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The Material Point Method (MPM) uses a combined Eulerian-Lagrangian approach to solve problems
involving large deformations. A problem domain is discretised as material points which are advected
on a background grid. Problems are encountered with the original MPM when material points cross
between grid cells, and this has been tackled by the development of the Generalised Interpolation
MPM, where material points’ domains of influence extend beyond the currently occupied grid cell. In this
paper, the Generalised Interpolation Material Point (GIMP) Method has been implemented implicitly in a
manner that allows a global stiffness matrix to be constructed similar to that in the Finite Element
Method (FEM) by combining contributions from individual elements on the background grid. An updated
Lagrangian finite deformation framework has been used to ensure non-linear behaviour within each of
the loadsteps. The weighting functions used for this which make the GIMP method different to standard
MPM are presented and the implementation is explained. Specific details on computing the deformation
gradient to be consistent with the updated Lagrangian framework and the updating of the material point
influence domains are outlined, both of which are currently unclear in the published literature. It is then
shown through numerical examples that for both small and large deformation elastic and elasto-plastic
problems, the implicit GIMPmethod agrees well with analytical solutions and exhibits convergence prop-
erties between that of linear and quadratic FEM.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

When modelling continuum mechanics problems, specifically
those involving large deformation, difficulties often occur when
using mesh-based methods; such as displacement without re-
meshing being limited by mesh distortion. Due to this, there has
been increased interest recently in particle-based methods, in par-
ticular the Material Point Method (MPM). The MPMmodels a prob-
lem domain as a collection of Material Points (or particles) which
move through a fixed background mesh on which calculations
are carried out. This offers an advantage over many other mesh-
free methods, which are also good for modelling large deforma-
tions and non-linear behaviour for example [1–3], because the
existence of a background mesh removes the computational
expense of undertaking nearest neighbour searches. In the MPM,
properties are mapped between nodes on this background mesh
and material points, during each load (or time) step. The majority
of previous MPM research has looked at explicit formulations
[4–46], with a few exceptions [47–55]. The advantages of adopting
an implicit approach include allowance of much larger loadsteps,
improved stability and error control, in comparison to explicit
methods. An implicit formulation has also been shown in [49] to
achieve superior accuracy. For static stress analysis problems,
which are commonly tackled using an implicit Finite Element
Method (FEM), there are benefits in an implicit MPM approach as
there are many commonalities.

One of the main issues of the MPM is a well documented grid
crossing instability. This occurs when material points move
between elements in the background grid. Errors are introduced
at the material points due to the non-continuous nature of the
shape function derivatives between elements. These errors have
been investigated in [56] and there are a selection of methods that
have been proposed to address this issue and improve the MPM
including CPDI [57,58], DDMP [59] and the Generalised Interpola-
tion Material Point (GIMP) method [60]. Research into the GIMP
method has also almost exclusively used an explicit approach, for
example [60–72] with one notable exception [73] where the GIMP
method is implemented implicitly using a matrix-free approach for
dynamic problems using hyperelasticity. In an alternative
approach [74] implicit MPM is used, however, rather than tackling
the instabilities using GIMP, an additional non-physical stiffness
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term is introduced. Although this increases the numerical stability
of the method, it destroys its ability to converge to analytical
solutions.

In this paper, an implicit implementation of the basic GIMP
method using an updated Lagrangian formulation is described
using an approach that allows the local calculation of element stiff-
ness matrices. The large deformation elasto-plastic implicit GIMP
method described in this paper is implemented using an updated
Lagrangian, geometrically non-linear formulation to accurately
capture the behaviour of large strain problems. The formulation
presented in this paper allows technology (such as constitutive
models) to be easily shared between the implicit GIMP and implicit
FEM and this is demonstrated by introducing von-Mises plasticity
in some of the numerical examples. This is the first time that a fully
implicit formulation has been proposed for an elasto-plastic GIMP
method. The formulation includes the implementation of the spa-
tial algorithmic consistent tangent to ensure optimum conver-
gence of the global Newton process. This has required the
calculation of the deformation gradient for implicit MPM methods
to be clarified and a suitable domain updating procedure to be
established. Additionally, we are able demonstrate the conver-
gence properties of the GIMP method. The GIMP method is pre-
sented first before introducing the weighting functions
(Section 2), outlining the finite deformation theory (Section 3)
and describing the implementation (Section 4) before demonstrat-
ing the method using numerical examples (Section 5) and present-
ing conclusions (Section 6).
2. Generalised interpolation material point methods

2.1. Overview of MPM methods

The MPM was first developed by Sulsky et al. [75,76] as an
extension to solid mechanics of the Fluid Implicit Particle (FLIP)
method [77,78], which itself was an extension to the Particle in Cell
(PIC) method [79] used in fluid dynamics. The problem domain is
divided into a number of background cells forming an Eulerian
mesh through which the material points travel. Information from
the material points is interpolated to this background mesh where
the calculations are carried out. The new values are then mapped
back to the material points and the material point positions are
updated. This results in a method that combines advantages of
both Lagrangian and Eulerian approaches, allowing boundaries
and history dependent variables to be tracked while not encoun-
tering the problems associated with mesh distortion in large defor-
mation problems in other methods such as the FEM. Since its
inception, the MPM has been developed and improved as well as
being used in a number of applications including granular materi-
als [41,50,80,81], fracture [16,25,43,69,70,82] and geotechnical
applications [20,21,37,36,42,46,54,55,63,68,72,83–86].

In the standard MPM a problem can arise when a material point
crosses the boundary between one background grid cell and
another. This is due to the fact that shape function derivatives
are not continuous between elements and this results in incorrect
stresses being calculated. A significant advance in the MPM was
made in [60] where the cell crossing instability was reduced with
the GIMP method. To attempt to alleviate the problem, the GIMP
method introduces a material point characteristic function describ-
ing the influence domain of each particular material point. This
modification from the MPM means that it is possible that a mate-
rial point can influence nodes other than those associated with the
element it is inside. This occurs when the material point is close
enough to the edge of an element that the domain overlaps adja-
cent elements. The introduction of the GIMP method is shown in
[60] to give an improved stress response to the MPM. The errors
introduced when material points cross element boundaries are
reduced (although not completely removed [87]) because of the
increased smoothness of the shape functions. Despite not being a
complete remedy to grid crossing error the improvement shown
by GIMP is significant.

