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Understanding and predicting the course of crystal growth is fundamental to the 

control of functionality in modern materials. Despite investigations for over one 

hundred years
1-5

 it is only recently that the molecular intricacies of these processes 

have been revealed by scanning probe microscopies
6-8

. In order to bring some order 

and understanding to this vast amount of new information requires new rules to be 

developed and tested. To date, because of the complexity and variety of different 

crystal systems, this has relied on developing models that are usually constrained to 

one system only
9-11

. Such work is painstakingly slow and will not be able to achieve 

the wide scope of understanding in order to create a unified model across crystal 

types and crystal structures. Here we describe a new approach to understand and, 

in theory, predict the growth of crystals, including the incorporation of defect 

structures, by simultaneous molecular-scale simulation of crystal habit and surface 

topology using a unified kinetic 3-D partition model. We exemplify our approach by 

predicting the crystal growth of a diverse set of crystal types including zeolites, 

metal–organic frameworks, calcite, urea and L-cystine. 

By understanding crystal growth at the molecular scale we have the possibility to control 

crystal habit, crystal size, the elimination or incorporation of defects and the development 

of intergrowth structures. As crystals are used in technologies from pharmaceuticals to 

gas storage and separation materials, from optoelectronic devices to heterogeneous 

catalysts, such understanding is vital. If we take an example of a very complex and yet 

very important crystal type, that of zeolites
12

 which form the backbone of the 

heterogeneous catalysis industry, then many of the problems that must be addressed in 

crystal growth can be illustrated. Zeolites are nanoporous materials were the framework 

of the material is constructed from a strong covalently bonded network of Si – O and Al – 

O bonds. The pores of the material are filled with water and cations that balance the 

negative charge on the framework. Crystals of zeolites grow from aqueous solutions at 

temperatures up to about 230
o
C and it is well known from NMR spectroscopy that the 

solution phase exhibits very complex speciation
13-16

. This is a seemingly intractable 

problem in terms of defining a simple set of rules that govern even the hundreds of 

different zeolite structures, let alone the thousands of related crystal structures such as 

metal organic frameworks (MOFs)17-19. However, we know that the course of a 

                                                        
1Centre for Nanoporous Materials, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK. 
2Samara Center for Theoretical Materials Science (SCTMS), Samara University, Ac. Pavlov St. 1, Samara 443011, Russia. 
3School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of 

China. 
4Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, 20133 Milano, Italy. 
5SINTEF Materials and Chemistry, PO Box 124, Blindern, 0314 Oslo, Norway. 
6Curtin Institute for Computation, Department of Chemistry, Curtin University, GPO Box U1987, Perth 6845, Western Australia. 
† Current address: Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK. 



 

crystallisation is relatively predictable and, therefore, there must be a relatively small 

number of rules that govern the most important aspects of the crystal growth with 

subsidiary rules governing deviations. 

The starting point in our simplification comes through the work of Boerrigter et al. on 

general Monte Carlo simulation applied to the growth of fats
20

. In this work they showed 

that the principal determinant was the local internal energy at the crystal surface in 

relation to the chemical potential of the phase from which the crystal grows. This is a 

very important simplification because it allows the growth medium – solution, melt, gas 

etc. – to be considered only to have a growth potential rather than considering the 

speciation in detail. Of course this growth potential will be a result of the speciation, 

however, that can be treated as a subsidiary effect considered subsequently
13-16

. In the 

case of multicomponent crystals, such as MOFs or co-crystals, where species in solution, 

e.g. linkers and metal centres, cannot interchange then a driving force for each 

component needs to be considered – unless the stoichiometries of the two phases are 

matched. For zeolites, or any system where the nutrient is interconverting, a single 

driving force may be considered equivalent to a single component system. 

The crystal structure then needs to be broken down into units of growth, a process that is 

normally referred to as coarse-graining the problem. In order to deconstruct the problem, 

we require a distinction between unit of growth and growth unit. The latter assumes that 

we know the growth mechanism and know what growth units are actually attaching to the 

crystal surface. If the material of interest is a molecular crystal, then a unit of growth 

would naturally be a single molecule as this represents a strongly bonded entity that 

remains intact during crystallisation, forming relatively weak bonding with neighbours to 

yield the crystal. In fact, such a unit of growth is probably, in many cases, the actual 

growth unit for the crystal assuming that it does not dimerise in solution. However, for a 

zeolite, which is a fully connected three-dimensional network of covalent bonds, such an 

approach is not viable. But for our analysis the unit of growth is just a structural element 

that represents a metastable surface structure with small enough dimensions to describe 

all the intricacies of the crystal formation. As a metastable entity it will be persistent in 

time at the crystal surface during growth and can, therefore, be considered to determine 

the overall rate in the crystal growth process. For the simulation of the full three-

dimensional growth of a crystal, for example via the development of a kinetic Monte 

Carlo model, only the rate-determining steps are required.  

Returning then to the problem of nanoporous zeolites composed of condensed tetrahedral 

silicate units forming cage-like structures. We know from previous work that these cages 

are strongly related to metastable surface entities because the cage wrapping permits 

maximum condensation of the cage
11

. Imagine a cage within the bulk of the zeolite with 

all tetrahedral silicon sites fully condensed (termed Q4 units). Then imagine the same 

cage at the surface of the crystal where most of the silicon sites will only lose one bond of 

condensation and is, therefore, a minimum in energy for a surface structure. In fact, of the 

200+ zeolite structures, around one quarter of these structures, consist of Q4 units that 

will only suffer loss of one condensation at the surface (Q
4
 → Q

3
). The other three 

quarters have Q
4
 units that may suffer the loss of two condensations (Q

4
 → Q

2
), however, 

these will still be at an energy minimum. Therefore, the cages become a suitable unit of 



 

growth even though they are not the growth unit. These cages are 3-dimensional space-

filling tiles that can be computed in a relatively straightforward manner using algorithms 

such as those implemented in ToposPro21,22 (Figure 1). Consequently, this establishes a 

simplified route to coarse-grain the zeolite problem into energetically minimised, 

metastable, rate-determining steps that, when balanced against a potential energy driving 

force from the growth medium permits generation of a general kinetic Monte Carlo 

algorithm for zeolites. The choice of natural tiles
21

, which are used in our study, is 

unique and does not permit an alternative. In this aspect it is very different to the choices 

made by structural chemists when dividing up the structures, such as the secondary 

building units. The units of growth are space-filling and, although the crystal is 

nanoporous, it is considered as filling all space during growth (the voids within cages are 

filled with water and cations). This will be the same for the growth of any crystal whether 

nanoporous or not. This approach is naturally extendable to any cage-like structure, 

regardless of the bonding type, such that MOFs with extensive coordination bonds are 

immediately treatable.  

To extend this approach to other crystals we use the Voronoi partitioning procedure, 

which is the dual compared to the tiling method, to fill the space with polyhedral units. In 

particular, in the Voronoi-polyhedra the objects (atoms or molecules) occupy the centres, 

while in tiles they occupy vertices. Thus, molecular crystals, such as aspirin, urea or 

water, can be categorised as a 3-D Voronoi partition, where the molecule sits at the centre 

of a Voronoi-polyhedron and the faces of the polyhedron represent the interactions with 

neighbouring molecules (Figure 1). Similarly, for ionic crystals, such as calcite or zinc 

oxide, the ions sit at the centre of Voronoi polyhedra with faces representing the 

interactions between cations and anions. In these last two cases the network of 

interactions can be considered without the need to introduce the concept of 3-D 

partitioning, however, it is useful to realise that all crystal systems can be treated in the 

same manner. To summarize, we assume the units of growth to be polyhedral (tiles or 

Voronoi polyhedra) depending on nature of the crystal. The Voronoi partition can also be 

used for the structures that have no tiling, e.g. for polycatenated networks. 

