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ABSTRACT 

 

The young leaves of the bamboo plant, Phyllostachys aurea, exhibit a distinct dual 

wetting behaviour on their adaxial surface. Contact angle analysis, variable pressure 

(environmental) scanning electron microscopy, gas chromatography, time-of-flight 

secondary ion mass spectrometry, and X-ray photoelectron spectroscopy have 

shown that the epicuticular wax morphology/topography and the surface distribution 

of chemical species underpin this water-channelling behaviour. Envisaged 

bioinspired applications include fog and dew harvesting in water-scarce regions of 

the world. 

 

 

Keywords: water harvesting; dual surface wetting; bamboo; bioinspired. 
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HIGHLIGHTS 

 

 Dual hydrophobic-hydrophilic wettability of young Phyllostachys aurea bamboo leaf 

surfaces leads to water channelling and self-cleaning. 

 

 Nanoscale roughness of epicuticular waxes combined with very-long-chain alkyl 

compounds underpin localised leaf wetting characteristics. 

 

 Bioinspired replication of such dual wettability may offer potential for fog collection 

and dew harvesting in water-scarce regions of the world.  
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1 INTRODUCTION 

The study of plant surfaces,1,2,3 has led to the discovery of some fascinating 

phenomena including the superhydrophobicity of Nelumbo nucifera (Indian lotus) 

leaf,4 water adhesion on Rosa moyesii (red rose)5, dry adhesion by Galium aparine 6, 

fog harvesting by Cotula fallax7, and water channelling  by Thuja plicata.8 The 

understanding and replication of such surfaces is paving the way to many everyday 

technological applications; for example, self-cleaning designs based upon the lotus 

leaf have been introduced into the paint, glass, automotive, and textile industries.9  

 Plant species displaying a range of wettabilities have been widely studied.10,11 

These have included different wettabilities on opposite sides of the same leaf,12 as 

well at different stages of leaf growth.13,14 Quite often, these properties can be 

related to the native environment of the plants, as for instance in the case of the 

Namib Desert grass, Stipagrostis sabulicola, whose leaves collect water from mist in 

lieu of uptake from soil.15  Despite the number of plant surfaces studied, the range of 

wetting phenomena reported has been fairly limited  (such as hydrophobicity, 

hydrophilicity, and fog capture).16,17 

The present study focuses on the unusual dual wetting behaviour of the 

young leaves of Phyllostachys aurea, a bamboo that originates in East Asia. In order 

to further understand this mechanism, the physical and chemical properties of these 

surfaces have been compared between young and old leaves using contact angle 

analysis, (environmental) scanning electron microscopy, gas chromatography, time-

of-flight secondary ion mass spectrometry, and X-ray photoelectron spectroscopy.   

 

2 EXPERIMENTAL 

2.1 Preparation of Phyllostachys aurea Samples 

Phyllostachys aurea plant cuttings were collected from outdoor beds, situated in 

Northern England and Western Canada climates (both temperate oceanic climates), 

and their stems kept in water to minimize dehydration during transportation to nearby 

analytical facilities. 
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2.2 Contact Angle Measurements 

Contact angles were measured at room temperature using a video capture 

apparatus (VCA 2500 XE, AST Products Inc.) and 1 µL high-purity water droplets 

(ISO 3696 grade 1).  Static water contact angle values less than 90° signify a 

hydrophilic surface, whilst greater than 90° corresponds to a hydrophobic surface.18  

Advancing and receding contact angle values were determined by respectively 

increasing or decreasing the liquid drop volume by a further 1.0 µL.19 

 

2.3 Variable Pressure (Environmental) Scanning Electron Microscopy (ESEM) 

An environmental scanning electron microscope (XL30 ESEM-FEG, FEI Company) 

operating in wet mode was used to monitor water vapor condensation onto individual 

leaf samples in real time. The leaves were mounted onto carbon disks and attached 

to a Peltier cooling stage. Vapor condensation was controlled by varying the 

chamber pressure and sample temperature. Electron micrographs were taken using 

a gaseous secondary electron detector (GSED), in conjunction with a 15 kV 

accelerating voltage, and a working distance between 9–11 mm. 

 

2.4 Scanning Electron Microscopy (SEM) 

Individual leaf specimens were prepared for scanning electron microscopy analysis 

by using a glycerol substitution process.20  Each sample was then mounted onto a 

carbon disk. No gold coating was required due to the conductive nature of the 

glycerol.21 Plant surface structure images were taken on a scanning electron 

microscope (Stereoscan 240, Cambridge Instruments Company) operating in a 

secondary electron detection mode, in conjunction with an 8 kV accelerating voltage, 

and a working distance between 9–35 mm. 

