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Abstract. A graph H is a square root of a graph G if G can be obtained
from H by the addition of edges between any two vertices in H that are
at distance 2 from each other. The Square Root problem is that of
deciding whether a given graph admits a square root. We consider this
problem for planar graphs in the context of the “distance from triviality”
framework. For an integer k, a planar+kv graph (or k-apex graph) is
a graph that can be made planar by the removal of at most k vertices.
We prove that a generalization of Square Root, in which some edges
are prescribed to be either in or out of any solution, has a kernel of size
O(k) for planar+kv graphs, when parameterized by k. Our result is based
on a new edge reduction rule which, as we shall also show, has a wider
applicability for the Square Root problem.

1 Introduction

Squares and square roots are well-known concepts in graph theory with a long
history. The square G = H2 of a graph H = (VH , EH) is the graph with vertex
set VG = VH , such that any two distinct vertices u, v ∈ VH are adjacent in G if
and only if u and v are at distance at most 2 in H. A graph H is a square root
of G if G = H2. It is easy to check that there exist graphs with no square root,
graphs with a unique square root as well as graphs with many square roots. The
corresponding recognition problem, which asks whether a given graph admits
a square root, is called the Square Root problem. Motwani and Sudan [27]
showed that Square Root is NP-complete.
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1.1 Existing Results

In 1967, Mukhopadhyay [28] characterized the graphs that have a square root.
In line with the aforementioned NP-completeness result of Motwani and Sudan,
which appeared in 1994, this characterization does not lead to a polynomial-
time algorithm for Square Root. Later results focussed on the following two
recognition questions (G denotes some fixed graph class):

(1) How hard is it to recognize squares of graphs of G?
(2) How hard is it to recognize graphs of G that have a square root?

Note that the second question corresponds to the Square Root problem
restricted to graphs in G, whereas the first question is the same as asking whether
a given graph has a square root in G.

Ross and Harary [30] characterized squares of a tree and proved that if a
connected graph has a tree square root, then this root is unique up to isomorphism.
Lin and Skiena [24] gave a linear-time algorithm for recognizing squares of trees;
they also proved that Square Root can be solved in linear time for planar
graphs. Le and Tuy [22] generalized the above results for trees [24, 30] to block
graphs, whereas we recently gave a polynomial-time algorithm for recognizing
squares of cactuses [11]. Nestoridis and Thilikos [29] proved that Square Root
is not only polynomial-time solvable for the class of planar graphs but for any
non-trivial minor-closed graph class, that is, for any graph class that does not
contain all graphs and that is closed under taking vertex deletions, edge deletions
and edge contractions.

Lau [18] gave a polynomial-time algorithm for recognizing squares of bipartite
graphs; note that Square Root is trivial for bipartite graphs, and even for
K4-free graphs, or equivalently, graphs of clique number at most 3, as square roots
of K4-free graphs must have maximum degree at most 2. Milanic, Oversberg,
and Schaudt [25] proved that line graphs can only have bipartite graphs as a
square root. The same authors also gave a linear-time algorithm for Square
Root restricted to line graphs.

Lau and Corneil [19] gave a polynomial-time algorithm for recognizing squares
of proper interval graphs and showed that the problems of recognizing squares
of chordal graphs and squares of split graphs are both NP-complete. The same
authors also proved that Square Root is NP-complete even for chordal graphs.
Le and Tuy [23] gave a quadratic-time algorithm for recognizing squares of
strongly chordal split graphs. Le, Oversberg, and Schaudt [20] gave polynomial
algorithms for recognizing squares of ptolemaic graphs and 3-sun-free split graphs.
In a more recent paper [21], the same authors extended the latter result by giving
polynomial-time results for recognizing squares of a number of other subclasses of
split graphs. Milanic and Schaudt [26] proved that Square Root can be solved
in linear time for trivially perfect graphs and threshold graphs. They posed the
complexity of Square Root restricted to split graphs and cographs as open
problems. Recently, we proved that Square Root is linear-time solvable for
3-degenerate graphs and for (Kr, Pt)-free graphs for any two positive integers r
and t [13].
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Adamaszek and Adamaszek [1] proved that if a graph has a square root of
girth at least 6, then this square root is unique up to isomorphism. Farzad, Lau,
Le, and Tuy [10] showed that recognizing graphs with a square root of girth
at least g is polynomial-time solvable if g ≥ 6 and NP-complete if g = 4. The
missing case g = 5 was shown to be NP-complete by Farzad and Karimi [9].

Cochefert et al. [3] proved that Square Root is polynomial-time solvable
for graphs of maximum degree 6. They also considered square roots under the
framework of parameterized complexity [3, 4] and proved that the following two
problems are fixed-parameter tractable with parameter k: testing whether a
connected n-vertex graph with m edges has a square root with at most n− 1 + k
edges and testing whether such a graph has a square root with at least m− k
edges. In particular, the first result implies that the problem of recognizing
squares of tree+ke graphs, that is, graphs that can be modified into trees by
removing at most k edges, is fixed-parameter tractable when parameterized by k.

1.2 Our Results

We are interested in developing techniques that lead to new polynomial-time
or parameterized algorithms for Square Root for special graph classes. In
particular, there are currently very few results on the parameterized complexity
of Square Root, and this is the main focus of our paper.

The graph classes that we consider fall under the “distance from triviality”
framework, introduced by Guo, Hüffner, and Niedermeier [15]. For a graph class
G and an integer k we define four classes of “almost G” graphs, that is, graphs
that are editing distance k apart from G. To be more precise, the classes G + ke,
G − ke, G + kv and G − kv consist of all graphs that can be modified into a
graph of G by deleting at most k edges, adding at most k edges, deleting at most
k vertices and adding at most k vertices, respectively. Taking k as the natural
parameter, these graph classes have been well studied from a parameterized
point of view for a number of problems. In particular this is true for the vertex
coloring problem restricted to (subclasses of) almost perfect graphs (due to the
result of Grötschel, Lovász, and Schrijver [14], who proved that vertex coloring is
polynomial-time solvable on perfect graphs).

We consider G to be the class of planar graphs. As planar graphs are closed
under taking edge and vertex deletions, the classes of planar−kv graphs and
planar−ke graphs coincide with planar graphs. Hence, we only need to consider
planar+kv graphs and planar+ke graphs, that is, graphs that can be made planar
by at most k vertex deletions or at most k edge deletions, respectively. We note
that planar+kv graphs are also known as k-apex graphs. Moreover, we observe
that Square Root is NP-complete for planar+kv graphs and planar+ke graphs
when k is part of the input, as the classes of planar+nv graphs and planar+n2e
graphs coincide with the class of all graphs on n vertices.

