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Abstract The perturbative QCD expansion for J/ψ pho-
toproduction appears to be unstable: the NLO correction is
large (and of opposite sign) to the LO contribution. Moreover,
the predictions are very sensitive to the choice of factorisation
and renormalisation scales. Here we show that perturbative
stability is greatly improved by imposing a ‘Q0 cut’ on the
NLO coefficient functions; a cut which is required to avoid
double counting. Q0 is the input scale used in the parton
DGLAP evolution. This result opens the possibility of high
precision exclusive J/ψ data in the forward direction at the
LHC being able to determine the low x gluon distribution at
low scales.

1 Introduction

It would be valuable to be able to constrain the gluon–
parton distribution function (PDF) at low x using J/ψ pho-
toproduction data measured at HERA and at the LHC, via
exclusive pp → p + J/ψ + p events, especially events
in the forward region measured by the LHCb collaboration.
Indeed, for LHCb kinematics at 13 TeV we can reach down
to x � 3 × 10−6. Exclusive J/ψ production is driven by the
subprocess γ ∗ p → J/ψ + p; see Fig. 1.

Unfortunately, it turns out that the NLO corrections cal-
culated in the conventional MS collinear approach are found
to be very large and to depend strongly on the choice of fac-
torisation and renormalisation scales [1–3]. Indeed, for an
‘optimum’ choice of scales it is found that the NLO correc-
tion has the opposite sign to the LO contribution and even
changes the sign of the whole amplitude; see the continuous
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curves in Fig. 2. Thus one may doubt the convergence of the
whole perturbation series.

1.1 Optimum scale

What do we mean by the ‘optimum’ scale? It was shown in
Ref. [3] that it is possible to find a scale (namely μF =
mc) which resums all the double-logarithmic corrections
enhanced by large values of ln(1/ξ) into the gluon and quark
PDFs, where ξ is the skewedness parameter of the gener-
alised parton distributions (GPDs) describing the proton–
gluon (and proton–quark) vertices. That is, it is possible
to take the (αS ln(1/ξ)ln(μ2

F )) term from the NLO gluon
(and quark) coefficient functions and to move it to the LO
GPDs. This allows a resummation of all the double-log
(αS ln(1/ξ)ln(μ2

F ))n terms in the LO contribution by choos-
ing the factorisation scale to be μF = mc. The details are
given in Ref. [3]; see also Ref. [4].

The result is that the γ p → J/ψ + p amplitudes are
schematically of the form

A(μ f ) = CLO ⊗ GPD(μF ) + CNLO
rem (μF ) ⊗ GPD(μ f ),

(1)

where the GPD can be related to the conventional PDF via
the Shuvaev transform for ξ < |x | � 1 [5]. With the choice
μF = mc there is a smaller remaining term in the NLO
coefficient functions, and so the residual dependence on the
scale μ f is reduced.

Unfortunately, even after this, the NLO corrections, and
their variations with scale, although reduced, are still unac-
ceptably large, as shown in Fig. 2. The dashed and dot-dashed
curves correspond to NLO predictions for two different val-
ues of the residual scale μ f : namely μ2

f = 4.8 and 1.7 GeV2

respectively, while the continuous curves correspond to the
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Fig. 1 dσ(pp → p + J/ψ + p)/dy driven by the subprocess γ p → J/ψ + p at two different γ p centre-of-mass energies, W±
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Fig. 2 The dotted and continuous curves are the LO and NLO predic-
tions, respectively, of ImA/W 2 for the γ p → J/ψ+ p amplitude, A, as
a function of the γ p centre-of-mass energy W, obtained using CTEQ6.6
partons [8] (with input Q0 = 1.3 GeV) for the optimal scale choice
μF = μR = mc. The top three curves correspond to the NLO predic-
tion for various values of the residual factorisation scale μ f , namely:
μ2

f = 2m2
c , m2

c , Q2
0, respectively, where m2

c ≡ M2
ψ/4 = 2.4 GeV2

‘optimum’ scale choice μ2
F = μ2

R = m2
c = M2

ψ/4 = 2.4

GeV2.1 The choice μR = μF is justified in Sect. 3.1.

