
Modeling Severity Risk under PD-LGD Correlation

Chulwoo Hana

aDurham Business School
chulwoo.han@durham.ac.uk

Abstract

In this article, a generic severity risk framework in which loss given default
(LGD) is dependent upon probability of default (PD) in an intuitive manner
is developed. By modeling the conditional mean of LGD as a function of PD,
which also varies with systemic risk factors, this model allows an arbitrary
functional relationship between PD and LGD. Based on this framework, sev-
eral specifications of stochastic LGD are proposed with detailed calibration
methods. By combining these models with an extension of CreditRisk+, a
versatile mixed Poisson credit risk model that is capable of handling both
risk factor correlation and PD-LGD dependency is developed. An efficient
simulation algorithm based on importance sampling is also introduced for
risk calculation. Empirical studies suggest that ignoring or incorrectly spec-
ifying severity risk can significantly underestimate credit risk and a properly
defined severity risk model is critical for credit risk measurement as well as
downturn LGD estimation.

Keywords: Severity risk; Loss given default; Credit risk; CreditRisk+; Down-
turn LGD.
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1. Introduction

Recent studies have shown evidence that suggests loss given default
(LGD) is not only volatile but also positively correlated with default rate
or probability of default (PD). One of the reasons behind this relationship
is business cycle: During a recession period, default occurs more frequently
whilst the value of the firm or collateral tends to fall. The PD-LGD de-
pendency can exacerbate the loss due to default in a recession period when
the overall default risk is high. The use of “downturn” LGD in the Basel
Capital Accord is a reflection of this phenomenon. Frye (2000b) examines
US corporate bonds and finds a significant positive relationship between
LGD and default rate. Madan et al. (2006) develop debt models which im-
pose this positive relationship and obtain supporting results when applied
to BBB-rated corporate bonds. Carey and Gordy (2004) find that although
the relation is less obvious during low default periods, it becomes more ap-
parent when the default rate is high, which is indeed the period of interest.
Altman et al. (2005) also find positive correlation between LGD and default
rate. However, they are skeptical of the existence of a macroeconomic risk
factor that explains this relationship. A comprehensive review of research
on PD-LGD relationship and recent developments in severity risk modeling
can be found in Altman (2010), which is continuously updated reflecting
latest developments and data.

Empirical evidence has led to developments of severity risk models that
address the dependency between PD and LGD. Frye (2000a) models the
value of collateral, hence LGD, as a linear function of a systemic risk fac-
tor, which also governs default rates. Pykhtin (2003), meanwhile, assumes
that the value of collateral is an exponential function of a normally dis-
tributed systemic risk factor and therefore follows a log-normal distribu-
tion. Düllmann and Trapp (2004) build their model based on Frye (2000a)
and Pykhtin (2003) but utilize logistic function to ensure that LGD lies
in [0,1]. Tasche (2004) also takes a similar approach to others but uses a
beta distribution for LGD. Giese (2005) proposes a three-parameter func-
tion that links PD with LGD. His model is similar to the approach pro-
posed in this paper in the sense that the PD-LGD relationship is directly
modeled without any intermediate risk factors. More recently, Van Damme
(2011) generalizes Tasche (2004)’s work and develops a generic framework for
stochastic LGD modeling. Frye (2014), under certain assumptions, derives
a relationship between PD and LGD without any additional parameters,
and shows via simulation studies that this parsimonious model works well
under different scenarios. However, his model, although it can be considered
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a one-parameter model, is not flexible enough to produce different shapes of
PD-LGD curve, and no validation using actual data is provided.

While these models differ in the specification of LGD, they are all based
on Merton (1974)’s structural model framework. On the other hand, LGD
modeling for another popular credit risk framework, CreditRisk+, has re-
ceived far less attention and it is rare to find a model that incorporates
PD-LGD dependency. One of the reasons is perhaps because people are
reluctant to abandon the analytic tractability of the model, which is often
claimed to be the major benefit of CreditRisk+. It is impossible to allow
PD-LGD correlation within the CreditRisk+ framework while maintaining
its analytic tractability. Few attempts to incorporate stochastic LGD (but
without correlation with PD) into CreditRisk+ have been made: Gordy
(2003) incorporates severity risk by assuming that LGD is independently
gamma distributed and obtains the loss distribution using saddlepoint ap-
proximation. He, however, finds that the increase of risk due to LGD volatil-
ity vanishes quickly as the number of obligors grows. Bürgisser et al. (2001)
introduce a stochastic variation of loss using two types of factors, obligor
specific factors and systemic factors that are independent of each other. The
systemic factors induce a pairwise correlation between obligors but does not
incorporate a correlation between PD and LGD as these factors are assumed
to be independent of the systemic factors that govern PD.

