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Abstract 27 

The temporal evolution of hydrocarbons (~500 million barrels oil) and its relationship to 28 

the orogenic events of the Longmen Shan Thrust Belt have been extensively debated. 29 

The hydrocarbons occur as solid bitumen, as dykes and/or coatings within/along 30 

faults/fractures, and as present day oil seeps. Here utilizing organic geochemistry, we 31 

demonstrate that all the bitumen exhibit similar organo-gechemical characteristics, and 32 

were sourced from the Late Neoproterozoic–Early Cambrian Doushantuo and 33 

Qiongzhusi formations. In contrast, the organic geochemistry of the present day oil 34 

seeps are distinct from that of the bitumen, and suggest that the source is the Permain 35 

Dalong Formation.  36 

Bitumen rhenium-osmium data indicate that the Late Neoproterozoic–Early Cambrian 37 

Doushantuo and Qiongzhusi formations underwent two temporally distinct oil 38 

generation events; initially during the Early Ordovician (ca.486 Ma) prior to the 39 

Caledonian Orogeny, and secondly during the Jurassic (ca.165 Ma) coinciding with the 40 

Indosinian-Yanshan orogenies. In contrast, the rhenium-osmium data of the present day 41 

oil seeps are too similar to yield a meaningful age, although the source is considered to 42 

have underwent hydrocarbon maturation between the Triassic and Jurassic. The 43 

temporal hydrocarbon evolution in the the Longmen Shan Thrust Belt also provides 44 

implication for the hydrocarbon evolution and future exploration of the adjacent 45 

petroliferous Sichuan Basin. 46 

 47 

1. Introduction  48 

Source rock burial and maturation history, coupled with hydrocarbon generation and 49 

subsequent migration are key factors of a petroleum system, which are often temporally 50 



associated with regional tectonic events (Bordenave and Hegre, 2005; Moretti et al., 51 

1996; Urien et al., 1995; Yahi et al., 2001). For example, (1) in the  Berkine (Ghadames) 52 

Basin, eastern Algeria, hydrocarbon maturation of the Silurian, Llandoverian –53 

Wenlockian souce rock and associated oil generation directly relates to the timing of the 54 

Cretaceous Austrian Orogeny (Yahi et al., 2001), and (2) in the foreland of the Sub 55 

Andean Zone in Bolivia, three stages of tectonic accretion are suggested to have 56 

controlled three phases of sedimentation and oil generation during the Cenozoic 57 

(Moretti et al., 1996; Urien et al., 1995).  58 

The key to understanding the direct relationship between tectonism and the evolution of 59 

a petroleum system are the accurate estimates for the timing of the related tectonism and 60 

that of the hydrocarbon generation, expulsion and accumulation. Recent successes in 61 

determining age constraints and the relationship between tectonism and petroleum 62 

evolution has been achieved through the application of both radiometric (e.g., Re-Os, 63 

Ar-Ar, Apatite Fission Track (AFT)) and indirect techniques (e.g., basin/tectonic 64 

models) (Boles et al., 2004; Fall et al., 2015; Ge et al., 2016).  65 

The Sichuan Basin in the South China Block records multiple tectonic events (e.g., 66 

Ordovician-Devonian Caledonian, Late Triassic Indosinian, Late Jurassic Yanshan, and 67 

the Cenozoic Himalaya orogenies) (Chen and Wilson, 1996; Dai et al., 2009; 68 

Harrowfield and Wilson, 2005; Jin et al., 2010; Sun, 2011; Yan et al., 2011). The 69 

majority of the hydrocarbon reserves of the Sichuan Basin are distributed close to its 70 

border regions (e.g., Longmen Shan Thrust belt, Micang Shan Uplift, Daba Shan 71 

Orogenies) (Li et al., 2015; Li et al., 2001; Liu et al., 2011; Ma et al., 2010) (Fig. 1B). 72 

The basin has current reserve estimates of ~30 Bbbl (billions of barrels) of oil and ~180 73 

Tcf (Trillion cubic feet) of gas (Zhang and Zhu, 2006; Zou et al., 2014a). Key examples 74 



are the giant Puguang Gas field that is located adjacent to the Daba Shan orogenic belt 75 

in the northeast Sichuan Basin which possesses ~12 proven original in-place Tcf gas 76 

(Ma et al., 2007b), the great Yuanba gas field (~2 Tcf proven gas) that lies near the 77 

Micang Shan Uplift in the northern Sichuan Basin (Liu et al., 2011), and several gas 78 

fields possessing ~1 Tcf gas (e.g., Dayi, Majing and Pingluoba) that occur near the 79 

Longmen Shan Thrust belt (Liu et al., 2011) (Fig. 1B). In addition to the gas fields in 80 

the Longmen Shan Thrust belt, hydrocarbons are present as bitumen. The total bitumen 81 

accumulation, which is recoverable is estimated to yield a reserve in excess of 500 82 

million barrels (Mbbl) of oil (Liu et al., 2003).  83 

The Longmen Shan Thrust belt is located between the Songpan-Ganze Terrane and the 84 

Sichuan Foreland Basin, and marks the western margin of the Sichuan Basin (Fig. 1A). 85 

The belt is tectonically complex due to multiple orogenic events from the Palaeozoic to 86 

present (Caledonian, Indosinian–Yanshan, Himalaya) (Jin et al., 2010; Yan et al., 2003). 87 

Abundant hydrocarbons predominantly occur in Neoproterozoic to Permian strata and 88 

are typically spatially associated with thrust faults and associated fracture systems (Fig. 89 

