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Abstract

Accelerated life testing provides an interesting challenge for quantification of
the uncertainties involved, in particular due to the required linking of the
units’ failure times, or failure time distributions, at different stress levels.
This paper provides an initial exploration of the use of statistical methods
based on imprecise probabilities for accelerated life testing. We apply non-
parametric predictive inference at the normal stress level, in combination
with an estimated parametric power-Weibull model linking observations at
different stress levels. To provide robustness with regard to this assumed
link between different stress levels, we introduce imprecision by considering
an interval around the parameter estimate, leading to observations at stress
levels other than the normal level to be transformed to intervals at the normal
level. The width of such intervals is increasing with the difference between
the stress level at which a unit is tested and the normal level.

The resulting inference method is predictive, so it explicitly considers
the random failure time of a future unit tested at the normal level. We
perform simulation studies to investigate the performance of our imprecise
predictive method and to get insight into a suitable amount of imprecision
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for the linking between levels. We also explain how simulation studies can
assist in choosing imprecision in order to provide robustness against specific
biases or model misspecifications.

Keywords: Accelerated life testing, imprecise probability, lower and upper
survival functions, nonparametric predictive inference, power-Weibull
model, right-censored data

1. INTRODUCTION

Testing of highly reliable units is often complicated if, under normal con-
ditions, failures tend to occur only after a very long time, e.g. many years.
This makes it hard, or even impossible, to infer aspects of the units’ failure
time distribution at a relatively early stage, for example for comparison of
units from different manufacturers. An effective way to still enable data col-
lection for such inferences is provided by so-called Accelerated Life Testing
(ALT), also known as accelerated stress testing, which is general terminol-
ogy for a range of test scenarios, which have in common that units are tested
under conditions that differ from the normal conditions. Under the changed
conditions, the failure time distribution will change corresponding to reduc-
tion of failure times, for example the voltage or temperature at which the
units function may be increased for the tests. There is a wide variety of test
designs, including constant stress testing, step stress testing and progressive
stress testing. These test methods and a variety of statistical methods that
can be applied for such methods are described in detail by Nelson [1].

In recent years, many methods have been developed for modelling and
analysing ALT scenarios and data, we mention a few contributions to the
rapidly increasing literature on ALT. Han [2] investigated constant-stress
and step-stress ALT under time and budget constraints. Nasir and Pan [3]
proposed a Bayesian optimal design criterion and planned ALT experiments
for acceleration model selection. A Bayesian analysis for the Weibull pro-
portional hazard model used in step-stress accelerated life testings was intro-
duced by Sha and Pan [4]. In order to obtain a substantial amount of failure
data within a reasonable period of time, Elsayed and Zhang [5] developed
optimum multiple-stress-type ALT plans based on the proportional hazards
model. Mi et al. [6] discussed a reliability assessment method for ALT on
complex electromechanical systems with field data affected by multiple fac-
tors. Mukhopadhyay and Roy [7] present Bayesian methods for multi-stress
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ALT on series systems. In this paper, we consider a basic ALT scenario using
a power-Weibull model to combine information from units tested at constant
stress levels, where we aim at prediction of the failure time for a future unit
at the normal stress level.

Constant stress testing is a basic and widely used ALT design. The
units are divided into several groups and all units in a group are tested at a
constant stress level. In this paper we only consider this relatively straight-
forward form of ALT. The research reported forms the first part of a long
term research project to develop a range of ALT methods using imprecise
statistical approaches, where in particular the links between different stress
levels are typically quite uncertain and hence there may be benefit in using
imprecision in the modelling of these links. The main challenge for statistical
methods for ALT lies in the obvious fact that information from a test with
increased stress levels must be transformed to information that can be con-
sidered as representative for information about units’ failure times under the
normal conditions. Due to the practical relevance of ALT and the obvious
challenges for statistical inference based on ALT data, many statistical mod-
els and methods for ALT data have been presented [1]. A standard model
for failure time data resulting from ALT is the power-Weibull model, which
we considered as the first stage in our research and which we explore in this
paper.

The power-Weibull model [1] consists of a Weibull model for failure times
at stress level i = 0, 1, 2, . . . , k, where level i = 0 is the normal level and levels
i = 1, 2, . . . , k represent k increased stress levels. These Weibull distributions
for different stress levels are assumed to have the same shape parameter β,
but different scale parameters αi. Assuming that the stress level is quantified
by a single positive measurement Vi for stress level i, which is an increasing
function of the stress level i (one can e.g. think of voltage), the different αi
values are assumed to satisfy the equation

αi = α

(
V0
Vi

)p
(1)

such that α0 = α is the Weibull scale parameter at the normal stress level
and p is the parameter of the power-law which models the link between the
Weibull distributions at different stress levels. For clarity, in this paper we
use the parametrization for the Weibull distribution with shape parameter β
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and scale parameter α corresponding to the survival function

P (T > t) = exp

{
−
(
t

α

)β}
(2)

A useful alternative way to understand this power-law link between the dif-
ferent stress levels is provided by the fact that, under this model assumption,
an observation ti at stress level i, so subject to stress Vi, can be interpreted
as being transformed to an observation

ti→0 = ti
(
Vi
V0

)p
(3)

at stress level 0. It should be remarked here that, in this initial investigation,
we assume the same shape parameter β for all stress levels Vi. This assump-
tion can be relaxed, in which case the method can still be applied with a
relatively straightforward transformation formula for the observations from
level i to level 0.

As the objective of ALT is, obviously, to have a reduction of failure times
at higher stress levels, it is natural to assume that p > 0, with p > 1 most
likely in practical applications. Given failure time data, which can contain
right-censored data under the usual assumption that the cause of censoring
holds no information about the remaining future time to failure of a unit
for which only a right-censored observation is available, the parameters α,
β and p of this model can be straightforwardly estimated by maximising
the likelihood function, which requires a numerical optimisation method;
computations in this paper were performed with the statistical software R.