Despite the strong evidence of PD-LGD dependency and the develop-
ments of such models from academia, currently available commercial credit
risk packages still rely on constant or independent distribution assumption
of LGD. For example, CreditMetrics by MSCI, perhaps the most well-known
commercial credit risk system based on the structural model, utilizes inde-
pendent beta distribution to describe recovery rate volatility. However, as
evidenced in the empirical studies of this paper and several other studies,
these assumptions do not address severity risk adequately. While Credit-
Metrics is sold as a black box, CreditRisk+ has not been commercialized and
those banks which adopt CreditRisk+ or its variants mostly have access to
the core engine of their system and are able to modify it. Also, as the Basel
IRB risk capital formula is based on Merton (1974)’s model, CreditRisk+
can be adopted as an alternative credit risk model and used for model risk
management and validation. More importantly, as demonstrated by Han
(2014), CreditRisk+ has more flexibility to accommodate various shapes of
loss distribution. These facts together make the development of a proper
severity risk model under CreditRisk+ framework particularly appealing.

The aim of the paper is twofold. Firstly, I develop a framework for sever-
ity risk in which the mean of LGD is assumed to vary with PD, which varies
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with systemic risk factors. The framework admits nonlinear relationship
between PD and LGD, e.g., LGD as a power function of PD, which is found
to have the best fit in Altman et al. (2005). Modelling LGD as a direct
function of PD instead of systemic risk factors has several advantages: An
arbitrary nonlinear PD-LGD relationship can be easily accommodated; as
noted by Altman et al. (2005), the existence of a macroeconomic risk factor
that explains PD-LGD correlation is not clear; PD and LGD are observable,
whereas it is not straightforward to define and observe systemic risk factors.
As pointed out by Frye (2014), calibration of a severity risk model using real
world data is nontrivial due to rare default events. This is especially prob-
lematic for highly rated bonds for which default is extremely rare. While
existing papers (except Frye (2014) whose model requires no calibration)
are silent on this issue, this paper provides a detailed calibration method
that addresses this issue. Based on the framework, several specifications
of stochastic LGD are considered and evaluated through empirical studies.
Secondly, I combine these models with the common factor CreditRisk+ by
Han and Kang (2008) to develop a new credit risk model that is capable of
incorporating both risk factor correlation and PD-LGD correlation within
CreditRisk+ framework. For this, analytic tractability of the model is sac-
rificed and a simulation method employing importance sampling is adopted.
Equipped with high performance computers, there is no reason to adhere to
an analytic solution at the cost of flexibility. As demonstrated later in this
article, the simulation method turns out to be not only accurate but also
very efficient.

To my knowledge, this is the first paper that accounts for PD-LGD
correlation within the CreditRisk+ framework and provides a detailed cali-
bration method considering limited data availability. Frye (2014) addresses
this issue by proposing a model without additional parameters (so no need
for calibration), but his model is overly restrictive and applicable only to
structural models. The severity model and its calibration method proposed
here is independent of the credit risk model and can be incorporated into
other credit risk models such as the structural model.

The rest of the article is organized as follows. In Section 2, the common
factor CreditRisk+ that incorporates risk factor correlation is briefly intro-
duced. Section 3 is devoted to the development of stochastic LGD models.
Detailed calibration method of each model is proposed at the end of the
section. Applied to a model portfolio, the models are evaluated in several
aspects in Section 4. The efficiency of the simulation algorithm is also ad-
dressed in this section. Concluding remarks and suggestions are given in
Section 5 and the simulation algorithm for loss distribution is illustrated in
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Appendix A.

2. The Common Factor CreditRisk+

In the original CreditRisk+ model of CSFP (1997), PD is assumed to
be a linear function of the risk factors, i.e., the conditional PD of bond i is
assumed to have the form

Pi(X) = PDi

(
w0i +

K∑
k=1

wkiXk

)
, (1)

where PDi is the unconditional PD, X = {X1, . . . , XK} are gamma dis-
tributed independent risk factors with mean 1 and variance σ2Xk

, and the

sum of the weights,
∑K

k=0wki, is equal to 1. Even though it is theoreti-
cally possible to incorporate asset correlation in CreditRisk+ by appropri-
ately choosing the weights, defining independent risk factors and assigning
weights on them is difficult and impractical. For this reason, extensions of
the original model that explicitly take the correlation into account have been
introduced, and one of the latest developments is the common factor Cred-
itRisk+ model (CreditRisk++) by Han and Kang (2008). Creditrisk++
assumes that a correlated risk factor can be decomposed into a sector spe-
cific factor Yk and a macroeconomic factor Ŷ that are independent of each
other, i.e.,

Xk = δkYk + γkŶ , k = 1, . . . ,K, (2)

where

Yk ∼ Gamma(θk, 1), (3)

Ŷ ∼ Gamma(θ̂, 1). (4)

Then, the probability of default can be rewritten as a linear combination of
K + 1 gamma distributed independent risk factors, X̂k:

Pi = PDi

(
w0i +

K+1∑
k=1

wkiX̂k

)
, (5)

where

X̂k ∼ Gamma (θk, δk) , k = 1, . . . ,K, (6)

