency at the servers.
We measure the latency introduced by each of these
steps and model the average zero-load latency by
considering each step in conjunction with the aver-
age hop-length between the servers.

All of the transmission-latencies , i.e., protocol
stack, propagation, and data, are measured using
the standard UNIX ping utility, whereas the rout-
ing latency is measured within INRFlow. These
measurements are carried out independently under
low load conditions in the same server, a 32-core
AMD Opteron 6220 with 256GB of RAM and run-
ning Ubuntu 14.04.1 SMP OS. The server and its
neighbour are located in the same rack and are
connected with short (< 1 mtr.) electrical wires
to a 24-port 1Gbit Ethernet switch. This plat-
form is used because it is a good representative of
COTS hardware. In this configuration, we actu-
ally measure lower bounds on transmission laten-
cies, since we do not consider other instrumenta-
tion needed for a server-centric architecture over
and above short wires and protocol stack latency.
We measure the routing latency with INRFlow in
all the selected topologies in Table 1.

Note that routing time measured with INRFlow
provides a conservative estimate of routing latency
that benefits BdimRouting and penalises NewBdim-
Routing1. In a real-world implementation of NewB-
dimRouting1, where latency is truly critical, a num-
ber of optimisations could be applied that would re-
duce the overheads of NewBdimRouting1 relative to
those of BdimRouting; for example, using a cache of
recent destinations and proxies at each server-node,
or even full table look-ups. Thus, since our mea-
sured routing latency is an upper bound, and our
measured transmission latency is a lower bound,
the real proportion of routing latency to transmis-
sion latency would be smaller than it is in our mea-
surements. Consequently, hop-length reduction will
have a greater impact on the overall latency.

5.6. Completion-time experiments

Our primary objective is to design routing al-
gorithms that reduce the overall execution time of
application-like workloads. This requires a more so-
phisticated modelling in which flows are generated
and consumed according to realistic application op-
eration and the maintenance of causal relationships
between them. Given that dynamic execution is
much more computationally intensive, we restricted
our analysis to a few topologies only (marked with
a ‘*’ in Table 1), but the consistency of the results
with those of the other experiments described in
this section suggests that dynamic experiments in
other topologies will yield similar results. In or-
der to give some real scale and motivated by the
capability of many low-cost COTS hardware com-
ponents, we use flows of size 1Gb and (uniform) link
bandwidths of 1Gbps.

6. Experimental evaluation

We now give an evaluation of the experimental
results we obtained when we undertook the exper-
iments laid out in Sections 5.3 to 5.6.

6.1. Hop-length evaluation

As regards our first hop-length experiment, the
bar charts in Figs. 4a to 4d detail the percent-
age hop-length savings of the different versions of
NewBdimRouting, benchmarked against BFS , over
BdimRouting (note that in Fig. 4a, NewBdimRout-
ing1 and NewBdimRoutingγ are one and the same;
note also that in the legend for Figs. 4a to 4d, and
elsewhere, we use the abbreviation nB for NewB-
dimRouting). With reference to Section 5.3, the
charts in Figs. 4a to 4d result from the generation
of 1 million uniform-random flows. Both NewB-
dimRoutingγ and NewBdimRouting1 yield hop-
length gains when compared with BdimRouting,
and NewBdimRouting1 performs almost as well as
NewBdimRoutingγ in spite of not undertaking as
extensive a search for proxies. Our experiments
also confirm the trends observed in [24] that for
a fixed switch-node radix n, the hop-length sav-
ings decrease marginally with decreasing β; in ad-
dition, as γ approaches h, the savings are much
more pronounced. Perhaps surprisingly, the slave-
connection rule also has a significant effect: both
NewBdimRoutingγ and NewBdimRouting1 make
far greater gains in 2-BCN(α, β, h, γ) than they do

14

in 1-BCN(α, β, h, γ). For example, the percent-
age gain of NewBdimRouting1 over BdimRouting
in 1-BCN(3, 6, 3, 3) is just over 14%, whereas it is
around 26% in 2-BCN(3, 6, 3, 3).

