
Kempe Equivalence of Colourings of Cubic Graphs

Carl Feghali, Matthew Johnson, Daniël Paulusma ?
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Abstract. Given a graph G = (V,E) and a proper vertex colouring of G, a
Kempe chain is a subset of V that induces a maximal connected subgraph of G
in which every vertex has one of two colours. To make a Kempe change is to
obtain one colouring from another by exchanging the colours of vertices in a
Kempe chain. Two colourings are Kempe equivalent if each can be obtained from
the other by a series of Kempe changes. A conjecture of Mohar asserts that, for
k ≥ 3, all k-colourings of connected k-regular graphs that are not complete are
Kempe equivalent. We address the case k = 3 by showing that all 3-colourings of
a connected cubic graph G are Kempe equivalent unless G is the complete graph
K4 or the triangular prism.

1 Introduction

Let G = (V,E) denote a simple undirected graph and let k be a positive integer. A
k-colouring of G is a mapping φ : V → {1, . . . , k} such that φ(u) 6= φ(v) if uv ∈ E.
The chromatic number of G, denoted by χ(G), is the smallest k such that G has a
k-colouring.

If a and b are distinct colours of a colouring α, then Gα(a, b) denotes the subgraph
of G induced by vertices with colour a or b. An (a, b)-component under α of G is a
connected component of Gα(a, b) and is known as a Kempe chain (we will omit the
reference to α when it is unneeded). A Kempe change is the operation of interchanging
the colours of some (a, b)-component of G. Let Ck(G) be the set of all k-colourings of
G. Two colourings α, β ∈ Ck(G) are Kempe equivalent, denoted by α ∼k β, if each
can be obtained from the other by a series of Kempe changes. The equivalence classes
Ck(G)/ ∼k are called Kempe classes.

Kempe changes were first introduced by Kempe in his well-known failed attempt
at proving the Four-Colour Theorem. The Kempe change method has proved to be
a powerful tool with applications to several areas such as timetables [17], theoretical
physics [21, 22], and Markov chains [20]. The reader is referred to [16, 18] for fur-
ther details. From a theoretical viewpoint, Kempe equivalence was first addressed by
Fisk [11] who proved that all 4-colourings of an Eulerian triangulation of the plane
are Kempe equivalent. This result was later extended by Meyniel [14] who showed
that all 5-colourings of a planar graph are Kempe equivalent, and by Mohar [16] who
proved that all k-colourings, k > χ(G), of a planar graph G are Kempe equivalent. Las
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Vergnas and Meyniel [19] extended Meyniel’s result by proving that all 5-colourings of
a K5-minor free graph are Kempe equivalent. Bertschi [2] showed that all k-colourings
of a perfectly contractile graph are Kempe equivalent, and, by further showing that
any Meyniel graph is perfectly contractile, answered in the affirmative a conjecture of
Meyniel [15]. We note that Kempe equivalence with respect to edge-colourings has also
been investigated [1, 13, 16].

Here we are concerned with a conjecture of Mohar [16] on connected k-regular
graphs, that is, graphs in which every vertex has degree k for some k ≥ 0. Note that,
for every connected 2-regular graph G that is not an odd cycle, it holds that C2(G) is a
Kempe class. Mohar conjectured the following (where Kk+1 is the complete graph on
k + 1 vertices).

Conjecture 1 ([16]) Let k ≥ 3. If G is a connected k-regular graph that is not Kk+1,
then Ck(G) is a Kempe class.

Notice that if G = Kk+1, then Ck(G) forms an empty Kempe class; so the condition
in Conjecture 1 is not necessary but it is neater to exclude this case. Notice also that
if G 6= Kk+1, then Ck(G) is not empty by Brooks’ Theorem [7], which states that a
graph with maximum degree k has a k-colouring unless it is an odd cycle or a complete
graph.