X̂K+1 ∼ Gamma
(
θ̂, 1
)
, and (7)

wK+1,i =

K∑
k=1

wkiγk. (8)
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X̂k, k = 1, . . . ,K, are sector specific risk factors and X̂K+1 is a macroeco-
nomic risk factor that has influence on all sectors. The degree of influence
is determined by δk and γk. The expected values and covariance matrix of
the correlated risk factors, Xk, have the form

E(Xk) = δkθk + γkθ̂, (9)

V (Xk) = δ2kθk + γ2k θ̂, (10)

COV (Xk, Xl) = γkγlθ̂. (11)

Appropriately choosing the parameter values, various covariance structures
can be represented by CreditRisk++. The model can be calibrated by min-
imizing the distance between an observed covariance matrix and the above
covariance matrix equation subject to E(Xk) = 1. In general, matching the
variance terms exactly and then minimizing the distance between covariance
terms tends to yield a more stable result. That is, the parameters can be
estimated by solving

min
K∑
k=1

K∑
l=k+1

(γkγlθ̂ − σkl)2

s. t. E(Xk) = δkθk + γkθ̂ = 1, k = 1, · · · ,K
V (Xk) = δ2kθk + γ2k θ̂ = σ2k, k = 1, · · · ,K

The main advantage of CreditRisk++ is that it can incorporate risk fac-
tor correlations in a very flexible and intuitive manner while maintaining the
framework of CreditRisk+. Therefore, most of the numerical algorithms and
extensions developed for CreditRisk+ remain valid also for CreditRisk++.

3. Modeling Severity Risk

In the CreditRisk+, LGD is assumed constant. However, as mentioned
earlier, there is strong evidence that LGD is not only stochastic, but more
importantly, correlated with PD. To take this into consideration, LGD is
assumed to have a beta distribution whose mean is dependent upon the risk
factors. More specifically, the following specification for LGD of bond i, Ui,
is considered:

Ui|X = Beta(ai, bi) (12)

with

CLGDi := E(Ui|X) = LGDi

(
c0i +

K∑
k=1

ckiXk

)
,

K∑
k=0

cki = 1, (13)
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where LGDi is the unconditional mean of bond i’s LGD.1 Since the condi-
tional PD is also a linear function of the risk factors, PD and LGD become
correlated through the risk factors. It is often the case that the risk factors
are not observable, and it is convenient to write LGD as a function of PD.
If we assume cki = Ciwki for some constant Ci, we have

CLGDi = φ0i + φ1iPi (14)

where

φ0i =
c0i − w0i

1− w0i
LGDi, φ1i =

c0i − w0i

1− w0i

LGDi

PDi
.

If φ1i = 0, LGD becomes an independent beta random variable as assumed
in CreditMetrics. Equation (14) can be extended by allowing a nonlinear
relationship between PD and LGD. Based on the regression results in Alt-
man et al. (2005), with which the results in this paper are also in line, three
LGD specifications are considered:

CLGDi = f(Pi) (15)

f(Pi) = φ0i + φ1iPi (Linear) (16)

f(Pi) = φ0iP
φ1i
i (Power) (17)

f(Pi) =
1

1 + exp(−φ0i − φ1iPi)
(Logistic) (18)

The advantage of the logistic function is that CLGDi is guaranteed to be
within [0,1], whereas the other functions require an ad hoc boundary con-
dition that caps LGD at 1. It turns out in the empirical studies that the
boundary condition in the linear specification has a significant impact on
risk measurement while LGD rarely exceeds the boundaries in the power
specification.

3.1. Model Calibration

There are four parameters, φ0i, φ1i, ai, and bi to be estimated for bond
i in each of the LGD models. φ0i and φ1i are associated with the systemic
component of the severity risk, and ai and bi are associated with the id-
iosyncratic component of the severity risk.

1Since K correlated risk factors can be represented by K + 1 independent risk factors
under CreditRisk++, K independent risk factors, Xk ∼ Gamma(αk, βk) with αkβk = 1,
are assumed without loss of generality for the rest of the article.
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3.1.1. Calibration of φ0i and φ1i
Suppose that we can define a group of homogeneous bonds to which

bond i belongs, and we can observe its historic default rates and loss rates.
Then, one obvious choice of estimation method is to minimize the sum of
the squared errors:

min
φ0i,φ1i

T∑
t=1

(CLGDit − f(Pit;φ0i, φ1i))
2 (19)

subject to E(f(Pi)) = LGDi,

where CLGDit and Pit are the loss rate and the default rate of the group
at time t. The constraint is to ensure that the expectation of f(Pi) is equal
to the unconditional expectation of bond i’s LGD, LGDi. For the Linear
model, E(f(Pi)) can be immediately obtained from

E(f(Pi)) = φ0i + φ1iPDi. (20)

For the other two models, however, the following integration with respect
to the risk factors, X, needs to be computed numerically.