Our main contribution is showing that Square Root is FPT on k-apex
graphs when parameterized by k. More precisely, we prove that a more general
version of the problem admits a linear kernel. The Square Root with Labels
problem takes as input a graph G with two subsets R and B of prespecified
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edges: the edges of R need to be included in a solution (square root) and the
edges of B are forbidden in the solution. We prove that Square Root with
Labels has a kernel of size O(k) for planar+kv graphs, when parameterized
by k. As every planar + ke graph is planar + kv, we immediately obtain the
same result for planar+ke graphs. The Square Root with Labels problem
has been introduced in [3], but in this paper we introduce a new reduction rule,
which we call the edge reduction rule.

The edge reduction rule is used to recognize, in polynomial time, a certain
local substructure that graphs with square roots must have. As such, our rule
can be added to the list of known and similar polynomial-time reduction rules for
recognizing square roots. To give a few examples, the reduction rule of Lin and
Skiena [24] is based on recognizing pendant edges and bridges of square roots of
planar graphs, whereas the reduction rule of Farzad, Le, and Tuy [10] is based on
the fact that squares of graphs with large girth have a unique root. In contrast,
our edge reduction rule, which is based on detecting so-called recognizable edges
whose neighbourhoods have some special property (see Section 3 for a formal
description) is tailored for graphs with no unique square root, just as in [4]; in
fact our new rule, which we explain in detail in Section 4, can be seen as an
improved and more powerful variant of the rule used in [4]. For squares with
no unique square root, not all the root edges can be recognized in polynomial
time. Hence, removing certain local substructures, thereby reducing the graph
to a smaller graph, and keeping track of the compulsory edges (the recognized
edges) and forbidden edges is the best we can do. However, after the reduction,
the connected components of the remaining graph might be dealt with further by
exploiting the properties of the graph class under consideration. This is exactly
what we do for planar+kv graphs to obtain a linear kernel in Section 5.

The fact that our edge reduction rule is more general than the other known
rules is also evidenced by other applications of it. Cochefert et al. [5] showed that
it can be used to obtain an alternative proof of the known result [3] that Square
Root is polynomial-time solvable for graphs of maximum degree at most 6.4 As
a third application of our edge reduction rule we show in Section 6 that it can be
used to solve Square Root in polynomial-time solvable for graphs of maximum
average degree smaller than 46

11 .
In Section 7 we give some directions for future work.

2 Preliminaries

We only consider finite undirected graphs without loops or multiple edges. We
refer to the textbook by Diestel [8] for any undefined graph terminology.

We denote the vertex set of a graph G by VG and the edge set by EG. The
subgraph of G induced by a subset U ⊆ VG is denoted by G[U ]. The graph G−U
is the graph obtained from G after removing the vertices of U . If U = {u}, we

4 The proof in [3] is based on a different and less general reduction rule, which only
ensures boundedness of treewidth, while the edge reduction rule yields graphs of
maximum degree at most 6 with a bounded number of vertices.
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also write G− u. Similarly, we denote the graph obtained from G after deleting
an edge e by G− e. A vertex u is a cut vertex of a connected graph G with at
least three vertices if G− u is disconnected. A bridge of a connected graph G is
an edge e such that G− e is disconnected.

In the remainder of this section let G be a graph. A maximal connected
subgraph of G with no cut vertices is called a block. We say that G is planar+kv
if G can be made planar by removing at most k vertices. The distance distG(u, v)
between a pair of vertices u and v of G is the number of edges in a shortest path
between them. The diameter diam(G) of G is the maximum distance between any
two vertices of G. The distance between a vertex u ∈ VG and a subset X ⊆ VG
is denoted by distG(u,X) = min{distG(u, v) | v ∈ X}. The distance between
two subsets X and Y of VG is denoted by distG(X,Y ) = min{distG(u, v) | u ∈
X, v ∈ Y }. Whenever we speak about the distance between a vertex set X and a
subgraph H of G, we mean the distance between X and VH .

The open neighbourhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈
EG} and its closed neighbourhood is defined as NG[u] = NG(u) ∪ {u}. For
X ⊆ VG, let NG(X) =

⋃
u∈X NG(u) \X. Two (adjacent) vertices u, v are said

to be true twins if NG[u] = NG[v]. The degree of a vertex u ∈ VG is defined as
dG(u) = |NG(u)|. The maximum degree of G is ∆(G) = max{dG(v) | v ∈ VG}.
A vertex of degree 1 is said to be a pendant vertex. If v is a pendant vertex, then
we say that the unique edge incident to u is a pendant edge.

The framework of parameterized complexity allows us to study the compu-
tational complexity of a discrete optimization problem in two dimensions. One
dimension is the input size n and the other one is a parameter k. We refer
to the recent textbook of Cygan et al. [7] for further details and only give the
definitions for those notions relevant for our paper here. A parameterized problem
is fixed parameter tractable (FPT) if it can be solved in time f(k) · nO(1) for
some computable function f . A kernelization of a parameterized problem Π is
a polynomial-time algorithm that maps each instance (x, k) of Π with input x
and parameter k to an instance (x′, k′) of Π, such that i) (x, k) is a yes-instance
of Π if and only if (x′, k′) is a yes-instance of Π, and ii) |x′|+ k′ is bounded by
f(k) for some computable function f . The output (x′, k′) is called a kernel for
(x, k). The function f is said to be a size of the kernel. It is well known that a
decidable parameterized problem is FPT if and only if it has a kernel. A logical
next step is then to try to reduce the size of the kernel. We say that (x′, k′) is a
linear kernel if f is linear.

3 Recognizable Edges

In this section we introduce the definition of a recognizable edge, which plays
a crucial role in our paper, together with the corresponding notion of a (u, v)-
partition. We also prove some important lemmas about this type of edges. See
Fig. 1 (i) for an example of a recognizable edge and a corresponding (u, v)-
partition (X,Y ).
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Definition 1. An edge uv of a graph G is said to be recognizable if the following
four conditions are satisfied:

a) NG(u) ∩ NG(v) has a partition (X,Y ) where X = {x1, . . . , xp} and Y =
{y1, . . . , yq}, p, q ≥ 1, are (disjoint) cliques in G;

b) xiyj /∈ EG for i ∈ {1, . . . , p} and j ∈ {1, . . . , q};
c) for any w ∈ NG(u) \NG[v], wyj /∈ EG for j ∈ {1, . . . , q}, and symmetrically,

for any w ∈ NG(v) \NG[u], wxi /∈ EG for i ∈ {1, . . . , p};
d) for any w ∈ NG(u) \NG[v], there is an i ∈ {1, . . . , p} such that wxi ∈ EG,

and symmetrically, for any w ∈ NG(v) \NG[u], there is a j ∈ {1, . . . , q} such
that wyj ∈ EG.