Section 2 of this paper provides a short introduction to nonparametric
predictive inference (NPI), in particular it provides the NPI lower and up-
per survival functions for a future observation based on failure time data
including right-censored observations, these are used in the new statistical
method for ALT data which is presented in Section 3. This new method
consists of two stages. In the first stage, the power-Weibull model is as-
sumed for the observations at all stress levels simultaneously, including the
parameter p representing the link between different stress levels. Based on
all the data, the parameters in this model are estimated using maximum
likelihood estimation. In the second stage, only the point estimate for the
link parameter p is used to transform data from the different stress levels
to the normal level. Then NPI is used with these combined data to provide
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lower and upper survival functions for the next unit at the normal stress
level. In Section 4 this approach is extended by including imprecision in the
link parameter, which leads to observations at levels other than the normal
stress to be transformed to interval-valued observations at the normal stress
level. The width of these intervals increases as function of the difference
between the corresponding stress level and the normal stress level. These
interval-valued observations are then used in the NPI approach to lead to
new lower and upper survival functions with increased imprecision. This can
be interpreted as a straightforward method to provide robust predictive infer-
ences based on ALT data. This is the first investigation towards developing
NPI methods for ALT data, the general idea of using imprecision as a safe-
guard against lack of detailed knowledge in ALT settings seems attractive.
In Section 5 we present the results of an initial simulation study, which is
the first step towards investigating and further developing our approach. In
these simulations we investigate the method’s performance for the case that
data are actually simulated from the assumed power-Weibull model, hence
only parameter estimation and the connection with NPI for prediction at the
standard stress level are investigated. In Section 6 we briefly discuss the use
of imprecision in our method to provide robustness with regard to possible
model misspecification. Section 7 provides brief concluding remarks about
the proposed method and the future work planned in this research project.

Before we begin the presentation of our inferential method, it is impor-
tant to provide some additional explanation of the aims of our research,
both as presented here and the longer term research project, for the ben-
efit of real applications of ALT. As ALT scenarios are typically complex
and require some level of extrapolation from observable data, they provide
huge challenges for modelling and statistical inference. There seems to be a
tendency, in the literature, for ever more complicated and detailed models.
While of theoretical interest, we expect that practitioners may be helped by
an opposite approach, namely by development of relatively straightforward
statistical models and methods with built in robustness, hence with quite
wide applicability but at a price, namely that inferences are not expressed
through precise probabilities but through intervals of probability values. If
such intervals do not provide clear answers to practical problems, then once
can still consider adding modelling assumptions, gathering more data, or in-
clude expert judgements in order to reach an overall answer. We consider
that this has advantages over methods based on very detailed mathematical
assumptions if these cannot be verified or justified, but of course one could
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also perform analysis with a robust method like the one we present here as
well as with more detailed models, where comparison of results provides use-
ful insights into the influence of the additional assumptions underlying the
more complicated models. If one has detailed knowledge to justify compli-
cated models, e.g. based on materials science or physics, then of course it is
beneficial to use this knowledge, and we would also advocate it to be imple-
mented in an approach like ours. However, in absence of such knowledge the
use of very detailed models may lead to misspecification without clarity of
its influence on the final results. We suggest that ideas about possible differ-
ences to an assumed model, so biases or even possibly different models, can
be included in our method through simulation studies, aiming at sufficient
imprecision so that our imprecise results also cover for the suggested range
of misspecifications.

Statistical inference is traditionally in terms of ‘populations’, infinite num-
bers of ‘identical’ items would be used of which one tests a sample. Our
approach, as presented here, is predictive and considers only a single future
item. Of course, this represents all future items, but if one would wish to de-
velop such methods explicitly for multiple future items, then this brings with
it some complications if one has relatively few data, because the failure times
of the future items would not be mutually conditionally independent given
the failure data (NPI for multiple future observations has been developed for
other statistical settings, but not yet in relation to the methods presented
here). As most practical problems probably involve multiple future items of
interest, but not necessarily an infinite population, both approaches could
be seen as somewhat artificial, mainly to facilitate development of statistical
methods. We think that for example comparison of two types of lightbulbs
in terms of an event of the kind ‘a future lightbulb of Type A will fail before
a future lightbulb of Type B’ may be attractive, this is the sort of event we
have in mind in this overall research project.

2. Nonparametric predictive inference

Nonparametric predictive inference (NPI) is a statistical method based
on Hill’s assumption A(n) [8], which gives a direct conditional probability for
a future observable random quantity, given observed values of related ran-
dom quantities [9, 10, 11, 12]. Let Y1, . . . , Yn, Yn+1 be positive, continuous
and exchangeable random quantities representing event times [13]. Suppose
that the values of Y1, . . . , Yn are observed and the corresponding ordered ob-
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served values are denoted by 0 < y1 < . . . < yn < ∞, for ease of notation
let y0 = 0 and yn+1 = ∞. For ease of presentation, it is assumed that no
ties occur among the observed values. It is quite straightforward to deal
with tied observations in this setting, by assuming that tied observations
differ by small amounts which tend to zero. For the random quantity Yn+1

representing a future observation, based on n observations, the assumption
A(n) [8] is P (Yn+1 ∈ (yi−1, yi)) = 1/(n + 1) for i = 1, . . . , n + 1. A(n) does
not assume anything else, and can be interpreted as a post-data assump-
tion related to exchangeability [13]. Inferences based on A(n) are predictive
and nonparametric, and can be considered suitable if there is hardly any
knowledge about the random quantity of interest, other than the n observa-
tions, or if one does not want to use such information, e.g. to study effects
of additional assumptions underlying other statistical methods. A(n) is not
sufficient to derive precise probabilities for many events of interest, but it
provides bounds for probabilities via the ‘fundamental theorem of probabil-
ity’ [13], which are lower and upper probabilities with strong consistency
properties in the theory of imprecise probability [9, 14].