1.2 Double counting

So for the QCD prediction to be useful we should search for
some other sizeable physical contribution to the NLO cor-
rection. Here we consider a power correction which may fur-
ther reduce the NLO correction and, moreover, may reduce
the sensitivity to the choice of scale. The correction is
O(Q2

0/M
2
ψ) where Q0 denotes the input scale in the par-

ton evolution. It turns out to be important for the relatively
light charm quark, mc � Mψ/2. Let us explain the origin of
this ‘Q0 correction’. We begin with the collinear factorisa-
tion approach at LO. Here, we never consider parton distri-

1 Recall that the choice mc = Mψ/2 effectively accounts for the rela-
tivistic corrections to the J/ψ wave function, see [6,7].

butions at low virtualities, that is, for Q2 < Q2
0. We start the

PDF evolution from some phenomenological PDF input at
Q2 = Q2

0. In other words, the contribution from |l2| < Q2
0 of

Fig. 3b (which can be considered as the LO diagram, Fig. 3a,
supplemented by one step of DGLAP evolution from quark
to gluon, Pgq ) is already included in the input gluon GPD
at Q0. That is, to avoid double counting, we must exclude
from the NLO diagram the contribution coming from virtu-
alities less than Q2

0. At large scales, Q2 � Q2
0, this double-

counting correction will give small power suppressed terms
of O(Q2

0/Q
2), since there is no infrared divergence in the

corresponding integrals. On the other hand, with Q0 ∼ 1
GeV and μF = mc (∼ Mψ/2) a correction of O(Q2

0/m
2
c)

may be crucial.
In the present paper we re-calculate the NLO contribution

for J/ψ photoproduction excluding the contribution coming
from the low virtuality domain (<Q2

0). We find that for J/ψ
this procedure substantially reduces the resulting NLO con-
tribution and, moreover, reduces the scale dependence of the
predictions. It indicates the convergence of the perturbative
series.

An outline of the procedure is given in [9], where also the
NLO description of exclusive J/ψ production in the kT fac-
torisation and collinear factorisation schemes are compared.

2 Avoiding double counting of the low Q2 contribution

2.1 The NLO quark contribution

We start with the NLO quark contribution to the γ p →
J/ψ + p process. The corresponding Feynman diagrams
are that of Fig. 3b together with the diagram where both glu-
ons couple to the same heavy-quark line. Here we will use
the non-relativistic approximation for the J/ψ wave func-
tion. Since the momentum fractions (x + ξ) and (x − ξ)

carried by the left and right quarks are different we have
to use the skewed (generalised) parton distribution (GPD),
Fq(x, ξ, Q2). The skewedness parameter ξ = M2

ψ/(2W 2 −
M2

ψ), where W is the γ p energy. We see that the upper part of
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Fig. 3 a LO contribution to
γ p → V + p. b NLO quark
contribution. For these graphs
all permutations of the parton
lines and couplings of the gluon
lines to the heavy-quark pair are
to be understood. Here
P ≡ (p + p′)/2 and l is the
loop momentum

γ

CLO
g

V

(x + ξ)P+ (x − ξ)P+

Fgp p

γ

CNLO
q

V

(x + ξ)P+ (x − ξ)P+

Fqp p

l

(a) (b)

diagram Fig. 3b is the same as the diagram for the LO gluon
Fig. 3a contribution. For the LO contribution the integral over
the gluon virtuality |l2| starts from the input scale Q2

0, while
all the contributions from low virtualities |l2| < Q2

0 are col-
lected in the input gluon GPD, Fg(x, ξ, Q2

0). Note that this
input distribution already includes that part of the quark con-
tribution of Fig. 3b coming from |l2| < Q2

0. Thus to avoid
double counting when computing the NLO quark coefficient
function, CNLO

q , of Fig. 3b we have to include the theta func-
tion �(|l2| > Q2

0) in the integration over l2. Depending on
the ratio Q2

0/m
2
c = 4Q2

0/M
2
ψ this can be a significant correc-

tion. The corresponding integral has no infrared or ultraviolet
divergence and can be calculated in D = 4 dimensions.