We also call such a partition (X,Y ) a (u, v)-partition of NG(u) ∩NG(v).

We note that due to conditions c) and d) the pair (X,Y ) is an ordered pair
defined for an ordered pair (u, v); only in the case when u and v are true twins,
that is, when NG(u) \NG[v] = ∅ or NG(v) \NG[u] = ∅, we have that (Y,X) is a
(u, v)-partition as well.

i)
X Y

u v

ii)
X Y

u v

Fig. 1. (i) An example of a graph G with a recognizable edge uv and a corresponding
(u, v)-partition (X,Y ). (ii) A square root of G. In this figure, the edges of the square
root are shown by thick lines and the edges of G not belonging to the square root are
shown by dashed lines. Edges which may or may not belong to the square root are
shown by neither thick nor dashed lines; for each w ∈ NG(u) \NG[v] at least one edge
between w and a vertex from X must be thick, and similarly for each w ∈ NG(v)\NG[u]
at least one edge between w and a vertex from Y must be thick, but we do not know in
advance which ones.

In the next lemma we give a necessary condition for an edge of a square root
H of a graph G to be recognizable in G. In particular, this lemma implies that
any non-pendant bridge of H is a recognizable edge of G.

Lemma 1. Let H be a square root of a graph G. Let uv be an edge of H that is
not pendant and such that any cycle in H containing uv has length at least 7. Then
uv is a recognizable edge of G and (NH(u)\{v}, NH(v)\{u}) is a (u, v)-partition
in G.
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Proof. Let H be a square root of a graph G and let uv be an edge of H such that
uv is not a pendant edge of H and any cycle in H containing uv has length at
least 7. Let X = {x1, . . . , xp} = NH(u)\{v} and Y = {y1, . . . , yq} = NH(v)\{u}.
Because uv is not a pendant edge and any cycle in H that contains uv has length
at least 7, it follows that X 6= ∅, Y 6= ∅ and X ∩ Y = ∅. We show that (X,Y )
is a (u, v)-partition of NG(u) ∩NG(v) in G by proving that conditions a)–d) of
Definition 1 are fulfilled.

First we prove a). Let z ∈ NG(u) ∩NG(v). We will show that z ∈ X ∪ Y . If
uz ∈ EH then z ∈ X, and if vz ∈ EH then z ∈ Y . Suppose that z /∈ X and z /∈ Y .
Since uz ∈ EG, there is a vertex w ∈ VG such that uw,wz ∈ EH . Since vz /∈ EH

it follows that w 6= v. It follows due to symmetry that there exists w′ ∈ VG such
that vw′, w′z ∈ EH and w′ 6= u. Then either wuvw′ is a cycle in H if w = w′,
otherwise, zwuvw′z is a cycle of H. In both cases we have a contradiction since
any cycle in H containing uv has length at least 7. This proves that z ∈ X ∪ Y
and therefore, NG(u) ∩NG(v) ⊆ X ∪ Y . Since vxi ∈ EG and uyj ∈ EG for all
i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, we see that X ∪ Y ⊆ NG(u) ∩NG(v). Because
X,Y 6= ∅ and X ∩ Y = ∅, (X,Y ) is a partition of NG(u) ∪NG(v). It remains to
observe that X and Y are cliques in G because any two vertices of X and any
two vertices of Y have u or v, respectively, as common neighbour in H.

To prove b), assume that there are i ∈ {1, . . . , p} and j ∈ {1, . . . , q} such that
xiyj ∈ EG. Because H has no cycle of length 4 containing uv, xiyj /∈ EH . Hence,
there is z ∈ VH such that xiz, zyj ∈ EH . Because H has no cycles of length 3
containing uv, we find that z /∈ {u, v}. We conclude that zxiuvyjz is a cycle of
length 5 in H that contains uv; a contradiction.

To prove c), it suffices to show that for any w ∈ NG(u) \NG[v], wyj /∈ EG

for j ∈ {1, . . . , q}, as the second part is symmetric. To obtain a contradiction,
assume that there are vertices w ∈ NG(u) \NG[v] and yj for some j ∈ {1, . . . , q}
such that wyj ∈ EG. By a), (X,Y ) is a partition of NG(u) ∩ NG(v). Hence,
w /∈ X and w /∈ Y . Because w /∈ X and w ∈ NG(u), there is x ∈ VG such that
ux, xw ∈ EH . As ux ∈ EH , we have x ∈ X. If wyj ∈ EH , then the cycle uxwyjvu
containing uv has length 5; a contradiction. Hence, wyj /∈ EH . Because wyj ∈ EG,
there is a vertex z ∈ VH such that wz, zyj ∈ EH . Since w ∈ NG(u) \ NG[v],
we have w /∈ {u, v}. If x = z, then uvyjxu is a cycle of length 4 containing uv,
a contradiction. If x 6= z, then uvyjzwxu is a cycle of length 6 containing uv,
another contradiction.

To prove d) we consider some w ∈ NG(u) \ NG[v]. We note that since
X ⊆ NG(u) ∩NG(v), w /∈ X and thus uw /∈ EH . Since uw ∈ EG by definition,
there must be some x ∈ VG such that ux, xw ∈ EH . Because w is not adjacent
to v, we find that x 6= v. Since ux ∈ EH and X = NH(u) \ {v}, this means that
x ∈ X. The second condition in d) follows by symmetry. ut

The following corollary follows immediately from Lemma 1.

Corollary 1. Let H be a square root of a graph with no recognizable edges. Then
every non-pendant edge of H lies on a cycle of length at most 6.
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In Lemma 2 we show that recognizable edges in a graph G can be used to
identify some edges of a square root of G and also some edges that are not
included in any square root of G; see Fig. 1 (ii) for an illustration of this lemma.

Lemma 2. Let G be a graph with a square root H. Additionally let uv be a
recognizable edge of G with a (u, v)-partition (X,Y ) where X = {x1, . . . , xp} and
Y = {y1, . . . , yq}. Then:

i) uv ∈ EH ;
ii) for every w ∈ NG(u) \NG[v], wu /∈ EH , and for every w ∈ NG(v) \NG[u],

wv /∈ EH .
iii) if u, v are true twins in G, then either ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH

and uy1, . . . , uyq /∈ EH , vx1, . . . , vxp /∈ EH , or else ux1, . . . , uxp /∈ EH ,
vy1, . . . , vyq /∈ EH and uy1, . . . , uyq ∈ EH , vx1, . . . , vxp ∈ EH ;

iv) if u, v are not true twins in G, then ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH

and uy1, . . . , uyq /∈ EH , vx1, . . . , vxp /∈ EH .