We address Conjecture 1 for the case k = 3. For this case the conjecture is known
to be false. A counter-example is the 3-prism displayed in Figure 1. The fact that some
3-colourings of the 3-prism are not Kempe equivalent was already observed by van den
Heuvel [12]. Our contribution is that the 3-prism is the only counter-example for the
case k = 3, that is, we completely settle the case k = 3 by proving the following result
for 3-regular graphs also known as cubic graphs.

Fig. 1. The 3-prism.

Theorem 1. If G is a connected cubic graph that is neither K4 nor the 3-prism, then
C3(G) is a Kempe class.

We give the proof of our result in the next section. Let us note an immediate corollary
of our result. First we need a definition and a lemma. Let d be a positive integer. A
graph G is d-degenerate if every subgraph of G has a vertex with degree at most d.

Lemma 1 ([16, 19]). Let d and k be integers, d ≥ 0, k ≥ d+ 1. If G is a d-degenerate
graph, then Ck(G) is a Kempe class.
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Corollary 1. LetG be a connected graph with maximum degree at most 3. ThenC3(G)
is a Kempe class unless G is K4 or the 3-prism.

Proof. A connected graph with maximum degree 3 is either 3-regular or 2-degenerate
(this follows easily from the definition of degenerate, but see also, for example, [10] for
a discussion). The corollary follows from Theorem 1 and Lemma 1. ut

Recently Conjecture 1 was confirmed for k ≥ 4 [4]; there were no exceptional
cases. This new result and its proof do not imply Theorem 1.

Our result is an example of a type of result that has received much recent atten-
tion: that of determining the structure of a reconfiguration graph. A reconfiguration
graph has as vertex set all solutions to a search problem and an edge relation that de-
scribes a transformation of one solution into another. Thus Theorem 1 is concerned with
the reconfiguration graph of 3-colourings of a cubic graph with edge relation ∼k and
shows that it is connected except in two cases. To date the structure of reconfiguration
graphs of colourings has focussed [3, 5, 6, 8–10] on the case where vertices are joined
by an edge only when they differ on just one colour (that is, when one colouring can be
transformed into another by changing the colour on a single vertex which is a Kempe
change of a Kempe chain that contains only one vertex). For a survey of recent results
on reconfiguration graphs see [12].

2 The Proof of Theorem 1

We first give some further definitions and terminology. Let G = (V,E) be a graph.
Then G is H-free for some graph H if G does not contain an induced subgraph isomor-
phic to H . A separator of G is a set S ⊂ V such that G − S has more components
than G. We say that G is p-connected for some integer p if |V | ≥ p + 1 and every
separator of G has size at least p. Some small graphs that we will refer to are defined
by their illustrations in Figure 2.
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Fig. 2. A number of special graphs used in our paper.

Besides three new lemmas, we will need the aforementioned result of van den
Heuvel, which follows from the fact that for the 3-prism T , the subgraphs T (1, 2),
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T (2, 3) and T (1, 3) are connected so that the number of Kempe classes is equal to the
number of different 3-colourings of T up to colour permutation, which is two.

Lemma 2 ([12]). If G is the 3-prism, then C3(G) consists of two Kempe classes.

Lemma 3. If G is a connected cubic graph that is not 3-connected, then C3(G) is a
Kempe class.

Lemma 4. If G is a 3-connected cubic graph that is claw-free but that is neither K4

nor the 3-prism, then C3(G) is a Kempe class.

Lemma 5. If G is a 3-connected cubic graph that is not claw-free, then C3(G) is a
Kempe class.

Observe that Theorem 1 follows from the above lemmas, which form a case distinc-
tion. Hence it suffices to prove Lemmas 3–5. These proofs form the remainder of the
paper.

2.1 Proof of Lemma 3

In order to prove Lemma 3, we need two auxiliary results.

Lemma 6 ([19]). Let k ≥ 1 be an integer. Let G1 and G2 be two graphs such that
G1∩G2 is complete. If bothCk(G1) andCk(G2) are Kempe classes, thenCk(G1∪G2)
is a Kempe class.