 

2.5 Gas Chromatography (GC) 

2.5.1 Extraction of Adaxial Leaf Wax 

To selectively extract cuticular wax only from the adaxial side of the leaf, one end of 

a glass cylinder (Schott, Standard expansion adapter NSE 19/14, open at both ends) 

was gently pressed onto the leaf surface with sufficient force to create a seal 

between cylinder and leaf whilst not damaging the plant material, and filled three 



08/07/2016 09:19:00 7

times with 1.5 mL of fresh chloroform (Aldrich, ≥99%, 0.75% ethanol as stabilizer) at 

room temperature, with intermittent agitation of the chloroform using a Pasteur 

pipette. The chloroform extracts from five randomly chosen leaf surface areas were 

combined, concentrated at 50 °C under a stream of N2 (Praxair, ≥99.998%), and 

stored prior to analysis. The total surface area per sample was calculated from the 

diameter of the cylinder to be 3.6 cm2.13   

 

2.5.2 Analysis of Wax Extracts 

Before GC-MS/FID analysis, wax extracts were spiked with 10 μL of a 1.02 mg/mL 

solution of n-tetracosane (Alfa Aesar, ≥99%) in chloroform as an internal standard 

and subjected to derivatization with 10 μL of N,O-bis(trimethylsilyl)trifluoroacetamide 

(BSTFA, Aldrich, GC grade) in 10 μL pyridine (Aldrich, ≥99.8%, anhydrous) for 30 

min at 70 ºC. Then, they were concentrated to dryness at 50 ºC under a stream of N2 

and re-dissolved in 20 μL chloroform to a total volume of 20 μL. Under these 

conditions, amides did not undergo silylation, resulting in poor chromatographic peak 

shape for these wax constituents. Therefore, after re-evaporation to dryness, 

samples were derivatized for 1 hour at 70 ºC in 20 μL of benzyl bromide (Aldrich, 

≥98%) in the presence of 0.1 mg NaH (Aldrich, anhydrous, ≥95%). Then, excess 

NaH was quenched with distilled water, the basic aqueous layer discarded and the 

organic layer containing benzylated derivatives taken to dryness. Finally, the 

resulting mixture was again subjected to silylation with BSTFA/pyridine as described 

above, dried, and brought to a final volume of 20 μL with fresh chloroform. 

Two different GC instruments were used for separation and detection of wax 

constituents, both equipped with the same type of capillary GC column (6890N, 

Agilent, Avondale PA, USA; 30 m long; type HP-1: 100% PDMS; 0.32 mm i.d.; 

df=0.1 µm) and following the same temperature program (on-column injection at 50 

ºC, constant for 2 min, ramp 40 ºC min-1 to 200 ºC, constant for 2 min, ramp 3 ºC 

min-1 to 320 ºC, constant for 30 min). The first instrument employed He gas (Praxair, 

≥99%) as the mobile phase, at a flow rate of 1.4 mL min-1, and was equipped with an 

MS detector (5973N, Agilent, EI-70 eV), primarily serving the purpose of qualitative 

identification of the separated wax compounds. The second instrument used H2 

carrier gas (Praxair, ≥99.95%) at 2.0 mL min-1 and an FID detector for the 

quantification of individual wax homologs/isomers, based on normalization of their 
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peak areas against that of the internal standard. It had been shown previously that 

most wax compounds have relative response factors of 1.00 to this standard under 

very similar GC-FID conditions.22 Quantitative compositions of aliphatic ester 

metamers were determined from GC-MS data as described by Lai et al.23  

 

2.6 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) 

The leaf samples for ToF-SIMS analysis were mounted onto a piece of double-sided 

tape (3M ‘Scotch Tape’, grade 665) attached to a piece of clean PET film (Melinex, 

‘O’ grade).  A second piece of PET film, containing a square hole in the center, was 

mounted over the leaf in an attempt to minimize the tendency for the leaf margins to 

curl over.  This assembly was attached to the base plate of a sample holder using 

stainless steel clips.   

Static SIMS analysis was carried out using an instrument of single-stage 

reflectron design (TOF-SIMS IV – 200, ION-TOF GmbH).24 Positive and negative ion 

mass spectra and images of the leaf samples were obtained using a 20 keV Bi3
2+ 

focused liquid metal ion beam, incident at 45° to the surface normal, and operated in 

‘bunched’ mode for high mass resolution (20 ns wide ion pulses at a 6.7 kHz 

repetition rate).  Charge compensation was provided by a low-energy (ca. 20 eV) 

electron flood gun.  The total ion dose density was kept to less than 1 × 1016 ions m-2 

in all cases.  Sample surface topography and the ion gun mode of operation limited 

the mass resolution to ca. m/∆m = 1000. Positive and negative ion static SIMS 

spectra of the samples were recorded at room temperature with a 128 × 128 pixel 

raster and a field of view of 200 μm × 200 μm, and the sample imaged with a field of 

view of 500 μm × 500 μm. In addition, images and spectra were recorded from larger 

areas in the range 7 mm x 7 mm up to 12.5 mm x 12.5 mm by moving the sample 

under the ion beam (the so-called ‘stage raster’ mode of operation). 