E(f(Pi)) =

∫
x
f(Pi(x))fX(x)dx, Pi(x) = PDi

(
w0i +

K∑
k=1

wkixk

)
, (21)

where fX(x) is the joint probability density function of X.
A practical approach to define homogeneous groups is to partition the

bonds according to their rating, seniority, and collateral type. A problem of
this method is that some groups may not contain enough default events to
get reliable estimation results. In this case, the variation of the default rates
can be dominated by a few default events. This is a well known problem
for the high ranking groups which consist of a small number of bonds whose
defaults are extremely rare. Also, grouping bonds with the same rating will
result in a narrow range of default rate variation.

Alternatively, the parameters are estimated using the default rates of a
pool that consists of all bonds. This will produce a more stable default rate
time series at the cost of homogeneity. A drawback of this approach is that,
while the calibration result will be valid only for the PD range of the all
bond pool, the level of the PD of an individual bond can be significantly
different from that of the pool. Therefore, the following procedure is adopted
to obtain an individual bond’s conditional LGD.

8



1. Estimate φ0 and φ1 from the all bond pool by solving

min
T∑
t=1

(CLGDt − f(Pt;φ0, φ1))
2,

where CLGDt and PDt are respectively the loss rate and the default
rate of all bonds at time t.

2. Define the adjusted conditional PD of bond i as follows:

P ′
i :=

PD

PDi
Pi,

where PD is the mean of Pt during the sample period. This adjustment
makes the conditional PD of an individual bond centered at PD.

3. Then, the conditional mean of the LGD of bond i is given by

CLGDi =
LGDi

E(f(P ′
i ))
f(P ′

i ).

This satisfies E(CLGDi) = LGDi.

3.1.2. Calibration of ai and bi
The parameters of the beta distribution can be estimated from the vari-

ance of LGD. As the mean of the beta distribution is CLGDi, which is
known from the previous step, it is convenient to reparametrize the beta
distribution with respect to the mean µβi and the sample size νβi:

µβi =
ai

ai + bi
, νβi = ai + bi. (22)

The variance is given by

σ2βi =
aibi

(ai + bi)2(ai + bi + 1)
=
µβi(1− µβi)

1 + νβi
. (23)

Therefore, we have

E(Ui|X) = µβi = CLGDi, (24)

V (Ui|X) = σ2βi =
µβi(1− µβi)

1 + νβi
. (25)
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By the law of total variance, the unconditional variance of LGD, V LGDi,
can be decomposed into two parts.

V LGDi = E[V (Ui|X)] + V [E(Ui|X)]

= E

(
µβi(1− µβi)

1 + νβi

)
+ V (µβi)

=
LGDi − LGD2

i

1 + νβi
+

νβi
1 + νβi

V (CLGDi).

(26)

The last row is from E(µβi) = LGDi. V (CLGDi) can be obtained from the
integration

V (CLGDi) =

∫
x
(f(Pi(x))− LGDi)

2fX(x)dx. (27)

This has a closed form solution for the linear model, but needs to be solved
numerically for other models. Solving (26) for νβi yields

νβi = −V LGD − LGD + LGD2

V LGD − V (CLGDi)
. (28)

Then, a and b are given by

ai = µβiνβi, bi = (1− µβi)νβi. (29)

4. Empirical Studies

4.1. The Portfolio

A model portfolio of senior unsecured bonds is constructed based on the
actual market data; bond characteristics are set by referring to Moody’s
(2012) annual report. PD and its standard deviation of each rating are
assumed to be based on the annual issuer-weighted corporate default rates
reported in Exhibit 30 of the report. LGD of each rating is based on the
average senior unsecured bond recovery rates in Exhibit 21.2 The portfolio
is assumed to consist of 1,000 bonds which have exposure at default (EaD)
of 100 million dollars. The distribution of the bond exposure across ratings
is assumed based on the debts outstanding in the market. Aaa rated bonds

2Secured or collateralized bonds are fully recovered except some extreme circumstances
and bears little severity risk. As our focus is the effect of severity risk on credit loss, only
unsecured bonds are assumed.
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are excluded from the investment set as there is no default record of Aaa
firms since 1920. The characteristics of the portfolio are summarized in
Table 1. The table shows that PD is strongly correlated with the rating,
whereas LGD is rather constant at around 60% across the ratings. This does
not imply no correlation between PD and LGD. The PD-LGD correlation
of our concern is not cross-sectional correlation but time-series correlation,
which is evident as shown in Section 4.2.

Rating PD SPD LGD EaD/ Num.
(%) (%) (%) Bond Bonds

Aa 0.06 0.19 63.00 100 50
A 0.10 0.27 68.00 100 350

Baa 0.27 0.47 59.00 100 350
Ba 1.07 1.65 53.00 100 100
B 3.42 4.03 62.00 100 100

Caa-C 13.77 17.03 64.00 100 50

Table 1: The model portfolio. The portfolio consists of 1,000 bonds distributed evenly
across 10 industry groups in Table 2 and according to the composition in the last column
across ratings. Each bond is assumed to have a notional value of 100 million dollars. PD,
SPD, and LGD are respectively probability of default, its standard deviation, and loss
given default all in percentage values, and they are based on Exhibit 20, 21, and 30 of
Moody’s (2012).