Lemma 7 ([16]). Let k ≥ 1 be an integer and let G be a subgraph of a graph G′.
Let α′ and β′ be the restrictions, to G, of two k-colourings α and β of G′. If α and β
are Kempe equivalent, then α′ and β′ are Kempe equivalent.

For convenience we restate Lemma 3 before we present its proof.

Lemma 3 (restated). If G is a connected cubic graph that is not 3-connected, then
C3(G) is a Kempe class.

Proof. As G is cubic, G has at least four vertices. Because G is not 3-connected, G
has a separator S of size at most 2. Let S be a minimum separator of G such that
G = G1 ∪G2 and G1 ∩G2 = S. As every vertex in S has degree at most 2 in each Gi
and G is cubic, G1 and G2 are 2-degenerate. Hence, by Lemma 1, C3(G1) and C3(G2)
are Kempe classes. If S is a clique, we apply Lemma 6. Thus we can assume that S, and
any other minimum separator of G, is not a clique. Then S = {x, y} for two distinct
vertices x and y with xy 6∈ E(G).

Because S is a minimum separator, x and y are non-adjacent and G is cubic, we
have that x has either one neighbour in G1 and two in G2, or the other way around; the
same holds for y. For i = 1, 2, let Ni(x) and Ni(y) be the set of neighbours of x and y,
respectively, in Gi.

Suppose that |N1(x)| = |N1(y)|. Then |N2(x)| = |N2(y)| also and we can suppose
without loss of generality that |N1(x)| = |N1(y)| = 1. Let x1 be the unique neighbour
of x in G1. Then x1y 6∈ E(G) else {x1} is a separator smaller than S. So {x1, y} is a
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minimal separator that separates G1 \ {x1} from G2 ∪ {x} and x1 has two neighbours
in G1 \ {x1} and y only has one. So, relabelling if necessary, we can assume that
|N1(x)| 6= |N1(y)|. Moreover, we can let N1(x) = {x1} and N2(y) = {y1}, where y1
is the unique neighbour of y in G2.

It now suffices to prove the following two claims.

Claim 1. All colourings α such that α(x) 6= α(y) are Kempe equivalent in C3(G).

We prove Claim 1 as follows. We add an edge e between x and y. This results in graphs
G1 + e, G2 + e and G+ e. We first prove that C3(G+ e) is a Kempe class. Because x
and y have degree 1 in G1 and G2, respectively, and G is cubic, we find that the graphs
G1+ e and G2+ e are 2-degenerate. Hence, by Lemma 1, C3(G1+ e) and C3(G2+ e)
are Kempe classes. By Lemma 6, it holds that C3(G + e) is a Kempe class. Applying
Lemma 7 completes the proof of Claim 1.

Claim 2. For every colouring α such that α(x) = α(y), there exists a colouring β with
β(x) 6= β(y) such that α and β are Kempe equivalent in C3(G).

We assume without loss of generality that α(x) = α(y) = 1 and α(y1) = 2. If
α(x1) = 2, then we apply a Kempe change on the (1, 3)-component of G that con-
tains x. Note that y does not belong to this component. Hence afterwards we obtain
the desired colouring γ. If α(x1) = 3, then we first apply a Kempe change on the
(2, 3)-component of G that contains x1. Note that this does not affect the colours of x,
y and y1 as they do not belong to this component. Afterwards we proceed as before.
This completes the proof of Claim 2 (and the lemma). ut

2.2 Proof of Lemma 4

We require some further terminology and three lemmas. We identify two vertices x
and y in a graph G if we replace them by a new vertex adjacent to all neighbours of x
and y in G. Two colourings α and β of a graph G match if there exists two vertices x, y
with a common neighbour in G such that α(x) = α(y) and β(x) = β(y).

We highlight that the following lemma is a statement about any graph and might
prove to be of wider use.

