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Non-vanishing of fundamental Fourier coefficients of
paramodular forms

Jolanta Marzec

Department of Mathematics, Durham University, Lower Mountjoy, Stockton Road, Durham
DH1 3LE, United Kingdom

Abstract

We prove that paramodular newforms of odd square-free level have infinitely
many non-zero fundamental Fourier coefficients.

Keywords: Paramodular forms; newforms; Fourier coefficients; U(p) operator

1. Introduction

The purpose of this article is to shed some light on Fourier coefficients of
cuspidal paramodular forms. Paramodular forms are Siegel modular forms of
degree 2 that are invariant under the action of the paramodular group

Γpara(N) := Sp4(Q) ∩

⎛
⎜⎜⎝

Z NZ Z Z
Z Z Z Z/N
Z NZ Z Z
NZ NZ NZ Z

⎞
⎟⎟⎠

for some natural number N .
One of the most natural questions one may ask about a Siegel modular

form F of degree 2 is its determination by certain ‘useful’ subset of Fourier
coefficients. We are interested in an infinite subset

{a(F, T ) : discT = fundamental discriminant}

of fundamental Fourier coefficients, which plays an important role in the theory
of Bessel models and L-functions. For instance, in certain cases, non-vanishing
of a fundamental Fourier coefficient of a cuspidal Siegel modular form F is
equivalent to existence of a global Bessel model of fundamental type (cf. [16,
Lemma 4.1]) and is used to show analytic properties and special value results
for L-functions for GSp4 ×GL2 associated to various twists of F (e.g. [8], [12],
[17], [18]). It is also known [19] that fundamental Fourier coefficients determine
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cuspidal Siegel modular forms of degree 2 of full level. Our result extends
previous work by Saha [16, Theorem 3.4], [19, Theorem 1] and Saha, Schmidt

[20, Theorem 2] in case of the levels Sp4(Z) and Γ
(2)
0 (N).

Theorem. Let F ∈ Sk(Γ
para(N)) be a non-zero paramodular cusp form of an

arbitrary integer weight k and odd square-free level N which is an eigenfunction
of the operators T (p) + T (p2) for primes p � N , U(p) for p | N and μN . Then
F has infinitely many non-zero fundamental Fourier coefficients.

In particular, our theorem holds for paramodular newforms in the sense of [15].
Paramodular forms were already an object of interest of Siegel [21] but have

become a true centre of attention within last ten years when Brumer and Kramer
[4] conjectured an extension of the modularity theorem to abelian surfaces,
known now as the paramodular conjecture.

Paramodular Conjecture. There is a one to one correspondence between
isogeny classes of abelian surfaces A/Q of conductor N with EndQA = Z and
(up to scalar multiplication) weight 2 cuspidal paramodular newforms F that
are not Gritsenko lifts and have rational Hecke eigenvalues. Furthermore, the
Hasse-Weil L-function of A is equal to the spinor L-function of F .

In subsequent years the paramodular conjecture has been supported by an
extensive computational evidence (e.g. [3], [4], [13]). Moreover, it was proved in
the case when A is the Weil restriction of an elliptic curve with respect to real
quadratic extension of Q (thanks to [10] and [7]), and in [2] some progress was
made towards Weil restrictions with respect to imaginary quadratic extensions
of Q.

The proof of the above theorem consists of two parts and follows the strategy
used in [16], [19], [20]. First we show that F has a non-zero primitive Fourier
coefficient. This allows us to construct a non-zero modular form of half-integral
weight which satisfies the assumptions of Theorems 2.2, 2.3 and therefore has
infinitely many non-zero Fourier coefficients indexed by square-free numbers.
Then the result follows from the relation between Fourier coefficients of both
modular forms.