2.2. Weighting functions

In the MPM, shape functions identical to those used in the FEM
are used to relate nodal values to values at material points. For
example, forces can be mapped to grid nodes from material points
through

f v ¼
Xnp
i¼1

f piNi; ð1Þ

where subscripts v and p refer to grid nodes (or vertices) and mate-
rial points (or particles) respectively, np is the number of material
points in elements surrounding the node and Ni are the standard
shape functions as used in the FEM. A straightforward choice would
be linear Lagrange shape functions given in 1D as

Ni ¼ 1� n
2

ð2Þ

where n is the local coordinate (in a domain �1,+1). These shape
functions are also used to map properties from grid nodes to mate-
rial points at the end of each step and their derivative are used to
compute the stiffness matrix.

In the GIMP method [60], the standard FEM shape functions
used in the MPM are replaced by weighting functions Svp which
are constructed based not only on the FEM shape functions but also
a material point characteristic function vp specifying the influence
domain of the material point. This is the key difference between
the GIMP method and the MPM, it can be thought of as giving each
particle an associated domain rather than being a single point in a
specific location. The weighting function ðSvpÞ can be calculated in
a local coordinate system in one dimension (n) as

Svp ¼ 1
Vp

Z
Xp\X

vpðnÞNvðnÞdn; ð3Þ

where Vp is the material point volume (or length in 1D), Nv are the
shape functions as shown in (2) with subscript v indicating values
are associated with grid nodes (or vertices), X is the problem
domain and Xp is the influence domain of the material point. The
gradient of the weighting functions ðrSvpÞ, can also be calculated
using

rSvp ¼ 1
Vp

Z
Xp\X

vpðnÞrNvðnÞdn: ð4Þ

The original MPM can be recovered by setting the material point
characteristic function equal to the Dirac delta function, that is

vpðnÞ ¼ dðnÞVp: ð5Þ
In the GIMP method, the use of different functions for vpðnÞ means
that smoother weighting functions can be obtained. The simplest
extension is to use a hat function with a value of unity within the
material point’s influence domain and zero elsewhere. This charac-
teristic function, which is used in the development below can be
expressed as

vpðnÞ ¼
1; if n \Xp

0; otherwise:

�
ð6Þ

Fig. 1 demonstrates graphically how the GIMP weighting func-
tions (3) can be constructed in one dimension from a convolution
of the standard finite element shape functions and the material



Fig. 1. Weighting function (Svp) associated with b can be thought of as a
convolution of the standard shape function at ðNbÞ and a material point’s
characteristic function vp , with width ln .
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point characteristic function. The weighting function at a particular
point can be thought of as the area of overlap between a material
point’s influence domain and the standard shape functions of the
associated background grid node.

Fig. 2 shows weighting functions (dashed lines) overlain on
standard shape functions (solid lines) for a set of adjacent nodes.
It can be seen that a material point positioned at a node would
not solely contribute to that node and would instead also have a
small amount of influence on the surrounding nodes. Despite this
the GIMP weight functions still possess partition of unity. To con-
struct weighting functions in multiple dimensions, the tensor pro-
duct of one dimensional functions is taken. This use of separate
functions relating to material points has similarities to that of
other meshless methods [88].

Using weighting functions that extend outside of an element
presents a problem if one wishes to calculate element stiffness
matrices in a manner similar to the FEM. In this case it must be
ensured that although material points outside an element can have
influence, the influence is only for the part of that material point’s
influence domain overlapping with the element. To address this
problem, new weighting functions are constructed, where the inte-
grations in (3) and (4) are only calculated over the area of each
element.
Fig. 2. Weighting functions for grid nodes b, c, d and e in one dimension. Solid lines sho
elements. Dashed lines show an example where the characteristic function, vp is the to
Fig. 3 shows (in a similar manner to the GIMP weighting func-
tions) how the overlapping area between the material point char-
acteristic function and the standard FEM shape functions within an
element can produce new functions Svpa and Svpb that allow ele-
ment stiffnesses to be calculated in a manner not previously possi-
ble. The weighting functions associated with the element a-b in
Fig. 3 are

Svpa ¼ 1
4lp

2n2 � n22 � 2n1 þ n21 and

Svpb ¼ 1
4lp

2n2 þ n22 � 2n1 � n21
ð7Þ

where n1 and n2 are the integration limits for (3) in the local coor-
dinates of the current element which can be given as

n1 ¼ �1; if np � lp
2 < �1

np � lp
2 ; if np � lp

2 > �1

(
ð8Þ

n2 ¼ 1; if np þ lp
2 > 1

np þ lp
2 ; if np þ lp

2 < 1

(
ð9Þ

where np is the material point location and p is the material point
domain size.

By summing these weighting functions at nodes from the con-
tributions from different elements it is possible to recover the
GIMP weighting functions as introduced earlier. This is illustrated
in Fig. 4, where Svpb is reconstructed from contributions from ele-
ments a� b and b� c. It can be seen that these weighting functions
mean that each node is not over- or under- accounted for.

The gradients of the weighting functions are calculated simi-
larly using (4) and can be visualised as the overlap between the
material point characteristic function and the gradients of the stan-
dard shape functions. Fig. 5 shows the gradient of the weighting
functions within each element and the sum of these at node b. It
can again be seen that these functions extend beyond the element
but the gradients of the GIMP shape functions are recovered when
contributions from both elements are considered. The area with a
constant gradient is the section where the material point’s influ-
ence domain is fully inside the element; at this point it is equal
to the standard FEM shape functions. The gradient weighting func-
tions for element a� b in Fig. 5 can be expressed as

rSvpa ¼
n1 � n2
2lp

and rSvpb ¼
n2 � n1
2lp

ð10Þ

where n1 and n2 are given by (8) and (9).

3. Geometrically non-linear GIMP

In this paper an updated Lagrangian finite deformation formu-
lation is combined with logarithmic strain and Kirchhoff stress
w the case in the MPM, here it can be seen that influence only extends to adjacent
p hat function.



Fig. 3. Element based weighting functions can be constructed from the convolution
of the material point characteristic function with shape functions of nodes of the
element.
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measures that control the constitutive behaviour at each material
point. This formulation is one of the most straightforward ways
to implement large strain elasto-plasticity within a finite element
framework [89]. In this framework all static and kinematic vari-
ables are referred to the previously converged state, rather than
the original state in a total Lagrangian formulation. The majority
of this section uses index notation to detail the geometric non-
linear formulation; only the discrete equations are expressed in
matrix-vector form for convenience. The finite deformation frame-
work adopted in this paper is based on implementations given in
Fig. 4. The GIMP weighting function shown for node b by the solid dark line. This functi
which are shown by the dashed lines.