Lemma 8. Let k ≥ 1 and G′ be the graph obtained from a graph G by identifying two
non-adjacent vertices x and y. If Ck(G′) is a Kempe class, then all k-colourings γ of
G with γ(x) = γ(y) are Kempe equivalent.

Proof. Let α and β be two k-colourings of G with α(x) = α(y) and β(x) = β(y).
Let z be the vertex of G′ that is obtained after identifying x and y. Let α′ and β′ be
the k-colourings of G′ that agree with α and β, respectively, on V (G) \ {x, y} and
for which α′(z) = α(x)(= α(y)) and β′(z) = β(x)(= β(y)). By our assumption,
there exists a Kempe chain from α′ to β′ in G′. We mimic this Kempe chain in G.
Note that any (a, b)-component in G′ that contains z corresponds to at most two (a, b)-
components in G, as x and y may get separated. Hence, every Kempe change on an
(a, b)-component corresponds to either one or two Kempe changes in G (if x and y are
in different (a, b)-components, then we apply the corresponding Kempe change in G′

on each of these two components). In this way we obtain a Kempe chain from α to β as
required. ut
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Lemma 9. Let k ≥ 3. If α and β are matching k-colourings of a 3-connected graph G
of maximum degree k, then α ∼k β.

Proof. If G is (k − 1)-degenerate, then α ∼k β by Lemma 1. Assume that G is not
(k−1)-degenerate. ThenG is k-regular. Since α and β match, there exist two vertices u
and v of G that have a common neighbour w such that α(u) = α(v) and β(u) = β(v).
Let x denote the vertex of G′ obtained by identifying u and v.

Let S be a separator of G′. If S does not contain x, then S is a separator of G.
Then |S| ≥ 3 as G is 3-connected. If S contains x, then S must contain another vertex
as well; otherwise {u, v} is a separator of size 2 of G, which is not possible. Hence,
|S| ≥ 2 in this case. We conclude that G′ is 2-connected.

We now prove that G′ is (k − 1)-degenerate. Note that, in G′, w has degree k − 1,
x has degree at least k and all other vertices have degree k. Let u1, . . . , ur for some
r ≥ k − 1 be the neighbours of x not equal to w. Since G′ is 2-connected, the graph
G′′ = G′\x is connected. This means that every ui is connected to w via a path in G′′,
which corresponds to a path in G′ that does not contain x. Since w has degree k − 1
and every vertex not equal to x has degree k, we successively delete vertices of these
paths starting from w towards ui so that each time we delete a vertex of degree at most
k − 1. Afterwards we can delete x as x has degree 0. The remaining vertices form an
induced subgraph of G′ whose components each have maximum degree at least k and
at least one vertex of degree at most k− 1. Hence, we can continue deleting vertices of
degree at most k − 1 and thus find that G′ is (k − 1)-degenerate. Then, by Lemma 1,
Ck(G

′) is a Kempe class. Hence, by Lemma 8, we find that α ∼k β as required. This
completes the proof. ut

Lemma 10. Every 3-connected cubic claw-free graph G that is neither K4 nor the
3-prism is house-free, diamond-free and contains an induced net (see also Figure 2).

Proof. First suppose that G contains an induced diamond D. Then, since G is cubic,
the two non-adjacent vertices in D form a separator and G is not 3-connected, a contra-
diction. Consequently, G is diamond-free.

Now suppose that G contains an induced house H . We use the vertex labels of
Figure 2. So, s, w, x are the vertices that have degree 2 in H , and s and w are adjacent.
As G is cubic, w has a neighbour t ∈ V (G) \ V (H). Since G is cubic and claw-free, t
must be adjacent to s. If tx ∈ E, then G is the 3-prism. If tx /∈ E, then t and x
form a separator of size 2. In either case we have a contradiction. Consequently, G is
house-free.

We now prove that G has an induced net. As G is cubic and claw-free, it has a
triangle and each vertex of the triangle has one neighbour in G outside the triangle.
Because G is not K4 and diamond-free, these neighbours are distinct. Then, because G
is house-free, no two of them are adjacent. Hence, together with the vertices of the
triangle, they induce a net. ut

We restate Lemma 4 before we present its proof.