Even though this recipe seems to be fairly simple, finding a non-zero prim-
itive Fourier coefficient for a paramodular form is harder than it was the case

for the levels Sp4(Z),Γ
(2)
0 (N), where its existence was basically guaranteed by

theorems due to Zagier [26], Yamana [25] or Ibukiyama, Katsurada [9], and for
paramodular forms was so far unknown. To deal with this problem we assume
that F is an eigenform of standard Hecke operators and compute an action of
the U(p) operator on Fourier coefficients of F . This computation relies on an
explicit set of coset representatives written by Roberts, Schmidt [14]. To the
best of our knowledge, an expression for the action of the U(p) operator on
paramodular forms had not been written down previously; thus this part of our
paper may be of independent interest.

Finally, we note that we are able to prove our main result for paramodular
cusp forms of all weights k ≥ 2 (there do not exist paramodular cusp forms of
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weight k ≤ 1). This is in contrast to the results of Saha [16] and Saha, Schmidt
[20] where the corresponding results for forms with respect to the Siegel type
congruence subgroup are proved only for weights k > 2. The fact that we can
handle the weight k = 2 case is especially satisfying because it is precisely these
forms that partake in the paramodular conjecture. Our treatment of this case
depends on recent work of Li [11] on Fourier coefficients of weight 3/2 classical
cusp forms.

2. Preliminaries

2.1. Paramodular forms

A holomorphic function F : H2 → C defined on the Siegel upper half-space

H2 = {X + iY : X,Y ∈ M2(R) symmetric, Y positive definite}
is a paramodular form of weight k and level N if

F |kγ(Z) = F (Z) for any γ ∈ Γpara(N)

according to the action

F |k (A B
C D ) (Z) := μ((A B

C D ))k det(CZ +D)−kF ((AZ +B)(CZ +D)−1), (1)

where

Γpara(N) := Sp4(Q) ∩

⎛
⎜⎜⎝

Z NZ Z Z
Z Z Z Z/N
Z NZ Z Z
NZ NZ NZ Z

⎞
⎟⎟⎠ ,

and the multiplier μ : GSp4(Q) → Q× is defined in accordance with the defini-
tion of the group

GSp4(Q) := {g ∈ GL4(Q) : tg

(
1
1−1

−1

)
g = μ(g)

(
1
1−1

−1

)
}.

If additionally F is a cusp form, which we denote by F ∈ Sk(Γ
para(N)), it admits

a Fourier expansion

F (Z) =
∑

T= tT,T>0
half-integral

a(F, T )e(tr (TZ)), e(x) := e2πix. (2)

Moreover, it is easy to see that the Fourier coefficients a(F, T ) satisfy

a(F, tATA) = a(F, T ) for all A ∈ Γ0(N) := SL2(Q) ∩ (
Z NZ
Z Z

)
. (3)

If we expand (2) in terms of Z =

(
τ z
z τ ′

)
and T =

(
n r/2
r/2 m

)
, we obtain a

Fourier-Jacobi expansion of F ,

F (Z) =
∑
m>0

4nm−r2>0

a(F,
(

n r/2
r/2 m

)
)e(nτ)e(rz)e(mτ ′) =

∑
m≥0,N |m

φm(τ, z)e(mτ ′) ,
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where φm is a Jacobi form of weight k, index m and level 1. The condition N |m
follows from the definition of F and comparing the coefficients in the equality
F (Z) = F (Z+

(
0
1/N

)
). The latter statement characterizing φm can be proven

along the lines of the proof of Theorem 6.1 in [5], with Γ2 := Γpara(N).

In this article we are particularly interested in coefficients a(F,
(

n r/2
r/2 m

)
),

where d = disc
(

n r/2
r/2 m

)
:= r2 − 4nm is a fundamental discriminant, that is

either d is a square-free number congruent to 1 (mod 4) or d = 4d′ and d′ is
square-free and congruent to 2, 3 (mod 4); we call them fundamental Fourier

coefficients. In particular, such coefficients are primitive, i.e. cont
(

n r/2
r/2 m

)
:=

gcd(n, r,m) = 1.