Fig. 5. The GIMP gradient weighting function shown for node b by the solid dark line. Thi
and 2, which are shown by the dashed lines.
[90,91]. The framework has more generally been accepted and
used by a number of authors including [92–94]. It is possible to
extend this to allow plastic anisotropy using the formulation of
Eterovic and Bathe [95] or to allow elastic and plastic anisotropy
following the work of Caminero et al. [96] without modifying the
overall framework. In this paper examples are restricted to isotro-
pic elasto-plasticity for simplicity to ensure clarity of the GIMP
method.

The weak form of equilibrium for an updated Lagrangian formu-
lation can be expressed asZ
utðBÞ

rijðrgÞij � bigi

� �
dv �

Z
utð@BÞ

tigj

� �
ds ¼ 0 ð11Þ

where ut is the motion of a material body, B, subject to body forces,
bi, and tractions, ti, on the boundary of the material domain, @B. The
weak form is derived using a field of admissible virtual displace-
ments gi. Within this statement of equilibrium, the deformation
gradient is the fundamental variable that characterises the defor-
mation at a material point

Fij ¼ @xi
@Xj

; ð12Þ

where Xj are the original reference coordinates and xi ¼ uðXi; tÞ are
the updated coordinates of the material point. It is assumed that the
deformation gradient can be multiplicatively split into elastic and
plastic components [97,98]

Fij ¼ Fe
ikF

p
kj; ð13Þ

where the superscripts e and p denote elastic and plastic terms,
respectively.

When implementing large strain elasto-plasticity there is a
choice of which stress and strain measures to adopt. Here, we
use the combination of logarithmic strains with Kirchhoff stresses
as it allows the use of conventional small strain constitutive
on is constructed from the sum of the weighting functions within elements 1 and 2,

s function is constructed from the sum of the weighting functions within elements 1
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equations within a finite deformation framework. In particular,
the stress integration algorithm of plasticity models does not
change provided that these stress and strain measures are com-
bined with an exponential map of the plastic flow equation (see
[99] or [100] for full details). All of the constitutive models used
in this paper adopt a fully implicit stress integration algorithm
based on backward Euler. This allows the updated stress state
to be determined given a trial stress state (or trial elastic strain
state) and the relevant constitutive parameters, again see [100]
for full details.

Here we restrict this framework to the case where a linear rela-
tionship exists between the elastic logarithmic strains eeij and the
Kirchhoff stresses sij that is

sij ¼ De
ijkle

e
kl; ð14Þ

where De
ijkl is the linear elastic isotropic material stiffness tensor.

The elastic logarithmic strain is defined as

eeij ¼
1
2
lnðbe

ijÞ; ð15Þ

where be
ij ¼ Fe

ikF
e
jk are the components of the elastic left Cauchy-

Green strain tensor. The Cauchy stress can be obtained from the
Kirchhoff stress using the relationship

rij ¼ J�1sij; ð16Þ
where J ¼ detðFijÞ is the volume ratio. In order to obtain the current
Kirchhoff stress state, sij, the constitutive model requires a trial
stress (or elastic strain state) to act as the initial estimate in the
backward Euler stress integration algorithm. The trial elastic left
Cauchy-Green strain tensor ðbe

t Þijis obtained from

ðbe
t Þij ¼ DFikðbe

nÞklDFjl; ð17Þ
where the subscripts t and n denote trial and previously converged
states, respectively, rather than a physical index. DFij is the incre-
ment in the deformation gradient for the current loadstep (see Sec-
tion 3.2). The previous elastic left Cauchy-Green strain tensor ðbe

nÞij
can be obtained from the elastic strain state from the previously
converged loadstep

ðbe
nÞij ¼ exp 2ðeenÞij

� �
ð18Þ

and the trial elastic strain is obtained using

ðeet Þij ¼
1
2
lnððbe

t ÞijÞ: ð19Þ

The updated Kirchhoff stress and the updated elastic strain states
can then both be obtained from the constitutive algorithm.

3.1. Discrete implementation

Introducing the element approximation for the displacements
at a material point

ui ¼
Xnen
a¼1

ðSvpÞaðdiÞa and gi ¼
Xnen
a¼1

ðSvpÞaðdgi Þa; ð20Þ

where di and dgi are the physical and virtual nodal displacements,
respectively, a denotes the node number and nen is the number of
nodes associated with an element. The Galerkin form of the weak
statement of equilibrium over an element, E, can be obtained from
(11) and (20) as

ff REg ¼
Z
utðEÞ

½G�Tfrgdv �
Z
utðEÞ

½Svp�Tfbgdv �
Z
utð@EÞ

½Svp�Tftgds¼ f0g;

ð21Þ
where ½Svp� the GIMP shape function matrix and ½G� is the tensorial
form of the strain-displacement matrix containing the derivatives
of the GIMP shape functions with respect to the updated nodal
coordinates. The first term in (21) is the internal force within an ele-
ment and the combination of the second and third terms is the
external force vector. Eq. (21) is non-linear in terms of the unknown
nodal displacements and can be efficiently solved using the stan-
dard Newton-Raphson (NR) procedure. The nodal displacements
within a load step, fDdg, are obtained by iteratively updating the
displacements until (21) is satisfied within a given tolerance, that is

fddkþ1g ¼ ½K��1ff Rkg; ð22Þ
where kþ 1 denotes the current iteration number, fddkþ1g are the

iterative nodal displacements, ff Rkg is the global residual out-of-
balance force vector (21) from the kth iteration and ½K� is the global
tangent stiffness matrix. The current displacement increment
within a load step can be obtained through

fDdkþ1g ¼
Xkþ1

n¼1

fddng: ð23Þ

Linearising (21) with respect to the unknown nodal coordinates,
and assuming that the applied body forces and surface tractions
are independent of the nodal displacements, gives the element con-
tribution to the global stiffness matrix as

½kE� ¼
Z
uðEÞ

½G�T ½a�½G�dv : ð24Þ

The non-symmetric spatial material tangent modulus of a material
point is given by

aijkl ¼ 1
2J

Dalg
ijmnLmnpqBpqkl � Sijkl; ð25Þ

where

Lmnpq ¼ @ lnðbemnÞ
@bepq

; Bpqkl ¼ dpkb
e
ql þ dqkb

e
pl and Sijkl ¼ rildjk:

ð26Þ

Dalg
ijmn is the small strain algorithmically consistent tangent, that is,

the tangent that is consistent with the adopted stress integration
algorithm [101]. The use of this tangent allows for asymptotic quad-
ratic convergence of the global residual (21). Lijkl can be determined
as a particular case of the derivative of a general symmetric second
order tensor function with respect to its argument; see Miehe [102]
for details.

