
On the structure function and survival

signature for system reliability

Frank P.A. Coolen∗ Tahani Coolen-Maturi†

Durham University, UK

Abstract

Quantification of reliability of systems has, for decades, been based on the struc-

ture function, which expresses functioning of a system given the states of its com-

ponents. One problem of the structure function is that, in its simplest form, for a

system with m components it must be specified for 2m combinations of component

states, which is impossible for most practical systems and networks. Recently, the

authors have introduced the survival signature, which is a summary of the structure

function that is meaningful if the system’s components can be divided into groups

with exchangeable failure times. The survival signature takes all the aspects of the

system lay-out into account and is sufficient for a range of inferences, in particular

to derive the system’s failure time distribution given the components’ failure time

distributions.

In this paper, we provide a brief introductory overview of the survival signature,

including recent advances. We then suggest a fundamental change to the nature of

the structure function, namely from being a binary function to a probability, or even

an imprecise probability. This provides a generalized tool for realistic quantification

of system reliability and can straightforwardly be incorporated into the survival

signature. We discuss opportunities these concepts provide for practical reliability

assessment, and challenges for their application to real-world systems.

1 Introduction

Quantification of reliability of systems and networks is crucial in many application areas,

indeed most of modern life depends on systems which are known to be reliable. Mathe-
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matical and statistical theory of system reliability has been established over many decades

and led to a large literature. At the heart of this theory is the ‘structure function’, which

reflects if a system is functioning or not given the states, functioning or not, of its compo-

nents. While there are generalizations of the structure function to multi-state scenarios,

already in this simplest form it requires specification for 2m inputs for a system con-

sisting of m components. Textbook examples of applications typically focus on systems

with either very few components, or specific structures which facilitate specification of

the structure function. However, practical systems of interest may consist of hundreds

or thousands of components, making direct specification of the structure function and its

use mostly impossible. The good news is that, for several inferences, it is possible to use

a sufficient summary of the structure function which has recently been introduced by the

authors [7] and which is called the ‘survival signature’. This is useful if the components

of a system contain groups of components with exchangeable random failure times. One

can think of such components as being ‘identical’, both with regard to the features of the

components themselves and the functioning in the system.

This paper provides an introductory overview to the survival signature and a discus-

sion of related opportunities and challenges for application and research. Furthermore, we

consider the basic structure function and argue that a simple generalization from binary

function to a probability has substantial advantages for realistic system reliability quan-

tification. Section 2 of this paper provides an overview of the survival signature, while the

generalization of the structure function is discussed in Section 3, where it is also shown

that this fits well with the concept of the survival signature. Section 4 contains discussion

of a range of opportunities and challenges related to these two fundamental concepts.

2 Survival signature: an overview

For a system with m components, the state vector x = (x1, x2, . . . , xm) ∈ {0, 1}m is defined

such that xi = 1 if the ith component functions and xi = 0 if not. The labelling of the

components is arbitrary but must be fixed to define x. Central to the established theory

of system reliability is the structure function φ : {0, 1}m → {0, 1}, defined for all possible

x, with φ(x) = 1 if the system functions and φ(x) = 0 if the system does not function for

state vector x. Throughout this paper, we restrict attention to coherent systems, which

means that φ(x) is not decreasing in any of the components of x, so system functioning

cannot be improved by worse performance of one or more of its components. We further

assume that φ(0) = 0 and φ(1) = 1, so the system fails if all its components fail and

it functions if all its components function. These last two assumptions could be relaxed
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but are reasonable for most practical systems, and they simplify the presentation in this

paper.

For general systems with a substantial number of components, specification of the

structure function is an enormous, or even practically impossible task, as it needs to be

specified for 2m different values of the vector x. Recently, Coolen and Coolen-Maturi [7]

presented a summary of the structure function, called the survival signature, which can be

used if the components of the system can be divided into groups, with the random failure

times of components in the same group exchangeable [11]. This can be interpreted such

that, on the basis of the information available, one would not distinguish these failure

times. An alternative explanation of ‘exchangeable’ is that, if one failure time was given,

one would think it equally likely to be the failure time corresponding to any component

in the same group. Clearly, this assumption must be based on information about the

specific component types and their functioning in the system. However, exchangeability

is a modelling assumption and does not necessarily have to reflect very strong knowledge

of similarity of the components and their role in the system, it just reflects absence of

knowledge or assumptions about lack of similarity being included in the model.