In reliability analyses, events of interest are often failures of units, but
failure time data may be affected by right-censoring, where for a unit it is
only known that it has not yet failed by a specific time. Coolen and Yan [15]
presented a generalization of A(n), called ’right-censoring A(n)’ or rc-A(n),
which is suitable for NPI with right-censored data and uses the additional
assumption that, at the moment of censoring, the residual time to failure
of a right-censored unit is exchangeable with the residual times to failure
of all other units that have not yet failed or been censored. This is a clear
formulation of the common ‘non-informative censoring’ assumption, which is
therefore assumed throughout this paper if there are right-censored data. It
should be mentioned that this assumption is quite standard for application
of Maximum Likelihood Estimation, or other estimation methods, for ALT
data, as used for parameter estimation in this paper. For ALT, test designs
with a pre-fixed maximum testing time are frequently used; in such cases the
censoring is non-informative according to the description given above, hence
the presented method can be applied in case of censored data resulting from
such experiments.

Suppose that there are n observations consisting of u failure times, x1 <
x2 < . . . < xu, and n − u right-censored observations, c1 < c2 < . . . < cn−u.
Let x0 = 0 and xu+1 = ∞. Suppose further that there are si right-censored
observations in the interval (xi, xi+1), denoted by ci1 < ci2 < . . . < cisi , so
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∑u
i=0 si = n − u. We introduce notation dij for any observation, either a

failure or right-censoring time, with di0 = xi and dij = cij for j = 1, . . . , si and
i = 0, 1, . . . , u. Let ñcr and ñdij be the number of units in the risk set just

prior to time cr and dij, respectively, with the definition ñ0 = n + 1 for ease

of notation. Let disi+1 = di+1
0 = xi+1 for i = 0, 1, . . . , u − 1, and note that

the product taken over an empty set is defined as equal to one. Based on
the assumption rc-A(n) [15], the NPI lower and upper survival functions for
the failure time of the next unit, SXn+1

(t) and SXn+1(t), respectively, are as
follows [16, 17]. For t ∈ [dij, d

i
j+1) with i = 0, 1, . . . , u and j = 0, 1, . . . , si,

SXn+1
(t) =

1

n+ 1
ñdij

∏
{r:cr<dij}

ñcr + 1

ñcr
(4)

and for t ∈ [xi, xi+1) with i = 0, 1, . . . , u,

SXn+1(t) =
1

n+ 1
ñxi

∏
{r:cr<xi}

ñcr + 1

ñcr
(5)

These NPI lower and upper survival functions are step-functions, presented
in product forms which lead to relatively straightforward computation. Note
that the Kaplan-Meier (KM) estimate [18] based on such data, which is the
classical nonparametric maximum likelihood estimate, always lies between
the NPI lower and upper survival functions [15]. Whilst the KM estimate
has also been used for ALT data [1], it should be emphasized that its explicit
aim is estimation of an underlying population distribution, whilst our NPI
approach is explicitly predictive and considers events involving one future
observation at the normal stress level.

The lower and upper survival functions (4) and (5) fit well into the theory
of imprecise probability [14]. The imprecision in these inferences, that is the
difference between corresponding upper and lower survival functions, results
from the limited inferential assumptions made and reflects the amount of
information in the data. Note, for example, that the upper survival function
only decreases at an observed failure time, while the lower survival function
decreases both at an observed failure time and, by a smaller amount, at a
right-censored observation. This is in line with a useful, albeit somewhat
informal interpretation of imprecise probabilities, namely that a lower prob-
ability reflects the information in favour of the event of interest, and the
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difference between 1 and the corresponding upper probability reflects the in-
formation against the event of interest. So the decrease of both the NPI lower
and upper survival function at an observed failure time reflects a decrease of
information supporting survival past this time, while a right-censored obser-
vation reduces the information in favour of survival (hence the slight decrease
of the lower survival function) but does not provide evidence against survival
(so the upper survival function is not affected).

3. NPI with estimated link

The new statistical method for ALT data, which we propose in this pa-
per, consists of two stages. In the first stage, the basic power-Weibull model
is assumed and its parameters are estimated using maximum likelihood esti-
mation. The Weibull probability density function is

f(ti) =
β

αi
(
ti

αi
)(β−1) exp(−(

ti

αi
)β) (6)

where αi > 0 is the Weibull scale parameter at stress level i and β > 0 is
the Weibull shape parameter. By substituting the power-law link function
(1) into (6) we obtain the accelerated life test model with probability density
function at level i = 0, 1. . . . , k equal to

f(ti) =
β

α(V0
Vi

)p
(

ti

α(V0
Vi

)p
)(β−1) exp(−(

ti

α(V0
Vi

)p
)β) (7)

where level 0 represents the stress level under normal circumstances, hence
interest is particularly in inferences at this level. As mentioned, this is the
first proposal of an NPI-based imprecise model for accelerated test scenarios.
Other models can be used instead of this power-Weibull model, as well as
other estimation methods; these are aspects that will be explored later in
this research project. This first stage uses maximum likelihood estimation,
based on failure data (possibly including right-censored observations) at the
different stress levels, and results in point estimates for the three parameters
α, β and p. However, at the next stage only the estimate for p is used, we
denote this by p̂. In the second stage, we transform all observations at stress
levels other than the normal level, so V1, . . . , Vk, to ‘equivalent’ observations
at the normal stress level V0, using the estimate p̂ for the transformation
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given by Equation (3), leading to transformed observations

ti
(
Vi
V0

)p̂
Right-censored observations are transformed similarly, where their status as
right-censored observation is maintained. Now, we apply NPI with all these
transformed data as well as the original data at the normal stress level V0,
as explained in Section 2. We illustrate the results of this approach in an
example using data from the literature; this example will also be used for an
extension of this method in Section 4.