In material point methods, (24) is evaluated through the sum-
mation of the material point stiffness contributions where the
nodal stiffness components of a single material point can be
obtained through

½kp� ¼ ½G�T ½a�½G�Vp; ð27Þ
where Vp is the material point volume in the spatial frame, that is

Vp ¼ detðDFijÞVn
p: ð28Þ

Vn
p is the material point volume at the previously converged state,

obtained from the product of the global influence domain lengths
in the Cartesian directions. A material point’s contribution to the
internal force vector is given by

ff pg ¼ ½G�TfrgVp ð29Þ
Note that it is essential to use the volume in the spatial frame (28)
in both (27) and (29) to ensure the correct order of convergence of
the NR process. It may not initially be clear that detðDFijÞ must be
included to obtain the correct volume.
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3.2. Deformation gradient calculation

One point of departure of implicit MP methods from conven-
tional finite elements is the calculation of the deformation gradi-
ent. In an updated Lagrangian formulation, the deformation
gradient is normally obtained through [99]

Fij ¼ DFikF
n
kj where DFij ¼ dij � @Dui

@xj

� ��1

: ð30Þ

Fn
ij is the deformation gradient from the previously converged state,

Dui is the displacement increment in the current load step, xi are the
updated coordinates (position in the spatial configuration deter-
mined from the nodal positions). However, in the MPM the concept
of the current (or original) coordinates of the nodes does not exist.
The reason for this is that in MP methods the shape functions, and
their derivatives, are defined assuming that the global coordinates
of the background mesh remain in a regular grid. It is therefore
not possible to use (30)2 to determine the deformation gradient
increment. Instead, the increment in the deformation gradient must
be obtained using (see [99] amongst others)

DFij ¼ dij þ @Dui

@eXj

; ð31Þ

where eXi ¼ xi � Dui are the coordinates at the start of the load step.
@Dui

@eX j

is constructed at each material point by summing contributions

from each element it overlaps.

@Dui

@eXj

¼
Xnels
1

Dui
@ðSvpÞ
@eXi

: ð32Þ

The derivatives with respect to global coordinates at the start of a
loadstep can then be obtained as

@ðSvpÞa
@eXi

¼ @eXi

@nj

 !�1
@ðSvpÞa
@nj

ð33Þ

where

@eXi

@nj
¼
Xnen
a¼1

@ðNÞa
@nj

ðeXiÞa: ð34Þ

Eq. (31) allows the determination of the increment in the defor-
mation gradient based on a regular (undeformed) background grid.
However, in order to form the stiffness matrix and internal force
vector for an updated Lagrangian formulation we require the
derivatives of the shape functions with respect to the current coor-
dinates, xi. The mapping that links the current coordinate, xi, to the

coordinate at the start of the load step, eXi, is

@eXi

@xj
¼ dij � @Dui

@xj
¼ ðDFijÞ�1

; ð35Þ

that is, the inverse mapping of the increment in the deformation
gradient (obtained from (31)). The derivatives of the shape func-
tions with respect to the updated coordinates follow as

@ðSvpÞa
@xj

¼ @ðSvpÞa
@eXi

@eXi

@xj
¼ @ðSvpÞa

@eXi

DFij
� ��1

; ð36Þ

where a is the node number. These derivatives are required for the
construction of ½G�, first seen in (21), as this matrix contains the
derivatives of the basis functions with respect to the current nodal
coordinates.
3.3. Domain updating

MP methods usually model a problem over a number of load-
steps and this presents an opportunity to update the influence
domains of the material points at the end of each load step. Two
ways of doing this labelled uGIMP and cpGIMP were presented
by Wallstedt and Guilkey in [62]. uGIMP keeps the material point
influence domains unchanged between loadsteps. This is the sim-
plest approach to take, however it often results in domains over-
lapping each other or separating. cpGIMP addresses this problem
by updating the size of the influence domain using the diagonal
components of the deformation gradient. This rectifies the problem
when deformation is aligned with the grid, however the method
fails to improve matters when any rotation of the material occurs.
Sadeghirad et al. [57] developed another approach known as the
Convected Particle Domain Interpolation (CPDI) method which
improves the MPM by updating the influence domains associated
with material points. In the CPDI method, the initially rectangular
material point domains are allowed to deform into parallelograms.
Thus, the CPDI method is an extension to GIMP which removes a
problem that exists when rotations occur for updating the material
points. A further extension can be achieved by tracking the domain
corners as shown in [58,73] which can ensure material points are
contiguous. However, the CPDI method induces an additional
approximation in the way that the basis functions of a material
point are determined. Unlike in the GIMP method where the basis
functions are determined analytically, in the CPDI method, to
obtain the integration of the grid shape functions over the particle
domain, a linear approximation between domain corner points is
introduced. If all of the corners of a particle domain do not lie in
the same element then errors are introduced into the basis func-
tion determination as the discontinuous nature of the grid shape
functions is not captured by the linear approximation.