2.2. Hecke operators

As in the theory of classical modular forms, one can define Hecke operators
on the space of Siegel modular forms of degree 2 ([1]). The ones of special
interest to us are

T (p) := Γpara(N)

(
1
1
p
p

)
Γpara(N)

and

T (p2) := Γpara(N)

(
1
p

p2

p

)
Γpara(N)

for p � N , and

U(p) := Γpara(N)

(
1
1
p
p

)
Γpara(N)

for p | N . They act on the space of Siegel modular forms of degree 2 according
to the following rule. If Γpara(N)αΓpara(N) =

⊔
i Γ

para(N)αi is a coset decompo-
sition, then

F |kΓpara(N)αΓpara(N) = F |k
⊔
i

Γpara(N)αi =
∑
i

F |kαi.

We will write down the action of the operators U(p) and T (p)+T (p2) explicitly
in Lemma 1 and Proposition 2.

Another important operator is the Fricke involution

μN :=
1√
N

(
N−1

1
−N

)
.

It normalizes Γpara(N), and since μ2
N = −I4, the space Sk(Γ

para(N)) decomposes
into μN -eigenspaces Sk(Γ

para(N))± with eigenvalues ±1. If F ∈ Sk(Γ
para(N))

satisfies F |kμN = εF , then the Fourier coefficients of F possess the symmetry

a(F,
(

n r/2
r/2 m

)
) = εa(F,

(
m/N −r/2
−r/2 nN

)
). (4)

We will be interested only in the paramodular forms that are eigenfunc-
tions of the aforementioned operators T (p), T (p2), U(p) and μN . This includes
paramodular newforms defined by Roberts and Schimdt in [15].
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2.3. Modular forms of half-integral weight

We recall now a few useful facts concerning modular forms of half-integral
weight. The set of such modular forms of weight k, level 4N and twisted by

a character χ will be denoted by M
(1)
k (4N,χ), and S

(1)
k (4N,χ) will denote the

subset of cusp forms.
Let φm(τ, z) be a Jacobi form coming from a Fourier-Jacobi expansion as

above. We can also write it as

φm(τ, z) =
∑

0≤μ<2m

hμ(τ)
∑
r∈Z

r≡μ (mod 2m)

e

(
r2

4m
τ

)
e(rz) ,

where

hμ(τ) =
∑
D≥0

D≡−μ2 (mod 4m)

a(F,

(
D+μ2

4m μ/2
μ/2 m

)
)e

(
D

4m
τ

)
.

Note that the matrix

(
D+μ2

4m μ/2
μ/2 m

)
has a discriminant −D.

We recall first (a special case of) a theorem due to Skoruppa, which gives
us a tool to construct modular forms of half-integral weight out of Fourier-
Jacobi expansion of paramodular forms. This construction is slightly different
for different subspaces of Jacobi forms. For the sake of this paper it is enough
to know that the space Jk,m of Jacobi forms of weight k and index m can be
factorised in a natural way as

Jk,m = ⊕f,d>0,fd2|m
fsquare-free

Jd,f
k,m;

we refer an interested reader to [22], Satz 2.3 or p. 93 for details.

Theorem 2.1 (Skoruppa; [22], Satz 4.1). Let k,m be natural numbers, m
square-free. Let χ =

∏
p|F χp be a primitive Dirichlet character modulo F such

that F |2m and χ(−1) = (−1)k, and denote by f a product of those primes
p|F for which χp is odd. Then consider a map Zχ

k,m that sends a Jacobi form
φm(τ, z) of weight k, index m and level 1 to

h(τ) :=
∑
D≥0

⎛
⎜⎜⎝ ∑

0≤μ<2m
D≡−μ2 (mod 4m)

χ(μ)a(F,

(
D+μ2

4m μ/2
μ/2 m

)
)

⎞
⎟⎟⎠ e (Dτ) ,

which lies in M
(1)
k−1/2(4lcm(m,F 2), χ). The map Zχ

k,m satisfies the following
properties:

• Zχ
k,m

(
J1,f ′
k,m

)
= {0} if f ′ 	= f ,

• the restriction of Zχ
k,m to J1,f

k,m is injective,
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• sends cusp forms to cusp forms and Eisenstein series to Eisenstein series;

• commutes with Hecke operators Tl with gcd(l,m) = 1.