Let us consider a system with m components which can be divided into K ≥ 2

groups of components with exchangeable failure times, we will further refer to such groups

as different types of components. Assume that there are mk ≥ 1 components of type

k ∈ {1, 2, . . . , K}, so
∑K

k=1mk = m. Due to the arbitrary ordering of the components in

the state vector x, components of the same type can be grouped together and the state

vector can be written as x = (x1, x2, . . . , xK), with xk = (xk1, x
k
2, . . . , x

k
mk

) the sub-vector

representing the states of the components of type k. The survival signature for such

a system [7] is denoted by Φ(l1, l2, . . . , lK), for lk = 0, 1, . . . ,mk, and is defined as the

probability that the system functions given that precisely lk of its mk components of type

k function, for each k ∈ {1, 2, . . . , K}. There are
(
mk

lk

)
state vectors xk with precisely lk

of its mk components xki equal to 1, so with
∑mk

i=1 x
k
i = lk; let Sk

l denote the set of these

state vectors for components of type k. Furthermore, let Sl1,...,lK denote the set of all

state vectors for the whole system for which
∑mk

i=1 x
k
i = lk, k = 1, 2, . . . , K. Due to the

exchangeability assumption for the failure times of the mk components of type k, all the

state vectors xk ∈ Sk
l are equally likely to occur, hence

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,...,lK

φ(x) (1)

The survival signature needs to be specified for
∏K

k=1(mk + 1) values of the vector

(l1, . . . , lK), which tends to be far smaller than 2m if quite a few of the components are
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of the same type. Note that, if no components are assumed to be of the same type, then

the survival signature is just equal to the structure function and no reduced-size sufficient

summary of the structure function is available for the following inference of interest.

Let Ck
t ∈ {0, 1, . . . ,mk} denote the number of components of type k in the system

that function at time t > 0 and let TS denote the system failure time. The probability

that the system functions at time t > 0 is equal to

P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P (
K⋂
k=1

{Ck
t = lk}) (2)

This equation shows the essential benefit of the use of the survival signature, namely that

it contains the full information about the system structure required to derive the system

survival function. It further shows that this information about the system structure is now

fully separated from information about the component failure times, which is included in

the function through the second factor within the summation. This separation is useful in

a variety of manners, including for the use of statistical methods for the system survival

function based on component failure data and for comparison of different system lay-outs.

For equation (2) only exchangeability of the failure times of components of the same

type is assumed, so components of different types may have dependent failure times. Of

course, any such dependence would need to be modelled, it can for example occur due to

common-cause failures [8]. Some common modelling assumptions may be reasonable, and

they may further simplify the expression for the system survival function. In particular,

if one assumes that the failure times of components of different types are independent,

then we have

P (
⋂

k=1,...,K

{Ck
t = lk}) =

K∏
k=1

P (Ck
t = lk)

If, in addition, one assumes for all k = 1, . . . , K, that the failure times of components of

type k are conditionally independent and identically distributed (ciid) with cumulative

distribution function Fk(t), which is a stronger assumption than exchangeability, then

P (
⋂

k=1,...,K

{Ck
t = lk}) =

K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

This enables e.g. quite straightforward application of Bayesian statistical methods, where

Fk(t) may be assumed to belong to a parametric family but where also nonparametric ap-

proaches are possible, both are illustrated by Aslett et al. [2]. Coolen et al. [10] illustrate

nonparametric predictive inference [3, 6] for the system survival function using equation
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(2), where the ciid assumption is not made and with the generalization to imprecise prob-

abilities [4]. Feng et al. [12] illustrate the use of the survival signature combined with

known sets of probability distributions for the failure times of the components of different

types, so also within theory of imprecise probability [4], and they also discuss computation

of importance measures for components in the systems using the survival signature. To

get further insight into the system survival function for complex systems, when analytical

derivations are not feasible anymore, the ability to perform simulations efficiently is cru-

cial. Patelli et al. [14] show that the survival function is sufficient for such simulations,

where different algorithms can be used depending on whether one aims explicitly at sim-

ulating system failure times or at learning the system survival function. In particular for

the latter scenario the survival signature allows extremely efficient simulation.

If the system consists of a single type of component, so the failure types of the m

components are all assumed to be exchangeable, then the survival signature is effectively

identical to the system signature introduced by Samaniego [16], that is, there is a one-

to-one relation between these two concepts. While the signature has proven to be a

popular concept to gain insight into qualitative aspects of system design, leading to a

substantial literature during the last decade, few real life systems consist of a single

type of components hence the survival signature provides a crucial generalization of the

signature, leading Samaniego and Navarro [17] to describe it as a ‘breakthrough’ for

system reliability and using the concept for comparison of different systems.