1C) (Dai et al., 2009; Huang and Wang, 2008; Liu et al., 2003). To date, the origin, age 90 

and the evolution of the hydrocarbons is debated. For example, either organic-rich strata 91 

of the Late Neoproterozoic-Early Cambrian  (Dai et al., 2009; Liu et al., 2009; Tian, 92 

2009; Wei et al., 2008; Xie et al., 2003) or Permian (Liu et al., 2003; Rao et al., 2008; 93 

Wang et al., 1997) are considered to be the main source rocks. Additionally, basin burial 94 

history and fluid inclusion analyses propose multiple hydrocarbon generation and 95 

migration events, e.g., between the Ordovician and Silurian (Wang and Li, 1999; Wei et 96 

al., 2008) and during the Late Triassic (Liu et al., 2009), as well as during the Cenozoic 97 

(Liu et al., 2003; Rao et al., 2008).   98 



As a petroleum component, bitumen records significant information regarding 99 

petroleum evolution, including hydrocarbon generation, migration, accumulation and 100 

alteration (Hwang et al., 1998; Parnell and Swainbank, 1990; Selby et al., 2005; 101 

Summons et al., 2008; Zhu et al., 2001). Recently, Re-Os isotope dating of oil and 102 

bitumen has shown good potential for determining the absolute timing of hydrocarbon 103 

generation (Cumming et al., 2014; Finlay et al., 2011; Ge et al., 2016; Georgiev et al., 104 

2016; Lillis and Selby, 2013; Selby and Creaser, 2005; Selby et al., 2005; Selby et al., 105 

2007). In this study, we present new Re-Os data and organic geochemistry of bitumen 106 

and present day oil seeps from the Northern Longmen Shan Thrust belt. The data are  107 

discussed with the previous hydrocarbon evolution knowledge, as well as U-Pb, Ar-Ar 108 

and Apatite Fission Track (AFT) dates that constrain the timings of tectonism to 109 

understand the petroleum evolution and its relationship with tectonism. Our data 110 

provide not only an improved understanding of the petroleum evolution within the 111 

Longmen Shan Thrust belt, but also provides implications for the potential utility of Re-112 

Os hydrocarbon chronometer to help constrain the absolute timing of both hydrocarbon 113 

generation and associated tectonism in petroleum systems worldwide. 114 

 115 

2. Geological Setting  116 

The NE-SW striking Longmen Shan Thrust belt is ~500 km long and ~50 km wide. The 117 

belt is bordered by the Micang Shan uplift to the north, the Kangdian paleo uplift to the 118 

South, the Songpan-Garze Belt to the west, and the Sichuan Basin to the east (Burchfiel 119 

et al., 1995; Dirks et al., 1994; Jin et al., 2010) (Fig. 1C). Longitudinally, the Longmen 120 

Shan Thrust belt is divided into three sub-structural belts by four major faults: the 121 

Maoxian-Wenchuan, Beichuan-Yingxiu, Anxian-Dujiangyan and the Guangyuan-Dayi 122 



faults (Fig. 1C). Further, the belt can also be separated geographically into three areas: 123 

the northern, middle and southern segments (Fig. 1C) (Chen and Wilson, 1996; Deng et 124 

al., 2012; Jin et al., 2010; Li et al., 2008; Liu et al., 2016; Wang et al., 2015; Yan et al., 125 

2011).  126 

The Longmen Shan Thrust belt has experienced a complex tectonic evolution since the 127 

Early Palaeozoic (Chen and Wilson, 1996; Dai, 2011; Jin et al., 2010; Yan et al., 2011). 128 

The initial tectonic events were associated with the Palaeozoic Caledonian Orogeny 129 

caused by the closure of the Tethys ocean, with thrusting causing numerous 130 

unconformities between the Early Palaeozoic strata (Jin et al., 2010). Following the 131 

Caledonian Orogeny (Early Devonian), the Longmen Shan belt changed into a passive 132 

continental margin throughout the Devonian and Permian that was associated with 133 

extensional tectonism (Jia et al., 2006; Li et al., 2012; Tian, 2009; Zhou et al., 2013). 134 

The most severe deformation recorded in the Longmen Shan thrust belt relates to the 135 

Late Triassic to Early Cretaceous NW to WNW directed under-thrusting of the South 136 

China block beneath the North China block (Chen and Wilson, 1996; Dai et al., 2009; 137 

Jin et al., 2010; Liu et al., 2005; Yan et al., 2011). These tectonic events resulted in 138 

structural unconfomities within the Triassic and between the Upper Triassic and Lower 139 

Jurassic strata (Tian, 2009), numerous faults (e.g., Beichuan-Yingxiu Faults, Anxian-140 

Dujiangyan Faults and the high angle reverse fault in this study (Fig. 3B)) (Arne et al., 141 

1997; Chen et al., 1995; Wilson et al., 2006), intensive folding of the Jurassic strata and 142 

led to the uplift and erosion of Cretaceous strata (Li et al., 2008). The absolute timing of 143 

tectonism is constrained by Sensitive High Resolution Ion Microprobe analysis 144 

(SHRIMP) U–Th–Pb monazite, conventional U-Pb titanite, Sm–Nd garnet, and Rb–Sr 145 

muscovite and biotite ages on metamorphic rocks from the Danba Domal Metamorphic 146 



Terrane ~100 km northwest of the southern sector of the Longmen Shan Thrust Belt. 147 

The available geochronology yield three age groups (ca. 200, ca. 160 and ca. 120 Ma) 148 

(Huang et al., 2003; Jin et al., 2010; Jin et al., 2008; Yan et al., 2011). Further age 149 

constraints for the timing of tectonism are given by 40Ar/39Ar garnet and zircon fission 150 

track dates (ca. 110 - 130 Ma) from the middle district of the Longmen Shan Thrust Belt  151 