Actually, the calculation is performed in the physical
scheme (with D = 4). On the other hand, parton distribu-
tions are usually presented in the MS factorisation scheme
where dimensional regularisation is used. The problem is that
when we calculate the coefficient function in D = 4+2ε we
have finite contributions of ε/ε origin. Formally these ε/ε

terms come from unphysically large distances ∝ O(1/ε). In
fact, these ε/ε terms are compensated by a corresponding re-
definition of the PDFs. In order to retain the ε/ε terms and
to use the MS scheme we do not calculate diagram Fig. 3b
in D = 4 dimensions for |l2| > Q2

0, but instead calculate the
part corresponding to small |l2| < Q2

0. We consider this part
as the correction which should be subtracted from the known
NLO MS coefficient function [1,10]. Recall that after the
subtraction of the contribution generated by the last step of
the LO evolution, PLO⊗CLO, there is no infrared divergence
and the subtracted part ofCNLO coming from |l2| < Q2

0 does
not contain ε/ε terms.

2.2 The NLO gluon contribution

The NLO ‘Q0 corrections’ for the gluon coefficient func-
tion are more complicated. Besides the ladder-type diagrams
analogous to Fig. 3b, but with the light-quark line replaced
by a gluon line, there are other diagrams which have a struc-
ture similar to vertex corrections; see [1,10]. However, the
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Fig. 4 The predictions for the LO and NLO contributions to the imag-
inary part of the J/ψ photoproduction amplitude calculated exactly as
in Fig. 2 except that now the Q0 cut is imposed

‘dangerous’ contribution is again from the ladder-type dia-
grams, where to avoid double counting we have to exclude the
|l2| < Q2

0 domain whose contribution is already included in
the LO term using the input gluon GPD, Fg(x, ξ, Q2

0). Qual-
itatively this is exactly the same calculation as that for the
NLO quark. The only difference is that the lower line in the
diagrams of Fig. 5 is now replaced by a gluon line and the
lower part of the diagram is now given by the product of two
three-gluon vertices averaged over the incoming gluon trans-
verse polarisations. The notation is identical to that for the
quark contribution. Both the quark- and the gluon-induced
contributions are determined as described in the appendix.
They involve the calculation of the diagrams of Fig. 5 (given
in the appendix), and the analogous diagrams for the gluon-
induced contribution.

3 Results

Figure 4 shows the LO and NLO contributions to the imagi-
nary part of the J/ψ photoproduction amplitude when the Q0
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cut in the NLO contribution is taken into account. It should be
compared to Fig. 2 which had exactly the same scale choices,
but without the Q0 cut imposed. The improvement in going
from Figs. 2, 3 and 4 is dramatic. First, the NLO contribution
is now much smaller than the LO contribution. Second, the
scale variation is much smaller. The dotted and continuous
curves in Figs. 2 and 4 show the LO and NLO compari-
son for the choice of scales μF = μR = mc ≡ Mψ/2,
which we had previously argued was optimal [3]. The stabil-
ity achieved by imposing the Q0 cut means that J/ψ pho-
toproduction (γ p → J/ψ p) data and LHC exclusive J/ψ
(pp → p+ J/ψ + p) data can now be included in the global
parton analyses.

3.1 The choice of scales

Let us discuss the above scale choices in more detail. By
choosing the ‘optimal’ factorisation scale μF = mc we
resum all the higher-order double-logarithmic corrections
(αs ln(1/ξ) ln μ2

F )n (enhanced at high energies by the large
value of ln(1/ξ)) into the gluon generalised parton distribu-
tion (gluon GPD) [3].

The renormalisation scale is taken to be μR = μF .
The arguments are as follows. First, this corresponds to the
BLM prescription [11]; such a choice eliminates from the
NLO terms the contribution proportional to β0 (i.e. the term
β0 ln(μ2

R/μ2
F ) in Eq. (3.95) of [1]). Second, following the

discussion in [12] for the analogous QED case, we note
that the new quark loop insertion into the gluon propagator
appears twice in the calculation. The part with scales μ < μF

is generated by the virtual component (∝ δ(1− z)) of the LO
splitting during DGLAP evolution, while the part with scales
μ > μR accounts for the running αs behaviour obtained after
the regularisation of the ultraviolet divergence. In order not
to miss some contribution and/or to avoid double counting
we take the renormalisation scale equal to the factorisation
scale, μR = μF .