Lemma 4 (restated). If G is a 3-connected cubic graph that is claw-free but that is
neither K4 nor the 3-prism, then C3(G) is a Kempe class.
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Proof. By Lemma 10, G contains an induced net N . For the vertices of N we use the
labels of Figure 2. In particular, we refer to x, y and z as the t-vertices of N , and x′, y′

and z′ as the p-vertices. Let α and β be two 3-colourings of G. In order to show that
α ∼3 β we distinguish two cases.

Case 1. There are two p-vertices with identical colours under α or β.
Assume that α(x′) = α(y′) = 1. Then α(z) = 1 as the t-vertices form a triangle, so
colour 1 must be used on one of them. Assume without loss of generality that α(z′) =
α(x) = 2 and so α(y) = 3. If β(z′) = β(x), then α and β match (as x and z′ have z as a
common neighbour). Then, by Lemma 9, we find that α ∼3 β. Otherwise β(z′) = β(y),
since the colour of z′ must appear on one of x and y. Note that the (2, 3)-component
containing x under α consists only of x and y. Then a Kempe exchange applied to
this component yields a colouring α′ such that α′(z′) = α′(y). As y and z′ have z
as a common neighbour as well, this means that α′ and β match. Hence, it holds that
α ∼3 α

′ ∼3 β, where the second equivalence follows from Lemma 9.

Case 2. All three p-vertices have distinct colours under both α and β.
Assume without loss of generality that α(x) = α(z′) = 1, α(y) = α(x′) = 2, and
α(z) = α(y′) = 3. Note that Kempe chains of G are paths or cycles, as no vertex in a
chain can have degree 3 since all its neighbours in a chain are coloured alike and G is
claw-free. So, we will refer to (a, b)-paths rather than (a, b)-components.

We will now prove that there exists a colouring α′ with α ∼3 α
′ that assigns the

same colour to two p-vertices of N . This suffices to complete the proof of the lemma,
as afterwards we can apply Case 1.

Consider the (1, 2)-path P that contains x′. If P does not contain z′, then a Kempe
exchange on P gives us a desired colouring α′ (with x′ and z′ coloured alike). So we
can assume that x′ and z′ are joined by a (1, 2)-path P12, and, similarly, x′ and y′ by a
(2, 3)-path P23, and y′ and z′ by a (1, 3)-path P13.

Let G′ be the subgraph of G induced by the three paths. Note that P12 has end-
vertices y and z′, P23 has end-vertices z and x′ and P13 has end-vertices x and y′.
Hence, G′ contains the vertices of N and every vertex in G′ − N is an internal vertex
of one of the three paths. As G is cubic, this means that each vertex in G′ −N belongs
to exactly one path. Moreover, as G is claw-free and cubic, two vertices in G′ − N
that are on different paths are adjacent if and only if they have a p-vertex as a common
neighbour.

In Figure 3 are illustrations of G′ and the colourings of this proof that we are about
to discuss. Let x′′ 6= x be the vertex in P12 adjacent to x′. From the above it follows
that x′′ is adjacent to the neighbour of x′ on P23 and that no other vertex of P12 (apart
from x′) is adjacent to a vertex of P23. As G is cubic, this also means that x′′ has no
neighbour outside G′. Apply a Kempe exchange on P12 and call the resulting colour-
ing γ. By the arguments above, the new (2, 3)-path Q23 (under γ) that contains y′ has
vertex set (V (P23) ∪ {x′′})\{x′, y, z}. Apply a Kempe exchange on Q23. This results
in a colouring α′ with α′(y′) = α′(z′) = 2, hence α′ is a desired colouring. This com-
pletes the proof of Case 2 and thus of the lemma. ut
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2.3 Proof of Lemma 5

We first need another lemma.