Proof. The proof uses conditions a)–d) of Definition 1.
To prove i), suppose that uv /∈ EH . Then there is a vertex z ∈ NG(u)∩NG(v)

such that zu, zv ∈ EH . Assume without loss of generality that z ∈ X. Because
of b), zy1 /∈ EG, which implies, together with zv ∈ EH , that vy1 /∈ EH . Because
vy1 ∈ EG, this means that there is a vertex w with vw,wy1 ∈ EH . Because we
assume uv /∈ EH , we observe that w 6= u. As wy1 ∈ EH , we find that w /∈ X
by b). It follows that w ∈ Y ∪ (NG(v) \ NG(u). As zv, vw ∈ EH , we obtain
wz ∈ EG. However, as z ∈ X, this contradicts b) if w ∈ Y and it contradicts c)
if w ∈ NG(v) \NG(u). We conclude that uv ∈ EH .

To prove ii), it suffices to consider the case in which w ∈ NG(u) \ NG[v],
as the other case is symmetric. If wu ∈ EH , then because uv ∈ EH , we have
wv ∈ EG contradicting w /∈ NG(v).

We now prove iii) and iv). First suppose that there exist vertices xi and xj
(with possibly i = j) for some i, j ∈ {1, . . . , p} such that xiu, xjv ∈ EH . Then, as
xiy1, xjy1 /∈ EG by b), we find that y1u, y1v /∈ EH . As y1u ∈ EG, the fact that
y1u /∈ EH means that there exists a vertex w ∈ VH \{u} such that wu,wy1 ∈ EH .
As y1v /∈ EH , we find that w 6= v, so w ∈ VH \ {u, v}. As xiu, uw ∈ EH , we
find that xiw ∈ EG, consequently w /∈ Y due to b). Because wy1 ∈ EH we
obtain w /∈ X, again due to b). Hence, w /∈ X ∪ Y = NG(u) ∩NG(v). Therefore,
as uw ∈ EG and w 6= v, we have w ∈ NG(u) \ NG[v], but as wy1 ∈ EG this
contradicts c). Hence, this situation cannot occur.

Suppose that there a vertex xi for some i ∈ {1, . . . , p} such that xiu, xiv /∈ EH .
Then, as xiv ∈ EG, there exists a vertex w ∈ VH \{u, v}, such that wv,wxi ∈ EH .
By b), w /∈ Y . As uv ∈ EH due to statement i) and vw ∈ EH , we find that
uw ∈ EG. Hence, as w /∈ Y , we obtain w ∈ X. As xiu ∈ EG \EH and xiv /∈ EH ,
there is a vertex z ∈ VH \ {u, v} such that zu, zxi ∈ EH . As uv ∈ EH due to
statement i), this implies that zv ∈ EG. Hence, z ∈ X ∪Y . As zxi ∈ EH , we find
that z /∈ Y due to b). Consequently, z ∈ X. This means that we have vertices
w, z ∈ X (possibly w = z) and edges zu,wv ∈ EH . However, we already proved
above that this is not possible. We obtain that either ux1, . . . , uxp ∈ EH and
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vx1, . . . , vxp /∈ EH , or that ux1, . . . , uxp /∈ EH and vx1, . . . , vxp ∈ EH . Symmetri-
cally, either uy1, . . . , uyq ∈ EH and vy1, . . . , vyq /∈ EH , or uy1, . . . , uyq /∈ EH and
vy1, . . . , vyq ∈ EH . By b), it cannot happen that ux1, uy1 ∈ EH or vx1, vy1 ∈ EH .
Hence, either ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH and uy1, . . . , uyq /∈ EH ,
vx1, . . . , vxp /∈ EH or ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and uy1, . . . , uyq ∈
EH , vx1, . . . , vxp ∈ EH . In particular, this implies iii).

To prove iv), assume without loss of generality that NG(u) \NG[v] 6= ∅. For
contradiction, let ux1, . . . , uxp /∈ EH , vy1, . . . , vyq /∈ EH and uy1, . . . , uyq ∈ EH ,
vx1, . . . , vxp ∈ EH . Let w ∈ NG(u) \ NG[v]. By d), there is a vertex xi for
some i ∈ {1, . . . , p} such that wxi ∈ EG. Then wxi /∈ EH , as otherwise our
assumption that vxi ∈ EH will imply that w ∈ NG(v), which is not the case.
Since wxi ∈ EG \ EH , there exists a vertex z ∈ VH , such that zw, zxi ∈ EH .
Because xiu /∈ EH , we find that z 6= u, and because w /∈ NG(v), we find that
z 6= v. Because zxi, xiv ∈ EH , we obtain zv ∈ EG. As w /∈ NG(v) and vxj ∈ EH

for all j ∈ {1, . . . , p}, we have wxj /∈ EH for all j ∈ {1, . . . , p}. Hence, as
zw ∈ EH , we find that z /∈ X. As zxi ∈ EH , we find that z /∈ Y due to b). Hence,
z /∈ X ∪ Y = NG(u) ∩NG(v). As zv ∈ EG, this implies that z ∈ NG(v) \NG[u]
(recall that z 6= u). Because zxi ∈ EG, this is in contradiction with c). ut

Remark 1. If the vertices u and v of the recognizable edge of the square G in
Lemma 2 are true twins, then by statement iii) of this lemma and the fact that
the vertices u and v are interchangeable, G has at least two isomorphic square
roots: one root containing ux1, . . . , uxp, vy1, . . . , vyq and excluding uy1, . . . , uyq,
vx1, . . . , vxp, and another one containing ux1, . . . , uxp, vy1, . . . , vyq and excluding
uy1, . . . , uyq, vx1, . . . , vxp. Indeed, in either case, the vertices in {u, v} ∪X ∪ Y
form a connected component of H with p+ q + 2 vertices.

4 The Edge Reduction Rule

In this section we present our edge reduction rule. As mentioned in Section 1.2,
we solve a more general problem than Square Root. Before discussing the edge
reduction rule, we first formally define this problem (see also [3]).

Square Root with Labels
Input: a graph G and two sets of edges R,B ⊆ EG.
Question: is there a graph H with H2 = G, R ⊆ EH and B ∩ EH = ∅?

Note that Square Root is indeed a special case of Square Root with Labels:
choose R = B = ∅.