3.2 Discussion of the results

Note that in the present paper we have calculated the imagi-
nary part of the γ p → J/ψ p amplitude. The real part of the
amplitude can be restored via dispersion relations assuming
positive signature, as in Eq. (5) of Ref. [13]. Recall that we
obtain the necessary GPDs from the CTEQ6.6 parton set [8]
using the Shuvaev transform [5]. We use a relatively old par-
ton set [8] in which the low x gluons are forced to be positive
so as to make a meaningful comparison with our earlier work.
The goal of this paper is not to make a quantitative description
of the data, but to demonstrate that we can achieve stability
of the perturbative QCD description of relatively low scale
J/ψ production by imposing the Q0 cut. We have shown
this is a power correction—a correction which is needed to

avoid double counting. This will allow future high precision
exclusive J/ψ production data obtained at the LHC to be
incorporated in global parton analyses.

The general procedure to include the HERA γ p → J/ψ p
data and, in particular, the LHCb data for exclusive J/ψ pro-
duction, pp → p + J/ψ + p, in a global analysis follows
that used to produce Fig. 4 of Ref. [13]. These processes are
driven by the gluon PDF and the LHCb data probe the gluon
at very low values of x . However, in Ref. [13] we approx-
imated the NLO corrections to the coefficient functions by
accounting for the explicit l⊥ integration in the last step of
the interaction. Moreover, we just fitted the J/ψ data and
used a parametric form for the gluon which approximated its
x and Q2 dependence. So the analysis of Ref. [13] was quite
simplified, although very informative; see, for example, Fig.
5 of [13] which compared the resulting gluon PDF with those
of different global analyses.2

The present paper, on the other hand, retains collinear
factorisation and calculates the complete NLO contribution.
We may expect the high γ p energy, W , data points in the
updated version of Fig. 4 of Ref. [13] to require a larger
gluon distribution in the region from x � 10−3 down to
10−5, at low scales, than coming from extrapolations of the
NLO gluon PDFs from global fits to data not including the
J/ψ data. An indication in favour of a larger gluon PDF in
this domain comes also from the recent LHCb data on open
charm (and beauty) [14].

Finally, it is useful to compare our approach with that
of [15], where it was demonstrated that the resummation
of the BFKL-induced (αS ln(1/ξ))n terms in the coefficient
functions additionally reduces the factorisation scale depen-
dence. Recall that our choice of μF = Mψ/2 resums only
the double-logarithmic, (αS ln(1/ξ) ln μF )n , contributions.3

The remaining part, which does not contain ln μF , should be
considered, in the collinear factorisation approach, as higher-
order, NNLO, N3LO, . . . corrections. Of course, it would be
good to account for these corrections as well. However, to
properly calculate these corrections one has to exclude the
low (< Q2

0) virtuality contribution. Otherwise we will face
the problem of double counting again. The present paper
shows these (power) corrections (necessary to avoid double
counting) are crucial to achieve perturbative stability.
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Fig. 5 Two diagrams (a, b) computed for the NLO quark coefficient
function. Note that p and p′ refer to the incoming and outgoing quark
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ficient function the light-quark line is replaced by a gluon. The other
two diagrams of the different coupling of the two t-channel gluons to
the heavy quarks are implicitly included
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Appendix

Here we describe the calculation of the piece that we subtract
from the full result. Only the imaginary part of the ladder-
type cut diagrams shown in Fig. 5 and the corresponding
diagrams where the light-quark line is replaced by gluons is
computed.

All momenta appearing in the calculation may be decom-
posed in terms of light-like momenta p, n and a transverse
four-momentum l⊥,

lμ = βpμ + αnμ + lμ⊥, hμ
1 = hμ

2 = βh p
μ + αhn

μ, (2)

where l is the loop momentum and h1, h2 are the momenta of
the outgoing heavy quark and heavy anti-quark, respectively.
Here p can be chosen as the momentum of the incoming light
parton and n the momentum of the incoming on-shell photon.
With this convention we have

p · p = n · n = 0, p · n = ŝ/2, p · l⊥ = n · l⊥ = 0, (3)

where ŝ is the photon–parton centre-of-mass energy squared.
The four momenta of the incoming and the outgoing light
partons are proportional. We may write pμ and p′

μ = Xpμ

with

X = x − ξ

x + ξ
= ŝ − M2

ψ

ŝ
= y

1 + y
, where

y = x − ξ

2ξ
= ŝ

M2
ψ

− 1. (4)

To leading order in the heavy-quark relative velocity, the
S-wave spin-triplet component of J/ψ can be computed
using the projection [16–18]

vα(h2)ūβ(h1) → NJ/ψ

[
(/h2 − mc)/ε

∗
J/ψ ( /K + Mψ)(/h1 + mc)

]
αβ

.