The next two theorems give us an insight into the nature of Fourier coeffi-
cients of modular forms of half-integral weight. Because the coefficients a(hμ, n)
of the hμ constructed above are defined in terms of the Fourier coefficients of
a Siegel modular form, the theorems below will be crucial in our investigations
of the Fourier coefficients of paramodular forms. The second one is especially
important as it will allow us to reach the paramodular forms that occur in the
statement of the paramodular conjecture.

Theorem 2.2 (Saha; [19]). Let N be a positive integer that is divisible by 4
and χ : (Z/NZ)× → C× be a character. Write χ =

∏
p|N χp and assume that

the following conditions are satisfied:

i) N is not divisible by p3 for any prime p,

ii) if p is an odd prime such that p2|N , then χp 	= 1.

For some k ≥ 2, let f ∈ S
(1)
k+1/2(N,χ) be such that a(f, d) = 0 for all but finitely

many odd square-free integers d. Then f = 0.

One of the reasons why Theorem 2.2 excludes the case k = 1 is because the

statement does not hold for some f ∈ S
(1)
3/2(N,χ). Special care was needed to

show that it is enough to exclude those modular forms f whose Shimura lift is
not a cusp form, that is, theta series of the form

f(z) =
∑
m≥1

mψ(m)e(m2tz) ∈ S
(1)
3/2(4r

2t, ψt), (5)

where ψ is an odd character modulo r, t is a positive integer and ψt(d) :=
ψ(d)

(
t
d

) (−1
d

)
.

Theorem 2.3 (Li; [11]). Let r and t be odd, square-free and relatively prime
integers, and χr, χ4t characters modulo r and 4t respectively. Suppose χr is
primitive. Then for any integer k ≥ 1, any finite set of primes S, and any

nonzero cusp form f(z) =
∑

n≥1 a(f, n)e(nz) ∈ S
(1)
k+1/2(4r

2t, χrχ4t), which is

not of the form (5), there exist infinitely many square-free integers D such that
a(f,D) 	= 0 and gcd(D, l) = 1 for all l ∈ S.

3. Non-vanishing of fundamental Fourier coefficients

We state first our main theorem.

Theorem. Let F ∈ Sk(Γ
para(N)) be a non-zero paramodular cusp form of an

arbitrary integer weight k and odd square-free level N , which is an eigenfunction
of the operators T (p) + T (p2) for primes p � N , U(p) for p | N and μN . Then
F has infinitely many non-zero fundamental Fourier coefficients.
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As we mentioned in the introduction, the proof consists of two parts. First,
using the assumption that F is an eigenform of the operators T (p) + T (p2) and
U(p), we deduce that F has a non-zero primitive Fourier coefficient (Lemma 3).
Thanks to this we may pick a non-zero Jacobi form of square-free index and
use it to construct a non-zero modular form of half-integral weight that satisfies
the assumptions of Theorems 2.2, 2.3, and thus implies existence of infinitely
many non-zero fundamental Fourier coefficients. The second part is quite short
because of the fact that Jacobi forms in the Fourier expansion of paramodular
forms have level one, which makes them a fairly well understood object.

We start with computing the action of the U(p) operator.

Lemma 1. Let F ∈ Sk(Γ
para(N)) be a non-zero paramodular form and p||N be

a prime. If F is an eigenform of the U(p) operator with an eigenvalue λ, then
the coefficients of F satisfy the following equality:

λa(F, T ) = p−k+3a(F, p T ) + pka

(
F,

1

p
T

)
(6)

− a

(
F,

1

p

(
αp 1

−Nβ p

)
T

(
αp −Nβ
1 p

))

(if p|m) + p
∑

b∈Z/pZ
a

(
F,

1

p

(
1 b

p

)
T

(
1
b p

))

(if p|n) + (−1)kp
∑

b∈Z/pZ
a

(
F,

1

p

(
p

−bN −1

)
T

(
p −bN

−1

))

(if p|r) + pa

(
F,

1

p

(
αp 1

−Nβ p

)
T

(
αp −Nβ
1 p

))
,

where T =
(

n r/2
r/2 mN

)
, and α, β ∈ Z are such that αp2 + βN = p. (We take the

convention a
(
F, 1

p X
)
:= 0, if p � contX.)