A simpler way of addressing the rotation problem is to use only
the stretch part of the deformation gradient for updating domains
in a cpGIMP fashion. In the cpGIMP method, it is necessary to
update the material point domain lengths instead of updating
the material point volumes as an independent variable In 1D this
is the same, however in 2D or 3D it is important to take note of
the changes in each direction. One option is to update the domain
lengths, lpi , using components of the deformation gradient accord-
ing to

lpi ¼ lp0i Fii ðno implied sum on iÞ; ð37Þ

where lp0i are the original domain lengths. However, problems arise
when the rotational component of the deformation gradient is non-
zero [57]. Instead, here we propose a new approach where the
domain lengths are updated according to the symmetric material
stretch tensor

Uij ¼
ffiffiffiffiffiffiffiffiffiffiffi
FkiFkj

q
; ð38Þ

where Fij ¼ RikUkj and Rij is the rotational component of the defor-
mation gradient. It should be clear from the above equation that
the material stretch tensor is equivalent to the deformation gradi-
ent rotated back into the original reference frame. The material
point domains can then be updated according to

lpi ¼ lp0i Uii ðno implied sum on iÞ: ð39Þ

This updating is performed at the end of a load step once the NR
process has converged. The important consequence of this rather
minor modification to the theory is demonstrated numerically in
Section 5.3.
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4. Numerical implementation

When implementing the iGIMP algorithm, the first step is to
discretise the problem into a set of material points spread over
the domain, within a regular background grid which extends
beyond the physical domain. A notable difference to the standard
FEM is this requirement for the grid to extend to where material
is expected to move into during a simulation. It is possible to keep
track of how much of the grid is covered by material points and
extend it if necessary. As in the standard MPM, the background
grid is not restricted to any particular shape, however for conve-
nience a regular mesh is usually selected. In this work, two-
noded line elements are used in 1D and four-noded elements are
used in 2D aligned with the coordinate axis. It is possible to use
the same techniques in 3D. Elements initially containing material
are populated with material points and a weight is assigned based
on the volume of material represented by each material point. The
influence domains are defined to initially cover the whole of the
material with no gaps or overlaps. In this work, material points
are arranged inside the elements in a uniform manner, however
other initial positions can be chosen.

At the start of each load step the location of each material point
with respect to the background grid must be determined. The local
coordinates of the material point ðn;gÞ are calculated and, from
these coordinates, the weighting functions (3) can be computed.
Grid elements void of material points are also determined and
not included in the calculation during the current load step. At this
Fig. 6. Implicit GIM
stage, any external forces on the material points should be incre-
mented and then mapped to the grid nodes using

ff vg ¼
Xnp
i¼1

ff pig½Svpi �: ð40Þ

The out-of-balance force is calculated as in (11) and the NR process
is started. Displacements are calculated from the out-of-balance
force and the stiffness calculated on the previous iteration (22).
Afterwards, the strain displacement matrix and the derivatives of
the displacement required for calculation of the deformation gradi-
ent can be calculated. It should be noted here that these quantities
at the material points must be calculated as the sum of the different
contributions from elements the material point overlaps, and par-
ticular attention should be made when calculating ½G� to take into
account the mapping outlined in (36). Due to material points poten-
tially having influence over different numbers of nodes, the size of
½G� can change between material points. The structure of ½G� in 1D
for a material point overlapping two elements is as follows

½G� ¼ @Savp1

@eX

 �

@Savp2

@eX

 �

þ @Sbvp2

@eX

 �

@Sbvp3

@eX

 �
 �

½DF��1
; ð41Þ

where superscripts a and b refer to the derivatives of the weighting
functions in elements a and b. The stress, internal force and stiffness
can be calculated as shown in Section 3.1, and the out-of-balance
force can be evaluated to determine whether the NR process has
converged.
P algorithm.
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At the end of each load step, once the NR process has converged
to within the designated tolerance, the material point positions
and domains are updated and the background grid is reset. The
algorithm is outlined in more detail in Figs. 6 and 7 showing the
implicit Generalised Interpolation Material Point (iGIMP) algo-
rithm in a similar way to [100]. It is possible to replace the material
model in Fig. 7 with other models such as those presented in [96]
to allow both elastic and plastic anisotropy, however for clarity the
elasto-plastic model outlined in this paper has been included.
5. Numerical examples

In this section, three numerical examples are presented to
demonstrate the iGIMP method. For each example, the geometri-
cally non-linear updated Lagrangian GIMP method described in
Section 3 is used.
5.1. One dimensional compression under self weight

The response of a column to the application of a body force due
to increasing gravity, as shown using an explicit GIMP method in
[60]. The column has an initial length (L0) of 50 and is restrained
at the bottom with uðz ¼ 0Þ ¼ 0. A total force of w ¼ 40;000 is
Fig. 7. Implicit GIM
applied by assigning a density of q ¼ 80 and incrementing gravity
(up to g ¼ 10). The Young’s modulus is E ¼ 1� 106, in compatible
units. The analytical solution for the vertical Cauchy stress r in this
1D problem is now derived. The initial vertical position within the
column is Z, therefore

r ¼ q0bðl0 � ZÞ; ð42Þ
where q0 is the initial density of the material and b is the body
force. The Cauchy and Kirchhoff stresses are linked through (16).
In one dimension, the logarithmic strain is defined as

eð0Þ ¼ 1
2
lnðF2Þ ¼ lnðFÞ ð43Þ

and we assume that the Kirchhoff stress is linked to the logarithmic
strain through

s ¼ Eeð0Þ: ð44Þ
By combining the above equations, the Cauchy stress can be
expressed as

r ¼ 1
F
E lnðFÞ: ð45Þ

From (42) we can obtain r for any point in the problem domain and
the deformation gradient can be found using a Newton process to
P algorithm.



Fig. 8. Numerical solutions using iGIMP and MPM of a column under self weight plotted against the analytical solution.
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solve for F in (45). This analytical solution differs from the incre-
mentally linear solutions given in [59,60] to be consistent with
the fact that the method described in this paper is geometrically
non-linear within a load step.

For the case shown in Fig. 8, the domain is discretised into 50
elements with each element initially containing two material
points positioned so that the influence domain of each material
point consists of half the element, or Vp ¼ 0:5. The stresses at the
end of the simulation using the iGIMP method are compared
against stresses calculated using the standard MPM using the same
discretisation, and the analytical solution given below. The MPM
and iGIMP simulations were both run using 20 loadsteps. It can
be seen that the MPM simulation experiences an oscillation in its
response, deviating significantly from the analytical solution, due
to material points crossing element boundaries. In the iGIMP
method this problem is alleviated as movements of material points
between elements happen more gradually giving a smoother
change in stiffness as opposed to a sudden jump. The effect of
changing the element size in the background grid is now demon-
strated. Both the number of background grid elements and the
number of material points per element are changed and the error
relative to the exact solution plotted both for the problem outlined
above with a total load of w ¼ 40; 000 shown in Fig. 9(b), and with
a load of w ¼ 10;000 as shown in Fig. 9(a).
Fig. 9. Convergence study at (a) w
To aid comparison and to study convergence with refinement, a
dimensionless error measure is used

error ¼
X
p

jrðZpÞ � rpjvp0

WL0
: ð46Þ

It can be seen in Fig. 9 that varying the number of material points
does not have a large influence on the solution to this problem.
The convergence rate varies between 1 and 2 for most numbers of
elements with a degradation towards higher numbers of elements.
It is possible that this can be attributed to the fact that there will be
more material points crossing boundaries contributing additional
error which cancels out the benefit of additional elements.