 

2.7 X-Ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) surface characterization was carried out 

using an electron spectrometer (AXIS Nova, Kratos Analytical Ltd), equipped with a 

monochromated Al Kα X-ray source (1486.6 eV) and a concentric hemispherical 

analyser combined with a spherical mirror analyser. Photoelectrons were collected at 
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a take-off angle of 0° from the substrate normal (mean escape depth = ~0.5–1.5 

nm),25 with electron detection in the constant analyser energy mode (CAE mode, 

pass energy = 160 eV for wide scan & 20 eV for high resolution spectra, step size = 

1.0 eV & 0.1 eV, respectively). Rectangular samples, spanning the width of the leaf, 

were cut from fresh Phyllostachys aurea leaves and mounted, adaxial side facing 

upwards, onto an aluminum sample plate. Beryllium-copper clips were used to 

secure the samples. The leaves were preloaded into the system at a pressure of 10-7 

mbar for 2–3 hours, and then transferred into the XPS analysis chamber at 10-8 

mbar.  For all elements detected in the XPS survey spectrum, elemental 

compositions were calculated using experimentally determined machine-specific 

sensitivity factors, based on the Wagner values26: C(1s) : O(1s) : N(1s) : Si(2p) 

equals 1.00 : 2.81 : 1.72 : 1.18.  The C(1s) core level binding energy envelopes were 

fitted using a Gaussian peak shape for the –CxHy hydrocarbon component and a 

linear background.27,28 All binding energies were referenced to the C(1s) –CxHy 

hydrocarbon peak at 285.0 eV.29 Fitted component peak FWHM values used were 

comparable to those obtained using a low-density polyethylene reference sample 

analysed on the same instrument under similar conditions. Two sets of young and 

old P.aurea leaf pairs were harvested over a period of two months (July – August 

2014) for analysis. The adaxial leaf surfaces were sampled at least in three different 

positions for each of the margin and middle regions (24 readings in total).  

 

3 RESULTS 

3.1 The Dual Wettability of Phyllostachys aurea 

The Phyllostachys aurea leaf shape changes during the different stages of its 

development. Initially, the sprouted P. aurea leaf is rolled up in a spear-like shape, 

pointing upwards, and with its adaxial surface completely protected from the outside 

elements. As the leaf begins to unravel, the adaxial surface appears to hydrophobic, 

except at the point at which the leaf joins to the petiole. The leaf surface develops its 

dual wettable characteristics whilst still in an upright position, and this property 

persists once the leaf bends towards its natural position pointing downwards, Figure 

1 and Supporting Information Figure S 1. 

The young lanceolate leaves of Phyllostachys aurea appear to have two 

distinctly different regions of wettability across their adaxial surface, Figure 1(a–c). 
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Water landing on the leaf margins beads up in a near-superhydrophobic fashion 

(contact angle greater than 140°); whilst in the middle (including the midrib), the 

water spreads due to the hydrophilic nature of the surface (contact angle less than 

90°), Table 1. These contrasting wettabilities are most noticeable in the movement of 

water across the leaf surface.  Once large enough, droplets of water on the margin of 

the leaf roll towards the middle, assisted by the low contact angle hysteresis inherent 

to the margin, Table 1, and the slight gradient downwards due to the concave shape 

of the leaf, Figure 1(a). Pools of water collecting in the middle eventually coalesce 

over time, forming a downward stream-like film of water, Figure 1(b–c). As the 

stream increases in volume, the water flow begins to move towards the leaf tip, 

assisted by the hanging gradient present between the petiole and the apex of the 

leaf. Eventually, the droplet formed at the apex falls to the ground.  In contrast, the 

abaxial (underside) surface of young Phyllostachys aurea leaves consists of a 

different physical structure visible to the naked eye and displays an absence of dual 

wetting (superhydrophobicity everywhere with water static contact angle exceeding 

160°). 

 

(e) 

 

 

 

Figure 1: Images of the adaxial surface of Phyllostachys aurea leaves following rainfall: (a) a 
young leaf exhibiting dual wettability – the combination of hydrophobic margins and a 
hydrophilic middle (the image in the top corner shows a magnified view of the area outlined 
by a dashed box); (b) a young leaf showing the results of coalescing droplets in the middle of 
the leaf moving downwards to the leaf tip; (c) a dead young leaf still showing the same dual 
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wetting property; (d) an older leaf not exhibiting the dual wettability (the image in the top 
corner shows a magnified view of the area of the surface outlined by a dashed box); and (e) 
schematic illustrating dual wetting behaviour on young leaf.   
 

Interestingly, this dual wetting behaviour persists in leaves which have died 

early in their development but are still attached to the stem, Figure 1(c). 

Furthermore, this characteristic water collection mechanism associated with the 

younger leaves is found to be absent for older leaves of the same species, Figure 

1(d). Their adaxial surfaces appear to be hydrophilic throughout, Table 1, and 

therefore water spreads to wet both the middle and margins of these leaves. 