The problem then is to establish the energies of all these 3-D polyhedral units in any 

configuration and degree of condensation/attachment at the surface of a growing crystal 

relative to the solution phase. For complex crystal systems there could be thousands of 

possible surface site types although, in principle, only a fraction of these will be 

topologically viable during crystal growth. By interfacing our kinetic Monte Carlo code 

with the 3-D partitioning approach of ToposPro
22

 we can compute all the possible 

connectivities for any partitioning pattern and, consequently, any crystal structure. Then, 

to a first approximation, the energies of the polyhedral units are directly related to the 

degree of condensation/attachment (see Figure E1 for the LTA zeolite system). 

Secondary energetic effects can be computed at a much higher level of simulation in 

order to determine subsidiary effects, but most structural features are determined purely 

by connectivity. Common defects, such as screw dislocations, can be incorporated by 

displacement of 3-D polyhedral units to equivalent sites along the screw core resulting in 

perfect crystal re-connection. Growth modifiers can be simulated by poisoning units of 

growth accordingly. This approach permits both growth and dissolution at individual 

surface sites depending on whether the chemical potential of the growth medium is above 



 

or below the energy of that surface site. In this manner, by changing the driving force 

systematically within the simulation, the equilibrium morphology is found when the rates 

of growth and dissolution are balanced. Examples for the very important LTA and FAU 

structures are shown in Figures E1 and E2 respectively and illustrate how both the habit 

of the crystal and the much more vulnerable surface topology can be matched with 

experiment across all crystal faces. 

This approach allows the straightforward computation of crystals no matter what degree 

of complexity exists in the structure. For example, the UOV structure (Figures 2 and E3) 

with a very large unit cell and constructed from 16 tiles in a mixture of open and closed 

environments is readily treated in an efficient manner. For such a system, even using the 

same energy penalty for every tile vertex gives both a crystal habit and surface topology 

very similar to that observed experimentally. This computation yields the terrace 

structure that also includes the nature of the surface termination which, for nanoporous 

materials, is the gateway to the internal porosity. This approach also demonstrates how 

framework crystals such as NES (Figure E4) have great difficulty circumventing large 

cages that will necessarily represent large energy barriers. The resulting crystals are very 

thin plates and any modification to this morphology would require careful attention to the 

stabilising of this large cage through templating. 

The MFI zeolite framework type, which is one of the most important industrial catalysts 

known as ZSM-5, reveals not only the surface structure but also the internal structure of 

the crystals. Within the bulk of the crystal, tiles remain incomplete – in other words they 

possess dangling silanol groups – consistent with the plethora of internal silanols that is 

well-established for ZSM-5. The interesting discovery is that, because the growth 

mechanism on different faces of the crystal is necessarily different, the silanols are 

confined to zones of different density within the crystal (Figures 2 and E5). This mimics 

almost exactly the optical microscopy images that show identical zoning and has been a 

source of debate for many years23. Similarly, in ETS-10 which displays rod growth 

(Figure E6) rather than layer growth the incompleteness of the rods results in internal 

defects that congregate in a zone from the (001) facets to the centre of the crystal just as 

observed experimentally by Raman microscopy
24

. Our kinetic 3-D partitioning model 

shows that a straightforward growth mechanism can explain these optical phenomena 

without the need to resort to complex arguments related to twinning of the crystals. 

Common defect structures, such as screw dislocations, are able not only to replicate the 

spiral topology, such as in CHA and LTA (Figures E7 and E1 respectively), but also 

indicate the relative growth rates of the screw in relation to the layer growth. Complex 

interleaving of screw formation owing to fast and slow growth directions, such as seen in 

the AEI system (Figure E8), can be faithfully reproduced. Also, the direction of the 

screw core can be interrogated according to the multiplicity of the spiral growth 

emanating at the crystal surface, such as in the metal organic HKUST-1 (Figure E9, left). 

Indeed, MOFs are as readily treated using this approach either as cage (partitioned) 

structures as in HKUST-1 or as molecular crystals as shown for MOF-5 (Figure E9, 

right). In the latter case it is necessary also to consider the solvent as an important 

element in the crystal growth since without this it is impossible to replicate the observed 

crystal habit and surface topology. This is a good example of a multicomponent crystal 

and demonstrates the power of this approach to this important general class of materials. 



 

Both molecular crystals and ionic crystals (Figures 3 and 4 respectively) are amenable to 

this treatment and for calcite the values of crystallisation energies are in broad agreement 

with those calculated using a combination of interatomic potentials and a continuum 

solvent model, see methods section. For the L-cystine system it has been shown29,30 that 

growth on the <001> face proceeds predominantly via screw dislocations. When this is 

augmented with the 61 screw axis of the crystal structure and highly anisotropic rates of 

crystal growth a complex pin-wheel surface topology is generated. Our simulations are 

able to faithfully reproduce all these growth features based upon four interaction energies 

and reveal the importance of the interplay between different growth modes in the 

complete crystallisation mechanism (Figures 4 and E10). 

Finally, addition of growth modifiers is also readily achieved (Figure 4) where targeting 

of specific growth sites can be examined in relation to their effect on the growth topology 

giving similar results to those observed experimentally
25

. The power of this approach is 

in the general applicability across crystal systems and gives a window of understanding 

that can then be readily explored through higher-level calculations on each individual 

system. 
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MAIN FIGURE LEGENDS 

 

Figure 1 | Demonstration of the tiling and Voronoi-polyhedra partitioning methods. 
Top sequence shows the chabazite structure (CHA) which is composed of two cages 

(tiles), the double six ring (pink) and chabazite cage (green). Both these tiles consist 

entirely of Q3 tetrahedra and are considered as closed cages. As the crystal grows, shown 

in the middle, the cages condense and Q
3
 is converted into Q

4
, right image, thereby 

stabilising the cage relative to the solution phase. The middle sequence shows the 

complex UOV structure that consists of 16 tiles (see Figure E3). One of these tiles is 

shown that consists of both Q
3
 and Q

2
 vertices and is therefore considered as an open tile. 

Condensation again results in stabilisation of these tiles relative to the solution phase. The 

lower image shows a tile representation for the molecular crystal urea. On the left is the 

initial Voronoi construction with 14 urea neighbours surrounding the central molecule. 

Four of these interactions are very weak and can be neglected leaving the ten interactions 

on the right represented by the black lines. Each interaction passes through the face of the 

ten-sided tile. 

 

Figure 2 | Collection of images presenting the results of simulations run on a variety 

of framework types. LTA, zeolite A, consists of three closed cages (tiles) and the 

experimental morphology can be achieved by adjusting the energy of these tiles 

independently relative to solution (see Figure E1 and Supplementary Movie 1). MFI, 

(also known as ZSM-5 or silicalite) is a complex structure consisting of 10, all open, tiles. 