We say that a graph H is a solution for an instance (G,R,B) of Square
Root with Labels if H satisfies the following three conditions: (i) H2 = G;
(ii) R ⊆ EH ; and (iii) B ∩ EH = ∅.

We use Lemmas 1 and 2 to preprocess instances of Square Root with La-
bels. Our edge reduction algorithm takes as input an instance (G,R,B) of
Square Root with Labels and either returns an equivalent instance with no
recognizable edges or answers no.
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Edge Reduction

1. Find a recognizable edge uv together with corresponding (u, v)-partition
(X,Y ), X = {x1, . . . , xp} and Y = {y1, . . . , yq}. If such an edge uv does not
exist, then return (G,R,B) and stop.

2. If uv ∈ B then return no and stop. Otherwise let B1 = {wu | w ∈ NG(u) \
NG[v]} ∪ {wv | w ∈ NG(v) \NG[u]}. If R ∩B1 6= ∅, then return no and stop.

3. If u and v are not true twins inG then setR2 = {ux1, . . . , uxp}∪{vy1, . . . , vyq}
and B2 = {uy1, . . . , uyq}∪{vx1, . . . , vxp}. If R2 ∩B 6= ∅ or B2 ∩R 6= ∅, then
return no and stop.

4. If u and v are true twins in G then do as follows:
(a) If ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩R 6= ∅ or

({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩B 6= ∅ then
set R2 = {uy1, . . . , uyq} ∪ {vx1, . . . , vxp} and

B2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vyq}.
If R2 ∩B 6= ∅ or B2 ∩R 6= ∅, then return no and stop.

(b) If ({uy1, . . . , uyq} ∪ {vx1, . . . , vxp}) ∩R = ∅ and
({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩B = ∅ then
set R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vuq} and

B2 = {uy1, . . . , uyq} ∪ {vx1, . . . , vxp}.
(Note that R2 ∩B = ∅ and B2 ∩R = ∅.)

5. Set G := (VG, EG\({uv}∪B2)), R := (R\{uv})∪R2 and B := (B\B2)∪B1,
and return to Step 1.

Lemma 3. For an instance (G,R,B) of Square Root with Labels where G
has n vertices and m edges, Edge Reduction in time O(n2m2) either correctly
answers no or returns an equivalent instance (G′, R′, B′), where G′ is a graph
with no recognizable edges. Moreover, (G′, R′, B′) has a solution H if and only if
(G,R,B) has a solution that can be obtained from H by restoring all recognizable
edges.

Proof. It suffices to consider one iteration of the algorithm to prove its correctness.
The correctness of Step 1 is trivial, as the instance is not modified if the we stop
at Step 1.

To show correctness of Step 2, we note that by Lemma 2 i), uv is included in
any square root and the edges of B1 are not included in any square root. Hence,
if what we do in Step 2 is not consistent with R and B, there is no square root
of G that includes the edges of R and excludes the edges of B, thus returning
output no is correct.

To show correctness of Step 3, suppose u and v are not true twins. Then by
Lemma 2 iv) it follows that ux1, . . . , uxp ∈ EH , vy1, . . . , vyq ∈ EH , uy1, . . . , uyq /∈
EH and vx1, . . . , vxp /∈ EH for any square root H. Hence, we must define R2 and
B2 according to this lemma. If afterwards we find that R2 ∩B 6= ∅ or B2 ∩R 6= ∅,
then R2 or B2 is not consistent with R or B, respectively, and thus, retuning no

if this case happens is correct.
To show correctness of Step 4, suppose that u and v are true twins. Then by

Lemma 2 iv) we have two options. First, if ({uy1, . . . , uyq}∪{vx1, . . . , vxp})∩R 6=
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∅ or ({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩B 6= ∅, then we are forced to go for the
option as defined in Step 4(a). If afterwards R2∩B 6= ∅ or B2∩R 6= ∅, then we still
need to return no as in Step 3. Second, if ({uy1, . . . , uyq}∪{vx1, . . . , vxp})∩R = ∅
and ({ux1, . . . , uxp} ∪ {vy1, . . . , vyq}) ∩ B = ∅, then we may set without loss
of generality (cf. Remark 1) R2 = {ux1, . . . , uxp} ∪ {vy1, . . . , vuq} and B2 =
{uy1, . . . , uyq}∪{vx1, . . . , vxp}. Note that in this case R2∩B = ∅ and B2∩R = ∅.

Finally, to show correctness of Step 5, let G′ be the graph obtained from G
after deleting the edge uv and the edges of B2. Let R′ = (R \ {uv}) ∪ R2 and
B′ = (B \B2)∪B1. Then the instances (G,R,B) and (G′, R′, B′) are equivalent:
a graph H is readily seen to be a solution for (G,R,B) if and only if H − uv is a
solution for (G′, R′, B′). This completes the correctness proof of our algorithm.

It remains to evaluate the running time. We can find a recognizable edge uv
together with the corresponding (u, v)-partition (X,Y ) in time O(mn2). This
can be seen as follows. For each edge uv, we find Z = NG(u) ∩NG(v). Then we
check conditions a) and b) of Definition 1, that is, we check whether Z is the
union of two non-empty disjoint cliques with no edges between them. Finally, we
check conditions c) and d) of Definition 1. For a given uv, this can all be done
in time O(n2). As we need to check at most m edges, one iteration takes time
O(mn2). As the total number of iterations is at most m, the whole algorithm
runs in time O(n2m2). ut

5 The Linear Kernel

For proving that Square Root with Labels restricted to planar+kv graphs
has a linear kernel when parameterized by k, we will use the following result of
Harary, Karp and Tutte as a lemma.

Lemma 4 ([16]). A graph H has a planar square if and only if

i) every vertex v ∈ VH has degree at most 3,
ii) every block of H with more than four vertices is a cycle of even length, and

iii) H has no three mutually adjacent cut vertices.

We need the following additional terminology. A block is trivial if it has
exactly one vertex; note that this vertex must have degree 0. A block is small if
it has exactly two vertices and big if it is neither trivial nor small. We say that a
block is pendant if it is a small block with a vertex of degree 1.

We need two more structural lemmas. We first show the effect of applying our
Edge Reduction Rule on the number of vertices in a connected component of
a planar graph.

Lemma 5. Let G be a planar graph with a square root. If G has no recognizable
edges, then every connected component of G has at most 12 vertices.

Proof. Let G be a planar square with no recognizable edges. We may assume
without loss of generality that G is connected and |VG| ≥ 2. Let H be a square
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root of G. Recall that H is a connected spanning subgraph of G. Hence, it suffices
to prove that H has at most 12 vertices.