Among Moody’s 11 broad industry groups, the portfolio consists of bonds
from 10 industry groups except ‘Government Related Issuers’ since default in
this group is extremely rare and reliable estimates of PD and LGD cannot be
obtained. The bonds are assumed to be evenly distributed across industries.
That is, there are 100 bonds in each of 10 industry groups which are allocated
to the ratings according to the proportions in the last column of Table 1. The
10 industry groups and their descriptive statistics are reported in Table 2.
Finally, each bond is assumed to be issued by different issuers, i.e., defaults
of the bonds occur independently of each other.

4.2. PD-LGD Correlation

The LGD models are estimated from the default time series of ‘All Bonds’
during the period 1982-2011, which appear in Exhibit 20 and 30 of the
Moody’s report. The descriptive statistics are reported in Table 3. The
correlation between PD and LGD is very high with the correlation coefficient
0.71 during the sample period. This is in line with the high correlation of
0.75 during 1982-2001 reported by Altman et al. (2005).
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Corr. I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

I1 1.00
I2 0.47 1.00
I3 0.62 0.84 1.00
I4 -0.04 0.26 0.13 1.00
I5 0.45 0.65 0.59 -0.01 1.00
I6 0.51 0.76 0.61 0.12 0.60 1.00
I7 0.35 0.55 0.57 0.02 0.19 0.31 1.00
I8 0.19 0.67 0.50 0.28 0.32 0.59 0.51 1.00
I9 0.45 0.59 0.52 0.28 0.24 0.43 0.58 0.50 1.00
I10 0.44 0.36 0.34 0.17 0.01 0.29 0.53 0.42 0.51 1.00

Mean 0.41 1.69 1.97 1.35 0.86 2.67 2.30 1.32 2.49 0.17
Std 0.72 2.03 2.09 1.70 2.62 3.86 2.30 1.90 2.98 0.27

Table 2: Descriptive statistics of the default rates of 10 broad industry groups. The
statistics are calculated from the industry default time series during 1970-2011, excerpted
from Exhibit 38 of Moody’s (2012). I1: Banking, I2: Capital Industries, I3: Consumer
Industries, I4: Energy & Environment, I5: Non-Bank Finance, I6: Media & Publishing,
I7: Retail & Distribution, I8: Technology, I9: Transportation, I10: Utilities.

Mean Median Stdev Min Max Corr.

PD 1.67 1.28 1.20 0.37 5.45 0.71
LGD 58.46 56.80 9.53 41.50 78.40

Table 3: Descriptive statistics of PD and LGD of all bonds. The statistics are calculated
from the default rates and the recovery rates of all bonds during 1982-2011, excerpted
from Exhibit 20 and 30 of Moody’s (2012).
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Regression results of the three LGD specifications in (16)-(18) are re-
ported in Table 4 and displayed in Figure 1. All three models show similar
fitting capabilities with R-squared values larger than 0.5: The power func-
tion has a marginally higher R-squared value (0.56) compared to the linear
function (0.54) and the logistic function (0.55). Altman et al. (2005) also
find that power function slightly outperforms other functional forms in terms
of R-squared. φ1’s of all three models are significant at 99% level.

The impact of each LGD specification on the credit risk can be antic-
ipated from the regression results. First note that, with the calibration
procedure in Section 3.1.1, the PD-LGD relationship around the mean of
PD, 1.67%, plays a dominant role for the estimation of the expected loss
and the unexpected loss at a low confidence level whilst the relationship
at higher PD values becomes more important for the unexpected loss at a
higher confidence level. From the figure, it can be seen that the linear re-
gression line and the logistic regression line are very similar and lie below the
power regression line around the mean of PD. This suggests that the Power
model will yield the highest expected loss and the highest unexpected loss
at a low confidence level. However, LGD increases with PD most rapidly
under the Linear model followed by the Logistic model. This means that
the unexpected loss from the Linear model will become the highest and the
unexpected loss from the Power model will become the lowest as the confi-
dence level increases. Comparison of Value-at-Risk (VaR) among the models
is less obvious as VaR is the sum of the expected loss and the unexpected
loss.

Linear Power Logistic

φ0 0.487* 1.291 -0.067
(0.000) (0.070) (0.455)

φ1 5.851* 0.187* 25.434*
(0.000) (0.000) (0.000)

R2 0.539 0.563 0.550
F-value 32.679* 36.144* 34.174*

Table 4: Regression results of the models in (16)-(18). The parameters are estimated
from the default rates and the recovery rates of all bonds during 1982-2011, excerpted
from Exhibit 20 and 30 of Moody’s (2012). The figures in parenthesis are p-values and *
refers to 99% significance.
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Figure 1: Regression of LGD on PD. Refer to Table 4 for details.