The morphology and topology can be simulated very well using different energy 

penalties for large and small tiles respectively. Interrogation of the internal structure of 

the crystal reveals an hour-glass structure similar to that observed experimentally by 

optical microscopy. This is a result of incomplete tiles having silanol groups known to be 

present in the ZSM-5 structure (see Figure E5 and Supplementary Movie 4). ETS-10 is 

an octahedral/tetrahedral nanoporous framework structure that consists of titanate rods 

that are stacked layer by layer in an orthogonal arrangement. Viewed down the [001] axis 

as seen here the rod growth nature of the crystal is immediately apparent and leads to the 

incorporation of defects (see Figure E6 and Supplementary Movie 5). UOV is one of the 

most complex zeolite structures with a very large unit cell and 16 tiles, both open and 

closed. The present methodology is able to efficiently grow such a complex structure 

with both surface topography and habit matching that observed experimentally. The 

surface structure is also gleaned from the calculations as well as the nature of partially 

constructed layers at intermediated metastable steps (see Figure E3 and Supplementary 

Movie 3). MOFs can be modelled by two differing methods. First, treating them as 

multicomponent molecular crystals with metal clusters and organic linkers treated as 

separate molecules (as in MOF-5 shown above). Second using the same treatment as 

zeolite frameworks (as seen with HKUST-1 in Figure E9, left and Supplementary Movie 

6). Again the crystal habit and surface topography match that observed experimentally 

with different crystallisation conditions (further examples are shown for MOF-5 in 

Figure E9, right). 

 

Figure 3 | Simulations of an ionic crystal (calcite) and a molecular crystal (urea). 
Simulations of calcite and urea, demonstrating the universality of the present approach to 



 

different crystal classes. All simulations are shown under equilibrium conditions. For 

calcite the reaction energy for the conversion of solubilised ions to the crystal per 

coordination to the crystal is set at 5, 10 and 15 kcal/mol. Calculation shows that the 

value lies between 10 and 15 kcal/mol and the crystal habit and surface topography of 

these two crystal simulations match experiment closely. At 5 kcal/mol the terrace edges 

are much more rounded than observed experimentally. The major difference between 10 

and 15 kcal/mol is the terrace density that can also be used as a distinguishing factor. For 

urea three different reaction energies are used depending primarily upon the strength of 

interaction in the urea crystal (discussed in methods section). The large {110} faces are 

flat and dominated by terraces elongated in the c-direction. The smaller pseudo-{111} 

faces are rough and generated in large part by dissolution when the supersaturation is 

close to equilibrium. 

 

Figure 4 | Images demonstrating the results of incorporating screw dislocations in 

growing LTA, L-cystine and calcite crystals. Screw dislocations may be computed 

using the present methodology for any crystal system along any crystal direction. This 

method operates according only to topology and does not account for the energy of the 

crystal at the screw core. Nonetheless, it allows all possible topologically permitted 

structures to be tested for growth morphology – energy considerations can be determined 

separately. Upper left images show simulations of LTA structure with and without a 

screw dislocation running along [100] through the crystal. Immediately apparent is a 

lengthening of the crystal along the [100] direction owing to the greater ease for growth 

at the spiral growth front. This demonstrates how to determine the relative growth rates 

of layer-by-layer growth versus spiral growth. Upper right image shows pin-wheel crystal 

growth formation in the L-cystine system caused by the 61 screw axis with hexagonal 

terraces consisting of six individual L-cystine layers forming a step bunch circumscribed 

by the slow growth directions. Progression of the step bunches and single steps is the 

result of a complex interplay between attachment at single step edges, step bunches and 

surface sites that can be seen in Supplementary Movie 7. The lower sequence shows 

screw dislocations in calcite. Left image shows a single screw dislocation with screw core 

along [100]. Such a dislocation emanates on two adjacent {104} crystal faces. Calcite is 

also known to exhibit double screw dislocations and the middle image shows a double 

Burgers vector screw along [-2/3,2/3,1/6] which has the smallest displacement possible 

for such a double screw. The right image shows the effect of selective poisoning at two-

coordinate sites along terrace edges that has the effect to produce rounding of terrace 

features. 
  



 

METHODS 

CrystalGrower growth code. The CrystalGrower growth code is written in Fortran 95. 

Input polyhedral units (tiles or Voronoi polyhedra) and their connectivities (partitioning) 

are provided via an interface with ToposPro
22

. ToposPro builds natural tiling or Voronoi 

partition in accordance with strict and unambiguous algorithms
21,22

. As a result, all the 

information for a given polyhedral unit in terms of the initial vertex condensation is 

provided for CrystalGrower. Polyhedral units neighbouring through faces are identified 

as these are considered as possible growth sites. Polyhedral units neighbouring through 

edges or vertices are considered too unstable to act as sensible rate-determining units of 

growth. Further information that can be subsequently utilised to determine the 

consequences of condensation of polyhedral units on vertex condensation is also 

provided. All information is provided in p1 symmetry in the primitive unit cell. The low 

symmetry is necessary as crystal symmetry is broken at the crystal surface and the 

primitive cell is used in order to ensure the most efficient calculation. By equating the 

crystal network to a network of polyhedral units also provides an effective route for 

enumeration of screw dislocations. These are computed through cutting the network of 

polyhedral units by a plane up to the screw core followed by translation of all polyhedral 

units on one side of the plane along the screw direction to an equivalent position followed 

by reconnection. This results in a new, fully connected, network with no dangling bonds. 

Adjacency matrices for polyhedral units are computed for the screw as well as the perfect 

structure such that look-up tables can be generated in order to maintain efficient crystal-

growth computation even in the presence of such dislocations. The algorithm is 

completely generic and permits screw dislocations to be generated for any structure in 

any direction. The energetics of the screw dislocations are not determined and only some 

will be energetically feasible. CrystalGrower treats the problem simply as a network but 

the stability of screw dislocation structures could be tested by energy minimisation 

methods separately
28

. 

The key to the program lies in efficient identification of all possible site types for growth 

and this is done once upon initiation for both the perfect structure and any screw 

dislocations. These site types are not re-computed at each growth/dissolution iteration 

when an efficient algorithm permits identification of site-type changes as the crystal is 

modified. Probabilities for growth and dissolution are computed at each iteration as the 

number of each site type changes as well as the driving potential ∆µ. The value of ∆µ can 

be varied according to a number of protocols; however, most importantly it can be 

allowed to proceed asymptotically towards the equilibrium value ∆µe by lowering ∆µ for 

growth and raising ∆µ for dissolution. When ∆µe is found this reduces the unknowns to 

be determined. 

The code allows the energy ladders of ∆Us values to be determined independently for 

each tile (Figure E1) and different weightings can be applied to different Q
n
 values. The 

code further permits the poisoning of sites in order to simulate the addition of growth 

modifiers. Also, effects of chemical ordering on ∆Us values within the lattice (e.g. Zn/P 

ordering in framework zinc phosphates or Si/Al ordering in high alumina zeolites) can be 

computed. 



 

In order to treat molecular crystals or ionic crystals site types are determined according to 

Voronoi polyhedron neighbour count rather than tile vertex Q
n
 count. The philosophy is 

that the molecule or ion sits within a Voronoi polyhedron built for its centre of mass and 

the faces of the polyhedron represent the interactions with neighbours. Each face (or 

neighbour) can be given a weighting to represent its contribution to the ∆Us values. All 

other computation is identical to that for framework crystals and screw dislocations and 

growth modifiers may be added accordingly. 