(Liu et al., 2001), and 40Ar/39Ar muscovite and sericite dates (ca. 237 - 183 Ma) from 152 

the basement complex, detachment fault zone and ductile deformation zone from the 153 

northern part of the Longmen Shan Thrust Belt (Yan et al., 2011). The most recent 154 

tectonism recorded by the Longmen Shan Thrust Belt occurred during the Cenozoic as a 155 

result of the India-Asia continental collision (Dai, 2011; Li et al., 2008; Yan et al., 156 

2011). This event further reactived previous existing thrust faults and caused 157 

exhumation along the belt (Harrowfield and Wilson, 2005; Lei et al., 2012; Yan et al., 158 

2011). Low-temperature thermochronology, such as apatite fission track (AFT) and (U-159 

Th)/He methods, indicate a series of uplift events since the Late Cretaceous (Arne et al., 160 

1997; Deng et al., 2012; Lei et al., 2012; Yan et al., 2011). Additionally, present day 161 

activity along the Longmen Shan Thrust Belt is evidenced by the 2008 Wenchuan 162 

earthquake (7.9 Mw – epicentre in Wenchuan City) and the 2012 Ya'an earthquake (6.6 163 

Mw – epicentre in Ya’an City) (Feng et al., 2014).  164 

The northern segment of the Longmen Shan Thrust Belt, located to the north of Anxian 165 

County, extends for ~200 km (Fig. 1C). This segment of the belt contains several major 166 

thrust sheets and a blind frontal thrust zone, with most of the folds and thrust sheets 167 

emplaced towards the southeast (Jia et al., 2006; Jin et al., 2010; Jin et al., 2009a). 168 

Precambrian to Quaternary strata are present in the northern Longmen Shan Thrust Belt 169 

(Jia et al., 2006; Jin et al., 2009a). The Precambrian to Cambrian units mainly consist of 170 



organic-rich black shales and siltstones with a total thickness of ~200 m (Rao et al., 171 

2008; Wang et al., 2005; Xie et al., 2003). The Ordovician to Silurian units are largely 172 

absent due to uplift and erosion during the Caledonian Event (ca. 450 – 400 Ma) in the 173 

Yangtze Block. Devonian and/or Carboniferous strata, which mainly consist of dolomite 174 

and limestones, uncomformably overlie the older units and possess a thickness ~50 – 175 

250 m. The Permian strata, which have a total thickness ~270 - 470 m, consist of 176 

limestone and black shales (Rao et al., 2008; Wang et al., 2005; Xie et al., 2003). The 177 

Early-Mid Triassic strata include ~750 m of limestones interbedded with sandstones or 178 

shales. The Late Triassic units of ~400 m thickness comprise interbedded sandstones 179 

and mudstones (Zhou et al., 2013). The overlying Jurassic and Cretaceous 180 

fluviolacustrine sediments comprise mudstones, sandstones and siltstones with a total 181 

thickness of up to 4500 m (Fig. 2). 182 

The Upper Neoproterozoic to Lower Cambrian shales and middle Permian black 183 

mudstones are considered as the potential source rocks (Xie et al., 2003; Zhou et al., 184 

2013) to several petroleum systems (e.g., Ningqiang, Tanjingshan and Kuangshanliang) 185 

in the northern Longmen Shan Thrust Belt (Chen et al., 1994; Huang and Wang, 2008; 186 

Tissot and Welte, 1984). Reservoir units include the Upper Cambrian, Lower Devonian, 187 

Lower and Upper Permian, Lower Triassic and Upper Jurassic carbonates, sandstones 188 

and/or siltstones (Chen and Wilson, 1996; Li et al., 1999; Worley and Wilson, 1996; 189 

Zhou et al., 2013). Devonian marine mudstones, Triassic gypsum, and Jurassic to 190 

Cretaceous mudstones act as seals to the several petroleum systems (Zhou et al., 2013) 191 

(Fig. 2). 192 

The Kuangshanliang petroleum system is characterized by the largest and most 193 

complete anticline in the frontal thrust zone of the northern Longmen Shan Thrust Belt 194 



(Fig. 3A) (Chen et al., 2005). The anticline comprises Cambrian strata in the core, 195 

surrounded by Ordovician to Triassic units (Fig. 3A). Bitumen and present day oil seeps 196 

in the Kuangshanliang anticline occur in the 565 m thick marine clastics of the Lower 197 

Cambrian Changjianggou Formation (Fig. 3A, B) as dykes or along faults and/or 198 

fractures that trend NW-SE. The calculated total hydrocarbon reserves in the 199 

Kuangshanliang anticline are ~70 Mbbl of oil (Tian, 2009). 200 

 201 

3. Samples 202 

Bitumen and oil seep samples were collected between 2010 and 2011 from field 203 

outcrops of bitumen dykes, fault planes, fault zones, fractures and seeps, in the 204 

Cambrian Changjianggou Formation (Figs. 3, 4). The densely forested nature of the area 205 

has resulted in there being no known outcrops of the bitumen dykes. The bitumen dykes 206 

were only accessible through old mine adits. Samples were obtained through three old 207 

mine adits approximately 8 km north of Shangsi, Jiange County (Fig. 3A). Access to 208 

these adits has been prohibited since 2012 for health and safety reasons. The dykes are 209 

~0.5 - 10 m wide and occur over a known strike (NW) distance of ~50 m. The dykes 210 

typically run parallel to faults that show a dextral motion and dip ~35º towards the 211 

southwest. The contacts between the bitumen dykes and the country rock are sharp, 212 

although bitumen also impregnates the wallrocks up to ~10 cm from the edge of the 213 

dyke.  214 

Two dykes (Dykes 1 and 2) are located within ~500 m of each other. Dyke 1 was 215 

accessed from the mine adit Shang Kuang Dong (upper bitumen hole). The dyke strikes 216 