The high performance gains for γ = h are tem-
pered somewhat by weak performance gains when
γ is small in comparison with h. This latter remark
can be seen to apply for both smaller and larger
DCNs; for example, with BCN(6, 3, 3, 1), which has
36, 936 server-nodes, and with BCN(12, 12, 2, 1),
which has 501, 120 server-nodes (the improvement
is less than 3% for both slave-connection methods).
The reason for this weakness is evidenced in the
plots for HCN in [24], which show that, in spite
of the proven (hop-length) optimality of NewFdim-
Routing, the gains within HCN(n, h) are not large.
Therefore, the majority of the improvement that
NewBdimRouting has to offer is gained by making a
strategic choice of Bu′′ , which results in three paths
within copies of HCN(n, h) that are shorter than
the two paths in the copies of HCN(n, h) that are
employed by BdimRouting. When γ is small, the
number of copies of HCN(n, h) in BCN(α, β, h, γ)
(namely βαγ +1) is lessened so that there are fewer
choices for Bu′′ (see Algorithm 2); furthermore, the
potential for hop-length savings using NewBdim-
Routing is inherently limited because if src is in
Bv

u and dst is in Bv′
u′ , the distance from Bv

u′′ to Bv′
u′′

within any copy Bu′′ of HCN(n, h) needs to be cov-
ered regardless of the choice of Bu′′ . The above
also explains the degrading performance for fixed
radix n and decreasing β: as β decreases, so do the
number of choices for Bu′′ . As a result, there is less
potential for reductions in hop-length to be gained
this way.

However, it appears that there is potential for
strong gains even when γ is small, evidenced by
the performance of BFS plotted in Figs. 4a and 4b.
We discuss alternative routing algorithms in Sec-
tions 4.3 and 7, with the caveat that they may incur
too much search overhead to be efficient.

As regards our second hop-length experiment,
the plots in Figs. 5a and 5b are bar charts show-
ing the normalized distribution of hop-lengths of
the paths that were routed using BdimRouting,
BFS , and NewBdimRouting1 in 1-BCN(3, 21, 3, 3)
and 2-BCN(3, 21, 3, 3), respectively (in the legend,
and elsewhere, we use the abbreviation B for Bdim-
Routing). Again, with reference to Section 5.3, the
charts in Figs. 5a and 5b result from the genera-
tion of 1 million uniform-random flows. We present
our results only for BCN(3, 21, 3, 3) as it is a prac-

tically feasible DCN (the total number of server-
nodes is 368,064 and it can be implemented with
24-port switches); in any case, we found that the
trend of our results is replicated for other DCNs.
We choose the routing algorithm NewBdimRout-
ing1 as it is a more practical version of NewBdim-
Routingγ and performed almost as well as NewB-
dimRoutingγ in our first experiment. As expected,
bar charts for NewBdimRouting1 are skewed to the
left, but notice the long tails. This shows that even
when NewBdimRouting1 makes some of the great-
est gains, there are still long paths that are not
shortened.

Notice that even-length paths occur much more
frequently than odd-length paths. Paths in BCN
alternate between hops that pass through switch-
nodes and hops that do not, so the parity of the
hop-length of a path is dependant upon whether
neither, both, or exactly one of its terminal hops
includes a switch-node. The data show that having
exactly one terminal hop include a switch-node is
unlikely in all three of the routing algorithms plot-
ted.

As regards our third hop-length experiment, we
use topologies selected from Batch A and Batch
B, with the slave-connection-rule-2 (given its suc-
cess against the slave-connection-rule-1), and addi-
tional traffic patterns, as per Section 5.2. In the
results in Fig. 6, we can see that the hop-length
reduction when using NewBdimRouting1 instead of
BdimRouting is by at least 15%, but can be as high
as 42%. On average, we see a little over 25% sav-
ings. It is worth noting that the results obtained
with the different traffic patterns are rather consis-
tent regardless of the actual pattern. The only ex-
ception is butterfly where the improvement seems
to be much better than in the others; all-to-one
also presents greater variability but not as much
as butterfly. This shows that the hop-length im-
provements obtained by using NewBdimRouting1

are maintained across a wide variety of traffic pat-
terns.