4.3. Credit Risk Calculation

Credit risk of the portfolio is computed using CreditRisk++ with five
different LGD models. Besides the three LGD models proposed in Sec-
tion 3, a constant LGD model is chosen as a benchmark. A beta-distributed
independent LGD model is also included for comparison.

The risk factors are defined as the PDs of the 10 industry sectors,
from which 11 independent systemic risk factors—10 industry specific and 1
macroeconomic—are derived. To estimate the idiosyncratic risk parameters,
ai and bi, the standard deviation of LGD is assumed to be 25%, which was
estimated by Schuermann (2004) from the US corporate exposures. The loss
distribution is generated via the Monte Carlo simulation method described
in Appendix A which incorporates importance sampling in order to reduce
the simulation error.

4.4. Simulation Efficiency

Before analyzing the PD-LGD correlation effect on credit risk, the effi-
ciency of the simulation method is examined by comparing it with an an-
alytic method. The credit risk of the portfolio is calculated using both
methods under the constant LGD assumption. The analytic solution is ob-
tained using the numerical algorithm proposed by Haaf et al. (2004) and
the simulation results are obtained from 10,000 iterations. Simulation is re-
peated 100 times to calculate the simulation error. For important sampling,
the predetermined portfolio loss is set to 6,000, which is approximately the
loss at 99.9% confidence level. The results are reported in Table 5. The er-
ror reduction achieved by importance sampling is truly remarkable. While
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the root mean squared error (RMSE) of the usual Monte Carlo simulation
increases with the confidence level reaching almost 14% at 99.99%, the error
remains stable around 1% across confidence levels when importance sam-
pling technique is employed. Considering the fact that the predetermined
loss level is set around 99.9% loss, this stable performance over a wide range
of confidence level including the expected loss is very encouraging. In terms
of computation cost, the simulation method is not more expensive than the
analytic method at least for the portfolio and the numerical algorithm un-
der consideration. Indeed, the naive simulation takes a shorter time (0.86
seconds) than the analytic method (1.02 seconds). Of course, the computa-
tion cost of the simulation method will increase linearly with the size of the
portfolio, while that of the analytic method will increase at a slower pace.
Nevertheless, considering the simulation is programmed with Matlab and
run in a desktop environment, computational burden should by no means
be a barrier for adopting a simulation-based algorithm even for a large size
portfolio.

Analytic Simulation Simulation (IS)
Mean RMSE MAE Mean RMSE MAE

EL 790.64 791.33 0.87 0.70 790.31 0.72 0.61
VaR99 3739.47 3737.75 3.24 2.53 3742.91 1.10 0.89
VaR99.9 6383.79 6315.85 5.43 4.18 6377.37 0.94 0.76
VaR99.99 9194.96 8695.86 13.65 11.48 9195.91 0.67 0.55

Elapsed 1.02 0.86 1.04

Table 5: Simulation errors of risk measures. Analytic, Simulation, and Simulation (IS)
respectively refer to analytic method, naive Monte-Carlo simulation and Monte-Carlo
simulation with importance sampling. The predetermined loss for important sampling
is set to 6,000. Simulation errors are computed from 100 simulation runs with 10,000
iterations in each simulation. RMSE: Root mean squared error (%); MAE: Mean absolute
error (%); Elapsed: elapsed time (seconds).

The convergence of the simulation error is assessed by repeating the
simulation with different numbers of iterations. The results are displayed in
Figure 2, in which RMSEs of 99.9% loss are plotted against the number of
iterations. The figure reveals the effect of importance sampling clearly. The
simulation error of importance sampling is surprisingly small even when the
number of iterations is of the same order as the number of bonds in the
portfolio. For example, the simulation with 5,000 iterations for the portfolio
of 1,000 bonds has RMSE of only 1.16%. This suggests that even for a large
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Figure 2: Convergence of the simulation error. x-axis represents the number of iterations
and y-axis RMSE(%) of VaR99.9. No IS: Naive Monte-Carlo simulation; IS: Monte-Carlo
simulation with importance sampling.

portfolio, a moderate number of iterations should be sufficient to achieve a
reasonably high precision.

4.5. Severity Risk and Its Contribution to Credit Risk

Table 6 reports the credit risk measures of the portfolio estimated by
CreditRisk++ with the five LGD models. The results are also illustrated in
Figure 3. EL and VaRx in the first column respectively refer to the expected
loss and the loss at x probability level. For each risk measure, Mean is
the average of 100 simulations and RMSE is the root mean squared error
measured as the percentage relative to the mean. RMSE values confirm that
importance sampling works equally well even when the PD-LGD dependency
is taken into account. Diff is the percentage difference from the constant
LGD model. To assess the effect of idiosyncratic risk, systemic risk measures
(Sys) are also reported beside the total risk measures (Total) for each model.
Systemic risk is calculated by setting the variance of the beta distribution
to 0.