Example
Lawless [19, p.341] presents the ALT data set below in an exercise with
further reference to an unpublished Master’s thesis. The data result from
an experiment in which specimens of solid epoxy electrical insulation were
studied in an accelerated voltage life test. Twenty specimens are tested at
each of three voltage levels, the normal level V0 = 52.5 and increased levels
V1 = 55.0 and V2 = 57.5 kilovolts. Most of the sixty specimens actually
failed during the experiments, but a few did not, these provide right-censored
observations. The failure times, in minutes, are given in Table 1, where a
right-censored observation is indicated with a superscript asterisk.

Table 1: Failure times at three voltage levels.

Voltage Data
V0 = 52.5 245, 246, 350, 550, 600, 740, 745, 1010, 1190, 1225,

1390, 1458, 1480, 1690, 1805, 2450, 3000, 4690, 6095, 6200∗

V1 = 55.0 114, 132, 144, 162, 222, 258, 300, 312, 396, 444,
498, 520, 745, 772, 1240, 1266, 1464, 1740∗, 2440∗, 2600∗

V2 = 57.5 168, 174, 234, 252, 288, 288, 294, 348, 390, 408,
444, 510, 528, 546, 558, 690, 696, 714, 900∗, 1000∗

Maximum likelihood estimation for the power-Weibull model, based on
these data, leads to parameter estimates β̂ = 1.183, α̂ = 2038.790 and p̂ =
15.09927. These estimates imply α̂0 = 2038.790, α̂1 = 1009.988 and α̂2 =
516.205. It should be remarked that the numerical maximum likelihood
optimisation to derive these estimates in the statistical software R appears
to be somewhat sensitive to the starting point of the algorithm, we noticed
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some slight variation in the resulting estimates for different starting points.
We discuss this aspect briefly in the concluding remarks section, the variation
observed in the estimate p̂ was small and will not affect our approach as
proposed in this paper, in particular as we will later include imprecision for
this estimate.

In the second stage of our procedure, we only use the estimate p̂ to trans-
form the data, as explained above. This leads to the transformed data values
in Table 2, still listed with their corresponding stress level. Of course, the
data at the normal stress level V0 = 52.5 have not been transformed, but are
also included in the table for ease of comparison with the transformed data
from the other stress levels. These transformed data are also presented in
Figure 1, where the transformations of the data from the stress levels 1 and
2 to the normal level 0 are illustrated.

Table 2: Failure times transformed to normal voltage level.

Voltage Data
V0 = 52.5 245, 246, 350, 550, 600,

740, 745, 1010, 1190, 1225,
1390, 1458, 1480, 1690, 1805,
2450, 3000, 4690, 6095, 6200∗

V1 = 55.0 230.1, 266.4, 290.6, 327.0, 448.1,
520.8, 605.5, 629.8, 799.3, 896.2,
1005.2, 1049.6, 1503.8, 1558.3, 2503.0,
2555.5, 2955.2, 3512.4∗, 4925.4∗, 5248.4∗

V2 = 57.5 663.5, 687.2, 924.2, 995.2, 1137.4,
1137.4, 1161.1, 1374.4, 1540.3, 1611.4,
1753.6, 2014.2, 2085.3, 2156.4, 2203.8,
2725.2, 2748.9, 2819.9, 3554.6∗, 3949.5∗

Using these 60 (tranformed) failure observations at the normal stress level
V0, so both the originally observed data at level V0 and the data transformed
to it from stress levels V1 and V2, the NPI approach as described in Section
2 provides NPI lower and upper survival functions presented in Figure 2,
where we used the estimate p̂ = 15.09927 for the link function. These lower
and upper survival functions are to be interpreted as applying for a further
specimen, exchangeable with those in the test, subjected to the normal stress
level V0 = 52.5, with the explicit assumption that the transformed data from
the other stress levels are well mixed with those originally observed at level
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Figure 1: Transformed data using p̂

V0, so that indeed the future observation of interest can be assumed to be
exchangable with all 60 (transformed) observations at level V0.

4. Imprecision in link estimate

The method presented in Section 3 has several aspects which can cause
doubt about the validity of the predictive inference. These include doubt
about the model used at stage 1 and, related to this, the fact that the esti-
mation of the Weibull parameters influences the estimate of the parameter
p̂ but is further neglected at stage 2. As mentioned in the example, there
may also be some numerical instability in the estimation computations and it
has been reported that maximum likelihood methods for such accelerated life
test data can lead to bias in the estimates when relatively small sample sizes
are used [20]. One could rebute all such issues by suggesting more detailed
modelling, but particularly for ALT data there often remains an element of
model-based extrapolation that is difficult, sometimes even impossible, to
justify on the basis of available data.

We propose a different approach as an alternative to more detailed mod-
elling, although if such modelling can be done on the basis of detailed knowl-
edge of the scenario under study then, of course, this is strongly recom-
mended; it can still be worth combining more detailed modelling with the
new ideas we present in this paper. In an attempt to develop suitable pre-
dictive inference for ALT data, where interest is in the failure time of a
future unit at the normal stress level, we propose to adapt the two stage
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Figure 2: NPI lower and upper survival functions using p̂ = 15.09927
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approach presented in Section 3 by replacing, in the second stage, the point
estimate p̂ by an interval [p, p] which contains p̂. The use of this interval in
the transformation of observations at stress level Vi to the normal level V0
leads to such observations becoming interval-valued observations at the nor-
mal stress level, which we believe is an attractive way for showing the effect
of imprecision in line with the absence of perfect information about the link
between the different stress levels. Furthermore, these intervals representing
observations at other levels will be wider for larger values of i, so an original
observation from a stress level that is further away from the normal level is
transformed to a wider interval at the normal level than an original observa-
tion at a level nearer to the normal level. We believe that, in general, this
is also an attractive property of such imprecise inferences for ALT data. In
fact, we were quite surprised when studying the literature on ALT that such
imprecise statistical methods apparently had not yet been used, we regard
this as an important contribution of the current paper, which presents our
first results for inferences with ALT data from this perspective and is the
start of a research project in which we are considering both alternatives to
the statistical modelling and other ALT scenarios, we comment further on
this in Section 7.