While the survival signature may provide a substantially reduced representation of the

system structure compared to the full structure function, its derivation may still be an

extremely complicated task. Of course, it only needs to be calculated once for a system,

so if reliability of the system is really important this may not be too problematic. Aslett

[1] provided a package in the statistical software R which enables computation of the

survival signature, as well as Samaniego’s signature. Recently, Reed [15] presented a

vast improvement on computation time by using binary decision diagrams and dynamic

programming to compute the survival signature, it is expected that this approach will

soon be available in the R package by Aslett. Currently it looks feasible to calculate the

survival signature for systems with quite a reasonable number of components, of course it

depends on the actual system structure and the number of different component types, but

systems with in the order of 100 components should be feasible and we expect that exact

calculation methods for larger systems will become available soon. It should be noticed

that the survival signature for a system that consists of two subsystems in either series or

parallel configuration can be derived from the survival signatures of the subsystems, as

shown by Coolen et al. [10], using a similar method as presented by Gaofeng et al. [13] for
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Samaniego’s signature. Furthermore, the fact that the survival signature Φ(l1, . . . , lK) is a

monotonously increasing funtion of each lk, for coherent systems, makes it straightforward

to find bounds if it is only calculated for some of the vectors (l1, . . . , lK), this is also

presented by Coolen et al. [10]. There may be further ways to learn the survival signature

for large systems, for example through simulations, this is an important topic for future

research.

Coolen et al. [10] also discuss the important situation that occurs if a component is

replaced. If the failure time of this component is age dependent and it is replaced by a new

component, then upon its replacement its future failure time will not be exchangeable with

the failure times of components that were of the same type. Hence this must be modelled

as an additional component type. The computations involved do not require the full new

survival signature to be calculated from scratch, one can reduce the effort to computing

it only under the assumption that this new component functions, Coolen et al. [10] show

how this can then be combined with the original survival signature to deduce the values

corresponding to this new component failing. Of course, if one assumes no ageing effect,

so an exponential distribution for the component’s failure time, then after replacement it

can still be assumed to be of the same type as before.

Example 1.

As a small example of the survival signature, consider the system in Figure 1 involving

a system with K = 2 types of components [7]. The survival signature for this system is

presented in Table 1, these values are easy to verify.

1

1 1

2 2

2

Figure 1: System with 2 types of components
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l1 l2 Φ(l1, l2) l1 l2 Φ(l1, l2)

0 0 0 2 0 0

0 1 0 2 1 0

0 2 0 2 2 4/9

0 3 0 2 3 6/9

1 0 0 3 0 1

1 1 0 3 1 1

1 2 1/9 3 2 1

1 3 3/9 3 3 1

Table 1: Survival signature of the system in Figure 1

3 The structure function as probability

As mentioned before, in mathematical theory of reliability the main focus is on the func-

tioning of a system given the functioning, or not, of its components and the structure of

the system. The mathematical concept which is central to this theory is the structure

function, as introduced in the previous section. This concept is undisputed in the litera-

ture and the start to every course and textbook on system reliability. However, when we

think about its practical use, it may perhaps be somewhat restricted as will be discussed

below. We propose a quite straightforward generalization which provides enormously en-

hanced flexibility in its use: consider the structure function as a probability, hence taking

on values in [0, 1] instead of {0, 1}. Of course, this generalization completely embeds

the traditional structure function, we will refer to the generalized version as probabilistic

structure function. There are many scenarios in which this generalization provides useful

modelling flexibility, we discuss this via a simple example.

Suppose we wish to quantify the reliability of a car. We must start describing what

we mean with system functioning, then list the components, and finally specify whether

the car functions or not given all states of the components. System functioning can have

many meanings here: for example it may mean that the car will satisfactorily enable us

to travel to our destination today, or function without problems the next week, or any

other criterion. Recently, we considered such scenarios and proposed to focus explicitly

on a next task, also enabled by the use of a probabilistic structure function [9]. This also

makes it possible to consider vaguely specified or unknown tasks, in particular through
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the further generalisation of the structure function as an imprecise probability [4]. But

returning to the car, let us assume that we define the ability to drive at least a specified

distance in a normal manner is considered successful functioning of the system; do we

need to list all components of the car and include them all, either individually or as

subsystems, in the specification of the structure function? It would be useful if we could

limit our attention to key components of interest, for example the engine, transmission

system and tyres. Clearly, while these are important for the functioning of the car, their

functioning does not provide absolute certainty that the car will function, e.g. there may

be something wrong with the braking system or the car may fail to start. Therefore, being

able to specify the car’s functioning as a probability will be useful; one could argue that

system functioning, considered as function of a set of its components, should always be

interpreted as conditional on all other components functioning correctly, taking this view

would also be most accurately supported by, and reflected through, the use of conditional

probabilities, where one can include the probability of the other components actually

functioning correctly.