Finally, as regards our study of how common
‘good’ proxies are, the lines plotted in Figs. 4a to 4d
detail the percentages of Bu′′s (from Proxies in
Algorithm 2) which yield a path for the respec-
tive version of NewBdimRoutingr that is shorter
than the one obtained by BdimRouting. These
plots tell us that a higher concentration of good
choices of Bu′′ are reachable from within the copy
of HCN(n, 1) in Bu containing src or within the
copy of HCN(n, 1) in Bu′ containing dst for NewB-

15

BFS nBγ nB1 1-BCN
BFS nBγ nB1 2-BCN

(2, 7)
1,080

(3, 6)
4,617

(4, 5)
12,096

(5, 4)
23,625

(6, 3)
36,936

(7, 2)
46,305

0

10

20

%
sa

v
in

g
s

(a) BCN(α, β, 3, 1) / No. of servers

(2, 7)
2,088

(3, 6)
13,365

(4, 5)
46,656

(5, 4)
113,625

(6, 3)
211,896

(7, 2)
305,613

0

10

20

30

(b) BCN(α, β, 3, 2) / No. of servers

(2, 7)
4,104

(3, 6)
39,609

(4, 5)
184,896

(5, 4)
563,625

(6, 3)
1,261,656

10

20

30

%
sa

vi
ng

s

(c) BCN(α, β, 3, 3) / No. of servers

(12, 12,
2, 1)

501,120

(12, 12,
3, 0)

539,136

(3, 21,
3, 1)

41,472

(3, 29,
3, 1)

76,032

(3, 21,
3, 2)

123,120

(3, 29,
3, 2)

226,368

(3, 21,
3, 3)
368,064

(3, 29,
3, 3)
677,376

0

10

20

30

(d) BCN(α, β, h, γ) / No. of servers

Figure 4: Percentage hop-length savings of NewBdimRouting and BFS (bars) over BdimRouting , and the mean percentage of
Bu′′s (lines) which yield a path for NewBdimRouting that is shorter than the one computed by BdimRouting .

dimRouting1 than for NewBdimRoutingγ ; that is,
‘good’ proxies are more heavily concentrated within
a small radius. For example, Fig. 4c shows that for
2-BCN(α, β, 3, 3) around 30% of Bu′′s yield gains
to NewBdimRouting1 over BdimRouting, yet for
NewBdimRoutingγ (i.e., an exhaustive search of the
copies of HCN(n, γ)) that number is as low as 5%.
As we have already noted, this reduction in the
search space comes at only a very small cost in hop-
length savings, since the gains of NewBdimRouting1

are generally quite similar to those of NewBdim-
Routingγ .

6.2. Throughput evaluation
The hop-length savings on their own provide suf-

ficient motivation to use NewBdimRouting1 as they
will lead to substantial savings in terms of network
utilization and, in turn, energy consumption. We
move now to evaluate how the network throughput
is affected when using NewBdimRouting1. Fig. 7
shows that NewBdimRouting1 consistently yields
higher AUT than BdimRouting, by at least 17%,
by an average of 36%, and by up to 72% (the slave-
connection-rule-2 is used). Applications that are
not tightly coupled with data-communications ben-
efit the most from such a performance gain.

The performance improvements for ART are
more volatile, but they are very good for certain
configurations. However, using NewBdimRouting1

is counter-productive in a few cases as using it can
slightly reduce the overall throughput, by 1-2%;
nevertheless, the average improvement is by over
55% and the best-case scenario yields an outstand-
ing throughput improvement of over 185%.

We also observe how the flows routed by NewB-
dimRouting1 are distributed in 2-BCN(3, 6, 3, 3),
where significant gains in hop-length can be made.
The bar chart, plotted in Fig. 8, showing the nor-
malised distribution of frequency of the number of
flows in links focuses on links with at least 160 flows
(the proportion of links with fewer than 160 flows is
implicit). Here we see that the bottleneck flow us-
ing NewBdimRouting1 is almost one-third smaller
than that of BdimRouting (1,120 vs. 1,520).

All in all, we find that the substantial improve-
ments in terms of path hop-length gained by us-
ing NewBdimRouting1 over BdimRouting are trans-
lated into similar (or even greater) improvements in
terms of network throughput.

16

4 8 12 16 20 24 28

0

5

10

%
oc

cu
rr

en
ce B BFS nB1

(a) No. of hops in 1-BCN(3, 21, 3, 3).

4 8 12 16 20 24 28

0

5

10

(b) No. of hops in 2-BCN(3, 21, 3, 3).

Figure 5: Bar charts of hop-lengths for BdimRouting , BFS , and NewBdimRouting1.

(2
,7,

3,3
)

(2
,7,

4,4
)

(3
,21

,3,
3)

(3
,29

,3,
3)

(3
,6,

3,3
)

(3
,6,

4,4
)

(4
,5,

3,3
)

(5
,4,

3,3
)

(6
,3,

3,3
)

0

20

40

%
Sa

vi
ng

s

all-to-one bisection butterfly
hot-region many-all-to-all uniform

Figure 6: Mean hop-length savings with NewBdimRouting1

over BdimRouting for different configurations of topology
and traffic pattern.