Due to the monotonicity of the transformed data in the power-Weibull
model as function of the parameter p, together with the monotonicity of the
NPI lower and upper survival functions with regard to the data on which
they are based, an interval [p, p] straightforwardly leads, in the second stage
of our method, to the NPI lower survival function being based on the trans-
formed data using p, and the NPI upper survival function being based on the
transformed data using p. Hence, the imprecision in this inferential method,
that is the difference between the corresponding NPI upper and lower sur-
vival functions, will increase when the width of the interval [p, p] increases,
which is illustrated in the following example. The important question of how
to choose an interval [p, p] in practice is considered in the remainder of this
paper, and is also an important topic for further research.

Example (ctd)
For the example in Section 3, the point estimate for p was equal to p̂ =
15.09927, the NPI lower and upper survival functions corresponding to this
value were presented in Figure 2. Figure 3 presents the NPI lower and
upper survival functions corresponding to intervals [p, p] for the parameter
p, namely [14.5, 15.5], [13.0, 17.0] and [10.0, 20.0], respectively. This figure
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Figure 3: NPI lower and upper survival functions for [p, p] = [14.5, 15.5]; [13, 17]; [10, 20]

shows that increased imprecision for the parameter p leads to increased dif-
ferences between the NPI upper and lower survival functions. It is interesting
to see that even for very substantial imprecision for p the imprecision between
the lower and upper survival functions is mostly not too large. Of course,
this depends on the ratios Vi/V0 used, which are close to one in this example,
but nevertheless it suggests that some concerns, e.g. about some sensitivity
to the starting point of the numerical optimisation methods used to derive
p̂, are not necessary. It should be emphasized that this example is included
to illustrate the increasing imprecision in the NPI lower and upper survival
functions due to increasingly wide intervals for p. Methods for suitable choice
of such an interval in practice are discussed later, and will also be addressed
in future research.

5. Simulations

This paper presents first ideas and results of a research project towards
developing powerful predictive statistical methods for ALT data, based on
few modelling assumptions and ideas related to imprecise probabilities [14].
To gain first insights, we performed simulations to investigate if the approach
works if the assumed power-Weibull model is actually the true underlying
model, hence with data simulated from this model.
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For this first simulation, we set stress levels V0 = 50, V1 = 80, V2 = 120
and parameters α = 1500, β = 3 and p = 10 for the power-Weibull model.
We ran 10,000 simulations with n = 10 observations at each stress level per
run. We used the MLE method within the statistical software R to estimate
the parameters, then used the p̂ for the transformation of the data from stress
levels V1 and V2 to the normal stress level V0. This leads to 30 observations
at the normal stress level, 20 of which are transformed from higher stress
levels. In addition, per run we simulated one more observation at the normal
stress level, this serves as ‘future observation’ and is needed to investigate
the predictive performance of our method, which we do as follows.

If the model fits well, in particular the link transforming observations
between different stress levels, then we can consider all 30 (transformed) ob-
servations just as if they were actually observations at the normal stress level.
In this case one would expect good mixing of these 20 transformed obser-
vations and the 10 actual observations at the normal stress level, which can
be investigated as follows. First, restricting to the actual 10 observations at
the normal stress level, these partition the positive real-line into 11 intervals
(assuming no tied observations), the further simulated future observation at
this level will have equal probability to be in each of these intervals. So, if
we perform many simulations, this future observation will be in each of the
11 intervals roughly in 1/11 of the simulation runs. Now considering the 30
observations after transforming the 20 from the higher stress levels. If the
transformation is perfect, so that indeed we can consider the 20 transformed
data observations as if they really represent data at the normal stress level,
then we can consider the location of the ‘future observation’, sampled at the
normal stress level, as being exchangeable with all the 30 observations. So we
can consider the partition of the positive real-line into 31 intervals (assuming
again that there are no tied observations, also not after the transformation)
created by the 30 observations at stress level V0, and the future observation
should now have equal probability 1/31 to fall into each of these 31 inter-
vals. Therefore, each run in the simulation study consists of generating 10
observations at each stress level, estimating the parameters, using the MLE
p̂ to transform the data from stress levels V1 and V2 to level V0, and then
checking in which of the 31 intervals the further simulated ‘future observa-
tion’ is. If, over many runs, this interval is reasonably uniformly distributed,
then the method works well as it indicates that the 20 transformed data in-
deed are well mixed with the original 10 observations at the normal stress
level. If, however, there are different patterns, then it indicates non-perfect
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Figure 4: Intervals of next observation with n = 10

mixing which will lead to doubt about the transformation applied between
the different stress levels.

Figure 4 shows a histogram presenting the frequencies with which this
future observation belonged to each of the 31 intervals in the 10,000 sim-
ulation runs. This histogram suggests reasonable uniformity, but there are
clearly too many runs for which it falls into the final interval. This indicates
that the transformed data from stress levels V1 and V2 were not sufficiently
often greater than the largest observation from level V0, and hence a slight
tendency for the MLE method to under-estimate p̂. Further investigation
revealed that indeed this is the case, with the estimate p̂ being a bit less
than 10 in most simulation runs. We repeated this simulation several times,
always leading to the same conclusion. It should be remarked that bias in
parameter estimates for ALT models has been reported previously [20], we
briefly discuss this further in Section 7.