First suppose that H does not have a big block, in which case every edge of H
is a bridge. As G has no recognizable edges, Corollary 1 implies that every block
of H is pendant. By Lemma 4 i), every vertex of H degree at most 3. Hence, H
has at most four vertices.

Now suppose that H has a big block F . If F contains no cut vertices of H,
then H = F has at most six vertices due to Corollary 1 and Lemma 4 ii). Assume
that F contains a cut vertex v of H. Lemma 4 i) tells us that dH(v) ≤ 3; therefore
v is a vertex of exactly two blocks, namely F and some other block S. Because
F is big, v has two neighbours in F . Hence, v can only have one neighbour in S,
thus S is small. As G has no recognizable edges, Corollary 1 implies that S is
a pendant block. Hence, we find that |VG| ≤ 2|VF | (with equality if and only if
each vertex of F is a cut vertex).

If F has at least seven vertices, then it follows from Lemma 4 ii) that F is
a cycle of even length at least 8, which is not possible due to Corollary 1. We
conclude that |VF | ≤ 6 and find that |VG| = |VH | ≤ 2|VF | ≤ 12. ut

We now prove our second structural lemma.

X

F

Y

Fig. 2. An example of a planar+2v graph G = H2 (left side) and a square root H of G
(right side). The thick edges in G denote the planar component; the thick edges in H
denote the edges of A.
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Lemma 6. Let G be a planar+kv graph with no recognizable edges such that
every connected component of G has at least 13 vertices. If G has a square root,
then |VG| ≤ 137k.

Proof. Let H be a square root of G. By Lemma 5, G cannot have any planar
connected components (as these would have at most 12 vertices). Hence, every
connected component of G is non-planar.

Since G is planar+kv, there exists a subset X ⊆ VG of size at most k such
that G − X is planar. Let F = H − X. Note that F is a spanning subgraph
of G−X and that F 2 is a (spanning) subgraph of G−X; hence F 2 is planar.
Let Y be the set that consists of all those vertices of F that are a neighbour
of X in H, that is, Y = NH(X). Since every connected component of G is
non-planar, every connected component of F contains at least one vertex of
Y . Let A be the set that consists of all edges between X and Y in H, that is,
A = {uv ∈ E(H) | u ∈ X, v ∈ Y }. See Figure 2 for an example.

Consider a vertex v ∈ X. By Kuratowski’s Theorem, the (planar) graph
G−X has no clique of size 5. Since NH(v) ∩ (VG \X) is a clique in G−X, we
find that |NH(v) ∩ (VG \X)| ≤ 4. Hence, |Y | ≤ 4|X| ≤ 4k.

We now prove three claims about the structure of blocks of F .

Claim A. If R is a block of F that is not a pendant block of H, then VR is at
distance at most 1 from Y in F .

We prove Claim A as follows. Let R be a block of F that is not a pendant block
of H. To obtain a contradiction, assume that VR is at distance at least 2 from Y
in F . Let u be a vertex of R such that distF (u, Y ) = min{distF (v, Y ) | v ∈ VR},
so u is a cut vertex of F that is at distance at least 2 from Y in F . Note that R
is not a trivial block of F , since all trivial blocks are isolated vertices of F , and
they all belong to Y .

First suppose that R is a small block of F and let v be the other vertex
of R. Then the edge uv is a bridge of F . Since R is not pendant, it follows from
Corollary 1 that uv is in a cycle of length C at most 6 in H. Observe that C
must have a vertex from X, which implies that u or v is at distance at most 1
from Y . This is a contradiction.

Now suppose that R is a big block of F . Let v be the neighbour of u in a
shortest path between u and Y in F . By Lemma 4 i), u has degree at most 3 in
F . As R is big, u has at least two neighbours in R. Hence, uv is a bridge of F .
As v has at least two neighbours in F as well, uv is not a pendant edge of H.
Then it follows from Corollary 1 that uv is in a cycle C of length at most 6 in H.
Observe that C must contain at least two edges of A and at least one edge uw of
R for some vertex w 6= u in R. Hence, w is at distance at most 1 from Y , which
is a contradiction. This completes the proof of Claim A.

By Lemma 4 i), every vertex of F has degree at most 3 in F . Hence the following
holds:

Claim B. For every u ∈ Y , graph F has at most three big blocks at distance at
most 1 from u.
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Let Z be the set of vertices of F at distance at most 3 from X in H.

Claim C. If R is a block of F with VR \ Z 6= ∅, then |VR| ≤ 6.

We prove Claim C as follows. Suppose R is a block of F with VR \ Z 6= ∅. For
contradiction, assume that |VR| ≥ 7. Then, by Lemma 4 ii), R is a cycle of F
of even size. As VR \ Z 6= ∅ and R is connected, there exists an edge uv of R
with u /∈ Z. By Corollary 1, we find that uv is in a cycle C of H of length at
most 6. Since u is at distance at least 4 from X in H, we find that C contains
no vertex of X and therefore, C is a cycle of F . Then R = C must hold, which is
a contradiction as |VR| ≥ 7 > 6 ≥ |VC |. This completes the proof of Claim C.

We will now prove our final claim.

Claim D. Every vertex of every block R of F that is non-pendant in H is at
distance at most 5 from X in H. Moreover,

i) if R has a vertex at distance at least 4 from X in H, then R is a big block,
ii) R has at most three vertices at distance at least 4 and at most one vertex at

distance 5 from X in H.

We prove Claim D as follows. Let R be a block of F that is non-pendant in H.
Claim A tells us that VR is at distance at most 1 from Y in F .

If R is a small block, then every vertex of R is at distance at most 2 from Y .
Hence, every vertex of R is at distance at most 3 from X in H and the claim
holds for R.

Let R be a big block. If R has at most four vertices, then the vertices of R
are at distance at most 3 from Y in F and at most one vertex of R is at distance
exactly 3. Hence, the vertices of R are at distance at most 4 from X in H and at
most one vertex of R is at distance exactly 4. Assume that |VR| > 4. Then either
VR ⊆ Z, that is, all the vertices are at distance at most 3 from X in H, or, by
Claim C, we find that R has at most six vertices. As |VR| > 4, we find that R
is a cycle on six vertices by Lemma 4 ii). Hence, in the latter case every vertex
of R is at distance at most 4 from Y , that is, at distance at most 5 from X in
H. Moreover, at most three vertices are at distance at least 4 and at most one
vertex is at distance 5 from X in H as R is a cycle. This completes the proof of
Claim D.