6.3. Latency evaluation
We now undertake the experiments described in

Section 5.5 as regards the latency incurred by us-
ing NewBdimRouting1 as opposed to BdimRouting.
We start by measuring the different phases con-
tributing to the overall network latency.

� The stack latency, Ls, is derived by measuring
the round trip time of both an empty frame
(28 bytes for the headers) and a full frame
(1,500 bytes, including the headers) sent to
localhost. In both cases Ls is 10µs.

� To derive the propagation latency, Lp, we mea-
sure the round trip of an empty frame sent to
another server connected to the same 1Gbit
Ethernet switch; this is 64µs. Dividing by two
and subtracting Ls, we get an estimate of 22µs
for the propagation latency.

� Similarly, we derive the data transfer latency,
Ld, by measuring the round trip time of a full-
frame sent to the same neighbour server; this

is 140µs. Similarly, dividing by two and sub-
tracting Lp and Ls, we get 38µs per full frame
for the data transfer latency.

� We measure the average per hop running time
of each algorithm, Lr, for each of the topologies
when delivering a million random flows. Our
measuring framework has a time resolution of
nanoseconds.

Adding these measurements, we can compute the
per-hop latency, LH = Ls + Lp + Ld + Lr. Multi-
plying LH by the average path hop-length for each
algorithm gives us an estimation of the zero-load
routing latency for the different routing algorithms
and topologies as per Table 2 (where the data
result from the generation of 1 million uniform-
random flows). These experiments show how in
most cases, the improvements in path length re-
sult in lower latencies; up to a 30% reduction with
an average of 10%. There are, however, a couple of
configurations where applying NewBdimRouting1 is
slightly counter-productive in terms of latency: the
latency of NewBdimRouting1 in BCN(6,3,3,3) and
BCN(3,29,3,3) is 5% and 7% greater, respectively,
than that of BdimRouting. The reason for this
slowdown is that the number of proxies to test is
much larger in NewBdimRouting1 than in Bdim-
Routing (over 600 in these two cases). This, in turn,
renders the routing latency as dominant.

Nevertheless, note that, as explained above, us-
ing more conservative values for transmission times
as well as a more optimised version of our code for
the routing would still allow NewBdimRouting1 to
outperform BdimRouting.

6.4. Completion-time evaluation
The speed up when using NewBdimRouting1 for

the different application models as measured with
our dynamic simulation engine can be seen in Fig. 9.

17

(2
,7,

3,3
)

(2
,7,

4,4
)

(3
,21

,3,
3)

(3
,29

,3,
3)

(3
,6,

3,3
)

(3
,6,

4,4
)

(4
,5,

3,3
)

(5
,4,

3,3
)

(6
,3,

3,3
)

0

1

2

3

N
or

m
.

T
hr

.

all-to-one bisection butterfly
hot-region many-all-to-all uniform

(a) AUT

(2
,7,

3,3
)

(2
,7,

4,4
)

(3
,21

,3,
3)

(3
,29

,3,
3)

(3
,6,

3,3
)

(3
,6,

4,4
)

(4
,5,

3,3
)

(5
,4,

3,3
)

(6
,3,

3,3
)

0

1

2

3

N
or

m
.

T
hr

.

(b) ART

Figure 7: AUT and ART with NewBdimRouting1 for dif-
ferent topology/traffic pattern configurations, normalized to
BdimRouting , i.e., the AUT and ART of BdimRouting is 1.

These results clearly show that real applications
can benefit hugely from the implementation of ad-
vanced routing schemes such as NewBdimRouting1.
MapReduce, an essential application in the con-
text of DCNs, can be executed one order of magni-
tude faster when compared to BdimRouting. The
other applications also obtain substantial speed-
ups of between 1.2-3 times. In general, we can
see that the lower the traffic locality and causal-
ity, and the higher its intensity, the more benefi-
cial NewBdimRouting1 becomes. MapReduce fea-
tures all these characteristics and so benefits the
most. Hot-region, stencil, and uniform have lower
intensity and so still benefit significantly. Finally,
the sweep patterns have high levels of locality and
causality and thus the benefits are less noticeable.