Figure 5 shows the results of the same process but now with the parameter
β = 3, as used in the simulations, assumed known in the fitted model, hence
only the parameters α and p are estimated by the MLE method. This has
very little effect compared to the previous case where β was also estimated,
as there is still a peak at the last interval indicating slight under-estimation
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Figure 5: Intervals of next observation with n = 10 and β = 3

of p. Figure 6 shows the results with both α = 1500 and β = 3 fixed, so only
p estimated. This leads to a better fit with the expected uniform distribution
over the 31 intervals, as was also confirmed in repeated simulations for this
case. This illustrates that the slight bias in p̂ results from the joint estimation
of multiple parameters of the model when the maximum likelihood method
is used, where in particular the joint estimation of α and p causes some
problems. We also investigated this for smaller and larger simulated sample
sizes. For smaller values of n the same effect is even stronger, while for n = 20
it is quite reduced, and for larger sample sizes the bias due to the estimation
process becomes neglectable. Of course, in reality we have to include all
model parameters in the estimation process, so we suggest a different way
for dealing with such possible bias, namely through replacement of the use
of a single estimate p̂, for the predictive inference in the second stage of our
method, by an interval of values for the parameter p.

We next investigate the effect of replacing the estimate p̂ for the data
transformation with a slightly changed value. As we noted above that there
was a tendency to slightly under-estimate the value of p, we instead use the
value 1.02 × p̂ for the data transformation from levels V1 and V2 to V0 in
the second stage of our method; the results from 10,000 simulation runs are
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Figure 6: Intervals of next observation with n = 10, β = 3 and α = 1500

given in Figure 7. Note here that, due to the substantial difference in the
values V0, V1, V2 in this example, this small factor with which the value for
p is multiplied already makes a substantial difference to the factors used for
the transformation of data to the standard stress level. This figure shows a
quite different result to the earlier figures, with a decreasing trend over the
intervals. This shows that the transformed data are now a bit too large, as
they do not add sufficient intervals to the partition of the positive real-line
among the smaller actual observations at stress level V0. For completeness
of the study, Figure 8 shows the similar histogram with the value 0.98 × p̂
used for the data transformation. This leads to the transformed data at
stress level V0 being smaller than with the use of p̂, the effect of the bias to
this estimate is even more emphasized. This basic simulation study suggests
that, while the predictive method may not work very well for smaller data
sets when a single value for p is used for the data transformation, the use
of an interval of values for p in the transformation process may cover a
range of different prediction results, which we would aim to include cases of
reasonable uniformity. In the above case, we could e.g. opt to use the interval
[p, p] = [p̂, 1.02× p̂] or [p, p] = [0.98× p̂, 1.02× p̂]. To illustrate this further,
Figure 9 provides similar simulation results where in addition to the above
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Figure 7: Intervals of next observation with n = 10 and p = 1.02× p̂

values p̂, 0.98× p̂ and 1.02× p̂, also the values 0.9× p̂ and 1.1× p̂ are used.
These latter two values clearly lead to the transformed data being too small
or too big, respectively, compared to the actual data at the standard stress
level and the future observation at that level. However, if we were to use the
interval [p, p] = [0.9× p̂, 1.1× p̂] in our proposed inference method, it would
provide considerable robustness against bias in estimation or other reasons
why one may doubt the use of the model.

The NPI inferences for a future observation at the normal stress level V0,
as presented in this paper, using such an interval of values for p, provide
a level of robustness. It makes sense to aim at a relatively small interval
for p in order to keep the imprecision small. Balancing this choice with the
provided robustness is a topic for future research, it also depends on levels
of possible model misspecification against which one would hope to provide
sufficient robustness, this is briefly considered in Section 6.

For the investigation into the performance of our new predictive inference
method for ALT data it is of interest to perform simulations as presented
above, checking the overall fit by considering a future observation at the
normal stress level and how it mixes among all the actual data, after their
transformation to the normal stress level. However, one may only be inter-
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Figure 8: Intervals of next observation with n = 10 and p = 0.98× p̂
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Figure 9: Intervals of next observation for a range of values for p
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ested in one or a few specific inferential questions, for example in the quartiles
of the NPI lower and upper survival functions, and whether or not the fu-
ture observation exceeds these quartiles in the right proportion out of 10,000
simulations. We performed similar simulations as before in this section, but
now for each run checking whether or not the simulated future observation
exceeds the first, second and third quartiles corresponding to both the NPI
lower and upper survival functions based on the simulated data, consisting
of n observations at each of the three stress levels. We considered the effect
of varying the number of observations by taking n = 10, 20, 30, the results
are presented in Figures 10, 11 and 12, respectively. In these simulations,
the NPI lower and upper survival functions are only using the MLE estimate
p̂, so we have not included further imprecision by using an interval of values
for p; we earlier noticed some bias when doing this, but mainly in the final
interval, so it may still function well when we are considering the quartiles.
In these figures, qL0.25 and qU0.25 denote the first quartiles corresponding
to the NPI lower and upper survival functions, respectively, and so on. If
the method works perfectly well, the future observation at the normal stress
level should exceed this first quartile of the NPI lower survival function in
just over 75% of all simulation runs, and the first quartile of the NPI up-
per survival function in just under 75% of the runs, and similarly for the
second and third quartiles (50% and 25%). Figures 10-12 show that these
proportions are indeed achieved, which indicates good performance of our
method when interest is in the quartiles. Note that the differences between
corresponding proportions for the upper and lower survival functions tend to
decrease for larger values of n, which reflects that the NPI lower and upper
survival functions are closer to each other when based on more observations.
Again, repeats of these simulations resulted in the same conclusions.