By combining Claim B with the fact that |Y | ≤ 4k, we find that F has at most
12k big blocks at distance at most 1 from Y . By Claims A and D, this implies
that H has at most 36k vertices of non-pendant blocks at distance at least 4
from X in H and at most 12k vertices of non-pendant blocks at distance at
least 5 from X in H. Let v be a vertex of degree 1 in H. If v is at distance at
least 5 from X, then v is adjacent to a vertex u of a non-pendant block and
u is at distance at least 4 from X in H. Notice that v is the unique vertex of
degree 1 adjacent to u, because by Claim D, u is in a big block and dF (u) ≤ 3 by
Lemma 4 i). Since H has at most 36k vertices of non-pendant blocks at distance
at least 4 from X in H, the total number of vertices of degree 1 at distance at
least 5 from X in H is at most 36k. Taking into account that there are at most

14



12k vertices at distance at least 5 from X in H that are in non-pendant blocks,
we see that there are at most 48k vertices in H at distance at least 5 from X
and all other vertices in H are at distance at most 4 from X. Using the facts
that |Y | ≤ 4k and that dF (v) ≤ 3 for v ∈ VF by Lemma 4 i), we observe that H
has at most k + 4k + 12k + 24k + 48k = 89k vertices at distance at most 4 from
X. It then follows that |VG| = |VH | ≤ 48k + 89k = 137k. ut

We are now ready to prove our main result.

Theorem 1. Square Root with Labels has a kernel of size O(k) for planar+kv
graphs when parameterized by k.

Proof. Let (G,R,B) be an instance of Square Root with Labels. First we
apply Edge Reduction, which takes polynomial time due to Lemma 3. By
the same lemma we either solve the problem in polynomial time or obtain an
equivalent instance (G′, R′, B′), where G′ is a graph with no recognizable edges.
In the latter case we apply the following reduction rule exhaustively, which takes
polynomial time as well.

Component Reduction. If G′ has a connected component F with |VF | ≤ 12,
then use brute force to solve Square Root with Labels for (F,R′ ∩ VF , B′ ∩
VF ). If this yields a no-answer, then return no and stop. Otherwise, return
(G′ − VF , R′ \ VF , B′ \ VF ) or if G′ = F , return yes and stop.

It is readily seen that this rule either solves the problem correctly or returns an
equivalent instance (G′′, R′′, B′′), where G′′ has no connected component with
at most 12 vertices. Assume the latter case. Our reduction rules do not increase
the deletion distance, that is, G′′ is a planar+kv graph. Moreover, as G′ has no
recognizable edges, G′′ has no recognizable edges. Then by Lemma 6, if G′′ has
more than 137k vertices, then G′′, and thus G, has no square root. Hence, if
|V ′′

G | > 137k, we have a no-instance, in which case we return a no-answer and
stop. Otherwise, we return the kernel (G′′, R′′, B′′). ut

6 Another Application

In this section we give another application of the Edge Reduction rule. Let

G be a graph. The average degree of G is ad(G) = 1
|VG|

∑
v∈VG

dG(v) = 2|EG|
|VG| .

Then the maximum average degree of G is defined as

mad(G) = max{ad(H) | H is a subgraph of G}.

We will show that Square Root is polynomial-time solvable for graphs with
maximum average degree less than 46

11 .
In order to prove our result we will need a number of lemmas, amongst others

three lemmas on treewidth. A tree decomposition of a graph G is a pair (T,X)
where T is a tree and X = {Xi | i ∈ VT } is a collection of subsets (called bags)
of VG such that the following three conditions hold:
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i)
⋃

i∈VT
Xi = VG,

ii) for each edge xy ∈ EG, x, y ∈ Xi for some i ∈ VT , and

iii) for each x ∈ VG the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ VT }, T ) is maxi∈VT
{|Xi| − 1}. The

treewidth tw(G) of a graph G is the minimum width over all tree decompositions
of G. A class of graphs G has bounded treewidth if there exists a constant p such
that the treewidth of every graph from G is at most p.

The first lemma is known and shows that Square Root with Labels
is linear-time solvable for graphs of bounded treewidth. We give a proof for
completeness.

Lemma 7 ([3]). The Square Root with Labels problem can be solved in
time O(f(t)n) for n-vertex graphs of treewidth at most t.

Proof. It is not difficult to construct a dynamic programming algorithm for the
problem, but for simplicity, we give a non-constructive proof based on Courcelle’s
theorem [6]. By this theorem, it suffices to show that the existence of a square
root H of a graph G can be expressed in monadic second-order logic by a formula
of constant length. To see the latter, note that the existence of a graph H with
H2 = G, R ⊆ EH and B ∩ EH = ∅ is equivalent to the existence of an edge
subset X ⊆ EG that satisfies the following conditions:

(i) R ⊆ X
(ii) B ∩X = ∅
(iii) for any uv ∈ EG, either uv ∈ X or there is a vertex w with uw,wv ∈ X
(iv) for any two distinct edges uw,wv ∈ X we have uv ∈ EG.

This completes the proof of the lemma. ut

The second lemma is a well-known result about deciding whether a graph has
treewidth at most k for some constant k.

Lemma 8 ([2]). For any fixed constant k, it is possible to decide in linear time
whether the treewidth of a graph is at most k.

Let C and B be the sets of cut vertices and blocks of a connected graph G,
respectively. The block-cutpoint-tree of G is the bipartite graph T with VT = C∪B,
such that u ∈ C and Q ∈ B are adjacent if and only if Q contains u. It is not
difficult to see that T is indeed is a tree [17]. Block-cutpoint-trees play a role in
the following lemma.

Lemma 9. Let H be a square root of a connected graph G. Let C and B be the
sets of cut vertices and blocks of H, respectively, and let T be the block-cutpoint-
tree of H. For u ∈ C, let Xu consist of u and all neighbours of u in H. For Q ∈ B,
let XQ = VQ. Then (T,X) is a tree decomposition of G.
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Proof. We prove that (T,X) satisfies the three conditions (i)–(iii) of the definition
of a tree decomposition. Condition (i) is satisfied, as every vertex of H, and
thus every vertex of G, belongs to some block Q of H and thus to some bag XQ.
Condition (ii) is satisfied, as every two vertices x, y that are adjacent in G either
belong to some common block Q of H, and thus belong to XQ, or else have a
common neighbour u in H that is a cut vertex of H, and thus belong to Xu.