 

Table 1: Water contact angle values for the adaxial surface of Phyllostachys aurea leaves. 
 

Phyllostachys aurea 
Adaxial Surface 

Water Contact Angle / ° 

Static Advancing Receding Hysteresis 

Young Leaf (Margin) 141  ± 3 142 ± 2 136 ± 4 5 ± 4 

Young Leaf (Middle) 77 ± 13 84 ± 12 62 ± 10 23 ± 8 

Older Leaf (Margin) 69 ± 12 83 ± 12 51 ± 11 32 ± 6 

Older Leaf (Middle) 69 ± 14 87 ± 12 60 ± 10 27 ± 7 

 

 

3.2 Electron Microscopy 

Comparison of scanning electron microscopy (SEM) micrographs for the margin and 

the middle of young Phyllostachys aurea leaves revealed distinct differences in 

surface micro- and nano-scale structure, Figure 2A. In both regions, there were 

perpendicularly orientated “double-humped” papillae running parallel to the 

macroscopic longitudinal leaf grooves between the petiole and the leaf tip. At the 

margin, these papillae displayed deep troughs in between their peaks as well as 

between the individual pairs of papillae, Figure 2A(e). In contrast, the troughs in the 

middle appeared shallow and considerably less defined (lower roughness), Figure 

2A(f). These differences were further evident for the nanoscale epicuticular wax 

crystals covering some of the micro-relief in both areas. The surface at the margin of 

the leaves is covered in a dense “carpet” of upright platelet-shaped wax crystals, 

approximately 0.5–1 µm in height, Figure 2A(g). In contrast, the wax crystals in the 

middle are granular and approximately 0.1–0.5 µm high, Figure 2A(h–i).  
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(A) Young (B) Old 

 

Figure 2: SEM of the adaxial surface of (A) young and (B) old Phyllostachys aurea leaves.  
Micrographs at increasing magnifications of the: (a) margin and (b) middle of the leaf; the 
“double humped” papillae which make up the troughs on the: (c) margin and (d) middle; a 
tilted view of the “double-humped” papillae on the: (e) margin and (f) middle; and the 
nanoscale epicuticular wax crystals which cover the surface on the: (g) margin (inset shows 
the platelet-shaped wax crystals) and (h,i) middle. The horizontal axis in (a)-(d) is parallel to 
the leaf axis. 
 

Scanning Electron Microscopy (SEM) showed a smooth surface in both the 

margin and centre of old Phyllostachys aurea leaves, Figure 2B. This appears to 
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swamp the microscale papillae features and the majority of the nanoscale wax 

crystals, resulting in a much smoother surface. However, in the papillae troughs 

some of the features seen for the margin and middle of young leaves appear to have 

been retained, Figure 2B(g–h). One noticeable difference when compared to the 

young leaves is the softening/suppression (lower roughness) of the nanoscale 

vertical-platelet wax crystals found on the leaves’ margin (<0.5 µm in height on the 

older leaves), Figure 2B(g). 

Environmental scanning electron microscopy (ESEM) identified the 

characteristic wetting properties of the young Phyllostachys aurea leaves on a 

magnified scale, Figure 3.  Condensing fine water droplets appear to nucleate 

randomly across the surface of the margin, and in a similarly indiscriminative 

manner, but in larger pools across the middle.  

 

 

 

Figure 3: ESEM micrographs of the adaxial surface of young Phyllostachys aurea leaves: (a) 
water beading on the margin; (b) water spreading in the middle; and (c) the difference in 
wettability at the transition zone (indicated by the dashed line) between the hydrophobic 
margin (lower left) and hydrophilic middle (upper right) of the leaf. 
 

 

3.3 Gas Chromatography (GC) 

To establish the identities and abundances of all lipids coating the adaxial side of 

Phyllostachys aurea leaves, total wax mixtures were extracted from young and old 

plant leaves. The waxes were identified and quantified using gas chromatography-

mass spectrometry (GC-MS) and gas chromatography-flame ionization detection 

(GC-FID), respectively.  
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3.3.1 Classes of Cuticular Wax Constituents 

 

The total adaxial wax coverage was very similar on young and old Phyllostachys 

aurea leaves: 3.6 ± 0.4 μg cm-2 and 3.3 ± 0.1 μg cm-2, respectively. In both cases, 

more than 90% of the GC-detectable compounds could be identified (Figure 4A), and 

cyclic terpenoids constituted almost half of the wax mixtures (1.5 ± 0.2 μg cm-2 and 

1.6 ± 0.2 μg cm-2, respectively). They were accompanied by very-long-chain (VLC) 

fatty acids, primary alcohols, alkyl esters, aldehydes, alkanes, and amides. Most of 

these compounds were present in similar amounts on young and old P. aurea 

leaves. However, free alcohols were found in higher abundance on the surface of 

young plants as compared to old ones (0.30 ± 0.04 μg cm-2 vs. 0.18 ± 0.01 μg cm-2). 