Proof. At the beginning of the proof we work locally, using the fact that

Γpara(N) = GSp4(Q) ∩GSp4(R)
+
∏
p

K(pordp(N)) ,

where GSp4(R)
+ consists of matrices with a positive multiplier and

K(pn) := Sp4(Qp) ∩

⎛
⎜⎜⎝

Zp pnZp Zp Zp

Zp Zp Zp Zp/p
n

Zp pnZp Zp Zp

pnZp pnZp pnZp Zp

⎞
⎟⎟⎠

is a local analogue of Γpara(pn) at p.
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Lemma 6.1.2 of [14] gives coset representatives at the place p of the double
coset defining the operator U(p),1

K(p)
(

I2
pI2

)
K(p) =

⊔
a,b,c∈Z/pZ

K(p)

(
1
1
p
p

)(
1 a b
1 b c/p
1

1

)



⊔

a,c∈Z/pZ
K(p)

( p
1
1
p

)(
1
−a 1 c/p

1 a
1

)



⊔

a,b∈Z/pZ
K(p)

(
1
1
p
p

)(
1 a b
1 b
1
1

)( 1
1/p

1−p

)



⊔

a∈Z/pZ
K(p)

( p
1
1
p

)(
1−a 1

1 a
1

)( 1
1/p

1−p

)

In fact, we can exchange a matrix

( 1
1/p

1−p

)
above by

( 1
1/N

1
−N

)
, and

that will give us the same coset representatives. Moreover, at the place q 	=
p, K(q)

(
I2

pI2

)
K(q) = K(q), so using Chinese remainder theorem, we can

choose:

Γpara(N)
(

I2
pI2

)
Γpara(N)

=
⊔

a,b,c∈Z/pZ
Γpara(N)

(
1
1
p
p

)(
1 a b
1 b c/p
1

1

)



⊔

a,c∈Z/pZ
Γpara(N)

( p
1
1
p

)(
1
−a 1 c/p

1 a
1

)



⊔

a,b∈Z/pZ
Γpara(N)

(
1
1
p
p

)(
1 a b
1 b
1
1

)( 1
1/N

1
−N

)



⊔

a∈Z/pZ
Γpara(N)

( p
1
1
p

)(
1−a 1

1 a
1

)( 1
1/N

1
−N

)
.

Using the invariance of F under the action of the paramodular group Γpara(N),

the coset representatives of Γpara(N)
(

I2
pI2

)
Γpara(N) act on F in the following

way (unless stated otherwise, a matrix T occurring in the summand is of the

form
(

n r/2
r/2 mN

)
):

F |k
⊔

a,b,c∈Z/pZ
Γpara(N)

(
1
1
p
p

)(
1 a b
1 b c/p
1

1

)
(Z)

1The coset representatives obtained in [14] are adjusted to our (classical) definition of K(p).
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= p−k
∑

a,b,c∈Z/pZ
F

(
1

p
Z +

1

p

(
a b
b c/p

))

= p−k
∑
T

a(F, T )e

(
tr

(
1

p
TZ

)) ∑
a,b,c∈Z/pZ

e

(
na

p

)
e

(
rb

p

)
e

(
mNc

p2

)

= p−k+3
∑
T

a(F, pT )e(tr (TZ)) ,

F |k
⊔

a,c∈Z/pZ
Γpara(N)

( p
1
1
p

)(
1
−a 1 c/p

1 a
1

)
(Z)

=
∑

a,c∈Z/pZ
F

((( p
−a 1

)
Z +

(
0
c/p

)) 1

p

(
p −a

1

))

=
∑
T

a(F, T )
∑

a∈Z/pZ
e

(
tr

(
1

p

(
p −a

1

)
T
( p
−a 1

)
Z

))

·
∑

c∈Z/pZ
e

(
tr

(
1

p

(
p −a

1

)
T
(
0
c/p

)))