 

Growth model and adaptation to nanoporous materials through 3D-tiling. The 

growth model is adapted from that described by Boerrigter et al.
20

 whereby if units of 

growth can be identified then the probability for growth relative to the probability of 

dissolution depends only upon the stabilisation gained by transferring that unit of growth 

from solution to the crystal. As the crystal grows there will be many sites, s, at which the 

unit of growth may attach and each of these sites will have its own stabilisation energy, 

∆Us. The solution is only considered to act as a driving force with a chemical potential, 

∆µ, without regard for speciation in solution. At equilibrium that driving force will be 

such that the rate of growth and the rate of dissolution is equal. There are three principal 

approximations in the previous work:
20

 (i) that the processes of growth and dissolution 

are thermodynamically reversible; (ii) that upon attachment of a unit of growth to the 

crystal the energy lost through desolvation is proportional to the energy gained through 

crystal attachment; (iii) the entropy change of the growth unit is the same regardless of 

site type. The probabilities for growth, Ps
growth, and dissolution, Ps

dissolution, are then given 

by equations 1 and 2, where the factor 0.5 indicates no preference for growth versus 

dissolution.  
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In the above approach the probabilities of growth and dissolution are given by the 

thermodynamics of the process based on units of growth. However, these quantities are 

also appropriate as proxies for rate constants in kinetic Monte Carlo. The justification for 

this comes from the well-known Bell-Evans-Polanyi principle, as widely employed in the 

field of catalysis. For a series of closely related chemical processes that have similar 

transition states, the relative rates are approximately determined by a factor that just 

depends on the difference in thermodynamics for the corresponding reactions. Providing 

a material is relatively homogeneous, the different pathways for addition of a unit of 

growth will be rather similar and likely to have common features to their transition states 

(e.g. desolvation of the solution species and surface attachment point). Therefore we 

argue that the Bell-Evans-Polanyi principle should be equally as valid for crystallisation 

processes as for catalysis. Given this, the probabilities of growth vs dissolution will 

determine the relative kinetics of crystal growth to within a time constant. 



 

The two principal problems when considering framework crystals such as zeolites or 

MOFs is to (i) identify the units of growth and (ii) determine in a simple manner the 

stabilisation energies associated with these units of growth. The units of growth must be 

distinguished from the growth units. The latter requires full knowledge of the mechanism 

of growth and the speciation within the solution. The former, unit of growth, is just a 

suitable coarse-graining of the problem into rate-determining steps that, for nanoporous 

materials, are the metastable closed cage structures. This coarse-graining must be both 

sensible in terms of metastability, small enough to capture the essential growth features 

but large enough in order to ensure efficiency of calculation. This final provision can be 

illustrated by reference to MOFs where the crystal could be grown as a molecular crystal 

based upon metal clusters, organic linkers and solvent but it can also be grown as closed 

cages that are known to be metastable. 

Closed cages are readily determined using the approach of 3D-tiling achieved by the 

ToposPro code
22

 which computes natural tiles
21

. For the 299 zeolite frameworks studied, 

this accounts for 54 (less than one quarter) of all the structure codes that are constructed 

entirely from closed cages / tiles made up of Q3 tetrahedral atoms. The remaining 175 

structure codes are constructed from tiles that include some Q2 tetrahedral atoms (so-

called “open cages/tiles”). Of these 175 frameworks, 120 are composed entirely of open 

tiles, and 55 include a mixture of open and closed tiles. Nonetheless, these tile types meet 

both criteria in terms of both metastability and size. Any tiling, other than the natural 

tiling, will just be a summation of natural tiles and therefore in a crystal growth model 

will just decrease the resolution of the coarse-graining unnecessarily. These larger tiles 

will themselves be created as the crystal grows. The natural tiles also automatically select 

tiles that are all Q
3
 initially followed by tiles with both Q

3
 and Q

2
 (no Q

1
 or Q

0
) and 

therefore represent the lowest energy metastable states.  

The relative ∆Us values associated with these tiles is then necessary in order to compute 

probabilities for growth versus probabilities for dissolution. Absolute energies are not 

required. It is known from experiment
26,27

 that the condensation free energy for the 

reaction; 
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is -4.2 kcal mol-1 and so we can expect each condensation of a unit of growth to result in 

this order of magnitude change in relative ∆Us value. So to a first approximation the ∆Us 

values for a particular tile will form a uniform ladder of energies with spacing on the 

order of a few kcal mol
-1

. The ladder will range from the tile in its native form consisting 

of Q
3
 and Q

2
 units for tetrahedral framework structures to the fully condensed all Q

4
 form. 

Different chemical condensations will necessarily change the energy spacing as will the 

stabilisation of different cage types through hydration. As a consequence, each cage type 

can be given a different, independent, energy spacing. The same philosophy can be used 

for any framework type, whether tetrahedral or not, with the energies just depending 

upon the degree of condensation of the tile. So, for example, octahedral frameworks, 

octahedral/tetrahedral or any other combination are readily treated. An example of the 

ladders of ∆Us values for the simple LTA system is given in Figure E1. For complex 

systems such as UOV with 16 tile types (Figure E3), the number of site types is very 



 

large, 1843, although only a fraction of these are actually ever populated, in this case 168. 

All other tiles required for the calculations on systems in this paper are given in Figures 

E1-E10. 

The crystals are seeded by growing the first few units at high supersaturation and then 

dropping the supersaturation to that of the growing medium. The supersaturation level is 

easily determined because the simulation can be run to equilibrium (equal growth and 

dissolution rates) and then the supersaturation set relative to that equilibrium driving 

chemical potential. The seed is inserted manually as we are just growing one crystal. In 

the future one could imagine looking at competitive growth of crystals, such as Ostwald 

ripening, through the inclusion of multiple nuclei.  

The goal of this work is to find a generic algorithm that is able to describe all the most 

important aspects of “classical” crystal growth, readily, across any crystal system. The 

trigger for this endeavour is that, with the advent of scanning probe techniques – in 

particular AFM, the number of experimental parameters available for simulation is much 

larger than when the only parameter was the crystal habit. The question then arises, can a 

model be derived whereby the number of parameters in the model is less than the 

experimental observations – i.e. the problem is over-determined. For example, with 

zeolite A the experimental observables are crystal morphology/aspect ratio, terrace 

morphology on three different facets under different supersaturation conditions, terrace 

density, terrace heights. This is on the order of twelve observable parameters to which we 

are fitting three energy parameters. As a consequence, by performing hundreds of 

simulations we are able to pinpoint, for this system, with quite a high degree of accuracy 

the free energies associated with the rate-determining steps in this process. Then consider 

the UOV system discussed following. There is a similar number of experimental 

observables, however, the potential number of energy parameters for the model is 16 

making the problem underdetermined. So an assumption needs to be made. In this case 

the assumption we make is that the free energy for condensation of the different cages per 

Si – O – Si condensation is the same, thereby reducing the number of parameters from 16 

to one. Despite this assumption we obtain a remarkably good fit with experiment. We 

clearly need to be aware of the assumption we have made and predicate further 

conclusions with that in mind. However, as the knowledge on the mechanism of 

crystallisation of UOV was completely non-existent without these simulations the gain in 

knowledge is substantial despite the assumption made. It should be noted that our 

approach cannot be used blindly and requires very careful consideration of any system 

that is studied. Nevertheless, it gives a route to study the basics of crystal growth for any 

system, quickly, whereby the number of fitting parameters will be on the same order of 

magnitude or less than the number of experimental variables. Peculiarities for a given 

system would then need to be layered on top of this approach. 