Overall, terpenoids together with alkyl esters and fatty acids made up three quarters 

of the wax mixture, in a ratio of ca. 4:1:1, irrespective of plant age. 
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Figure 4: (A) Compound class distribution in the wax mixtures on the adaxial side of 
Phyllostachys aurea leaves. Total coverages (μg cm-2) of compound classes are given for 
the wax mixtures of young and old P. aurea leaves.  (B) Relative compositions within wax 
compound classes within the wax mixtures on the adaxial side of Phyllostachys aurea 
leaves. Relative abundances (%) of individual homologs or isomers (in the case of 
terpenoids) from each compound class are given for young and old P. aurea leaves. 
Numbers on the x-axis indicate homolog chain length, for alkyl esters, the sum of alkyl and 
acyl carbon numbers. Minor odd-numbered acid and alcohol homologs as well as even-
numbered alkane homologs are omitted for clarity.  Bars represent mean ± standard 
deviation (n = 4) 
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3.3.2 Homolog / Isomer Distributions within Cuticular Wax Classes  

 

All VLC aliphatic classes comprised a series of homologous compounds. Alkyl 

esters, fatty acids, alcohols, aldehydes and amides were dominated by homologs 

with even carbon numbers, and alkanes by odd-numbered homologs, Figure 4B. 

Generally, the chain length distributions of linear aliphatics were similar between 

adaxial surface waxes of young and old Phyllostachys aurea leaves. Free acids 

exhibited bimodal distributions, peaking at the C28 and C16 homologs irrespective of 

age, with slightly higher amounts of C16, C18, and C20 acids on old P. aurea leaves. 

The alcohol and alkane series were fairly evenly distributed, peaking at C28 and C29, 

respectively, in young and old leaves alike.  

Three compound classes had homolog profiles changing with age. In the 

aldehyde fraction, the predominant homolog (C30) was accompanied by slightly more 

of the shorter homologs in young leaves and longer homologs in old leaves, Figure 

4B. An identical age-related chain length effect was observed for amides, also 

peaking at C30 and with shorter homologs more abundant for young and longer ones 

for old plant leaves. Further evidence for amide structure elucidation and related 

biology will be presented elsewhere30.  Finally, the ester homolog profiles peaked at 

C48 on leaf surfaces of both ages, accompanied by near-identical amounts of the C46, 

C44, and C42 homologs, and higher proportions of C40 and C38 homologs on young 

leaves versus higher abundance of the C50 homolog on old leaves. 

Pentacyclic triterpenoids were found in similar amounts within the wax mixtures 

of young and old Phyllostachys aurea leaves, Figure 4B. Free triterpene alcohols 

dominated, with β-amyrin and isomultiflorenol together accounting for more than half 

of the terpenoid load. Other free triterpenols (lupeol, α-amyrin, glutinol and 

epifriedelanol) were less abundant. Interestingly, triterpenoid esters amounted to ca. 

25–30% of all terpenoids, corresponding to approximately an eighth of the total 

adaxial wax coverage for both old and young leaves, and thus making triterpenoid 

and VLC alkyl esters equally abundant (compare Figure 4A and Figure 4B). 

Palmitates of β-amyrin, isomultiflorenol, glutinol and α-amyrin were found in a 3:3:3:1 

ratio on young and old leaves alike. Additionally, trace amounts of α- and γ-

tocopherols were detected, Figure 4B.  
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To provide complete reference data for ToF-SIMS peak assignment, the 

distributions of acyl and alkyl moieties within the wax esters were determined. Each 

of the aliphatic ester homologs represented a complex mixture of isomers derived 

from numerous pairwise combinations of acid and alcohol chain lengths. Since such 

metamers could not be chromatographically resolved and thus quantified by GC-FID, 

their distributions were determined instead based on abundances of characteristic 

fragments in the mixed mass spectrum associated with the GC peak of each ester 

homolog.23,31,32,33,34,35 

Three different patterns of isomer distributions could be discerned depending on 

overall ester homolog chain length, Figure 5. In young Phyllostachys aurea leaves, 

the shorter ester homologs (C36–C42) were formed primarily by C20 alcohol and C16–

C22 acids, the mid-range esters (C42–C44) included a large portion of isomers formed 

by C26–C28 alcohols and C16 acid, while the longer esters (C44–C52) contained mainly 

C22–C30 alcohols and C22 acid. In the leaf wax mixtures of old leaves, similar patterns 

were found, with the C36–C38 esters formed by C20 alcohol and C16–C18 acids, the 

C40–C44 esters by C24–C28 alcohols and C16 acid, and the C46–C52 esters by C24–C30 

alcohols and C22 acid. Overall, C22 acid was the most abundant acid in the linear 