The same problem is also modelled with a weight of
w ¼ 400;000, ten times larger than the initial problem to show
the large deformation capabilities of the method. Fig. 10 shows
the stress against position and the corresponding analytical solu-
tion, and Fig. 11 shows the convergence of the error with an
increasing number of elements. Here, the convergence is also com-
pared against linear and quadratic finite element solutions. It can
be seen that for a given number of elements, the error for the
iGIMP code is less than the linear FEM simulation with 2 Gauss
points per element. The convergence rate for the linear FEM simu-
lation is constant at 1 whereas the convergence rate for the iGIMP
¼ 10;000 and (b) w ¼ 40;000.



Fig. 10. Stress against position for w ¼ 400;000.

Fig. 11. Convergence study for iGIMP shown against linear and quadratic FEM.
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simulations varies between 1.8 and 0.6. The convergence rate for
the quadratic FEM code with 3 Gauss points per element is 2, again
as expected. It should be noted that if 2 Gauss points per element
Table 1
Error in Deformation Gradient and Displacement.

Number of elements 256

iGIMP
Top displacement (m) �7.3347
Base deformation gradient 0.74322
Displacement error –
Deformation gradient error 4:091� 10�4 2:

Linear FEM
Top displacement (m) �7.3347
Base deformation gradient 0.74325
Displacement error –
Deformation gradient error 4:477� 10�4 2:
are used then the FEM code achieves machine precision for any
number of elements. This is because the two sampling points are
correctly positioned to approximate the solution exactly. For a lin-
ear finite element the same applies to a single Gauss point in the
centre of the element. In iGIMP the material points are not located
at Gauss quadrature positions so the same does not apply.

From the analytical solution given in Eq. (45), the deformation
gradient at the base of the column is calculated to be 0.74292
and the displacement at the top of the column to be �7.3347.
Using two material points per element, and taking the top dis-
placement from the top material point and bottom deformation
gradient from the bottom most material point, it can be seen in
Table 1 that the displacement is accurate to 5 significant figures
for all numbers of grid elements shown, and the error in deforma-
tion gradient decreases with increasing elements with a linear rate
of convergence, where the deformation gradient error is given as

Ferror ¼ jFp � Fð0Þj=Fð0Þ: ð47Þ
The error and rate of convergence are comparable to that of linear
finite elements.

The same problem of a column under self weight is now inves-
tigated but this time using a Von-Mises constitutive model with a
deviatoric yield stress of qy ¼ 3� 104. The yield surface is defined
as
512 1024 2048

�7.3347 �7.3347 �7.3347
0.74307 0.74300 0.74296

– – –

041� 10�4 1:017� 10�4 5:040� 10�5

�7.3347 �7.3347 �7.3347
0.74308 0.74300 0.74296

– – –

237� 10�4 1:118� 10�4 5:593� 10�5
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f ¼ q� qy ¼ 0 ð48Þ
where

q ¼
ffiffiffiffiffiffiffi
3J2

p
; J2 ¼ 1

2
ðsisiÞ and si ¼ si � 1

3

X3
j¼1

sj ð49Þ

The material will yield when szz ¼ qy which should occur at a posi-

tion of Z ¼ l0 � qy

qob0
. Below this point, the material will experience

elasto-plastic behaviour and despite zero deformation being
enforced in the out of plane directions, stresses sxx and syy will be
introduced. Due to fact that the boundary conditions are the same
these two stresses will be equal, because of this from here on vari-
ables in the y direction will not be discussed. Using this it is possible
to write the deviatoric stress in this situation as

q ¼ jsxx � szzj: ð50Þ
Here the stress in the vertical direction should remain the same, fol-
lowing the analytical solution (42) however in the section near the
base of the column where this stress is reached, stresses will appear
in the out of plane direction. This is shown in Fig. 12 where it can be
seen that in the elasto-plastic region there are stresses in both the
vertical and horizontal directions. The analytical solution for these
out of plane stresses is not immediately obvious, using knowledge
of the deformation due to the boundary conditions a relationship
can be found between elastic parts of the deformation gradient

Fe
xx ¼ Fe

zze
qy
E : ð51Þ

It can further be shown that in the vertical direction a relationship
between plastic and elastic components of the deformation gradient
exists as

Fp
zz ¼ Fe 2

zz e
2qy
E : ð52Þ

Using this the Cauchy stress in the vertical direction can be written
as

rzz ¼ 1

Fe
zz
3eð

2qy
E Þ

E lnðFe
zzÞ: ð53Þ
Fig. 12. Vertical (rzz) and horizontal (rxx ¼ ryy) stress using iGIMP plotted agai
This result allows us to calculate Fe
zz using a Newton process which

yields Fzz using (52). Fe
xx can also be calculated using (51) which

allows the calculation of

rxx ¼ 1
Fzz

E ln ðFe
xxÞ: ð54Þ

The derivation for this can be found in Appendix A.
The problem was repeated with a body force increased by a fac-

tor of 10. The solutions are shown in Fig. 13 to also show close
agreement with the analytical solution. Fig. 14 shows the conver-
gence for these simulations when refining the mesh which exhibits
the same behaviour as for the elastic case. The convergence plot for
quadratic finite elements is not shown in this case as it experi-
enced locking with a 3 � 3 quadrature scheme and reached
machine precision in one step using reduced integration.
5.2. 2D compaction under self weight

The second problem presented is the behaviour of a material
compacting under self weight. The response of the material with
increasing gravity is modelled. The problem domain at the begin-
ning of the simulation has a height of 8 units and a width of 8 units,
Young’s modulus of E ¼ 1� 105 and Poisson’s ratio of m ¼ 0:3, as
shown in Fig. 15. Vertical movement along the bottom edge is pre-
vented and due to symmetry, only half the problem is modelled.
Self weight is applied incrementally over 20 loadsteps with a total
weight of w ¼ 4� 105. A 10 by 10 background grid is used to allow
for material movement during the simulation. The initial position
of the material is modelled using 4 material points per element
(shown in a single shade of grey) along with the final (non-
exaggerated) displaced shape of the material. The shading of the
material point domains corresponds to the vertical stress at each
material point at the end of the simulation.