In order to prove (iii), consider a vertex x ∈ VG. First suppose that x is a cut
vertex of H. Then the set of bags to which x belongs consists of bags XQ for every
block Q of H to which x belongs and bags Xu for u = x and for every neighbour
u of x in H that is a cut vertex of H. Note that x and any neighbour u of x in
H belong to some common block of H. Hence, by definition, the corresponding
nodes in T form a connected induced subtree of T . Now suppose that x is not a
cut vertex of H. Then x is contained in exactly one block Q of H. Hence the set of
bags to which x belongs consists of the bags XQ and bags Xu for every neighbour
u of x in H that is a cut vertex of H. Note that such a neighbour u belongs to
Q. Hence, by definition, the corresponding nodes in T form a connected induced
subtree of T (which is a star). This completes the proof of Lemma 9. ut

We call the tree decomposition (T,X) of Lemma 9 the H-tree decomposition of G.
Finally, the fourth lemma shows why we need the previous lemmas.

Lemma 10. Let G be a graph with mad(G) < 46
11 . If G has a square root but no

recognizable edges, then tw(G) ≤ 5.

Proof. We assume without loss of generality that G is connected; otherwise we
can consider the connected components of G separately. We also assume that G
has at least one edge, as otherwise the claim is trivial. Let H be a square root of
G. Let C be the set of cut vertices of H, and let B be the set of blocks of H. We
construct the H-tree decomposition (T,X) of G (cf. Lemma 9). We will show
that (T,X) has width at most 5.

If v ∈ VH , then NH [v] is a clique in G. Hence, ∆(H) ≤ 4 because otherwise
ad(G[NH [v]]) ≥ 5, contradicting our assumption that mad(G) < 46

11 . Hence each
bag Xu corresponding to a cut vertex u of H has size at most 5. We claim that
each bag corresponding to a block of H has size at most 6, that is, we will prove
that each block of H has at most six vertices. For contradiction, assume that
|VQ| ≥ 7 for some block Q of H.

First assume that Q is a cycle. Then, as |VQ| ≥ 7, no edge of Q is included in
a cycle of length at most 6. This is not possible due to Corolllary 1. Hence, Q
contains at least one vertex that does not have degree 2 in Q. As Q is 2-connected
not isomorphic to K2, we find that Q has no pendant vertices. Hence, Q contains
at least one vertex of degree at least 3 in Q.

We claim that for any vertex u ∈ VQ, dQ2(u) ≥ dQ(u) + 2. In order to see
this, let S = {v ∈ VQ | distQ(u, v) = 2}. Because Q is connected, dQ(u) ≤ 4
and |VQ| ≥ 7, we find that S 6= ∅. If S = {v} for some v ∈ VQ, then v is a cut
vertex of Q, contradicting the 2-connectedness of Q. Therefore, |S| ≥ 2 and thus
dQ2(u) ≥ dQ(u) + |S| ≥ dQ(u) + 2.
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We also need the following property of Q. Let u, v be two distinct vertices
of degree at least 3 in Q joined by a path P in Q of length 5 such that all
inner vertices of P have degree 2 in Q. We claim that in any such case u and
v are not adjacent in Q. In order to see this, assume that uv ∈ EQ. Let x and
y be neighbours of u and v, respectively, that are not in P . If x = y, then
ad(Q2[VP ∪ {x}]) = 32

7 ≥
46
11 . If x 6= y, then ad(Q2[VP ∪ {x, y}]) ≥ 36

8 ≥
46
11 . In

both cases we get a contradiction with our assumption that mad(G) < 46
11 . Hence,

uv /∈ EQ.
We use the property deduced above as follows. Consider any two distinct

vertices u and v of degree at least 3 in Q that are joined by a path P in Q such
that all inner vertices of P have degree 2 in Q. Then, because uv /∈ EQ, we find
that the length of P is at most 4 due to Corollary 1.

Recall that every vertex in Q has degree between 2 and 4 in Q. We let p, q
and r be the numbers of vertices of Q of degree 2, 3 and 4, respectively, in Q. We
construct an auxiliary multigraph F as follows. The vertices of F are the vertices
of Q of degree 3 and 4. For any path P in Q between two vertices u and v of F
with the property that all inner vertices of P have degree 2 in Q, we add an edge
uv to F . Note that P may have length 1. We also note that F can have multiple
edges but no self-loops, because Q is 2-connected. Moreover, we observe that F
has q + r vertices and 1

2 (3q + 4r) edges. As each path in Q that corresponds to
an edge of F has length at most 4, we find that p ≤ 3

2 (3q + 4r). Recall that Q
has at least one vertex with degree at least 3 in Q; hence, max{q, r} ≥ 1. This
means that

ad(Q) =
2p+ 3q + 4r

p+ q + r
=

q + 2r

p+ q + r
+ 2 ≥ 2q + 4r

11q + 14r
+ 2 ≥ 2

11
+ 2.

Because dQ2(u) ≥ dQ(u) + 2 for each u ∈ VQ, the above inequality implies that
ad(Q2) ≥ 2

11 + 4 = 46
11 ; a contradiction. Hence, H cannot have blocks of size at

least 7. ut

We are now ready to prove the main result of this section.

Theorem 2. Square Root can be solved in time O(n4) for n-vertex graphs G
with mad(G) < 46

11 .

Proof. Let G be an n-vertex graph with mad(G) < 46
11 . Our algorithm consists

of the following two stages:

Stage 1. We construct an instance (G,R,B) of Square Root with Labels from
G by setting R = B = ∅. Then we preprocess (G,R,B) using Edge Reduction.
By Lemma 3, we either solve the problem (and answer no) or obtain an equivalent
instance (G′, R′, B′) of Square Root with Labels that has no recognizable
edges by Lemma 1. If we get an instance (G′, R′, B′) then we proceed with the
second stage.

Stage 2. We solve instance (G′, R′, B′) as follows. By Lemma 10, if G′ has a
square root, then tw(G′) ≤ 5. We check the latter property by using Lemma 8.
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If tw(G′) ≥ 6, then we stop and return no. Otherwise, we solve the problem by
Lemma 7.

By Lemma 3, stage 1 takes time O(n2m2), where m is the number of edges of G.
Since mad(G) < 46

11 , stage 1 runs in fact in time O(n4). As stage 2 takes O(n)
time by Lemmas 7 and 8, the total running time is O(n4). ut

7 Conclusions

We proved a linear kernel for Square Root with Labels, which generalizes the
Square Root problem, for planar+kv graphs using a new edge reduction rule.
We recall that our edge reduction rule can be applied to solve Square Root for
graphs of maximum degree at most 6 [5]. To illustrate its wider applicability we
gave a third example of our edge reduction rule by showing that it can be used
to solve Square Root in polynomial time for graphs with maximum average
degree less than 46

11 . Whether Square Root is polynomial-time solvable for
graphs of higher maximum average degree or for graphs of maximum degree
at most 7 is still open. In general, it would be interesting to research whether
our edge reduction rule can be used to obtain other polynomial-time results for
Square Root.
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