VLC esters, independent of leaf age (compare Figure 4B and Figure 5A/C). The 

second-most abundant acid in alkyl esters was palmitic acid (C16), most notably for 

old bamboo leaves (Figure 4B and Figure 5C).  
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Figure 5: Relative compositions of esterified acids and alcohols within the wax mixtures on 
the adaxial side of Phyllostachys aurea leaves. Relative abundances (%) of individual 
isomers are given by chain length of their acid moiety (A/C) and  alcohol moiety (B/D) for 
each ester homolog, in young (A/B) and old (C/D) P. aurea leaves. Bars represent mean ± 
standard deviation (n = 4). Each group of bars adds up to 100%.  
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Finally, the overall distribution of acid and alcohol moieties across all esters 

could be calculated, including alkyl esters and alicyclic (triterpenyl) esters.  Thus, the 

chain length distribution of esterified acids was found to be bimodal, with maxima at 

C16 and C22 irrespective of plant age, Figure 6A. The esterified acids had gradually 

decreasing abundances from C24 to C28, in sharp contrast to the chain length profile 

of free acids gradually increasing towards C28 (compare Figure 4A and Figure 6A). 

The absolute amounts of individual esterified acid homologs were independent of 

leaf age, Figure 6A.  

In contrast to the profile of esterified acids, the chain length distribution of 

esterified alcohols differed between young and old leaves. Higher levels of C18–C22 

alcohols were found in esterified wax of young Phyllostachys aurea leaves, and 

substantially more C26 alcohol in the wax esters of old leaves (Figure 6B). The overall 

profile of esterified alcohols thus differed from that of corresponding free alcohol 

distributions, with the predominant chain length of C26 in the ester alcohols and C28 in 

the free alcohols (compare Figure 4B and Figure 6B). Similarly, the profiles of 

esterified and free triterpenols also differed (independent of age), most notably for 

glutinol (compare Figure 4B and Figure 6B). 
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Figure 6: Compositions of esterified acids and alcohols/triterpenols within the wax mixtures 
on adaxial side of Phyllostachys aurea leaves. Total coverages (μg cm-2) of ester-bound 
acids (A) as well as alcohols and triterpenols (B) are given for young and old P. aurea 
leaves. Labels on the x-axis indicate either the chain length of esterified acids and alcohols, 
or the isomer name for triterpenols. Bars represent mean ± standard deviation (n = 4).  
 

 

3.4 Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) 

ToF-SIMS spectra of the leaf samples comprised peaks associated with whole and 

fragmented molecules (some of which were homologous series separated by 14/28 

amu corresponding to differing numbers of CH2/C2H4 units within alkyl chains), 
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Figure 7.  Respective positive and negative ToF-SIMS spectra displayed different 

fragments at the margin of young leaves compared to the similar fragments detected 

for both the middle of young leaves and all across old leaves.  The predominant 

species at the margin of young leaves were C22-acid esters containing mainly C24, 

C26, C28 esterified alcohols (based on GC-MS ester metamer analysis) together with 

very-long-chain C28, C30, and C32 amides.  In contrast, towards the middle of young 

leaves and across the whole old leaves, there was a large proportion of the shorter 

chain C16 carboxylic acid in addition to free alcohols.  This correlates well with the 

higher proportion of C16-C18 free acids observed for old leaves through GC 

analysis, Figure 4B. 
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       Positive Ion Mode         Negative Ion Mode 

Key: ■ Free / Ester Alcohol;  Free / Ester Acid; ▲Amide 
 

Figure 7: ToF-SIMS of Phyllostachys aurea leaves showing predominant fragment 
assignments for: (a) the margin of a young leaf; (b) the middle of a young leaf; and (c) a 
raster scan across both the margin and middle of an old leaf. 
 

Imaging ToF-SIMS (using the stage raster mode) showed that the very-long-

chain amide species were concentrated towards the margin region of young leaves, 

whilst the shorter C16 carboxylic acid was localised along the middle (axial centre) of 

the leaf, Figure 8. In contrast, no such spatial distribution of the same species was 

observed for the case of the older leaves. 
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Figure 8: Negative ion ToF-SIMS imaging of young (a–b) and old (c–d) Phyllostachys aurea 
leaves: (a) / (c) very-long-chain C30 amide (m/z = -451, red) versus long chain C22 free / 
esterified carboxylic acid (m/z = -339, green); and (b) / (d) C22 free / esterified carboxylic acid 
(m/z = -339, green) versus short chain C16 free / esterified carboxylic acid (m/z = -255, 
yellow). 

 

  

3.5 X-Ray Photoelectron Spectroscopy (XPS) 

XPS survey spectra (0–1200 eV binding energy range) of margin / middle of young / 

old Phyllostachys aurea leaves detected the presence of the following main peaks: 

C(1s), O(1s), N(1s), Si(2p) and Si(2s). The percentage carbon content was highest 

overall in the young leaves, whilst the amount of oxygen and nitrogen was greatest 

in the old leaves, Table 2.   
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Table 2: XPS analysis of Phyllostachys aurea leaf surfaces.  The elemental composition is 
averaged using data from three different positions at the margin and middle of two young 
and two old leaves – 24 sampled regions in total.  In the case of silicon, which was not 
detected for all six analysis runs of each leaf region, the digit in brackets corresponds to the 
number of leaf samples which did show the presence of silicon.  The -CxHy hydrocarbon 
component at 285.0 eV is reported as a percentage of the overall C(1s) peak (set at 100%). 
 