Different polymorphs can be readily treated as they just represent different crystalline 

networks and therefore a different 3D partitioning of space. For example, the different 

zeolite structures in their purely siliceous forms are all polymorphs of silica. In terms of 

predicting competition between polymorphs this is not something that we are currently 

addressing. Nevertheless, one could envision an extension of our approach if the different 

structures are put on a relative scale then the probability for nucleation of different 



 

polymorphs could be tested. This would not be straightforward because effecting 

nucleation via Monte Carlo techniques is technically demanding owing to the propensity 

of the system to be perpetually dissolving. 

Defects and stacking faults are clearly of enormous importance and we believe our 

approach can be extended to include this. However, at this stage we were concentrating 

on keeping the algorithms both generic and efficient. Defects and intergrowths, by their 

very nature are system specific and consequently so far we have only considered the 

omnipresent screw dislocation. The question is whether to add this in the future in a 

bespoke manner for each system or develop protocols for introduction of some more 

common intergrowths and defects. 

The technique can be used for co-crystals with the modification that the driving force for 

each component would need to be considered separately, although those driving forces 

would be linked by the stoichiometry of the growing crystal. In principle any type of 

interaction can be considered as we are just fitting experimental data. If those interactions 

are to be computed ab initio for subsequent comparison then different types of interaction 

may pose different levels of complexity. 

In the case of the zeolite A system the energy parameters have been refined by 

performing over one thousand calculations that help to pinpoint the solution (see Figure 

E1, g). What can be seen in this instance is that the crystal features are quite sensitive to 

these energy parameters (as might be expected). This, consequently, allows the 

refinement to be quite precise. Precision will vary from system to system depending upon 

number of experimental variables versus the number of fitting parameters. Similarly, the 

rigor of the comparison will again depend of what experimental data is available that can 

be compared. For example, measurement of supersaturation for a molecular crystal may 

be straightforward but for a zeolite growing from a gel is extremely difficult. Nonetheless, 

the supersaturation can become a variable that can be addressed by comparing surface 

nucleation densities. Also, the rigor of the comparison required depends upon the 

question being asked. For example, if the question is “how can the aspect ratio of a 

unidimensional nanoporous system be changed so that the pore length is short in order to 

improve diffusion to a catalytically active centre” – then what is important is “which 

parameters influence the crystal aspect ratio”. For zeolite L that means stabilisation of the 

large cages, which can be achieved through specific templating. In order to make that 

determination does not require the specific free energies of condensation to be known to 

an accuracy of greater than 0.5 kcal/mol. But it is crucial to know the general crystal 

growth mechanism that our simulation provides. For most materials’ chemists the trends 

are the most important thing in order to influence outcome. If the experimental data set is 

large and the number of fitting parameters small, as is the case for zeolite A, then the free 

energies of condensation can be determined to an accuracy of about 0.2 kcal/mol. 

In order to further test our methodology we have looked at the L-cystine crystal growth 

system which has been studied extensively by AFM
29,30

 owing to its involvement in the 

pathogenesis of cystine kidney stones. Previous work was able to record detailed images 

of the development of complex screw dislocations emanating from the [001] facet and a 

Hartman-Perdok analysis is able to describe many of the features observed. Similarly 

using our approach we are able to readily simulate all the main features observed in this 

system (see Figure E10) – including in our case the rounded and fractal features that a 



 

Hartman-Perdok analysis will not expose. By doing multiple simulations in a similar 

manner to than performed for the zeolite A system we are able to refine the free energies 

of crystallisation of all the principal interactions in this structure. For example, the two 

slow growth directions (labelled A+ and A- in reference 29) must be on the order of 1–2 

kcal/mol different to each other in order to explain the step bunches with height one unit 

cell in the c-direction (Figure E10, b). If the difference between these growth energies is 

removed or reduced the height of the step bunches is only a half unit cell in the c-

direction owing to the symmetry that is repeated every three L-cystine layers. Most 

interesting, however, from this work is the separation between the step bunches which 

changes markedly either with supersaturation or changes in the four binding energies. 

Reference 29 discusses this step bunch separation at length and invokes lattice strain in 

order to account for deviations between the separation expected from a Hartman-Perdok 

analysis and experiment. It is clear from our simulations that the rate of advancement of 

the slow steps that define the characteristic pin-wheel pattern do not result from binding 

at this step edge followed by kink growth. Their advancement is precipitated by 

nucleation and terrace growth on the side of the step bunches (<100> facets) as well as 

surface nucleation. Because of the strong anisotropy of the binding energy in these 

crystals nucleation at a surface <100> site is energetically more favourable than binding 

at a higher coordination edge site of an individual slow step. Consequently, the rate of 

growth of both the <100> facets and the slow steps is governed by the same process. In 

fact, this effect can be seen in Supplementary Movie 1 to reference 30 whereby the slow 

steps are seen to advance principally as a result of advancement of the step bunches and 

we reproduce this in our Supplementary Movie 7. Step advancement in the slow growth 

direction is further enhanced by birth-and-spread nucleation on the <001> facet. For this 

somewhat complicated system, being able to visualise the crystal growth in three 

dimensions helped to disentangle these competing processes. The outcome of a reversal 

of the handedness of screw dislocation is also simulated in Figure E10, c. Because the 

overall advancement of terraces is governed by the crystallography of the material rather 

than the handedness of the screw dislocation the pattern of growth is remarkably similar, 

independent of the handedness of the screw dislocation. Indeed far from the screw core it 

would be impossible to distinguish the handedness of the screw core. However, near the 

screw core the terrace structure is necessarily quite different and is the distinguishing 

factor between opposite handedness. Both L-cystine and D-cystine have been simulated 

(Figure E10, d) and, as expected, the presentations of the surface features have obvious 

opposite handedness. The free energies of binding that we determine directly by 

simulation of experiment can be compared with the value calculated directly from the 

experimental solubility of L-cystine
31

. 

 

Calcite calculations Calculation of the energetics for individual growth or dissolution 

steps were computed using a combination of interatomic potentials and a continuum 

solvation model. Here the COSMO solvation model32 was used with atomic radii fitted 

such that the experimental hydration free energies of calcium and carbonate were 

reproduced. A modified force field was then developed by refitting the calcium-carbonate 

interaction of an earlier model
33

, such that the energy difference between calcite and the 

ions in aqueous solution was consistent with the experimental solubility. Starting from 

the optimised bulk structure of calcite commensurate with this model, a rhombohedral 



 

nanoparticle of calcite was cleaved with dimensions of 16 x 16 x 4 atomic rows oriented 

such the long edges run parallel to either the acute or obtuse step edge directions. The top 

layer of this particle was then reduced in size by two molecular layers along each edge to 

create an island on the surface. Using this structure as a starting point, with the bottom 

two layers of the slab held fixed during optimisation in order to reproduce the effect of 

the calcite bulk, various mechanistic pathways for the growth or dissolution of the island 

were explored. This includes the removal of each of the 4 distinct ions from both the 

acute and obtuse step edges, as well as the corresponding additions of ions to each step. 

Results from these calculations show that the site types for Ca
2+

 and CO3
2-

 fall broadly 

into groups depending upon the connectivity of the ion within the lattice. The difference 

in reaction energy between the ion in solution and ion in the crystal is between 10 and 15 

kcal/mol per ligand for both Ca
2+

 and CO3
2-

. In order to provide more accurate results for 

future studies it will be important to use explicit solvent molecules.  