A further possible advantage of the probabilistic structure function appears if one

wishes to quantify a system’s reliability in early design phases, in particular if the ex-

act requirements on the system are not yet known or if the final system design is not

yet fully known. These are scenarios where the lack of perfect knowledge is best rep-

resented through probabilities, or indeed imprecise probabilities if one wishes to reflect

indeterminacy as well [4, 18]. Interpreting system functioning, given the state of (a subset

of) the system’s components, as random is also natural if one needs to learn about this

functioning from experiments, which may include computer simulations for large complex

systems. In case of computer simulations there is always some remaining uncertainty

about the quality of the link between the computer model and the real world system, this

again is best reflected through a probabilistic structure function.

While generalization to a probabilistic structure function is mathematically straight-

forward, meaningful implementation requires substantial information or modelling as-

sumptions, this leads to many topics for research which are best addressed in direct

relation to real-world applications. In relation to the use of the survival signature for

quantification of system reliability, as discussed in Section 2, it is important to emphasize

that this concept can immediately be used with probabilistic structure functions. The

derivation of the survival function may become harder (e.g. the fast approach using binary

decision diagrams [15] depends on the binary nature of the structure function), but the

main equation (1) remains the same if the structure function is a probability, and even the

generalization of the survival signature corresponding to the use of imprecise probabilistic
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structure functions is quite straightforward [9].

4 Discussion

While the structure function has been a central concept to the theory of system reliability,

there has, until recently, been surprisingly little attention to the two aspects discussed

in this paper: the development of summaries of the structure function which are suffi-

cient for specific inferences, and its generalization to a probabilistic structure function.

The survival signature provides an attractive summary of the structure function which

is sufficient to derive the probability distribution of the system’s failure time, given the

probability distributions of the failure times of each of the component types. This has

thus far only been presented for systems and components with two states, so either func-

tioning or not. For many real world systems it is important to take multiple states into

account, with time-dependent transitions between the states. For example, there may be

an intermediate state between perfect functioning and failing, reflecting that the system

functions but some underlying minor fault has appeared or that the system functions with

reduced capacity. Such multiple state scenarios, for both the system and its components,

can also be reflected through a structure function, which of course becomes more complex

as the state of the system for all combinations of the component states must be given. For

such cases, there will again be the opportunity to separate structural aspects of the sys-

tem from time-dependent transitions for the components via a summary like the survival

signature, developing the detailed theory is an interesting topic for future research.

It should be emphasized that the survival signature as discussed in this paper is not

sufficient for all possible inferences, for example in order to see the effect of one specific

component being replaced on the system reliability one would need to have the detailed

structure information required to calculate a new survival signature. But it is a very

flexible tool, which offers opportunities for variations to deal with a range of important

issues. For example, the recently developed theory of adversarial risk analysis [5] deals

with game theoretic aspects when one tries to protect systems from attacks. One could

imagine a scenario where an electricity network contains many components of the same

type, but where some of these, due to their geographic location, are more vulnerable to

attacks than others. In this case, the latter components can be modelled in the survival

signature as being of different types than the components which appear to be similar but

are deemed to be less risky for attacks, this will enable detailed study of the possible

consequences of attacks for the reliability of the system. A similar more detailed grouping

of components may be useful to reflect the possibility that common cause failures may
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affect some groups of components more than others [8].

It is important for future research in this direction and development of implementable

methods, that real-world problems are studied and minimally sufficient summaries of

structure functions are developed to enable specific problems to be solved. In particular for

large-scale systems and networks there are interesting problems with regard to upscaling

methods and required computations. It is likely that the scale of the system will affect the

exchangeability assumptions, as for systems or networks with thousands of components it

is simply not possible to take individual aspects of all components into account, and this

is also usually not necessary to get a suitable overall impression of the system’s reliability,

indeed it is natural to focus efforts on modelling of, and collecting information on the most

critical components of a system. It is here that acknowledging some remain uncertainties

and enabling these to be included in an analysis are important, which can be done using

the suggested generalization to probabilistic structure functions. Meaningful models for

probabilistic structure functions need to be developed, and again this would best be done

in close connection to practical problems.

It will be clear that, with the two concepts discussed in this paper, there is a wide range

of new opportunities and related challenges, both for applications and theory. Overall,

the aim is to enable more realistic modelling, inference and decision support for large-

scale real-world systems and networks than has been possible thus far. Several researchers

have already started to work on further theory and methodology of the survival signature,

a crucial next step is to start implementing it to real-world problems, which will give

important direction to further research. The authors would particularly welcome interest

from readers who see opportunities to use these concepts for reliability analyses of their

practical systems and networks, as such collaborations are crucial for the future progress

of this work.
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