= p
∑
T

p|m

∑
a∈Z/pZ

a

(
F,

1

p

(
1 a
p

)
T
(
1
a p

))
e(tr (TZ)) ,

F|k
⊔

a,b∈Z/pZ
Γpara(N)

(
1
1
p
p

)(
1 a b
1 b
1
1

)( 1
1/N

1
−N

)
(Z)

=
∑

a,b∈Z/pZ

(
F|k

( 1 −bN a
−p

p
−bN −1

))
(Z)

= (−1)k
∑

b∈Z/pZ

∑
T

a(F, T )e
(
tr
(( p
−bN −1

)−1
T
(
1 −bN
−p

)
Z
))∑

a∈Z/pZ
e

(
na

p

)

= p(−1)k
∑
T
p|n

∑
b∈Z/pZ

a

(
F,

1

p

( p
−bN −1

)
T
(
p −bN
−1

))
e(tr (TZ)) ,

F |k
⊔

a∈Z/pZ
Γpara(N)

( p
1
1
p

)(
1−a 1

1 a
1

)( 1
1/N

1
−N

)
(Z)

= F |k
( p

1/N
1

−pN

)
(Z) +

∑
a∈(Z/pZ)×

F |k
(

p
−a 1/N

−aN 1
−pN

)
(Z) .

Before we can proceed further, we should investigate the case a 	= 0. We want
to construct a matrix g ∈ Γpara(N) so that if we substitute F |kg in place of F |k
and consider the action of the above coset representative, we will obtain a Siegel
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parabolic matrix2. Let ā := a−1 mod p and α, β ∈ Z such that αp2 + βN = p
(the existence of α, β follows from the assumption that p2 � N), and put

g :=

⎛
⎜⎜⎝

1 −βā β(aā− 1)/p
(aā− 1)/p ā −α/N

aN/p N αp −αa
Na Np −Nβ Nβa/p

⎞
⎟⎟⎠ .

One can easily check that g ∈ Γpara(N). Now that

g

⎛
⎜⎜⎝

p
−a 1/N

−aN 1
−pN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

p Nβ −βā
−1 αp ā/N

αp 1
−Nβ p

⎞
⎟⎟⎠ ,

we are ready to determine the action of the coset representatives of the last type
on F . Namely, the terms above can be written as:

F |k
( 1

−1/N
1

N

)( p
1/N

1
−pN

)
(Z) +

∑
a∈(Z/pZ)×

F |kg
(

p
−a 1/N

−aN 1
−pN

)
(Z)

= F |k
( p

p
1
1

)
(Z) +

∑
a∈(Z/pZ)×

F |k
(

p Nβ −βā
−1 αp ā/N

αp 1
−Nβ p

)
(Z)

= pkF (pZ) +
∑

a∈(Z/pZ)×

∑
T

a(F, T )e

(
tr

((
αp 1
−Nβ p

)−1

T
(

p Nβ
−1 αp

)
Z

))

· e
(
tr

(
ā

p

(
n r/2

r/2 mN

)(
−β

1/N

)(
p −1

Nβ αp

)))

= pkF (pZ) +
∑
T

a(F, T )e

(
tr

((
αp 1
−Nβ p

)−1

T
(

p Nβ
−1 αp

)
Z

))

·
∑

a∈(Z/pZ)×
e

(
āβr

p

)

= pk
∑
T

a

(
F,

1

p
T

)
e(tr (TZ))

+
∑
T

∑
a∈(Z/pZ)×

e

(
aβr

p

)
a

(
F,

1

p

(
αp 1
−Nβ p

)
T
(

αp −Nβ
1 p

))
e(tr (TZ)) .

Hence, because F |kU(p) = λF , we obtain the equality (6).

Thanks to Lemma 1 we will be able to prove that F has a non-zero coefficient
a(F, T ) with gcd(contT,N) = 1. To get a non-zero primitive Fourier coefficient,

2One can easily check that such a matrix g does not exist if p2|N .
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we need to investigate the action of Hecke operators at p � N . It turns out that
the following result due to Evdokimov will be enough3.