With regards to the networks, we can see that
a larger value of β makes NewBdimRouting1 more
beneficial because the higher diversity it offers can
be better employed by its more advanced rout-
ing scheme. The only exception to this rule is

0
–

8
0

8
0

–
1
6
0

1
6
0

–
2
4
0

2
4
0

–
3
2
0

3
2
0

–
4
0
0

4
0
0

–
4
8
0

4
8
0

–
5
6
0

5
6
0

–
6
4
0

6
4
0

–
7
2
0

7
2
0

–
8
0
0

8
0
0

–
8
8
0

8
8
0

–
9
6
0

9
6
0

–
1
,0

4
0

1
,0

4
0

–
1
,1

2
0

1
,1

2
0

–
1
,2

0
0

1
,2

0
0

–
1
,2

8
0

1
,2

8
0

–
1
,3

6
0

1
,3

6
0

–
1
,4

4
0

1
,4

4
0

–
1
,5

2
0

0

2

4

6

8

Flow histograms 2-BCN(3, 6, 3, 3)

%
oc

cu
rr

en
ce B nB1

Figure 8: Bar chart of link congestion, in number of
flows, NewBdimRouting1 and BdimRouting in the network
2-BCN(3, 6, 3, 3).

BCN Bdim- NewBdim-
(α, β, h, γ) Routing Routing1 Proxies
(2,7,3,3) 0.922 ms 0.686 ms 55
(2,7,4,4) 1.679 ms 1.164 ms 111
(3,21,3,3) 1.306 ms 1.287 ms 566
(3,29,3,3) 1.309 ms 1.410 ms 782
(3,6,3,3) 1.293 ms 1.062 ms 161
(3,6,4,4) 2.496 ms 1.984 ms 485
(4,5,3,3) 1.497 ms 1.376 ms 319
(5,4,3,3) 1.624 ms 1.625 ms 499
(6,3,3,3) 1.710 ms 1.805 ms 647

Table 2: Average latencies for BdimRouting and NewBdim-
Routing1 in BCN(α, β, h, γ), together with the number of
proxies for NewBdimRouting1.

hot-region; this was somehow unexpected as the
throughput analysis above suggests otherwise (see
Fig. 7). This exception is due to the fact that the
causality introduced into the traffic does not allow
the network to fully exploit its full bandwidth ca-
pabilities; so, with a non-uniform network utiliza-
tion such as the one created by hot-region, the hop-
length (see Fig. 6) may have a greater influence by
reducing the likelihood of paths going through the
more congested areas of the network. At any rate,
this unexpected behaviour emphasises the need for
many-dimensional studies, such as the one we per-
form here, that cover different aspects of the net-
works.

7. Conclusions

In this paper we have demonstrated, both the-
oretically and empirically, that there are signifi-

18

M
ap

Re
du

ce
ho

t-r
eg

ion
ste

nc
il

2D
ste

nc
il

3D
un

str
uc

t.
10

K
un

str
uc

t.
10

0
sw

ee
p

3D
sw

ee
p

2D

1
2
3
4
5

ˆˆ10.5

sp
ee

d-
up

2-BCN(2,7,3,3) 2-BCN(3,6,3,3)

Figure 9: Completion time for eight application-like work-
loads in two networks. Results show the speed-up achieved
using NewBdimRouting1 over BdimRouting .

cant gains to be made as regards one-to-one rout-
ing in the DCNs HCN and BCN by using our
newly-developed routing algorithms NewFdimRout-
ing and NewBdimRouting. Moreover, in many real-
istic scenarios the implementation costs of employ-
ing these routing algorithms are manageable. We
have benefited from an observation that the DCN
HCN has (in essence) already appeared as WK-
recursive interconnection networks and we have
been able to utilize existing research on WK-
recursive networks. Our work spawns various av-
enues for further research and we outline some of
these now.