Fig. 16 shows that the convergence within a load step is near
asymptotically quadratic. This convergence rate of the NR process
indicates correct implementation of the method. The values shown
in Table 2 correspond to the norm of the out-of-balance force
nst analytical solution for a load of 40,000 and yield stress of qy ¼ 3� 104.



Fig. 14. Convergence study at (a) w ¼ 40;000 and (b) w ¼ 400;000 for the plastic case.

Fig. 13. Vertical (rzz) and horizontal (rxx ¼ ryy) stress using iGIMP plotted against analytical solution for a load of 400,000 and yield stress of qy ¼ 3� 104.
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(ff oobg) at the end of each NR iteration for the final 5 loadsteps. This
is calculated as outlined in Section 4.

In Fig. 17, the maximum horizontal displacement of the mate-
rial is compared against results obtained from an updated lagran-
gian Finite Element analysis of the same problem. The material
properties are as described above. The FEM analysis used linear
finite elements with 2 x 2 Gauss quadrature with 1,000,000 ele-
ments. By changing the number of grid elements, it can be seen
that the displacement converges towards a constant value. Dis-
placements have been normalised to the displacement given by
the finest FEM mesh. When calculating the displacement using
the iGIMP method, the value used is the displacement of the bot-
tom right material point plus half of any extension to its influence
domain. The convergence is investigated using different numbers
of material points per element. With an element size of 1 and smal-
ler, the solutions using different numbers of material points per
element all come within 1% of the converged solution. This sug-
gests that the number of elements in the background mesh has
more influence on the accuracy of the solution than the number
of material points per element; this can be seen clearly in Fig. 17
by the fact that for finer meshes the displacements for varying
numbers of material points are all very similar.

The same problem is analysed with a Von-Mises constitutive
model with a deviatoric yield stress of qy ¼ 1:2� 104; the yield
function being defined in the same way as in (48). This leads to sig-
nificantly larger displacements as can be seen in Fig. 18. The con-
vergence for the final 5 steps is given in Table 3 where it can be
seen that more steps are needed for the NR algorithm to find the
correct path now that the material behaviour is elasto-plastic but
then reaches near asymptotic quadratic convergence as before,
until running into the precision of the machine for lower errors.
5.3. 2D cantilever beam

The final example is an elastic cantilever beamwith a point load
of 100kN applied at the vertical mid point on its free end. To
achieve this loading using iGIMP, this load is split between the



Fig. 16. Out-of-balance force at the end of each loadsteps showing near asymp-
totically quadratic convergence. Displayed graphically for load step 16.

Fig. 15. Compaction under self weight problem showing initial (grey) and final (shaded) material point positions and influence domains with vertical stress shown.
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two end most material points above and below the neutral axis, as
highlighted in Fig. 19. The beam has a length of 10 m and depth of
1 m, and the material has a Young’s modulus of 12 MPa and Pois-
son’s ratio of 0.2. The load is applied over 50 loadsteps with the
Table 2
Newton Raphson residuals showing near asymptotically quadratic convergence.

Step 16 17

Iteration 1 1:357� 10�3 1:246� 10�3

Iteration 2 4:805� 10�7 4:202� 10�7

Iteration 3 6:903� 10�14 5:399� 10�14
problem initially split into 40 elements each containing 3 � 3
material points. The beam is fixed at the left hand end in both
directions at the neutral axis with roller boundary conditions
applied to other nodes along the boundary. Fig. 19 shows the orig-
inal and final (unexaggerated) configurations. Here, it is important
to note that the material point influence domains are updated
using the stretch rather than the full deformation gradient. The
reasons for this are as discussed in Section 3 and it can be seen
in Fig. 20(a) how the analysis collapses when using the deforma-
tion gradient for these updates (highlighted by the circled region
on the right hand figure). Due to the material point rotations (a
rotation of 90 degrees would cause the leading diagonal of the
deformation gradient to go to zero) the size of the material points
gets very small leading to an non-physically small stiffness in those
elements.

In Fig. 21, the normalised horizontal and vertical displacement
at the loading point are plotted against the analytical solution
and results from a finite element analysis. For the iGIMP solution,
this is the average between the two loading points above and
below the neutral axis. The analytical solution is provided in
[103]. The FEM analysis uses 8 noded quadratic elements with
3 � 3 Gauss quadrature with the same 20 by 2 element discretisa-
tion as initially used in the iGIMP analysis. The load is applied at
the neutral axis and the boundary conditions applied at the left
hand end of the beam the same as the iGIMP analysis. Good agree-
ment can be seen between the iGIMP displacements and both the
FEM and the analytical solutions.
18 19 20

1:147� 10�3 1:094� 10�3 9:897� 10�4

3:658� 10�7 3:478� 10�7 2:872� 10�7

4:283� 10�14 1:839� 10�12 2:809� 10�14



Fig. 18. Compaction under self weight with a yield stress introducing elasto-plastic deformation.

Table 3
Newton Raphson Residuals reaching near asymptotically quadratic convergence for elasto-plastic case.

Step 16 17 18 19 20

Iteration 1 2:987� 10�2 2:787� 10�2 2:600� 10�2 2:467� 10�2 2:372� 10�2

Iteration 2 4:631� 10�2 4:703� 10�2 3:072� 10�2 2:504� 10�2 2:013� 10�2

Iteration 3 9:236� 10�3 2:483� 10�3 8:893� 10�4 6:861� 10�4 3:863� 10�4

Iteration 4 2:379� 10�4 1:530� 10�5 3:494� 10�6 1:633� 10�6 1:237� 10�6

Iteration 5 8:852� 10�6 1:562� 10�10 4:098� 10�11 2:642� 10�12 3:505� 10�12

Iteration 6 2:028� 10�10 8:386� 10�16

Iteration 7 7:290� 10�16

Fig. 17. Physical convergence of displacement with changing mesh density.
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Fig. 19. Figure showing initial and final material point positions and domains as
well as boundary conditions. There are 3 � 3 material points in each element. It is
also shown how the load is approximated by splitting between the two endmost
material points above and below the neutral axis (N.A).
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6. Conclusions