(5)

Here ū, v are the spinors of the outgoing heavy quark and
anti-quark which form the J/ψ . The indices α and β label
their spin. NJ/ψ is an overall factor which contains the non-
perturbative NRQCD matrix element describing the J/ψ for-
mation. The vector εJ/ψ describes the polarisation of the J/ψ
with momentum K = h1 + h2 and mass Mψ = 2mc.

The projections onto the quark and gluon GPDs are given
by [19–22],

uα(p)ūβ(p′) → Nq /pαβ
,

ε
μ
1 ε∗

2
ν → Ngg

μν
⊥ = Ng

(
gμν − 2

ŝ
pμnν − 2

ŝ
nμ pν

)
, (6)

respectively. Here u, ū are the spinors of the light quarks
connected to the quark GPD and ε1, ε∗

2 are the polarisation
vectors of gluons connected to the gluon GPD. Nq , Ng are
overall factors containing the quark and gluon GPDs.

The on-shell conditions h2
1 −m2

c = 0 and h2
2 −m2

c = 0 for
outgoing heavy quarks and the cut constraints, (p − l)2 = 0
and (n−h2+l)2−m2

c = 0 for Fig. 5 diagram (a), (p−l)2 = 0
and (h1 − l − n)2 − m2

c = 0 for Fig. 5 diagram (b), allow
us to choose αh = 1/2, βh = 2m2/ŝ and fix α, β in terms of
l2⊥, ŝ,mc. Specifically,

β = 4(1 + l2/ŝ)m2
c/ŝ − 2l2/ŝ, α = l2/ŝ, (7)

l2 = l2⊥/(1 − β), l
′2 = l2(1 − 4m2

c/ŝ). (8)
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Additionally, we obtain q2 = −m2
c for diagram 5(a) and

q2 = l2⊥ −
(
ŝ

2
− l2

) (
β − 2m2

c

ŝ

)
= 3m2

c − β ŝ (9)

for diagram Fig. 5b.
In our calculation we split each diagram of Fig. 5 into two

parts. An “upper” part which contains a trace over the heavy
quark fermion line and a “lower” part which in the quark
channel contains a trace over the light-quark line and in the
gluon case consists of two triple gluon vertices contracted
with gμν

⊥ .
First we discuss the “upper” part which is different for the

diagrams (a) and (b) of Fig. 5 but identical for the quark and
gluon channels. Where it appears, we replace the contraction
of l⊥ with the polarisation vectors using

(l⊥ · ε∗
J/ψ)(l⊥ · εγ ) = (εγ · ε∗

J/ψ)l2⊥/2 (10)

which follows from tensor decomposing the l⊥ integral after
the integration over the l azimuthal angle. We can simplify
the calculation by noting that the sum of the “upper” parts of
diagrams (a) and (b) obey the gauge condition

T(h.loop)μνlμ = T(h.loop)μνl ′ν = 0, (11)

where

T(h.loop)μν = 1

(−2m2
c)

Tr(h.loop)μν
a

+ 1

(2m2
c − β ŝ)

Tr(h.loop)μν
b . (12)

Here T(h.loop) is the upper part of the amplitude, which
besides the trace over the quark loop, includes the heavy-
quark propagator 1/(q2 − m2

c).
Using the gauge condition the only contractions of the

“upper” part that appear in the sum of diagrams are

Tr(h.loop)μν
a gμν = NJ/ψ 4mc(εγ · ε∗

J/ψ )(6m2
c − ŝβ), (13)

Tr(h.loop)μν
a pμ pν = NJ/ψ 4mc(εγ · ε∗

J/ψ )ŝ2(1/2 + α)/2, (14)

Tr(h.loop)μν
a pμl⊥ν = NJ/ψ 4mc(εγ · ε∗

J/ψ )l2⊥ŝ/2, (15)

Tr(h.loop)μν
a l⊥μ pν = NJ/ψ 4mc(εγ · ε∗

J/ψ )l2⊥ŝ/2, (16)