We have observed the general principle that
shorter routes have a consequent positive effect in
terms of throughput, latency, and completion time.
Whilst NewFdimRouting is optimal in terms of the
hop-lengths of the routes it finds, the algorithms
encompassed within NewBdimRouting are not (see
Figs. 5a and 5b). An obvious question is: can we
improve the hop-lengths of the routes found by a
one-to-one routing algorithm for BCN, so much so
that these lengths are optimal? Of course, there is
a tension between the complexity of a routing algo-
rithm and the efficiency of its resulting implementa-
tion. As we have remarked, extending our current
approach of exploring more proxies could well result
in routing algorithms that are practically infeasible
(this infeasibility might be lessened if routes that
were computed had some degree of permanency as-
sociated with them and it was worth investing the
effort to computer them). However, motivated by
the situation as regards routing in HCN and WK-
recursive networks, there could well be a combina-

torial solution to this problem so that the associ-
ated combinatorics yields an efficient implementa-
tion too; that is, proxy searches can be replaced by
a combinatorial analysis. This line of research pro-
vides an exciting glimpse into the hitherto mainly
unexplored and exciting landscape within which
modern and future datacenter networks are devel-
oped using theoretical underpinnings.

Whilst the research in this paper provides an ex-
tensive analysis of our new one-to-one routing algo-
rithms, there is much more to routing in practical
DCNs. For example, routing algorithms need to
be able to tolerate faults, to balance loads, and to
be energy efficient. In [15], while multiple paths
between two server-nodes were shown to exist, no
multi-path routing algorithm was presented. Also,
the fault-tolerant routing algorithm in [15] is open
to additional analysis and enhancement. As such,
we need to explore whether we can develop new
multi-path and fault-tolerant routing algorithms for
both HCN and BCN. As a first step, there are op-
portunities to build upon the preliminary empirical
analysis presented in [15] and to more rigorously
examine the fault-tolerant routing algorithms there
across a wider range of traffic patterns and work-
loads, as we have done in this paper.

Load balancing and energy efficiency have yet to
be examined for HCN and BCN. As regards en-
ergy efficiency, this is an often overlooked aspect
of DCN performance that is becoming increasingly
important as the sizes of DCNs grows and more and
more energy is consumed. It has been reported that
datacenters accounted for 1.5% of global electricity
usage in 2010 [10] with their interconnection net-
work accounting for between 10% and 50% of this
usage [1, 11]. Energy efficient routing algorithms
re-route depending upon current loads on links and
servers (they sometimes attempt to ‘turn off’ links
so as to save energy) and consequently might use
paths that are not always the shortest. This calls
for a multi-path analysis. However, energy-efficient
re-routing is only possible when there is spare ca-
pacity in the system and must be evaluated against
the additional latency accrued and the energy con-
sumed by the additional links and servers used.
There is considerable scope for an examination of
energy-efficient routing in HCN and BCN.

Finally, let us note the slightly surprising re-
sults we obtained as regards the performance of the
two slave-connection rules we considered in this pa-
per. We were expecting comparable performance
but this was not the case. There are many more

19

possible slave-connection rules available for BCN
(and, by extension, for DCell and FiConn) and
our preliminary results here show that more re-
search on relative performance of the various dif-
ferent connection rules is warranted. Not only is
research needed to empirically investigate the differ-
ent slave-connection rules but we need theoretical
research that will tell us why one slave-connection
rule should be better than another.

We close by noting that there are other aspects
of routing that one might wish to evaluate that we
have not considered here, such as packet loss, jit-
ter, link quality, and so on. Some of these aspects
are closer to ‘real’ performance but might still be
evaluated through simulation. It is important that
simulators are developed with the sophistication to
evaluate a range of DCN properties at a reasonable
scale. We intend to contribute to this in future by
enhancing the functionality of our own simulation
tool INRFlow.

Acknowledgements

This work has been funded by the Engi-
neering and Physical Sciences Research Coun-
cil (EPSRC) through grants EP/K015680/1 and
EP/K015699/1. Dr. Javier Navaridas is also sup-
ported by the European Union’s Horizon 2020 pro-
gramme under grant agreement No. 671553 ‘ExaN-
eSt’.

References

[1] D. Abts, M. R. Marty, P. M. Wells, P. Klausler,
and H. Liu. Energy proportional datacenter networks.
SIGARCH Computer Architecture News, 38(3):338–
347, June 2010.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
ACM SIGCOMM Computer Communication Review,
38(4):63–74, Oct. 2008.

[3] P. T. Breznay and M. A. Lopez. A class of static and
dynamic hierarchical interconnection networks. In Proc.
of Int. Conf. on Parallel Processing, volume 1, pages
59–62, 1994.

[4] G.-H. Chen and D.-R. Duh. Topological properties,
communication, and computation on WK-recursive net-
works. Networks, 24(6):303–317, Sep. 1994.

[5] K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, and
A. Vasilakos. Survey on routing in data centers: insights
and future directions. IEEE Networks, 25(4):6–10, July
2011.