Lemma 11. LetW be a set of three vertices with a common neighbour in a 3-connected
cubic graph G. Suppose that every 3-colouring γ of G that colours alike exactly one
pair of W is Kempe equivalent to a 3-colouring γ′ such that γ′ colours alike a different
pair of W . Then C3(G) is a Kempe class.

Proof. Let α and β be two 3-colourings ofG. To prove the lemma we show that α ∼3 β.
By Lemma 9, it is sufficient to find a matching pair of colourings that are Kempe equiv-
alent to α and β respectively (this lemma will be applied repeatedly).

As the three vertices of W have a common neighbour, in any 3-colouring at least
two of them are coloured alike. Let W = {x, y, z}. We can assume that α(x) = α(y).
If β(x) = β(y), then α and β match and we are done. So we can instead assume that
β(x) 6= β(y) and thus β(y) = β(z). If α(y) = α(z), then, again, α and β match. Oth-
erwise α colours alike exactly one pair of W and, by the premise of the lemma, we can
find a 3-colouring α′ that is Kempe equivalent to α and colours alike a different pair of
W . If α′(y) = α′(z), then α′ and β match. Otherwise we must have that α′(x) = α′(z).
As β(x) 6= β(y) and β(y) = β(z), there exists a 3-colouring β′ that is Kempe equiva-
lent to β and that colours alike a different pair of W than β. So β′(x) ∈ {β′(y), β′(z)}
and β′ matches either α or α′. In both cases we are done. ut

We restate Lemma 5 before we present its proof.

Lemma 5 (restated). If G is a 3-connected cubic graph that is not claw-free, then
C3(G) is a Kempe class.

Proof. Note that if a vertex has three neighbours coloured alike it is a single-vertex
Kempe chain. We will write that such a vertex can be recoloured to refer to the exchange
of such a chain.

We make repeated use of Lemma 9: two colourings are Kempe equivalent if they
match.

LetC be a claw inGwith vertex labels as in Figure 2. Note that in every 3-colouring
of G, two of s, u and v are coloured alike, since s, u and v have a common neighbour.
If some fixed pair of s, u and v is coloured alike by every 3-colouring of G, then every
pair of colourings matches and we are done. So let α be a 3-colouring of G and assume
that α(u) = α(v) = 1 and that there are colourings for which u and v have distinct
colours, or, equivalently, colourings for which s has the same colour as either u or v. By
Lemma 11, it is sufficient to find such a 3-colouring that is Kempe equivalent to α. Our
approach is to divide the proof into a number of cases, and, in each case, start from α
and make a number of Kempe changes until a colouring in which s agrees with either
u or v is obtained. We will denote such a colouring ω to indicate a case is complete.

First some simple observations. If α(s) = 1, then let ω = α and we are done. So
we can assume instead that α(s) = 2 (and so, of course, α(w) = 3). If it is possible
to recolour one of u, v or s, then we can let ω be the colouring obtained. Thus we can
assume now that each vertex of u, v and s has two neighbours that are not coloured
alike.
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For a colouring γ, vertex x, and colours a and b let F abγ,x denote the (a, b)-component
at s under γ. We can assume that F 12

α,s contains both u and v as otherwise exchanging
F 12
α,s results in a colouring in which s agrees with either u or v.

Let N(u) = {w, u1, u2}, N(v) = {w, v1, v2}, and N(s) = {w, s1, s2}. Note that
the vertices u1, u2, v1, v2, s1, s2 are not necessarily distinct.

Case 1. α(u1) 6= α(u2), α(v1) 6= α(v2) and α(s1) 6= α(s2).
So each of u, v and s has degree 1 in F 12

α,s and therefore F 12
α,s has at least one vertex of

degree 3. Let x be the vertex of degree 3 in F 12
α,s that is closest to u and let α′ be the

colouring obtaining by recolouring x. Then u is not in F 12
α′,s which can be exchanged

to obtain ω.

Case 2. α(s1) = α(s2).
Then α(s1) = α(s2) = 1 else ω can be obtained by recolouring s.