The basic simulation study reported in this section has provided some
relevant insights, namely that the method works quite well in the sense of
providing suitable predictive inference in case the data actually come from
the general model class assumed, with possibly a slight bias in the estimation
of the parameter p of the function used for transformations between different
stress levels. The use of an interval of values for p, instead of a point estimate,
provides robustness against such bias. A perhaps more important reason to
choose an interval of values for p is to reflect that the assumed model, and
particularly the function linking the different stress levels, will normally not
be entirely accurate for the real world scenario. A logical question therefore
is how to meaningfully choose an interval of values for p. We briefly address
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Figure 10: Proportion of runs with future observation greater than the quartiles, n = 10
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Figure 12: Proportion of runs with future observation greater than the quartiles, n = 30

this in the following section.

6. Misspecification of the model

Among the many challenges for statistical methodology for ALT data and
inferences [21, 22], an obvious one is dealing with possible misspecification of
the model. The ultimate aim of our research program is development of pre-
dictive inference methods based on few modelling assumptions, with included
robustness against the necessary assumptions, which include modelling the
link between different stress levels.

For the first steps in this program, as reported in this paper, one can
consider the choice of the interval [p, p] in order to have a suitable level
of robustness against some specific differences to the model. To illustrate
this, we simulate data for the same scenario as in Section 5, with n = 10
observations at each of the three stress level. But now we simulate from a
model that differs from the power-Weibull model assumed for the analysis,
yet given the simulated data we follow the same approach as in Section 5.
After simulating the data at stress levels V0, V1 and V2, we added some
positive random noise to the observations at stress levels V1 and V2.
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We present the results for the scenario where these random noises are
Exponentially distributed, for three cases with the following rate parameters:
(1) for observations at V1 we use rate 0.5 and for V2 rate 10; (2) rates 0.7 and
12, respectively; (3) rates 0.9 and 14, respectively. Using these simulated
observations, so with the bias added at the two increased stress levels, we
applied our method as before, so we computed the MLE for the parameters
α, β, p for the power-Weibull model, then used the MLE p̂ for the second stage
of our method. To achieve robustness we used the interval [0.98× p̂, 1.02× p̂]
to derive the NPI lower and upper survival functions.

The results of these simulations, again showing the intervals in which
the simulated future observations at level V0 fall, are presented in Figure 13.
Such a plot provides an insight into whether or not our method provides
suitable robustness against the particular misspecification case considered.
If the smallest and largest numbers of the future observations per interval in
this plot tend to correspond to the cases with the use of 0.98× p̂ or 1.02× p̂,
then our imprecise method provides sufficient robustness for inferences not
to be affected by the simulated misspecification. We ran further simulations
with comparable small biases sampled from other distributions, these led
to the same results. Of course, if one increases the biases, one would need
to use a larger interval of values for p. Furthermore, one may wish to study
misspecifications of different natures, e.g. including simulating data from one
or more different ALT models than the power-Weibull model assumed for the
inferences. Suitable choices for the interval of values for the parameter p can
still be studied, for such cases, through simulations as performed in this
section.

7. Concluding Remarks

This paper has presented an initial study of possibilities provided by
theory of imprecise probabilities and imprecise statistics approaches [14] for
ALT applications. The proposed method combines transformation of fail-
ure times at increased stress levels to equivalent observations at the normal
stress level, based on an assumed fully parametric model, with nonparamet-
ric predictive inference based on all the combined data at the normal stress
level. The method provides the attractive opportunity to build in robustness
for the inferences through the use of an interval of values for the parameter
of the link function between different stress levels, which has the effect that
an observation transformed from a higher stress level becomes an interval-
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Figure 13: Model robustness with Exponential bias

valued observation at the normal stress level, with the width of this interval
increasing for higher stress levels. Simulations, both using the actually as-
sumed model and scenarios of misspecification, can be used for guidance on
appropriate choice of the interval for the parameter, and hence the level of
imprecision in the resulting inferences.

This is the first step in a research project where we aim at the use of only
few assumptions for meaningful statistical inference in ALT scenarios, with
appropriate levels of robustness against aspects that are typically unknown,
in particular the link between different stress levels. Of course, if one has
knowledge about this link, e.g. from underlying physics of failures, then such
knowledge should be used in the guidance of the model choice, yet some form
of imprecision may still be useful to allow some deviations from the assumed
model. In this paper, we have assumed that there were failure observations
available at the normal stress level, this may not be the case in applications,
either because no units on test at that level have failed within the limited
time for testing, or because one even did not include units in the test at that
level. In such cases, our method can still be applied but one would need to
consider how well the transformed data mix at a higher stress level, where
one may wish to increase the imprecision for the extrapolation to the normal
stress level; we will consider this in future research.

A main motivation for this research is to use simple models for ALT
scenarios. One can attempt to use more detailed models for specific scenarios,
but we consider a simple model with imprecision as an attractive alternative.
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Another issue is bias in statistical estimation methods for ALT models, which
can particularly occur if one has relatively few items on test. One can study
alternative estimation methods in order to reduce such bias [20], but again
we consider the use of a widely available method like MLE together with
some additional imprecision a simple and attractive alternative.

When we started this research project, we were surprised that we did
not find other contributions of imprecise probability methods for ALT data,
while there is a substantial literature on imprecise probability methods for
other reliability problems [23, 24, 25]. Clearly there are many related research
challenges and opportunities for applications ahead. It will also be interesting
to consider imprecise statistical methods for ALT data using a different way
to deal with the transformation of data from different stress levels. One such
an alternative approach that may be of interest for combination with NPI is
the linking of data from different stress levels through matching of quantiles
[26], which can however only be applied if there are quite substantial numbers
of observations at all the stress levels. It will also be of interest to see if the
assumption of an explicit model at each stress level, the Weibull distribution
in this paper, can be deleted, in particular as that assumption is not used in
the second stage of our approach. An alternative to using the Weibull with
full parameter estimation could be to use either a fixed shape parameter,
based on expert judgements for a specific application, or aim at representing
such information in an alternative manner, for example along the lines as
presented by Hryniewicz et al. [27] for different scenarios.