[6] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the
ACM, 51(1):107–113, Jan. 2008.

[7] A. Erickson, A. E. Kiasari, J. Navaridas, and
I. A. Stewart. Routing algorithms for recursively-
defined data centre networks. In Proc. of Trust-
com/BigDataSE/ISPA, volume 3, pages 84–91. IEEE,
Aug. 2015.

[8] A. Erickson, A. E. Kiasari, J. Pascual Saiz,
J. Navaridas, and I. A. Stewart. Inter-
connection Networks Research Flow Evalua-
tion Framework (INRFlow), 2016. [Software]
https://bitbucket.org/alejandroerickson/inrflow .

[9] A. Erickson, I. A. Stewart, J. Navaridas, and A. E. Ki-
asari. The stellar transformation: From interconnection
networks to datacenter networks. Computer Networks,
113:29–45, Feb. 2017.

[10] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav.
It’s not easy being green. In Proc. of ACM SIG-
COMM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, pages 211–222, 2012.

[11] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel.
The cost of a cloud: Research problems in data center
networks. ACM SIGCOMM Computer Communication
Review, 39(1):68–73, Dec. 2008.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. VL2: A scalable and flexible data center net-
work. ACM SIGCOMM Computer Communication Re-
view, 39(4):51–62, Aug. 2009.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A high performance,
server-centric network architecture for modular data
centers. ACM SIGCOMM Computer Communication
Review, 39(4):63–74, Aug. 2009.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A scalable and fault-tolerant network structure
for data centers. ACM SIGCOMM Computer Commu-
nication Review, 38(4):75–86, Aug. 2008.

[15] D. Guo, T. Chen, D. Li, M. Li, Y. Liu, and G. Chen. Ex-
pandable and cost-effective network structures for data
centers using dual-port servers. IEEE Transactions on
Computers, 62(7):1303–1317, July 2013.

[16] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-
marl: A DSL for easy and efficient graph analysis.
SIGARCH Computer Architecture News, 40(1):349–
362, Mar. 2012.

[17] M. Kliegl, J. Lee, J. Li, X. Zhang, D. Rincon, and
C. Guo. The generalized DCell network structures and
their graph properties. Microsoft Research, Oct. 2009.

[18] D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, and
J. Wu. Scalable and cost-effective interconnection of
data-center servers using dual server ports. IEEE/ACM
Transactions on Networking, 19(1):102–114, Feb. 2011.

[19] Y. Liu, J. K. Muppala, M. Veeraraghavan, D. Lin, and
M. Hamdi. Data Center Networks: Topologies, Archi-
tectures and Fault-Tolerance Characteristics. Springer,
2013.

[20] J. Navaridas, J. Miguel-Alonso, and F. Ridruejo. On
synthesizing workloads emulating MPI applications. In
Proc. of IEEE Int. Symp. on Parallel and Distributed
Processing, pages 1–8, 2008.

[21] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. PortLand: A scalable fault-tolerant
layer-2 data center network fabric. ACM SIGCOMM
Computer Communication Review, 39(4):39–50, Oct.

20

2009.
[22] S. Perarnau and M. Sato. Victim selection and dis-

tributed work stealing performance: A case study. In
Proc. of 28th Int. Parallel and Distributed Processing
Symp., pages 659–668, 2014.

[23] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armis-
tead, R. Bannon, S. Boving, G. Desai, B. Felderman,
P. Germano, A. Kanagala, J. Provost, J. Simmons,
E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and
A. Vahdat. Jupiter rising: A decade of clos topologies
and centralized control in Google’s datacenter network.
ACM SIGCOMM Computer Communication Review,
45(4):183–197, Oct. 2015.

[24] I. A. Stewart. Improved routing in the data centre net-
works HCN and BCN. In Proc. of Second Int. Symp.
on Computing and Networking, pages 212–218, 2014.

[25] G. D. Vecchia and C. Sanges. Recursively scalable net-
works for message passing architectures. In Proc. of Int.
Conf. on Parallel Processing and Applications, pages
33–40, 1987.

[26] T. White. Hadoop: the Definitive Guide. O’Reilly Me-
dia, Inc., 2009.

[27] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. MDCube:
A high performance network structure for modular data
center interconnection. In Proc. of 5th Int. Conf. on
Emerging Networking Experiments and Technologies,
pages 25–36, 2009.