Comparing the risk measures from the independent LGD model with
those from the constant LGD model, it can be seen that the idiosyncratic
severity risk is mostly diversified away and its contribution to the credit
risk is negligible. This has been reported in other studies; for example,
Gordy (2003) shows that idiosyncratic severity risk vanishes very quickly
and it becomes trivial even for a small size portfolio with a few hundreds of
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bonds. This confirms that a simple stochastic LGD model does not reflect
the severity risk adequately.

When PD-LGD dependency is accounted for, the systemic component
of the severity risk is incorporated and the contribution of the severity risk
to the credit risk becomes nontrivial. For example, 99% VaR experiences an
increase of 51.2%, 45.4%, and 43.2% in Liner, Power, and Logistic model,
respectively. From Figure 3, it can be seen that the increase in VaR becomes
more prominent at higher confidence levels. This is because both PD and
LGD increase with the confidence level. As expected from the PD-LGD
regression results, the Power model produces the highest risk at a low con-
fidence level where the LGD predicted by the Power model is the highest.
However, it is the Linear model that produces the highest risk in the tail
region. This is due to the linear dependency of LGD on PD in the Linear
model which causes LGD to increase faster than that in other models. In
fact, if LGD is not bounded at 100%, the risk measured by the Linear model
becomes almost 80% higher compared to the constant LGD model (not re-
ported here). Note that not only VaR but also expected loss is, though at
a lesser degree, significantly increased: 17.7% (Linear), 23.0% (Power), and
16.1% (Logistic). This is because when PD and LGD are correlated, the
usual expected loss equation EL = PD · LGD · EaD no longer holds. This
is obvious but often overlooked.

Comparison between the total risk and the systemic risk confirms that
most of the increase in risk is caused by the systemic component. This
implies that the idiosyncratic component of LGD can be safely ignored,
and the LGD model can be simplified by discarding the beta distribution
assumption. Without the idiosyncratic component, simulation results will
become more robust due to reduced randomness.

The findings in this section suggest that assuming LGD as a constant or
a stochastic but independent variable can underestimate risk significantly.
The severity risk can increase the credit risk over 50% in the particular
example considered here. Many other researches also find nontrivial increase
of credit risk when PD-LGD correlation is accounted for. It is also important
to note that the increase in credit risk depends on the confidence level:
Credit risk increases more when the confidence level is higher. The results
can be used as a guidance to determine downturn LGD. For example, 55%
increase in 99.9% VaR under the Logistic model suggests that the downturn
LGD should be set to 1.55 times the normal LGD. Downturn LGD should
not be a mere reflection of the expected LGD in the market downturn.
Rather, it should be determined by taking the correlation effect into account
so that the total risk is addressed adequately.
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Const Indep Linear Power Logistic
Total Sys Total Sys Total Sys

EL
Mean 791 792 931 931 972 972 918 918
Diff 0.12 17.73 17.73 22.96 22.95 16.07 16.08
RMSE 0.82 0.93 0.90 0.86 0.87 0.86 0.87

VaR99
Mean 2949 2955 5652 5648 5438 5435 5353 5349
Diff 0.21 51.15 51.04 45.43 45.34 43.16 43.03
RMSE 1.30 1.32 1.30 1.30 1.25 1.11 1.08

VaR99.9
Mean 5593 5596 10171 10171 9865 9858 9905 9902
Diff 0.06 59.33 59.32 54.53 54.42 55.15 55.11
RMSE 0.96 0.94 0.95 0.85 0.83 0.86 0.88

VaR99.99
Mean 8404 8407 14722 14722 14545 14545 14471 14472
Diff 0.03 60.11 60.11 58.18 58.18 57.39 57.39
RMSE 0.86 0.65 0.66 0.92 0.91 0.71 0.72

Table 6: Risk measures by five different severity risk models: Constant (Const); Inde-
pendent beta distributed (Indep); Linear function of PD (Linear); Power function of PD
(Power); Logistic function of PD (Logistic). Total is the total credit risk and Sys is the
systemic risk only. EL and VaRx in the first column respectively refer to the expected
loss and the loss at x probability level. For each risk measure, Mean is the average of
100 simulations and RMSE is the root mean squared error measured as the percentage
relative to the mean. Diff is the percentage difference from the constant LGD model.
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Figure 3: Credit risk measures by different severity risk models. x-axis is the confidence
level. The Indep model is not displayed here as it is almost identical to the Const model.
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5. Concluding Remarks

In this article, a generic severity risk model in which LGD is dependent
upon PD in an intuitive manner is developed. By modeling the conditional
mean of LGD as a function of PD, which also varies with systemic risk
factors, this model allows an arbitrary functional relationship between PD
and LGD including nonlinear forms such as power function that is found to
offer the best fit for PD-LGD covariation. Based on this generic framework,
three specifications of stochastic LGD, i.e., LGD as a linear function of PD,
LGD as a power function of PD, and LGD as a logistic function of PD, are
proposed with detailed calibration methods that rely on easily obtainable
data. By combining these models with a generalized CreditRisk+ model, a
versatile mixed Poisson credit risk model is developed. This model is capable
of handling various forms of PD-LGD dependency as well as risk factor
correlation. This added capability comes at a cost of analytic tractability
and a simulation method based on importance sampling is introduced for
risk calculation. The simulation method turns out to be very accurate and
efficient without any notable disadvantage.