NW over a distance of at least 100 m, and averages a width of 70 - 100 cm. The eastern 217 

contact with the Cambrian Changjianggou Formation sandstone is sharp, but the 218 



western contact is brecciated (Fig. 4A). The breccia zone is ~10 cm wide and contains 1 219 

- 5 mm clasts of both the country rock (sandstone) and bitumen. Inward from the 220 

brecciated area, the western edge of Dyke 1 is intensively fractured over 10-20 cm. 221 

Three bitumen samples (11SKD-3d, 11SKD-4d and 11SKD-5d) were taken, ~2 m apart, 222 

from the centre of the dyke, which represents the least fractured part of Dyke 1 (Fig. 223 

4B). A fourth sample (SKD-1f) was taken from a cross-cutting bitumen-filled fracture 224 

(Fig. 4B). Dyke 2 was accessed from mine adit Xia Kuang Dong (lower bitumen hole). 225 

Two bitumen samples (XKD-1d; XKD-2d) were collected from the center of this dyke, 226 

~5 m apart (Fig. 4C). Dyke 2 is narrower than Dyke 1 (20 - 50 cm), and strikes NW for 227 

at least 100 m. Both the western and eastern contacts with the host rock are sharp, with 228 

the adjacent country rocks being impregnated with bitumen up to 10 cm from the 229 

contact. In contrast to Dyke 1, the eastern margin of Dyke 2 is part of a low-angle 230 

reverse fault (Fig. 4C). The fault plane strikes NE and dips 34º to the NNW, with 231 

transport direction towards the SE. These fault characteristics are consistent with the 232 

overall pattern and geometry of thrusting in the northern Longmen Shan Thrust belt 233 

(Chen et al., 2005; Tian, 2009). The fault plane and associated gouge is confined to a 5 234 

cm thick, clay-rich siltstone interbed of the Cambrian Changjianggou Formation 235 

sandstone. The gouge has a sharp upper contact and diffuse basal contact. The bitumen 236 

impregnated into the sandstone country rock indicates a SE-ward fault motion syn-post 237 

emplacement of the bitumen Dyke 2 (Fig. 4D).  238 

Seven additional bitumen samples (GY1d-6d and HSCD-1d) were collected from a third 239 

Dyke (Dyke 3) from the Huoshicun mine hole, ~2 km to the south of Dykes 1 and 2. 240 

Samples in Dyke 3 were collected along the centre of the main bitumen dyke body (Fig. 241 

4E). Dyke 3 has a similar strike orientation to that of Dykes 1 and 2 (NW), and 242 



possesses a similar width to Dyke 2 (30 – 50 cm). Both the eastern and western dyke 243 

contacts are sharp, with little to no bitumen impregnated into the sandstone, and with no 244 

evidence of post-emplacement fracturing or faulting observed.  245 

In the Northern Longmen Shan Thrust Belt, dextral strike-slip faults striking NE and 246 

dipping 30-40º NW are well developed (Burchfiel et al., 1995; Chen et al., 2005; Yan et 247 

al., 2011). In this study, the bitumen samples were also collected from two separate 248 

faults (Fig. 4F,G). Samples LXB-1f and LXB-2f were collected from the same fault, 249 

which strikes NE and dips 75º NW (Fig. 4F). The samples were taken ~2 m apart. 250 

Sample 11LXB-1f was collected from part of a slickenline striking NE with a dip of 45º 251 

NNW (Fig. 4G).  252 

At the Huoshicun mine hole, oil was observed seeping through the Changjianggou 253 

Formation sandstone, three oil samples (Oil-3, Oil-5, Oil-7) were collected over a 254 

distance of 1 m (Fig. 4H). 255 

 256 

4. Analytical Protocols 257 

The Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS) 258 

analyses on nine bitumen samples (GY-1, 3, 5, 11SKD-4, 11LXB-1, HSCD-1, SKD-1, 259 

XKD-1 and LXB-1) and two present day oil seep samples (Oil-3 and Oil-5) were 260 

conducted in Wuxi Institute of Petroleum Geology, Sinopec, China and Weatherford 261 

Laboratories, USA, following the analytical procedure of(Hackley et al., 2013). The 262 

bitumen samples were first cleaned with distilled water, to ensure there were no 263 

weathered contaminants on the surface, and then crushed to 100 mesh size using an 264 

agate pestle and mortar. Approximately 100 g of bitumen was put into a Soxhlet 265 

extractor for 72 hours to obtain the chloroform extract (asphalt). The asphalt was then 266 



precipitated using n-hexane. For the oil samples, ~30 mg of crude oil sample was 267 

dissolved in 50 mL of n-hexane and left for 12 h at room temperature. The solution was 268 

then filtered, with all the filtrates collected and evaporated under nitrogen gas to 0.5 mL. 269 

A chromatographic column (30 cm × 10 mm in diameter) was prepared using a mixed 270 

stationary phase of activated silica gel and alumina at a ratio of 3:2 by referring to 271 

relevant literature (e.g.,(Yang et al., 2009). The concentrated sample was transferred to 272 

the chromatographic column for further separation. The saturated hydrocarbon fraction 273 

was eluted with n-hexane (25 mL). The fractions were then carefully concentrated under 274 

nitrogen flow to 0.5 mL for GC-MS analysis. The GC-MS system consisted of an 275 

Agilent 7890 GC, and an Agilent 5975C mass spectrometer. A DB-5MS column 50 m × 276 