[28] X. Yuan, S. Mahapatra, M. Lang, and S. Pakin. LFTI:
A new performance metric for assessing interconnect
designs for extreme-scale HPC systems. In Proc. of 28th
IEEE Int. Parallel and Distributed Processing Symp.,
pages 273–282, 2014.

[29] X. Yuan, S. Mahapatra, W. Nienaber, S. Pakin, and
M. Lang. A new routing scheme for Jellyfish and its per-
formance with HPC workloads. In Proc. of Int. Conf.
on High Performance Computing, Networking, Storage
and Analysis, pages 36:1–36:11, 2013.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: cluster computing with working
sets. In Proc. of 2nd USENIX Conf. on Hot Topics in
Cloud Computing, 2010.

21

Alejandr

Alejandr

Kingdom

with an

from the

from the

publishe

and mat

Iain Stew

Iain A. S

United K

the Scho

research

computa

theoreti

theory.

ro Erickson b

ro Erickson c

m in 2016, wh

emphasis on

e University

e University

ed in a broad

troid theory,

wart biograp

tewart recei

Kingdom in 1

ool of Engine

h interests in

ational comp

ical aspects o

biography

completed a

here he did r

n application

of Victoria, C

of Waterloo

d range of to

 enumerativ

phy

ved the MA

1983 and the

eering and Co

nclude interc

plexity and fi

of artificial in

3‐year postd

research on v

ns in datacen

Canada in 20

, Canada in 2

pics, includin

ve combinato

and PhD deg

e University o

omputing Sc

onnection n

inite model t

ntelligence, G

doctoral rese

various topo

nter network

013 and his M

2008. Dr. Eri

ng datacente

orics, educat

grees in mat

of London, U

ciences, Durh

etworks for

theory, algor

GPGPU comp

earch positio

ological aspe

s. He receive

M.Math in Co

ckson has

er networks,

tion, and mat

hematics fro

United Kingdo

ham Universi

parallel and

rithmic and s

puting, and c

on at Durham

cts of interco

ed his Ph.D. i

ombinatorics

computatio

thematical a

om the Unive

om in 1986.

ity, United K

distributed c

structural gra

computation

m University,

onnection ne

in Computer

s and Optimi

onal geometr

art.

ersity of Oxfo

He is a profe

Kingdom. His

computing,

aph theory,

nal aspects of

 United

etworks,

r Science

ization

ry, graph

ord,

essor in

f group

Jose Pas

Jose A. P

Architec

postdoc

perform

systems

Javier N

Dr. Javie

obtained

(Extraor

Country

Manche

with mo

perform

the wor

scual biograp

Pascual obta

cture and Tec

toral researc

mance compu

.

avaridas biog

er Navaridas

d his MEng in

rdinary Docto

y, Spain. Afte

ester with a p

ore than 40 p

mance evalua

kpackage on

phy

ined his M.E

chnology of

cher at The U

uting, schedu

graphy

is a Lecturer

n Computer

orate Award

rwards he jo

prestigious R

papers on int

tion and cha

n interconnec

Eng and Ph.D

the Universi

University of

uling for para

r in compute

Engineering

‐ top 5% the

oined the Un

Royal Society

terconnects,

aracterization

cts of the Exa

D. in Comput

ty of the Bas

f Manchester

allel processi

er architectu

g in 2005 and

eses) in 2009

iversity of

y Newton fell

parallel and

n of applicat

aNeSt Europ

er Science at

sque Country

r. His researc

ing, and perf

re in the Uni

d his PhD in C

9, both from

lowship. Javi

d distributed

tion’s behavi

pean project.

t the Departm

y UPV/EHU.

ch interests i

formance ev

versity of M

Computer En

the Universi

er has a long

systems, com

our. Javier is

ment of Com

He is curren

include high

valuation of p

anchester. J

ngineering

ity of the Ba

g publication

mputer arch

s currently le

mputer

tly a

‐

parallel

avier

sque

n record

itecture,

eading

file:///C|/Documents%20and%20Settings/focal03/Desktop/Users/arathy/Highlights.txt[11/05/2017 07:59:55]

Highlights
Improved routing algorithms for the datacenter networks HCN and BCN are proposed.
New routing algorithms are derived from algorithms for WK-recursive networks.
Routing algorithms are simulated for a variety of traffic patterns and workloads.
Our routing algorithms massively improve on existing ones.