Tr(h.loop)
μν
b gμν = NJ/ψ 4mc(εγ · ε∗

J/ψ )2(ŝαβ − m2
c(2α + 1)),

(17)
Tr(h.loop)

μν
b pμ pν = −NJ/ψ 4mc(εγ · ε∗

J/ψ)ŝ2/4, (18)

Tr(h.loop)
μν
b pμl⊥ν = −NJ/ψ 4mc(εγ · ε∗

J/ψ)l2⊥(ŝ − l2)/2, (19)

Tr(h.loop)
μν
b l⊥μ pν = NJ/ψ 4mc(εγ · ε∗

J/ψ )l2⊥(ŝ + l2)/2. (20)

The contractions involving pμnν, nμ pν, nμnν, nμlν⊥, lμ⊥nν,

lμ⊥lν⊥ appear in the computation of individual diagrams but
cancel for the sum of diagrams.

Quark-induced NLO correction

For an unpolarised light quark the trace over the “lower” light
quark line gives

Aq
μν = 4Nq [pμ(p − l)ν + (p − l)μ pν + gμν(p · l)] , (21)

where the normalisation factor

Nq = CF Fq(x, ξ, μF ) (22)

includes the colour factor CF and the quark GPD, Fq .
This light-quark part should be contracted with the trace,

Tr(h.loop)μν , given by the heavy-quark (upper) loop. Due
to the gauge condition (11) we see that (p − l)μ acts as pμ,
while (p − l)ν acts as p′

ν = Xpν giving

Mq
a = 4Nq

(−2m2
c) l

2l ′2

[
Tr(h.loop)μν

a gμν

(
αŝ

2

)

+ Tr(h.loop)μν
a pμ pν(1 + X)

]
+ M

q
(23)

= 4NqNJ/ψ(2mc)(εγ · ε∗
J/ψ)

(−2m2
c) l

2l ′2
[
(6m2

c − ŝβ)αŝ

+ ŝ2(1/2 + α)(1 + X)
]

+ M
q
, (24)

for diagram (a) and

Mq
b = 4Nq

(2m2
c − β ŝ) l2l ′2

[
Tr(h.loop)

μν
b gμν

(
αŝ

2

)

+ Tr(h.loop)
μν
b pμ pν(1 + X)

]
− M

q
(25)

= 4NqNJ/ψmc(εγ · ε∗
J/ψ)

(2m2
c − β ŝ) l2l ′2

[4(ŝαβ − m2
c(2α + 1))αŝ

− (1 + X)ŝ2] − M
q
, (26)

for diagram (b). The term M
q

accounts for terms which can-
cel between the two diagrams. The denominators come from
the uncut propagators: 1/ l2 for the left, and 1/ l

′2 for the right
gluon and 1/(q2−m2

c) for the uncut heavy-quark propagator.
The result is to be integrated over the gluon transverse

momentum (dl2⊥) while the longitudinal components are
fixed by the quark on-mass-shell conditions. It is easy to
perform this integral numerically accounting for the condi-
tion which was introduced in Sect. 2 in order to avoid double
counting. Recall, however, that we are not going to calcu-
late the whole NLO contribution, but just the correction to
the known MS coefficient function. So, in order to compute
the correction, in the integration over the l⊥ we only con-
sider the region of |l2| < Q2

0. Actually, we integrate over
dl2 directly; the factor (1 − β) coming from the relation
l2 = l2⊥/(1 − β) is exactly cancelled by the residue from the
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light-quark on-mass-shell pole. So we obtain the correction
to the quark-induced part of the γ p → J/ψ + p amplitude

�ImMq = α2
s

2π

∫ 1

ξ

dx
(
Fq(x, ξ,mc) − Fq(−x, ξ,mc)

)

×
(∫ Q2

0

0
(Mq

a + Mq
b )

2πm4
c

ŝ2 dl2
)

(27)

where the ‘hard matrix elements’ Mq
a,b are given by (24) and

(26). The factor 1/ŝ2 comes from the delta functions needed
to put the lower light quark and the heavy quark coupled to the
right gluon in Fig. 5 on-mass-shell. The factor m4

c accounts
for the normalisation NJ/ψ , defined to be consistent with the
normalisation of Eqs. (3.93) and (3.95) of [1] for which the
correction was calculated; actually the last factor (...) is the
correction to fq of (3.93) of [1].4 For the gluon correction
�Mg there is an additional factor ŝ/2m2

c = 1/ξ due to the
definition of the gluon GPD, Fg; see the extra factor of ξ in
Eq. (3.94) of [1]; see also [10].