0.25 mm × 0.25 μm was used. High purity helium (99.9995%) was used as a carrier gas 277 

at a flow rate of 1.0 mL/min. The injector temperature was 300°C. The injection volume 278 

was 1.0 L. All injections were done with a 7683B series autosampler. The oven 279 

temperature was programmed from 50°C (1 min hold) to 100°C at 10°C /min, and then 280 

to 310°C (20 min hold) at 2°C /min. The mass spectrometer was operated in the electron 281 

impact mode (70 eV). The temperature of ion source and transfer-line were set at 230°C 282 

and 300°C, respectively. The scanned mass range was from 50 to 550 u. The 283 

temperature of the Quadrupole was held at 150°C. 284 

For Re-Os analysis, approximately ~0.2 - 1.0 g bitumen was separated from the 16 285 

samples. All samples were isolated without metal contact and handpicked. Samples 286 

were crushed to ~1 mm grains using an agate pestle and mortar. For the oil seeps, the 287 

asphaltene fraction was analyzed as Re and Os are predominantly contained within the 288 

asphaltene fraction of oil (Selby et al., 2007). The asphaltenes were precipitated from 289 

the oil using 40 times volume of n-heptane (~1 g oil with 40 ml solvent) at room 290 



temperature for at least 8 hrs. The asphaltene abundance of the present day oil seeps are 291 

between 9.48 and 13.54 % (Table 1). The Re and Os isotopic compositions, and 292 

abundances of the bitumen and asphaltene from the oil were analysed at the Laboratory 293 

for Source Rock and Sulfide Geochronology and Geochemistry (a member of the 294 

Durham Geochemistry Centre) at Durham University following published analytical 295 

procedures (e.g.(Selby et al., 2005; Selby et al., 2007). Approximately 100 - 200 mg of 296 

bitumen or asphaltene were dissolved and equilibrated with a known amount of 185Re 297 

and 190Os spike solution by inverse aqua-regia (3 ml HCl and 6 ml HNO3) in a Carius 298 

tube for 24 hours at 220˚C. Osmium was isolated and purified from the inverse aqua-299 

regia by CHCl3 solvent extraction at room temperature and micro-distillation. The Re 300 

was isolated using HCl-HNO3 based anion chromatography. The purified Re and Os 301 

were loaded on Ni and Pt filaments and analyzed using Negative Ion Thermal Ionization 302 

Mass Spectrometry (N-TIMS). Measured Re and Os ratios were corrected for mass 303 

fractionation using 185Re/187Re = 0.59738 (Gramlich et al., 1973) and 192Os/188Os = 304 

3.08261, spike and blank contributions. All data were blank corrected based on the total 305 

procedural blanks values of Re (1.6 ± 0.025 pg) and Os (0.05 ± 0.004 pg), with an 306 

average 187Os/188Os ratio of ~0.22 ± 0.06 (n = 4). All uncertainties include the 307 

propagated uncertainty in the standard, spike calibrations, mass spectrometry 308 

measurements, and blanks. In-house Re (Restd) and Os (AB2) solutions were analyzed 309 

as a monitor of reproducibility of isotope measurements. The analyses presented in this 310 

study were conducted prior to using DROsS as our in-house control solution (Nowell et 311 

al., 2008). The 187Os/188Os values of the Os standard solution AB2 during this study 312 

were 0.1611 ± 0.0066, with the 185Re/187Re values of the Re standard solution being 313 

0.5984 ± 0.0002. These values are in agreement with those previously published for 314 



AB2 and Restd (Cumming et al., 2014; Finlay et al., 2011, 2012; Lillis and Selby, 2013; 315 

Rooney, 2011). The 185Re/187Re ratios for samples of this study were corrected for the 316 

measured difference of the 185Re/187Re value for Restd and the 185Re/187Re value of 317 

0.59738 ± 0.00039 (Gramlich et al., 1973). The Re–Os data of this study are regressed 318 

using the program Isoplot V. 4.15 (Ludwig, 2003) with 187Re decay constant of 319 

1.666×10-11a-1 (Smoliar et al., 1996). The input data contains 187Re/188Os and 187Os/188Os 320 

ratios with their total 2σ uncertainty and associated error correlation, Rho. 321 

 322 

5. Results  323 

This study presents results of organic geochemistry for nine bitumen and two present 324 

day oil seeps, and Re-Os data for the sixteen bitumen samples and three present day oil 325 

seeps. The detailed results of the organic geochemistry and Re-Os analysis are presented 326 

below. 327 

 328 

5.1 GC-MS results 329 

Nine samples from the three bitumen dykes and bitumen from faults/fractures were 330 

selected for detailed organic geochemistry analysis (Table 1). Component analysis show 331 

that the asphaltene fraction occupies more than 98 % of the total bitumen sample (Table 332 

1). The saturate fraction gas chromatograms (SFGCs) of the analyzed bitumen samples 333 

are dominated by humps of unresolved compounds (UCM) with some discrete peaks 334 

superimposed (Fig. 5). The UCM exhibited by the SFGCs indicates that the samples 335 

have been extensively biodegraded with compounds, such as n–alkanes and acyclic 336 

isoprenoids, removed by microbial action. This is also supported by the presence of 337 

Nor-25-hopane (Wenger and Isaksen, 2002) (Fig. 5). Gas chromatograms show that the 338 



Carbon Preference Index (CPI) value based on the formula (NC23+NC25+NC25)+ 339 

(NC25+NC27+NC29)/(2*(NC24+NC26+NC28)) ranges from 0.35 to 2.59, with 340 

majority of samples possessing CPI values between ~0.91 and 1.21 (except LXB-1f and 341 