Phyllostachys 
aurea Adaxial 

Surface 

 Relative % Elemental Composition 
C(1s) O(1s) N(1s) Si(2p) 

CTotal -CxHy  OTotal NTotal SiTotal 

Young 
Margin 96.0 ± 0.7 82.6  ± 2.0 3.5 ± 0.6 0.5 ± 0.2 

<0.1 ± 0.0 
(3) 

Middle 93.7 ± 0.6 79.3  ± 3.3 5.4 ± 0.5 0.8 ± 0.1 
0.2 ± 0.0 

(5) 

Old 
Margin 84.0 ± 3.6 67.6  ± 3.1 12.0 ± 2.3 1.7 ± 0.4 

2.3 ± 1.7 
(6) 

Middle 84.4 ± 1.8 65.7 ± 2.2 12.4 ± 1.2 1.9 ± 0.4  
1.4 ± 0.4 

(6) 
 

 

The high-resolution C(1s) envelope contained a main -CxHy hydrocarbon component 

at 285.0 eV (Supporting Information Figure S 2). The C(1s) higher binding energy tail 

region comprised -C-CX at 285.7 eV (where X represents: =O, (=O)NHR, –OOR, or -

OOH) 36, -C-N at 286.0 eV, -C-OH at 286.6 eV, C=O/CONHR at 287.9 eV,37 and 

C(=O)OR (where R is C or H), at 289.1 eV. 36 These values were consistent with 

those previously reported in the literature for leaf waxes of other species.38,39 

The O(1s) spectra were consistent with the C(1s) spectra, comprising 

complementary peak components: -CONHR at 531.6 eV, -C=O at 532.4 eV, -C-OH 

at 533.1 eV, and –C(=O)OR (where R is C or H) at 533.9 eV, (Supporting 

Information Figure S 3).36  

The N(1s) envelope consisted of two peaks at 400.2 eV and 401.7 eV, 

characteristic of amide (-C(=O)NR) and protonated-amide (-N+HR2) functionalities, 

(Supporting Information Figure S 3).36,39,40  The latter may also be associated with 

hydrogen-bonding between the amide nitrogen atom and nearby hydrogen-

containing functional groups, such as alcohols.41,42 The possibilities of N(1s) amine (-

C-NH2) or nitrate functionalities were excluded because they typically appear below 

400 eV42,43 and around 407–408 eV, respectively.  Nitrogen has been detected in 

XPS studies of other leaf surface waxes.39 

The Si(2p) spectra could be fitted with spin-orbit splitting components Si(2p3/2)O2 

and Si(2p1/2)O2 at 103.3 eV and  103.9 eV respectively, corresponding to silica-like 
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species (Supporting Information Figure S 3).36,44  No peak was present at ~101.5 eV, 

ruling out polysiloxanes as a potential source of silicon contamination.45 Previous 

XPS studies have identified silicon in leaf surface waxes, citing silica as one of its 

possible forms.39  

 

 

4 DISCUSSION  

In contrast to earlier studies, where differences in wax structure and chemistry have 

been noted between different plant species,46,47 or leaves on the same plant,48 sides 

of the same leaf,49 or stages of development,13,50 the dual wettability observed in the 

present study for young Phyllostachys aurea leaves appears to be a hitherto 

unreported wetting behaviour.  This initial dual wettability displayed during the early 

stage of P. aurea leaf growth may ensure self-cleaning properties that prevent 

microbial growth and damage. 

The mechanisms underpinning wetting comprise a chemical and physical 

component, Table 3.  Assuming a wax density of ≈ 1 g cm-3, the adaxial wax 

coverage measured by gas chromatography on young and old Phyllostachys aurea 

leaves (3.6 ± 0.4 μg cm-2 and 3.3 ± 0.1 μg cm-2, respectively), corresponds to at least 

30 nm effective wax layer thickness.  The GC results provide a complete inventory of 

wax constituents, some or all of which may be present at the outermost surface. An 

important finding is the identification of C28–C32 amides in both young and old leaves. 

Another is the detection of relatively high percentages of C22-acid esters in young 

leaves and C16–C18 free acids in wax of old leaves. These GC data have served as a 

reference for compound assignments in the corresponding XPS and ToF-SIMS 

datasets which provided highly surface-sensitive information with sampling depths 

comparable to contact angle analysis (wetting).  XPS showed high carbon content on 

the adaxial surface of the young leaves, in accordance with the greater proportion of 

very long-chain aliphatic molecules, detected by GC, relative to old-leaf samples. 