The severity risk models are applied to a model portfolio and evaluated.
The model portfolio is artificially constructed based on the actual market
data. The empirical studies suggest that ignoring or incorrectly specifying,
e.g., by assuming independence, severity risk can significantly underestimate
credit risk: In this study, risk increases over 50% from the case of constant
LGD when the confidence level is 99.9% or higher. Banks should recognize
this and adopt a proper severity risk model to assess their credit risk ade-
quately. It is also important to consider the effect of PD-LGD correlation
when determining downturn LGD. All models yield similar risk measures
and no particular model offers a significantly better performance. Still, the
logistic model could be a preferred choice in the sense that LGD is implicitly
bounded within [0, 1] without any ad hoc boundary condition. In fact, the
framework behind the models is very flexible and can be easily generalized to
accommodate other types of PD-LGD relationship. It can also be extended
to other credit risk models such as the structural models based on Merton
(1974).
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Appendix A. Importance Sampling for Loss Distribution

When severity risk is incorporated, CreditRisk+ is no longer analytically
tractable and loss distribution can only be obtained via a simulation method.
Glasserman and Li (2003) develop an importance sampling technique for
a mixed Poisson credit risk model and Han and Kang (2008) show that
the method indeed produces a very accurate result at a low computational
cost. Extension of Glasserman and Li (2003)’s work for CreditRisk+ with
severity risk is straightforward and is illustrated below. As demonstrated in
Section 4.4, this technique is very efficient and generates sufficiently accurate
results for all severity risk models.

Suppose there are N assets in the portfolio and K systemic risk factors
Xk ∼ Gamma(αk, βk) which are independent of each other. Define θ as
the exponential twisting parameter for importance sampling. The cumulant
generating function of the portfolio loss, L =

∑N
i=1 Li under the framework

of CreditRisk+ is given by

ψ(θ) = ψ(1)(θ) + ψ(2)(θ) (A.1)

where

ψ(1)(θ) =
N∑
i=1

Piw0i

(
eViθ − 1

)
, (A.2)

ψ(2)(θ) = −
K∑
k=1

αk log

(
1− βk

N∑
i=1

Piwki

(
eViθ − 1

))
(A.3)
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where Pi is PD conditional on the risk factors and Vi = LGDi ·EaDi is
expected amount of loss given default. The first order derivative of ψ(θ)
with respect to θ is

ψ′(θ) = ψ(1)′(θ) + ψ(2)′(θ) (A.4)

where

ψ(1)′(θ) =

N∑
i=1

Piw0iVi e
Viθ, (A.5)

ψ(2)′(θ) =

K∑
k=1

αkβk

N∑
i=1

PiwkiVi e
Viθ

1− βk
N∑
i=1

Piwki

(
eViθ − 1

) . (A.6)

Portfolio loss simulation is performed by following the procedure.

1. Solve

ψ′(θ) = Lp (A.7)

θ = max(0, θ) (A.8)

for θ. Lp is a predetermined portfolio loss, e.g., Value-at-Risk, around
which samples are to be drawn. For CreditRisk+, Lp can be deter-
mined from an analytic solution or by running a simulation without
importance sampling.

2. Compute τk, k = 1, . . . ,K from

τk =

N∑
i=1

Piwki

(
eViθ − 1

)
3. Draw samples of risk factors

Xk ∼ Gamma

(
αk,

βk
1− βkτk

)
, k = 1, . . . ,K.

4. Compute the conditional default probabilities

Pi = PDi

(
wi0 +

K∑
k=1

wkiXk

)
, i = 1, . . . , N
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5. Draw samples of default events

Di ∼ Poisson
(
Pie

Viθ
)
, i = 1, . . . , N.

6. Compute the conditional mean of LGD using either of the equations.

CLGDi = φ0i + φ1iPi (Linear)

CLGDi = φ0iP
φ1i
i (Power)

CLGDi =
1

1 + exp(−φ0i − φ1iPi)
(Logistic)

for i = 1, . . . , N . Set µβ,i = CLGDi and compute beta distribution
parameters from

ai = µβ,iνβ,i, bi = (1− µβ,i)νβ,i.

Skip this step for Beta Indep model.

7. Draw samples of loss given default.

Ui ∼ Beta(ai, bi), i = 1, . . . , N

Skip this step for Linear model and set Ui = E(Ui|X) with the first
equation of step 6.

8. Portfolio loss is given by

L =

N∑
i=1

Li =

N∑
i=1

Di ·Ui ·EaDi

And the probability associated with this loss is given by the likelihood
ratio,

LR = exp(−θL′ + ψ(θ))

where L′ =
∑N

i=1Di·LGDi·EaDi is portfolio loss under constant LGD
assumption.

9. Repeat from step 3 until the desired number of iterations is reached.
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