HSCD-1d). The calculated Pr/Ph ratio for samples 11SKD-4d (Dyke 1), XKD-1d (Dyke 342 

2) and HSCD-1d (Dyke 3) range form 0.47 to 0.95. The bitumen samples show peak 343 

values for tricyclic terpanes (C19 to C30) at C21 or C23 (Fig. 5). The C23/C21 tricyclic 344 

terpane values range from 0.89 to 1.67, with an average of 1.35. The C24 tertracyclic/C26 345 

tricyclic terpane ratios range from 1.00 to 2.61, with only two samples (11SKD-4 and 346 

SKD-1) possessing ratios >2.0 (Table 1). The hopanes (C27 to C35) exhibit peaks at C29 347 

or C30 (Fig. 5). The abundance of the C31 to C35 hopanes decrease with increasing carbon 348 

number. In addition to the presence of C30 diahopane, Ts (18α(H)-trisnorhopane), and 349 

Tm (17α(H)-trisnorhopane), and gammacerane are also detected (Fig. 5). The 350 

Ts/(Ts+Tm) values range from 0.20 to 0.38, with an average of 0.31, DH30/H30 values 351 

range from 0.02 to 0.08, with an average of 0.05, and C32 hopane S/(S+R) values range 352 

from 0.54 to 0.62, with an average of 0.58. The bitumen samples yield a gammacerane 353 

index of 0.12 to 0.22, with an average of 0.16. The ratio of Nor-25-hopane/hopane 354 

range from 0.07 to 0.19, with the exception of sample SKD-1f, which has a ratio of 355 

0.07, all other samples possess a similar ratio (0.15).  356 

Sterane compounds including C21 pregnane, C22 sterane, diasterane and C27-C29 sterane 357 

were also detected (Fig. 5). The ratio of S21/S22 range from 2.36 to 2.58, with an average 358 

of 2.44. C27, C28, C29 steranes of all the bitumen display a similar V-shape distribution 359 

which occupy ~30.2, 16.0 and 53.8 %, respectively, with C29 sterane exhibiting the 360 

highest abundance. The ratio of C29ααα20S/(20S+20R) and C29ββ/(ββ+αα) vary from 361 

0.46 to 0.52 and 0.49 to 0.57, respectively, which yield a similar Ro value (~0.9). The 362 



organic geochemistry of the bitumen samples analyzed in this study suggest that all the 363 

bitumen has middle to high maturity, and was sourced from similar organic matter 364 

derived from marine algae deposited in an anoxic environment (De Grande et al., 1993; 365 

Didyk, 1978; Peters et al., 2005; Seifert and Moldowan, 1986). 366 

However, the organic analysis of two of the present day oil seep samples (Oil-3 and  367 

Oil-5) show very different organo-geochemical features as compared to the bitumen. 368 

This observation is critical given that these samples are taken in close spatial (~20 m) 369 

proxmity to the bitumen samples GY-6 and HSCD-1, which suggests that the organo-370 

geochemical characteristics of the bitumen have not been appreciably affected by the 371 

present oil seeps. The SFGCs display UCM and suggest severe biodegradation of the 372 

present day oil seeps (Fig. 5). Given the lack of the majority of the n-alkanes, the data 373 

related to CPI or Pr/Ph values can not be calculated. Terpanes and hopanes, except for 374 

the Ts/(Ts+Tm) ratio (0.31 vs 0.36), of the oil are similar to the bitumen. Further, all of 375 

the other parameters, for example gammacerane/hopane (3.91-7.59), C24 tertracyclic/C26 376 

tricyclics (0.51-0.52) and DH30/H30 (3.10-5.54) values are distinctly different in 377 

comparison to the bitumen samples (Table 1). Only C21 and C22 steranes in the oil were 378 

dectected, which yield a S21/S22 ratio of 0.21 and 0.20, respectively, which are also 379 

different as compared to the bitumen. The limited organic data for the present day oil 380 

seep samples suggests that the organic fraction of the oil is derived from a source rock 381 

deposited in a hypersaline, suboxic and clay-rich environment (Peters and Moldowan, 382 

1993; Zumberge, 1987).   383 

 384 

5.2  Re-Os results 385 

The Re and Os abundances of all the bitumen samples range between 283.1 and 547.9 386 



ppb, and 4.06 and 15.3 ppb, respectively (Table 2). These values are significantly 387 

elevated from those of the average continental crust (Esser and Turekian, 1993), but 388 

similar to previously reported bitumen samples, and the organic-rich sedimentary rocks  389 

(Cohen et al., 1999; Esser and Turekian, 1993; Georgiev et al., 2016; Ravizza and 390 

Turekian, 1992; Rooney et al., 2010; Selby and Creaser, 2005; Xu et al., 2009; Xu et al., 391 

2014). The 187Re/188Os values of the bitumen range from 229.5 to 595.1 and exhibit a 392 

radiogenic 187Os/188Os composition of 2.79 to 3.56 (Table 2). Repeat analyses of a 393 

single bitumen sample (11SKD-4d-rpt) yield highly reproducible (<1%) Re (~512.2 ± 394 

1.8 vs 518.8 ± 1.3 ppb) and Os (14478.3 ± 46.3 vs 14605.3 ± 75.8 ppt) concentrations, 395 

and 187Re/188Os (230.7 ± 0.9 vs 231.5 ± 1.0) and 187Os/188Os (2.84 ± 0.01 vs 2.83 ± 0.01) 396 

values (Table 2). Similar reproducibility has been shown by previous studies (Lillis and 397 