The presence of oxygen and nitrogen XPS signals also agrees well with the GC 

assignments made for alcohols, carboxylic acids, esters, and amides.  All of the 

imaging XPS data analyses correlated well with the corresponding ToF-SIMS results 

and ESEM images displaying dual wetting.  Furthermore, imaging ToF-SIMS showed 

that longer- chain alkyl species with relatively low oxygen content dominate the 
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young leaf margin region, whereas shorter-chain carboxylic acids and alcohols are 

found in greater relative concentrations towards the middle as well as throughout old 

leaves.  

 

Table 3: Summary of Phyllostachys aurea surface characteristics. 
 

Technique Young Old 

Margin Middle All Over 

Contact Angle Hydrophobic Hydrophilic Hydrophilic 

ToF-SIMS More longer-chain 
species 

More shorter-chain 
species 

Uniform distribution 
of shorter-chain 

species 

XPS Predominantly 
hydrocarbon 

species 

Higher level of 
oxygenated 

species 

Higher level of 
oxygenated 

species 

Electron 
Microscopy 

Microscale papillae 
+ Nanoscale wax 

platelets 

Relatively small 
microscale papillae 
+ Nanoscale  wax 

granules 

Poorly defined 
microscale papillae 

+ Wax film 

 

The longer hydrocarbon chains can help explain the greater hydrophobicity at 

the young leaf margin,51 however this alone cannot account for the very high (+140°) 

water contact angles observed. There also exists a contributing physical factor, 

attributed to the dense array of fine nanoscale epicuticular wax platelets found only 

in the margin regions of young leaves. The longer-chain species present towards the 

margin of young leaves, as shown by imaging ToF-SIMS, may have a strong 

tendency to form wax crystals due to their relatively narrow chain length distribution.  

These crystals may trap small air pockets, and thus facilitate the greater 

hydrophobicity and lower contact angle hysteresis associated with the Cassie-Baxter 

wetting state.4,52,53  

Given the inherent hydrophobicity of alkyl compounds found on the surface in 

the middle of young leaves, other factors must account for the observed hydrophilic 

nature in this region. This will include, the diminished surface roughness in the 

middle lowering hydrophobicity associated with the Cassie-Baxter wetting state.  In 

the case of the older Phyllostachys aurea leaves, structural degradation or variation 

of the epicuticular wax chemical structure may be due to factors such as weathering 

(sunlight, wind, rain, etc.) eroding the surface over time.54,17 Other possibilities 
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include the much higher presence of silica on the surface of old leaves (detected by 

XPS, Table 2) perhaps being linked to both internal (plant) and external 

(environmental) sources. High levels of silica have been reported in Phyllostachys 

species;55,56 including one study which found high concentrations of silica present in 

the epidermal walls.57  However it is unclear as to whether transport of silica from the 

cell wall to the epicuticular wax occurs across the complex multi-layered structure of 

leaf cuticles.58  The plentiful supply of silica in the earth’s crust, might contribute to its 

presence on the leaf’s surface through the attachment of particulates carried by 

wind, rain, insects, etc. Finally, the detection of a novel class of amides at the leaf 

surface is of interest; they may affect wax crystal formation and wettability, or 

moderate plant-herbivore and -pathogen interactions. 

Given that it has been reported that dual wetting hydrophobic – hydrophilic 

arrays can yield much higher water collection efficiencies compared to 

straightforward hydrophobic or hydrophilic surfaces,59,60 the replication of 

Phyllostachys aurea bamboo dual wetting hydrophobic – hydrophilic channels 

surfaces may offer potential scope for fog collection and dew harvesting in water-

scarce regions of the world.61  The observed surface wetting behaviour of leaves 

may also have relevance to crop spraying. 

 

 

5 CONCLUSIONS 

The dual wettability behaviour displayed by young leaves of the Phyllostachys aurea 

bamboo can be attributed to a combination of the chemical and physical differences 

observed between the leaf margin and middle. The epicuticular nanoscale 

roughness combined with the very-long-chain alkyl compounds present in the margin 

regions of the leaves, gives rise to much higher water contact angles (droplet 

movement) compared to the middle of the leaves. These differences underpin the 

self-cleaning properties of the bamboo.  Bioinspired replication of such dual wetting 

surfaces may have potential for water harvesting.  
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Figure S 1: Photographic images of Phyllostachys aurea: (a) the whole plant; (b) a young 
leaf growing out from the stem curled up in a spear-like shape; (c) a young leaf beginning to 
unravel; and (d) the wetting properties giving rise to the collection of water. 
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Figure S 2: XPS analysis of Phyllostachys aurea leaf surfaces.  The C(1s) envelope from (a) 
the margin of a young P. aurea leaf; (b) the middle of a young P. aurea leaf; (c) the margin of 
an old P. aurea leaf; and (d) the middle of an old P. aurea leaf. The single Gaussian peak fit 
represents the hydrocarbon component, -CxHy at 285.0 eV.  
 

 

Figure S 3: XPS envelopes from the middle of an old P.aurea leaf: (a) O(1s); (b) N(1s); and 
(c) Si(2p). 