 

Other features that are revealed using CrystalGrower Although the approach is 

principally designed to interrogate and simulate crystal surface structure and crystal habit 

it is also able to probe internal defects that arise as a result of the growth mechanism. 

This is particularly relevant in the two structures MFI and ETS-10. Both these crystal 

systems are known to exhibit optical birefringence when viewed under an optical or 

Raman microscope respectively. It transpires from our initial studies using 

CrystalGrower that structures with open cages have a tendency to crystallise in a manner 

that leaves some tiles incomplete and as a consequence this will result in a high number 

of internal silanol groups. Both MFI and ETS-10 (Figures E5 and E6) show internal 

defect density patterns that mimic almost exactly the birefringence observed 

experimentally. This is a much more appealing pathway rather than the necessity to 

invoke complex twinning mechanisms to explain such effects. We will use this technique 

in future to explore a wide range of framework structures that are known to exhibit such 

effects. 

 

CrystalGrower visualisation code The CrystalGrower visualisation code is primarily 

written in C++ using OpenGL libraries and calls to the Windows API. This code was 

designed to analyse the results of the kinetic Monte Carlo calculations performed by 

CrystalGrower growth code and allow users to observe the morphology and surface 

structure of the grown crystal, whilst also manipulating the crystal in real-time. Two 

information files are required to construct and display the polyhedral units that compose 

the crystal framework, which are both generated during a simulation run by 

CrystalGrower.  

Two distinct steps are taken to draw the crystal structure. The first, using the partition 

information file output by CrystalGrower, builds a model of each polyhedral unit based 

on a small number of parameters for each polyhedral unit (number of vertices, number of 

faces, flat / non-flat faces etc). This will simply be a sphere in the case of molecular 

crystal. Once these parameters for each unit are calculated, the entire unit is stored as a 



 

memory object that allows quick, easy access from the graphics card. A series of spheres 

are also generated per unit for non-molecular crystals, with the radius defined by taking 

the root mean square of the polyhedral unit xyz coordinates, multiplied by a scaling 

factor to allow changes to be made to the sphere size while visualising the crystal 

structure as spheres. The second step uses another output file generated by 

CrystalGrower, which provides the visualisation package with the xyz coordinates for 

each unit cell grown in a run, along with information relating to the type of the unit to 

draw. Coupling these coordinates with those in the partition file, the polyhedral unit is 

drawn at the correct position to be visualised. After completing the drawing of all the 

units for one particular type, the entire array of units for this type is then stored as a new 

memory object. Storing the results of this second step as another memory object is 

important as it greatly improves the speed of the program, allowing real-time 

manipulation of a large number of objects (~300,000) on graphics cards with greater than 

2 GB of dedicated graphics memory. 

 

Experimental methods. AFM images were acquired using a JPK instruments Nano 

Wizard II. Images were taken in contact mode. Standard silicon nitride tips (NP Bruker 

Probes), with a nominal radius of 20 nm and a nominal spring constant of 0.58 N/m were 

used. 
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EXTENDED DATA FIGURE LEGENDS 

 

Extended Data Figure E1 | Experimental and simulated data for the LTA 

framework with energy level diagram. The top segment (denoted with a) shows a 

schematic representation of energy ladders for the LTA structure. Double 4-rings are 

shown in yellow, sodalite (β) cages are shown in magenta and the α cages are shown in 

cyan. Each level on the energy ladders moving from bulk to the top, bold line 

corresponds to the loss of coordination (or gain in hydration) of one Q
4
 site to a Q

3
 site. 

In the case of a double 4-ring, the bottom level corresponds to a cage with zero Q
3
 sites 

and eight Q
4
 sites, whereas the top level corresponds to a fully solvated double 4-ring 

with zero Q
4
 sites and eight Q

3 
sites. The driving force, ∆µ, which is the chemical 

potential of the solution, can be considered as a single value for a zeolite where the 

nutrient is interconverting. However, for a system with species that do not interconvert, 

such as a co-crystal, more than one driving force would be required – although these 

driving forces would be interrelated by the stoichiometry of solution species and their 

relative rates of consumption. 

The LTA structure consists of three tiles (b) connected in a cubic lattice (c). Typical 

crystals exhibit three facets each with unique terrace shape (d) all of which can be 

reproduced along with the crystal habit in a simulation that treats the crystallisation 

energy of each tile separately (e, top), a prediction of the surface termination can also be 

made (e, bottom). Screw dislocations along [100] in the LTA structure are ubiquitous and 

the same set of parameters also reproduces the nature of this defect (f). A video of the 

screw dislocation growing through the simulation can be seen in Supplementary Movie 1. 

The simulated crystals shown in e and f are approximately 0.15 µm x 0.15 µm x 0.15 µm 

and 0.20 µm x 0.15 µm x 0.15 µm in size, respectively. 

A ternary plot is shown in g consisting of 1,176 simulation data points corresponding to 

exploring the energy space at 2% intervals. All images are recorded at equilibrium 

driving force. The highest destabilisation for each cage is at the corner for which its name 

appears and the corresponding axes are colour coded. The directions of the grid lines for 

each axis can be seen in the small diagram top right. Examples of interesting 

morphologies for particular energy combinations are highlighted. 

Extended Data Figure E2 | Experimental and simulated data for the FAU 

framework. The FAU structure consists of three tiles (a) connected in a face centred 

cubic lattice (b). Simulation dropping from high supersaturation (50 kcal/mol) to low 

supersaturation (1 kcal/mol) at the halfway point (c) matches both SEM (d) and AFM (e) 

data on a zinc phosphate structure in terms of both the octahedral habit and the triangular 

terraces on the (111) face with correct orientation. Simulations with the same parameters 

as c with varying zoom distances (f) show the surface structure predicted for this 

simulation. Supplementary Movie 2 shows an example of how a FAU crystal grows at 

both high and low supersaturation. The simulated crystal shown in c and f has an 

approximate size of 0.20 µm x 0.20 µm x 0.20 µm. 

Extended Data Figure E3 | Experimental and simulated data for the UOV 

framework. The UOV structure represents one of the most complex framework systems 



 

with a particularly large unit cell with c-dimension 3.87 nm and consists of 16 different 

tile types (a), connected in an orthorhombic lattice (b). The germanosilicate crystallites 

that adopt this framework structure, although intergrown (c), show very well defined 

shape bounded by six faces. Simulation confirms the two large faces to be (100) (d) and 

the four side faces to be <013> (e, left). Simulations also reveal the structure at the 

crystal surface on the side wall (e, left) and top face (e, right) with differing colouring 

methods. Supplementary Movie 3 shows an example of how a UOV crystal grows at both 

high and low supersaturation values. The simulated crystal shown in all these examples is 

approximately 0.050 µm x 0.75 µm x 1.40 µm in size. 

Extended Data Figure E4 | Experimental and simulated data for the NES 

framework. The NES framework can usually be expressed with four different tile types. 

The largest tile – t-nes can be split into three smaller tiles (a - green, cyan and blue) to 

give a total of six tiles possessing similar sizes (a) that combine to form an orthorhombic 

lattice (b). These three tiles can no longer be referred to as natural tiles, however they 

were still generated using the ToposPro software. These tiles play the role of units of 

growth and are required as CrystalGrower utilises connections through faces, making 

frameworks that share only corners and edges between small tiles, such as NES, difficult 

to grow over reasonable timescales. AFM and SEM micrographs show the morphology 

of aluminosilicate crystals that adopt this framework structure to be long and wafer-like 

with rounded terraces (c) which can be reproduced with simulations using the six smaller 

tiles chosen (d). Lowering the energy penalty for the largest cage changes the 

morphology of the crystal dramatically, thickening the crystal considerably (e, left and 

top-right). This is an observable example of a structure being constrained in its 

propagation in a particular direction owing to the difficulty in growing such large cages. 