Selby, 2013; Selby et al., 2005).  398 

Collectively the bitumen Re-Os isotope data from the three dykes, fault and fracture 399 

surfaces does not show any linear relationship, and shows a large range in isotope 400 

compositions (Fig. 6A). Herein we discuss the Re-Os data of each bitumen occurrence 401 

separately. The three samples from Dyke 1 have extremely similar Re-Os isotope 402 

compositions, and as a result do not yield a meaningful Re-Os date (674 ± 490 Ma). 403 

Bitumen from a fracture (SKD-1f) that postdates Dyke 1 exhibits broadly similar 404 

187Os/188Os, but higher 187Re/188Os values than that of the dyke (Table 2). The two 405 

bitumen samples from Dyke 2 show distinctly different Re-Os isotope compositions in 406 

comparison to Dyke 1, specifically with respect to the 187Re/188Os values. Although, 407 

dates derived from only two samples may not be completely reliable geologically, the 408 

Re-Os data from the two Dyke 2 bitumen samples may suggest that bitumen formation 409 

occurred during the Early Jurassic (181 ± 41 Ma). Bitumen from Dyke 3 exhibit the 410 



largest variation in Re-Os isotope space, with the compositions specifically different to 411 

Dyke 1 (with the exception of GY-5d) and Dyke 2. The Re-Os data of Dyke 3 yield a 412 

Model 3 (which assumes that the scatter in the degree of fit of the data is a combination 413 

of the assigned uncertainties, plus a normally distributed variation in the 187Os/188Os 414 

values (Ludwig, 2003)) date of 503 ± 140 Ma (Mean Squared Weighted Deviation, 415 

MSWD = 90), with an initial 187Os/188Os value of 0.91 ± 0.71 (Fig. 6B). The Re-Os date 416 

and its uncertainty is largely controlled by sample GY-5d that controls the lower anchor 417 

of the best-fit line of the data, and HSCD-1 and GY-1d which plot above the best-fit 418 

line, respectively. Using the Re-Os date of 503 Ma to calculate the initial 187Os/188Os 419 

(Osi) values, shows that samples HSCD-1 and GY-1d possess Osi values (~1.0) that are 420 

slightly more radiogenic than the samples GY-2d, 3d, 4d, 5d, and 6d (0.85 - 0.89), and 421 

we consider that the samples HSCD-1 and GY-1d are the principal controls on the Re-422 

Os date and uncertainty (Table 2). Considering only the samples (GY-2d, 3d, 4d, 5d, 423 

and 6d) that possess similar Osi values, the Re-Os data yield a more precise Re-Os date 424 

of 483 ± 27 Ma, with an Osi value of 0.97 ± 0.13.  425 

The Re-Os isotope data of bitumen sampled from faults and fractures show no linear 426 

trends. Sample 11LXB-1f possesses similar 187Re/188Os and 187Os/188Os values to those 427 

of Dyke 3, specifically GY-3d and 4d.  In contrast, the Re-Os data of SKD-1f, LXB-1f 428 

and 2f are similar to that for Dyke 2. Combined, the bitumen Re-Os data of Dyke 2 and 429 

from the fractures represented by samples SKD-1f, LXB-1f and 2f define a broadly 430 

positive correlation between the 187Re/188Os and 187Os/188Os compositions, and yield a 431 

Re-Os date of 158 ± 76 Ma, with an Osi value of 1.85 ± 0.61 (MSWD = 79) (Fig. 6E). 432 

The uncertainty in this date is because samples (LXB-1f,  SKD-1f, LXB-2f, XKD-2d) 433 

though very close to the linear regression, still deviate from the line of best-fit. The Osi 434 



values calculated at 158 Ma show that samples LXB-1f and SKD-1f possess less 435 

radiogenic Osi values (1.80 and 1.75) in comparison to XKD-1d, XKD-2d and LXB-2f 436 

(1.87 to 1.91) (Table 2). Treated separately the Re-Os data for samples XKD-1d, XKD-437 

2d and LXB-2f, and samples LXB-1f and SKD-1f record a Mid Jurassic age  (162 ± 14 438 

Ma, with an Osi value of 1.87 ± 0.12, and 172.6 ± 8.1 Ma, with an Osi value of 1.66 ± 439 

0.06, respectively) (Fig. 6F). 440 

The present day oil seep samples possess very different Re-Os systematics as compared 441 

to all the bitumen samples. In contrast to the bitumen samples the asphaltene fractions 442 

of the oil seep samples possess much lower Re and Os abundances (Re of 7.7 to 9.6 ppb, 443 

Os of 90.3 to 127.2 ppt) (Table 2). The 187Re/188Os and 187Os/188Os values of the oils are 444 

very similar, 496.3 to 579.3 and 2.89 to 2.93, respectively (Table 2). As the three oil 445 

seep samples possess very similar Re and Os isotope compositions, no meaningful Re-446 

Os date can be determined.  447 

 448 

6. Discussion 449 

6.1 Bitumen and Oil Geochemistry and source tracing  450 

In this study, the biomarker analysis shows that all the bitumen from the dykes, 451 

fractures and faults possess similar organo-geochemical characteristics, distinct from the 452 

present day oil seeps. The bitumen molecular compostition (n-alkanes, terpanes and 453 

steranes) are interpreted to suggest that the bitumen organic matter derived from a 454 

marine source deposited in an anoxic setting, are mature (Ro: ~0.8 - 1.0) and 455 

biodegraded (Pr/Ph ratio = 0.47-0.95; Gammacerane/H30 = ~0.16; C23/C21 tricyclic = 456 

~1.35;  C24 tertracyclic / C26 tricyclics = ~1.41; Ts/(Ts+Tm) = ~0.31; diahopane/hopane 457 