In this paper a fully implicit formulation of an elasto-plastic
GIMP method is presented for the first time. The construction of
the weighting functions and implementation of the method have
been explained in detail. The element stiffnesses are shown to be
calculated based on contributions from overlapping parts of mate-
rial point influence domains allowing the global stiffness matrix to
be assembled from the element stiffness matrices as in the FEM. In
this paper, a new way of computing the deformation gradient and
updated derivatives, which are consistent with the updated
Lagrangian approach has been developed. Using the implicit GIMP
method it has been shown that for both small and large deforma-
Fig. 20. Material point domains during deformation updated using the deformation gradi
load step 18 where the material point domains become problematic, the simulation fail
tion elasto-plastic problems, accurate results can be achieved. It
has been shown that by using these consistent values of deforma-
tion gradient and derivatives of shape functions when forming the
consistent global stiffness matrix it is possible to maintain the cor-
rect convergence rate of the global equilibrium equations, and that
within a load step the Newton Raphson process converges asymp-
totically quadratically as expected indicating a correct implemen-
tation. By increasing the number of background elements, the
iGIMP method shows convergence properties between that of lin-
ear and quadratic FEM. Additionally, the novel use of updating
material point influence domain lengths using the stretch tensor
has been shown in Fig. 20 to allow the iGIMP method to model
problems including rotation of material which previously has been
problematic for the standard GIMP method when updating mate-
rial point influence domains using the deformation gradient.
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Appendix A. Analytical solution to column under self weight
with plasticity

The response of a column to the application of a body force due
to increasing gravity is modelled. The column has an initial length
(L0) and is restrained at the bottom with uðz ¼ 0Þ ¼ 0. Displace-
ment is only permitted in a vertical direction. A Young’s modulus
of E and a density of q0 in compatible units are assigned to give
a total force, once gravity (g) is applied, of w. This time a deviatoric
yield stress of qy is introduced. The yield surface is defined as

f ¼ q� qy ¼ 0 ðA:1Þ

as outlined in Section 5. The material will yield when szz ¼ qy which

should occur at a position of Z ¼ l0 � qy

qob0
. Below this point, the
ent ½F� (a) and using the right symmetric stretch matrix ½U� (b). It is highlighted in (a),
ed on the following step.

https://doi.org/10.15128/r1n870zq804


Fig. 21. Graph showing normalised horizontal and vertical displacements at the midpoint of the free end of the cantilever beam as load is incrementally applied. The iGIMP
results are shown alongside FEM results and the analytical solution.
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material will experience elasto-plastic behaviour and despite zero
deformation being enforced in the out of plane directions, stresses
sxx and syy will be introduced. Because the boundary conditions
are the same these two stresses will be equal, because of this from
here on only variables in the x direction will be discussed. Using this
it is possible to write the deviatoric stress as q ¼ jsxx � szzj.

The Cauchy stress in the vertical direction is the same as that for
the elastic case can be determined from the initial vertical position
within the column, Z, through

rzz ¼ q0bðl0 � ZÞ; ðA:2Þ
where q0 is the initial density of the material and b is the body
force. The Cauchy and Kirchhoff stresses (s) are linked through
r ¼ s

J where J ¼ detðFÞ which in this case is equal to Fzz.

Due to the boundary conditions it is known that

F ¼
1 0 0
0 1 0
0 0 Fzz

24 35.
When there are only normal components, the logarithmic strain

is defined as

eð0Þ ¼ 1
2
lnðF2Þ ¼ lnðFÞ: ðA:3Þ

The deformation gradient can be split into elastic and plastic com-
ponents using multiplicative decomposition F ¼ FeFp. Because of
this and the knowledge of F it should be noted that:

Fe
xxF

p
xx ¼ 1 and Fe

zzF
p
zz ¼ J: ðA:4Þ

Using the fact that lnðFeFpÞ ¼ lnðFeÞ þ lnðFpÞ allows the strain to be
split into elastic and plastic components

eð0Þ ¼ ee þ ep ¼ lnðFeÞ þ lnðFpÞ ðA:5Þ
and with v ¼ 0 we can assume that the Kirchhoff stress is linked to
the elastic logarithmic strain through

s ¼ Eee: ðA:6Þ
When elasto-plastic behaviour has started, using the above rela-
tionships we can write

Eeexx � Eeezz ¼ qy ¼ E lnðFe
xxÞ � E lnðFe

zzÞ: ðA:7Þ
Rearranging this gives
qy

E
¼ lnðFe

xxÞ � lnðFe
zzÞ ¼ ln

Fe
xx

Fe
zz

� �
ðA:8Þ

so it can be seen that

Fe
xx ¼ Fe

zze
qy
E : ðA:9Þ

The derivative of the yield function with respect to the Kirchhoff
stress (dfds) can be shown through use of the chain rule to be

f ;s ¼ f ;qq;J2
fJ2;Sg

T ½S;s� ¼ 3
2q

fSg ¼ 3
2q

1
3

sxx � szz
sxx � szz

2szz � 2sxx

8><>:
9>=>;: ðA:10Þ

Using q ¼ jsxx � szzj and ep ¼ _cff ;sgwe can arrive at the relationship

epxx
epzz

¼ �1
2

or
lnðFp

xxÞ
lnðFp

zzÞ
¼ �1

2
: ðA:11Þ

Rearranging this gives

ln Fp
xx

ffiffiffiffiffiffi
Fp
zz

q� �
¼ 0; ðA:12Þ

leading to the relationship

Fp
xx

ffiffiffiffiffiffi
Fp
zz

q
¼ 1: ðA:13Þ

Combining (A.13) and (A.4) it can be seen thatffiffiffiffiffiffi
Fp
zz

q
¼ Fe

xx: ðA:14Þ

Substitution of this into (A.9) and squaring both sides gives

Fp
zz ¼ Fe

zz
2eð

2q
E Þ: ðA:15Þ

Using this, we can express Fzz ¼ Fe
zz
3eð

2q
E Þ and, using the solution for

Cauchy stress above, say that

rzz ¼ 1

Fe
zz
3e
�
2q
E

� E ln �Fe
zz

�
: ðA:16Þ

The elastic part of the deformation gradient can then be found
using a Newton process to solve for Fe

zz in (A.16). Using the above
relationships it is possible to calculate the remaining parts of the
deformation gradient and find the out of plane stresses as

rxx ¼ 1
Fzz

E lnðFe
xxÞ: ðA:17Þ
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