Subcase 2.1: α(u1) = α(u2) or α(v1) = α(v2).
The two cases are equivalent so we consider only the first. We have α(u1) = α(u2) = 2
else u is not in F 12

α,s. Note that F 23
α,s consists only of s and w. If F 23

α,s is exchanged, u
has three neighbours coloured 2, and can be recoloured to obtain ω (as u and s are both
now coloured 3).

Subcase 2.2: α(u1) 6= α(u2) and α(v1) 6= α(v2).
We can assume that α(u1) = α(v1) = 2, and α(u2) = α(v2) = 3.

In this case, we take a slightly different approach. Let ω now be some fixed 3-
colouring with ω(s) ∈ {ω(u), ω(v)}.We show that α ∼3 ω by making Kempe changes
from α until a colouring that matches ω (or a colouring obtained from ω by a Kempe
change) is reached.

Let {a, b, c} = {1, 2, 3}. If ω(s1) = ω(s2), then ω matches α (recall α(s1) = α(s2)
in this case). So assume that ω(s1) = a and ω(s2) = b. Then ω(s) = c, and we
can assume, without loss of generality, that ω(w) = a. Note that we can assume that
ω(u) 6= ω(v) else α and ω match and we are done. So, as u and v are symmetric un-
der α, we can assume that ω(u) = b and ω(v) = c. If ω(u2) = a or ω(v2) = a, then,
again, α and ω match (recall that α(w) = α(u2) = α(v2)) so we assume otherwise
(noting that this implies ω(u2) = c and ω(v2) = b) and consider two cases. For con-
venience, we first illustrate our current knowledge of α and ω in Figure 4. (Though it
is not pertinent in this case, we again observe that the six vertices of degree 1 in the
illustration might not, in fact, be distinct.)

Subcase 2.2.1: ω(w) = a ∈ {ω(u1), ω(v1)}.
Notice that F 23

α,s contains only s and w. If it is exchanged, then a colouring is obtained
where w, u1 and v1 are coloured alike and this colouring matches ω.

Subcase 2.2.2: ω(w) = a 6∈ {ω(u1), ω(v1)}.
So ω(u1) = c and ω(v1) = b. Thus F abω,w contains only u and w, and the colouring
obtained by its exchange matches α as w and v1 are both coloured b.

Case 3. α(u1) = α(u2), α(v1) 6= α(v2), and α(s1) 6= α(s2).
If α(u1) = α(w), then the three neighbours of u are coloured alike and it can be
recoloured to obtain ω. So suppose α(u1) = α(u2) = 2. We may assume that α(s1) =
1, α(s2) = α(v2) = 3, and α(v1) = 2; see the illustration of Figure 5.
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colouring α colouring ω

u
1

w
3

v 1s2

u1

2
u2

3

s2
1

s1
1

v1
2

v2
3

u
b

w
a

v csc

u1 u2

c

s2
b

s1
a

v1

v2
b

Fig. 4. The colourings of Subcase 2.2 of Lemma 5.
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w
3

v 1s2
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2
u2

2

s2
3

s1
1

v1
2

v2
3

Fig. 5. The colouring α of Case 3 of Lemma 5.
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We continue to assume that F 12
α,s contains u and v and note that s and v have degree 1

therein.

Subcase 3.1: F 12
α,s is not a path.

Let t be vertex of degree 3 closest to s in F 12
α,s. Then t can be recoloured to obtain a

colouring α′ such that F 12
α′,s does not contain v. Exchanging F 12

α′,s, we obtain ω.

Subcase 3.2: F 12
α,s is a path.

Note that F 12
α,s is a path from s to v through s1 and u.

Subcase 3.2.1: F 13
α,s2 is a path from s1 to s2.