Proposition 2 (Evdokimov; [6]). Let F ∈ Sk(Γ
para(N)). Assume that F |kT (p)+

T (p2) = λF . Then, using the notation of [6], the Fourier coefficients of F satisfy
the relation

λa(F, T ) = a(F, pT ) + p2k−3a

(
F,

1

p
T

)
(7)

+ pk−2
∑

U∈R(N)⊆Γ0(N)

a

(
F,

1

p

(
1
p

)
UT tU

(
1
p

))
.

Lemma 3. Let F ∈ Sk(Γ
para(N)) be a non-zero paramodular form of square-

free level N that is an eigenform of the operators U(p) and T (p) + T (p2) for all
primes p. Then there exists a primitive matrix S for which a(F, S) 	= 0.

Proof. This follows from the close observation of behaviour of Fourier coefficients
under the action of operators U(p) and T (p)+T (p2), relations (6) and (7). Let A
be the set of matrices S such that a(F, S) 	= 0. Let S′ be the matrix in A whose
discriminant is smallest. We claim that S′ is primitive. If not, say p | contS′
and S′ = pT , then, using the relations (6) and (7), we can find another matrix
S′′ ∈ A whose discriminant is smaller than discS′. Indeed, note that every
coefficient occurring in (6) and (7), except a(F, pT ), has a discriminant that
divides discT . This leads to a contradiction.

Now, having established the existence of a primitive matrix S for which
a(F, S) is non-zero, we can move to the second part of the proof of our Theorem.

Lemma 4. Let F ∈ Sk(Γ
para(N)) be an eigenfunction of the μN operator. As-

sume that there is a primitive matrix S =
(

n r/2
r/2 Nm

)
such that a(F, S) 	= 0.

Then there exists an odd prime p not dividing N for which φNp 	= 0.

Proof. We will use the properties (3) and (4) of Fourier coefficients listed above.
Let

S′ :=
(

m −r/2
−r/2 Nn

)
and A :=

(
a Nc
b d

)
∈ Γ0(N) .

Then
a(F, tAS′A) = a(F, S′) = εa(F, S) 	= 0

and the right bottom entry of AS′ tA is equal to N(c2Nm−cdr+d2n). Because
gcd(n, r,Nm) = 1, the form c2Nm−cdr+d2n represents infinitely many primes
([24]). Let c, d ∈ Z be such that we obtain an odd prime p not dividing N . Then
gcd(cN, d) = 1, so we can find a, b so that A ∈ SL2(Z). Hence, φNp 	= 0.

3Evdokimov considered Siegel modular forms with respect to principal congruence sub-
group, but the Hecke algebras coincide at primes not dividing N .
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After all that preparation, the proof of our Theorem will be very short:

Proof. First of all, recall that there are no paramodular cusp forms of weight
1, because there are no Jacobi forms of weight 1 ([22, Satz 6.1], [15, Theorem
7.1]).

We know from Lemma 3 and 4 that there exists an odd prime p � N such

that φNp 	≡ 0. Without loss of generality, we may assume that φNp ∈ J1,f
k,Np

for some f |Np. Let χ =
∏

q|f χq be a primitive Dirichlet character mod f such

that each character χq mod q is odd. Then, by Theorem 2.1, hχ := Zχ
k,Np(φNp)

is a non-zero modular form in S
(1)
k−1/2(4Npf, χ). Hence, if only hχ is not of the

form (5), then Theorem 2.2 and 2.3 imply that there are infinitely many odd
square-free D for which a(hχ, D) 	= 0. For each such D there exists r such that

a

(
F,

(
D+r2

4Np r/2

r/2 Np

))
	= 0.

It remains to prove that hχ is not of the form (5) or, equivalently, that
Shimura lift of hχ is not an Eisenstein series. This in turn is equivalent to
saying that a lift from Jacobi forms to elliptic modular forms which agrees with
Shimura lifting preserves cuspidality. This is indeed the case for a map described
in [23, Theorem 5].
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