Investigating the surface structure (e, bottom-right) shows that the surface is almost 

entirely terminated by the largest tile (blue) in the framework, again highlighting this 

observation. The simulated crystal shown in d is approximately 0.05 µm x 0.40 µm x 

0.15 µm, whereas the example in f is estimated to be 0.10 µm x 0.20 µm x 0.15 µm in 

size, respectively. 

Extended Data Figure E5 | Experimental and simulated data for the MFI 

framework. The MFI structure consists of ten tile types (a) connected in an 

orthorhombic lattice (b). A consistent feature in MFI crystals is the optical hourglass 

effect seen in crystals of silicalite shown in (c). There has been much conjecture about the 

origin of this hourglass effect. However, the fact that the optical birefringence, seen in 

these 300 µm long crystals, is located in sectors bounded by the crystal faces is a good 

indication that the origin is incorporated as a result of the crystal growth mechanism 

being different on different faces of the crystal. Our simulations (d) reflect well the 

crystal habit and surface topology and allow investigation of the surface termination. The 

internal structure (e) shows that the density of silanol groups mirrors very closely the 

sectoring of the crystal, as only tiles with incomplete coordination are shown. Such a 

change in crystal chemistry would, almost certainly, be associated with a change in 

crystal refractive index and hence the observed optical effect. Supplementary Movie 4 

demonstrates growth of the hourglass feature as the simulation progresses as well as 

showing how different tiles express this feature with differing degrees. The simulated 



 

crystal shown in d is approximately 0.10 µm x 0.05 µm x 0.40 µm in size, whilst the 

crystal shown in e is approximately 0.10 µm x 0.05 µm x 0.20 µm. 

Extended Data Figure E6 | Experimental and simulated data for the titanosilicate 

material ETS-10. ETS-10 is a nanoporous titanosilicate with a structure consisting of 

five tiles (a) connected in a monoclinic lattice (b). The structure has a very similar 

symmetry to zeolite beta, however, the titanium is incorporated into titania rods 

surrounded by silica (c,d) – HREM courtesy of O. Terasaki. These rods run alternatively 

in orthogonal [110] and [-110] directions and it is found that these rods are the dominant 

components for the crystal growth (f). Further, because the rods do not always connect 

and heal inside the crystal structure there is a high concentration of internal silianol 

groups in a sector from the (001) faces to the centre of the crystal (e). Such sectoring in 

ETS-10 has been observed in Raman microscopy
24

. A movie demonstrating how the rods 

in the ETS-10 framework grow in alternating orthogonal directions can be viewed in 

Supplementary Movie 5. The simulated crystals shown in d and e are approximately 0.25 

µm x 0.25 µm x 0.05 µm, and 0.10 µm x 0.10 µm x 0.10 µm in size, respectively. 

Extended Data Figure E7 | Experimental and simulated data for the CHA 

framework. The CHA structure consists of two tiles (a) connected in a monoclinic lattice 

(b). Typical silicoaluminophosphate (SAPO) 34 crystals show distorted cube morphology 

when viewed under a SEM (c) exhibiting <100> faces with isotropic growth of terraces. 

A plethora of screw dislocations can be observed in this system (e) and this is reproduced 

for a dislocation with a screw core running along [100] (d). Simulations predict that the 

surface terminates at the double six rings (f). The simulated crystal shown in d has an 

approximate size of 1.50 µm x 0.10 µm x 0.10 µm due to elongation caused by the screw 

dislocation. 

Extended Data Figure E8 | Experimental and simulated data for the AEI framework. 
The AEI structure consists of two tiles (a) connected in an orthorhombic lattice (b). The 

structure is related to CHA in that it can be built by connecting double six rings. However, 

because of the alternating orientation of these units along the c-direction this results in a 

switching of the fast and slow growth rates along the a-direction and b-direction (shown 

on AFM of aluminophosphate (AlPO) 18 in c). The result is a complex interleaved spiral 

growth that is faithfully simulated according to this space partitioning methodology (d-f). 

The simulated crystal shown in d – f is approximately 1.70 µm x 0.05 µm x 0.05 µm in 

size due to elongation caused by the screw dislocation. 

Extended Data Figure E9 | Experimental and simulated data for two separate metal-

organic frameworks, HKUST-1 (left) and MOF-5 (right). The left partition (a-e) 

shows HKUST-1, a metal-organic framework copper trimesate Cu3[(O2C)3C6H3]2(H2O)3. 

By partitioning the structure with nodes at metal clusters and tile edges along linkers the 

HKUST-1 structure consists of three tiles (a) connected in a face centred cubic lattice (b). 

Such a partitioning results in excellent simulation of both the crystal habit and the terrace 

topology of the prevalent screw dislocations (c). The simulation predicts that the screw 

core runs along [110], not perpendicular to the (111) faces as such a screw core would 

result in multiple spirals (d). Simulations also allow investigation of the surface 

termination for this framework (e). A video of the screw dislocation growing and 



 

migrating across the surface of the crystal can be viewed in supplementary movie 6. The 

approximate size of the crystal shown in d and e is 0.35 µm x 0.35 µm x 0.35 µm. 

The right partition (f-j) shows MOF-5 [Zn4O(bdc)3, bdc=1,4-benzenedicarboxylate] 

which is a permanently porous metal-organic framework with a simple cubic 

arrangement of metal centres (red) and linkers (grey), along with a solvent molecule 

occupying the centre of each cube (purple) (f, left). Treating the structure as a multi-

component molecular crystal in lieu of a standard tile-partition as used in other cases, the 

framework can also be partitioned into Voronoi polyhedra to demonstrate the interactions 

between each of the linkers, metal and solvent (f, right). Square terracing on the (100) 

face (g) can be in one of two orientations, dependent on the synthesis conditions. The 

crystal morphology can also be changed to exhibit (111) faces as an octahedral crystal, 

again dependent on synthesis conditions (h, left), as opposed to only (100) faces (h, 

right) in a cubic crystal. (111) faces exhibited by the crystal are much more isotropic (i) 

compared to the (100) faces (f) and do not adopt different orientations demonstrated by 

the (100) faces. The simple cubic network alone will not permit the development of (111) 

facets and is immediately an indication of the importance of the solvent N,N’-

diethylformamide (DEF) in the preparation. By varying driving forces for binding of the 

linker, metal centre and solvent in the final crystal all crystal habits and surface 

topologies may be generated (g – i). Double spirals through growth at screw dislocations 

on the (100) face can also be simulated (j). The estimated sizes of the crystals shown in g 

are 0.76 µm x 0.75 µm x 0.75 µm and 0.70 µm x 0.80 µm x 0.80 µm, h are 0.50 µm x 

0.50 µm x 0.50 µm and 0.75 µm x 0.75 µm x 0.75 µm, i is 0.50 µm x 0.50 µm x 0.50 µm, 

and j is 0.75 µm x 0.75 µm x 0.75 µm, respectively. 

Extended Data Figure E10 | Collection of simulated data for L-cystine along with a 

single simulation of D-cystine. The panel labelled a presents a suite of calculations of 

the crystal growth of L-cystine at supersaturation 0.6 kcal mol
-1

 viewed down the [001] 

direction showing characteristic pin-wheel surface topology and hexagonal step bunching. 