Note thatF 13
α,u 6= F 13

α,s2 , since ifF 13
α,u is a path, then uwould be an endvertex coloured 1,

implying u = s1 and thus contradicting that C is a claw. As G is cubic, a vertex can
belong to both F 12

α,s and F 13
α,s2 if it is an endvertex of one of them, and we note that s1

is the only such vertex.
Let α′ be the colouring obtained from α by the exchange of F 13

α,s2 . If s 6∈ F 12
α′,v ,

then let ω be the colouring obtained by the further exchange of F 12
α′,v .

Otherwise, F 12
α′,v = F 12

α′,s, s and v each have degree 1 therein, and we can assume it
is a path (else, as in Subcase 3.1, there is a vertex of degree 3 that can be recoloured to
obtain α′′ and F 12

α′′,s does not contain v and can be exchanged to obtain ω). We can also
assume that F 12

α′,s contains F 12
α,s \ {s1}: if not, then F 13

α,s2\{s1, s2} ∩ F
12
α,v 6= ∅ (recall

that F 12
α,s is a path from s to v through s1 and u) but their common vertices would have

degree 4. Thus, in particular, F 12
α′,s contains u and the vertex t at distance 2 from s

in F 12
α,s.
As t is not an endvertex in F 12

α′,s, s1 is its only neighbour coloured 3 under α′. So
F 23
α′,w contains four vertices: w, s, s1 and t. Let α′′ be the colouring obtained from α′

by the exchange of F 23
α′,w. If t 6∈ {u1, u2}, then u has three neighbours with colour 2

with α′′ and so can be recoloured to obtain ω. Otherwise the conditions of Case 1 are
now met.

Subcase 3.2.2: F 13
α,s2 is not a path from s1 to s2.

If s1 /∈ F 13
α,s2 , then the exchange of F 13

α,s2 gives a colouring in which s1 and s2 are
coloured alike (the colour of s is not affected by the exchange and either both or neither
of u and v change colour). Thus Case 2 can now be used.

So we can assume that s1 ∈ F 13
α,s2 has degree 1 in F 13

α,s2 (recall that s1 has degree 2
in F 12

α,s). If s2 has degree 2 in F 13
α,s2 , then F 23

α,s contains only w, s and s2. If it is
exchanged, u has three neighbours with colour 2 and can be recoloured to ω.

Thus s1 and s2 both have degree 1 in F 13
α,s2 . Let x be the vertex of F 13

α,s2 closest
to s2. Then x can be recoloured to obtain a colouring α′ such that F 13

α′,s2
does not

contain s1. Exchanging F 13
α′,s2

again takes us to Case 2. This completes Case 3.
By symmetry, we are left to consider the following case to complete the proof of

the lemma.

Case 4. α(u1) = α(u2), α(v1) = α(v2), and α(s1) 6= α(s2).
If α(v1) = α(v2) = 3, then v can be recoloured to obtain ω. So we can assume that
α(v1) = α(v2) = 2, and, similarly, that α(u1) = α(u2) = 2. We can also assume
that F 23

α,s is a path since otherwise the vertex of degree 3 closest to s can be recoloured.
Define S = {u1, u2, v1, v2}. We distinguish two cases.

12



Subcase 4.1: |S ∩ F 23
α,s| ≥ 2.

As F 23
α,s is a path and w is an endvertex, one vertex of S, say v1, has degree 2 in F 23

α,s.
Consider F 13

α,w: it consists only of vertices w, u, and v. After it is exchanged, v1 has
three neighbours with colour 3 and recolouring v1 allows us to apply Case 3.

Subcase 4.2: |S ∩ F 23
α,s| ≤ 1.

It follows, without loss of generality, that {u1, u2} ∩ F 23
α,s = ∅. Exchange F 23

α,u1
and

F 23
α,u2

(which might be two distinct components or just one) to obtain a colouring α′.
As w ∈ F 23

α′,s (and hence w 6∈ F 23
α,u1
∪ F 23

α,u2
), every neighbour of u is coloured 3 and

it can be recoloured to obtain ω. This completes Case 4 and the proof of Lemma 5. ut
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