Note that we have explicitly calculated the NLO diagrams
(a) and (b) of Fig. 5 which contain both LO5 and NLO contri-
butions. To identify the NLO part we therefore have to sub-
tract the contribution generated by the LO evolution equation,
which is of the form of the convolution PLO ⊗ CLO, before
we integrate over l2⊥. This subtraction completely cancels the
logarithmic infrared divergencedl2/ l2. Note that the subtrac-
tion must be done only in the region of |l2| < μ2

F since at the
factorisation scale μF the DGLAP evolution stops.6 Also
note that in the LO approximation the convolution PLO ⊗
CLO is larger than the value of the matrix element given by
explicit calculation of the diagrams shown in Fig. 5. Thus the
final result has the sign opposite to that for the LO amplitude.

In this way we obtain the quark NLO coefficient func-
tion. Since we are looking for the power correction needed
to avoid double counting of the low |l2| < Q2

0 contribution7,
we actually have to integrate the matrix element Mq over
|l2| < Q2

0 only (as explained above) and to subtract the result
from the known NLO coefficient function given in the MS
scheme.

4 The overall normalisation has been checked against [1] and correctly
reproduces the leading log term ∝ ln(4m2

c/μ
2
F ).

5 The integration of the pure logarithmic form dl2/ l2 up to μF actu-
ally reproduces the LO contribution already included in Fig. 3a. On the
other hand some non-logarithmic corrections originating from higher
powers of l2, together with the whole contribution above μF , are NLO
αs corrections which are not enhanced by the large collinear (l2) loga-
rithms.
6 This is the origin of the ln(4m2/μ2

F ) factor in the first term of fq (y)
of Eq. (3.93) of [1]. Since now we integrate over the |l2| < Q2

0 < μ2
F

the correction does not depend on μF .
7 This contribution is already included in the input value GPD(Q0).

In the notation of Ref. [1] this should be considered as the
new form of Im fq(y) of their Eq. (3.93), after allowing for
the changes made by our introduction of the ‘Q0 cut’.

Gluon NLO correction

In the gluon case the tensor Ag
μν corresponding to the lower

part of Fig. 5 diagrams (with the lower quark line replaced
by a gluon line) was calculated explicitly. It can be written
in the form

Agμν = Ng(agμν + b11 pμ pν + b22hμhν + b12 pμhν + b21hμ pν

+ c1 pμl⊥ν + d1l⊥μ pν + c2hμl⊥ν + d2l⊥μhν), (28)

where hμ = pμ − lμ and

a = l2(1+X+4(1−β)), b11 = X (4β−2)−4(1−β), (29)

b22 = 2, b12 = 2X + 4, b21 = 2 + 4X, c1 = 3 − 2X,

d1 = 3X − 2, c2 = 3, d2 = 3.

Here the normalisation factor is8

Ng = CA

8

Fg(x, ξ, μF )

(x + ξ − iε)(x − ξ + iε)
. (30)

Note that X is defined in (4) and β is given by (7). Recall
that we are looking for the imaginary part of the amplitude
(i.e. s-channel discontinuity).

This expression should be convoluted with the “upper”
part of the diagram. The result for the sum of diagrams can
again be simplified using the gauge conditions (11). That is
vector hμ = (p− l)μ acts as pμ, while hν acts as p′

ν = Xpν .
As before, the result is multiplied by the terms 1/ l2 and

1/ l
′2 from the t-channel gluon propagators and by the term

1/(q2−m2
c) from the corresponding heavy-quark propagator.

Then we have to subtract the part generated by the LO evolu-
tion equation which is given by the convolution PLO ⊗CLO.
Finally we integrate over l2⊥, accounting for the condition
|l2| < Q2

0 (the longitudinal components are fixed by the
heavy quark and gluon (p − l)2 = 0 on-mass-shell con-
ditions). In this way we obtain the power correction which
should be subtracted from the known NLO gluon coefficient
function Im fg(y) given by Eq. (3.95) of [1] (see also [10]),
which we then use to obtain the Q0 subtracted NLO gluon
contribution.
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