Simulations are based on four characteristic free energies of crystallisation: (i) in the 

strong binding direction where L-cystine molecules are bound by two hydrogen bonds 

and S….S contacts; (ii) and (iii) in the weak, slow growth directions, known as A+ and 

A- in references 29 and 30, with one hydrogen bond; (iv) in the c-direction with two 

hydrogen bonds. Interaction type (ii) and (iii) are maintained at half that of (iv) with a 

minimal difference of (ii) and (iii). These interactions can be combined into 491 growth 

sites that are computed in the simulation. The grid explores the effect of changing the 

relative magnitude of interaction (i) (number on the x-axis), relative to the sum of the 

other interactions, (number on the y-axis) all in kcal mol
-1

. When all these interactions are 

too weak isotropic sticky growth is observed and when they are too high the growth is too 

geometrical. The optimum balance is highlighted in a where the sum of the free energies 

of crystallisation is 7.0 kcal mol
-1

, compared to 4.3 kcal mol
-1

 derived directly from the 

solubility of L-cystine at pH 7
31

. Similar to that reported in reference 29, the step 

bunching is closer than observed experimentally as lattice strain at the screw core will 

weaken interactions and prevent the core region, which is advancing by attachment to the 

slow step alone, forming a closed hexagonal step bunch as quickly as predicted. A set of 

simulations demonstrating the effect of small differences in the energy of slow growth 

directions termed A+ and A- in references 29 and 30 is shown in b, noted in kcal mol-1. If 

there were no difference in energy then the pin-wheel structure would have a step bunch 



 

height of only half unit cell owing to the symmetry that is produced every 180
o 

turn 

around the screw core. A difference of 0.1 kcal mol
-1

 is sufficient to eradicate this 

symmetry and make the step bunches one unit cell high. Reversal of the handedness of 

the screw core is not immediately apparent (c) as the pin-wheel structure and handedness 

remain the same whatever the handedness of the screw core as this is driven by the 

symmetry of the crystal structure at the molecular level. However, differences can be 

observed in the surface topology close to the screw core depending on whether the 

handedness of the crystal structure is the same or the reverse of the handedness of the 

screw core. L-cystine and D-cystine will present identical surface structures with opposite 

handedness, as expected, shown in panel d.  
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SUPPLEMENTARY MOVIE LEGENDS 

LTA – Growth via Screw Dislocation – Supplementary Movie 1 

In this movie, an LTA crystal is grown with a screw dislocation running in the [100] 

direction through the crystal. Similar to the FAU simulation, the crystal is first grown 

under high supersaturation conditions (90 kcal/mol) for 5 million iterations, followed by 

a drop in supersaturation to slightly above equilibrium (1.5 kcal/mol) to allow a more 

detailed study of the growing process. During the slow growth, the propagation of the 

spiral from the screw dislocation is clear. The crystal is then rotated to the opposing face, 

demonstrating the elongation of the morphology in the [100] as expected as the screw 

dislocation creates a low energy surface for the growth units to attach to. After arriving at 

the opposing face, the slow growth process is reversed then replayed to again 

demonstrate the spiral-growth of the crystal. 

FAU – Layer Growth – Supplementary Movie 2 

A FAU crystal is grown under high supersaturation conditions (50 kcal/mol) for 5 million 

iterations, showing rapid growth and the adoption of an octahedral crystal morphology. 

The second 5 million iterations occur after the supersaturation is lowered to slightly 

above equilibrium (1 kcal/mol), allowing the growth process to continue slowly. At this 

point the triangular shape of the terraces can be observed, growing in the opposing 

direction to the facet where the growth is occurring. The final portion of the movie shows 

the surface structure viewed from the top, followed by the side of a grown terrace. 

UOV – Layer Growth – Supplementary Movie 3 

Growth of a UOV crystal is demonstrated using similar conditions to the previous 

movies: 5 million iterations at high supersaturation (70 kcal/mol) followed by 5 million 

iterations at a supersaturation value slightly above equilibrium (1 kcal/mol). The 

diamond-like morphology of the UOV crystal can clearly be seen during panning and 

rotation. Rounded / isotropic layer growth can be observed during the growth process, 

along with the fusion of terraces once the growth process is slowed. Close-up shots are 

then shown of the surface structure on the (100) face, followed by the side-wall of the 

crystal: the (013) face. 

MFI – Hourglass Growth and Tile Type Relation – Supplementary Movie 4 

To begin, the t-mfi-1 tiles are shown during the growth process of an MFI crystal to 

allow a view into the internal structure of the crystal as it grows, showing the formation 

of the hourglass structure mentioned previously. Following this growth, a series of frames 

are shown where the tile type shown is cycled on the (001), (100) and (001) faces 

respectively, demonstrating how different tile types contribute to this internal feature in 

varying degrees. 

ETS-10 – Orthogonal Rod Growth – Supplementary Movie 5 

This movie demonstrates the growth mechanism of ETS-10 via titanate rods in 

alternating directions, orthogonal to each other. Each alternating layer is represented by 



 

different colours to draw attention to the orthogonal directions. The conditions for this 

growth process are changed slightly compared to the previous movies. The crystal is first 

grown at high supersaturation (140 kcal/mol) to ensure the growth process begins, 

however no frames are recorded. The supersaturation is then lowered to 1 kcal/mol, and 

frames are taken every 200,000 iterations for the first 20 frames, followed by 40 frames 

recorded at every 10,000 iterations. During these slowed down frames, a closer view of 

the surface is shown, with arrows overlaid following the direction of rod growth that can 

be observed. A final 20 frames with a spacing of 20000 iterations are shown, along with 

close-ups of the surface structures adopted by the vertical and horizontal rods that express 

the structure. 

 

HKUST-1 – Growth via Screw Dislocation – Supplementary Movie 6 

This supplementary movie shows the growth of an HKUST-1 crystal under similar 

conditions to the FAU, LTA and UOV crystals simulated previously. The first 5 million 

iterations are run at high supersaturation conditions (100 kcal/mol) followed by a drop to 

a lower supersaturation (1 kcal/mol). Slowing down the growth clearly demonstrates how 

the screw dislocation running along the [110] direction completely alters the final 

morphology of the crystal. The growth is then reversed, and the screw dislocation is 

followed to the point where it migrates back onto the (111) that it originally appeared 

from. Rotating the crystal then allows the viewer to observe the elongation of the crystal 

shape caused by the spiral growth on both sides. Rotating the crystal to view the opposite 

side of the screw dislocation, the location of the core is again followed whilst re-growing 

the crystal at low supersaturation (1 kcal/mol) ending with the final growth frame, and a 

panned out view of the entire crystal. 

L-Cystine – Growth via Screw Dislocation – Supplementary Movie 7 

This supplementary movie shows the growth L-cystine at a supersaturation of 0.6 kcal 

mol
-1

. The optimal binding free energies where: (i) strong binding 3.5 kcal mol
-1

; (ii) and 

(iii) weak binding 0.78 kcal mol
-1

 and 0.98 kcal mol
-1

; (iv) binding in the c-direction 1.75 

kcal mol-1. Advancement of the step bunches is through birth-and-spread growth on the 

<100> side faces, which is encouraged through the strong binding direction. This birth-

and-spread growth precipitates growth at the single slow growth edges. Growth is further 

complicated by a small amount of birth-and-spread growth on the <001> face.  