Acknowledgements

Yi-Chao Yin gratefully acknowledges financial support from the China
Scholarship Council to visit Durham University. The authors thank three
anonymous reviewers for detailed comments that led to improved presenta-
tion of this paper.

References

[1] Nelson, W.B. (1990). Accelerated Testing: Statistical Models, Test Plans,
and Data Analysis. Wiley, Hoboken, New Jersey.

[2] Han, D. (2015). Time and cost constrained optimal designs of constant-
stress and step-stress accelerated life tests. Reliability Engineering and
System Safety, 140, 1-14.

27



[3] Nasira, E.A., Pan, R. (2015). Simulation-based Bayesian optimal ALT
designs for model discrimination. Reliability Engineering and System
Safety, 134, 1-9.

[4] Sha, N., Pan, R. (2014). Bayesian analysis for step-stress accelerated life
testing using Weibull proportional hazard model. Statistical Papers, 55,
715-726.

[5] Elsayed, E.A., Zhang, H. (2007). Design of PH-based accelerated life
testing plans under multiple-stress-type. Reliability Engineering and
System Safety, 92, 286-292.

[6] Mi, J.H., Li, Y.F., Yang, Y.J., Peng, W., Huang, H.Z. (2016). Relia-
bility assessment of complex electromechanical systems under epistemic
uncertainty. Reliability Engineering and System Safety, 152, 1-15.

[7] Mukhopadhyay, C., Roy, S. (2016). Bayesian accelerated life testing un-
der competing log-location-scale family of causes of failure. Computa-
tional Statistics, 31, 89-119.

[8] Hill, B.M. (1968). Posterior distribution of percentiles: Bayes’ theorem
for sampling from a population. Journal of the American Statistical As-
sociation, 63, 677-691.

[9] Augustin, T., Coolen, F.P.A. (2004). Nonparametric predictive inference
and interval probability. Journal of Statistical Planning and Inference,
124, 251-272.

[10] Coolen, F.P.A. (2006). On nonparametric predictive inference and ob-
jective Bayesianism. Journal of Logic, Language and Information, 15,
21-47.

[11] Coolen, F.P.A. (2011). Nonparametric predictive inference. In: Lovric,
M. (ed.), International Encyclopedia of Statistical Science, pp. 968-970.
Springer, Berlin.

[12] Nonparametric Predictive Inference webpage, http://www.

npi-statistics.com

[13] De Finetti, B. (1974). Theory of Probability. Wiley, Chichester.

28

http://www.npi-statistics.com
http://www.npi-statistics.com


[14] Augustin, T., Coolen, F.P.A., de Cooman, G., Troffaes, M.C.M. (2014).
Introduction to Imprecise Probabilities. Wiley, Chichester.

[15] Coolen, F.P.A., Yan, K.J. (2004). Nonparametric predictive inference
with right-censored data. Journal of Statistical Planning and Inference,
126, 25-54.

[16] Maturi, T.A. (2010). Nonparametric Predictive Inference for Multiple
Comparisons. PhD Thesis, Durham University, available from www.npi-
statistics.com.

[17] Maturi, T.A., Coolen-Schrijner, P., Coolen, F.P.A. (2010). Nonparamet-
ric predictive inference for competing risks. Journal of Risk and Relia-
bility, 224, 11-26.

[18] Kaplan, E.L., Meier, P. (1958). Nonparametric estimation from incom-
plete observations. Journal of the American Statistical Association, 53,
457-481.

[19] Lawless, J.F. (1982). Statistical Models and Methods for Lifetime Data.
Wiley, New York.

[20] Wang, B.X., Yu, K., Sheng, Z. (2014). New inference for constant-stress
accelerated life tests with Weibull distribution and progressively type-ii
censoring. IEEE Transactions on Reliability, 63, 807-815.

[21] Meeker, W.Q., Escobar L.A. (1998). Statistical Methods for Reliability
Data. Wiley, New York.

[22] Meeker, W.Q., Sarakakis, G., Gerokostopoulos, A. (2013). More pitfalls
in conducting and interpreting the results of accelerated tests. Journal
of Quality Technology, 45, 213-222.

[23] Coolen, F.P.A., Coolen-Schrijner, P., Yan, K.J. (2002). Nonparamet-
ric predictive inference in reliability. Reliability Engineering and System
Safety, 78, 185-193.

[24] Coolen, F.P.A., Utkin, L.V. (2011). Imprecise reliability. In: Lovric,
M. (ed.), International Encyclopedia of Statistical Science, pp. 649-650.
Springer, Berlin.

29



[25] Utkin, L.V., Coolen, F.P.A. (2007). Imprecise reliability: an introduc-
tory overview. In: Levitin, G. (ed.), Computational Intelligence in Re-
liability Engineering, Volume 2: New Metaheuristics, Neural and Fuzzy
Techniques in Reliability, pp. 261-306. Springer, Berlin.

[26] Maciejewski, H. (1995). Accelerated life test data analysis with gener-
alised life distribution function and with no aging model assumption.
Microelectronics Reliability, 35, 1047-1051.

[27] Hryniewicz, O., Kaczmarek, K., Nowak, P. (2015). Bayesian statisti-
cal decisions with random fuzzy data - an application for the Weibull
distribution. Maintenance and Reliability, 17, 610-616.

30


	INTRODUCTION
	Nonparametric predictive inference
	NPI with estimated link
	Imprecision in link estimate
	Simulations
	Misspecification of the model
	Concluding Remarks