= ~0.05 and H32 S/(R+S) homohopane = ~0.58; the 25-nor-hopane/hopane = ~0.15) 458 



(Table 1) (Peters and Moldowan, 1993; Wenger and Isaksen, 2002; Zumberge, 1987). 459 

Further, the sterane chromatogram (m/z = 217), pregnane/homopregnane ratio (~2.44), 460 

as well as the V-shape C27-C29 sterane distribution, with C29 being the largest 461 

component, implies that all the bitumen in the study area is derived from the same 462 

source rock (e.g.(Peters and Moldowan, 1993; Wu et al., 2012). The C29 ɑɑɑ S/(S+R) 463 

and C29 ββ/(ββ+ɑɑ) ratios (0.49 and 0.53, respectively) also indicate that the bitumen 464 

was generated during peak oil generation (Georgiev et al., 2016; Peters and Moldowan, 465 

1993). 466 

In comparison to the bitumen samples the present day oil samples are severely 467 

biodegraded and are slightly less mature (Ts/Ts+Tm ratio = 0.36) (Table 1; Fig. 5). The 468 

remaining biomarker parameters (gammacerane/hopane = 7.59 and 3.91; C24 469 

tertracyclic/C26 tricyclics = 0.52; diahopane/hopane = 5.54 and 3.10; pregnane/ 470 

homopregnane = 0.21) are supportive of the organo-geochemical signature of the 471 

present day oil seeps being derived from the organic matter deposited in a sub-oxic 472 

marine-continental sedimentary environment (Peters and Moldowan, 1993; Zumberge, 473 

1987). The Late Neoproterozoic to Early Cambrian Doushantuo and Qiongzhusi 474 

formations and the Upper Permian Dalong Formation are considered to be the principal 475 

source rocks in the Kuangshanliang area (Huang et al., 2011; Lin et al., 2011; Liu et al., 476 

2009; Sun et al., 2009; Wei et al., 2008). Previous work shows that the geochemical 477 

parameters of both C23 tricyclics/C24 tertracyclic and pregnane/homopregnane are 478 

higher (>2.5 and ~2.0) for the Late Neoproterozoic-Early Cambrian formations than for 479 

the Upper Permian Dalong Formation (<1.6 and ~1.0) (Wu et al., 2012). In this work, 480 

the C23 tricyclics/ C24 tertracyclic and pregnane/homopregnane ratio of the bitumen 481 

samples are respectively ~2.42 and ~2.44, however, for the present day oil seep samples, 482 



these organic parameter ratios are only ~0.25 and 0.20 (the ca. 5 times lower ratio 483 

compared with Permian mudstone may be caused by the biodegradation of the present 484 

day oil seeps). Given that hydocarbons possess similar biomarker characterisitcs to that 485 

of its source unit (Cole et al., 1987; Pusey, 1973; Wu et al., 2012; Zhang et al., 2000), 486 

the results of this study suggest that the bitumen and oil seeps are sourced from different 487 

units, with the bitumen being sourced predominantly from the shales of the Late 488 

Neoproterozoic Doushantuo and Early Cambrian Qiongzhusi formations, and the 489 

present day oil seeps from the mudstones of the Permian Dalong Formation. The 490 

identification of the Doushantuo and Qiongzhusi formations being the source of the 491 

bitumen in the Kuangshanliang area further supports the oil-source correlation based on 492 

the similar δ13C values for bitumen and the Doushantuo and Qiongzhusi formations 493 

(bitumen = -35.71 ‰ to -27‰ (Wu et al., 2012; Zhou et al., 2013); Precambrian-494 

Cambrian = -30.3‰ to -35.4‰; (Wu et al., 2012; Zhou et al., 2013)),  in contrast to the 495 

oil and Dalong Formation (oil = -25.9‰ to -27.7‰ (Wu et al., 2012); Permian Dalong 496 

Formation = -25.9‰ to -27.7‰ (Liang, 2007; Zhou et al., 2013)).  497 

 498 

6.2 Multiple phases of petroleum generation  499 

Previous studies suggest that oil generation in the North Longmen Shan Thrust Belt  and 500 

the adjacent Sichuan Basin is a result of the hydrocarbon maturation of the Late 501 

Neoproterozoic - Early Cambrian shales (e.g., Late Neoproterozoic Doushantuo and 502 

Early Cambrian Qiongzhusi formations) during the Middle Ordovician (Zhou et al., 503 

2013; Zou et al., 2014b). The only Re-Os dataset that provides a robust estimation of oil 504 

generation during the Ordovician is the bitumen from Dyke 3. As discussed above, all 505 

the Re-Os bitumen from Dyke 3 yield a Model 3 date of 503 ± 140 Ma (Fig. 6B). 506 



However, considering only the Re-Os bitumen data of Dyke 3 that possess similar Osi 507 

values (GY-2d, 3d, 4d, 5d, and 6d; Osi = 0.85 - 0.89) calculated at 503 Ma, a Re-Os date 508 

of  483 ± 10 Ma is determined. The absolute reason why the samples HSCD-1 and GY-509 

1d possess slightly elevated Osi values (~1.0) in comparison to the majority of the 510 

bitumen from Dyke 3 is not known. But the reasoning could be related slight post-511 

depositional disturbance to the Re-Os systematics and/or continuous hydrocarbon 512 

generation. Both determined Re-Os ages are in agreement within uncertainty, with the 513 

more precise age determined, by the bulk of the sample set, providing an age that agrees 514 

well with modeling for the timing of burial (~2500 m and ~100 ºC) and source rock 515 

maturation of the Doushantuo and Qiongzhusi formations in the Northern Longmen 516 

Shan Thrust Belt and adjacent Sichuan Basin (Liu et al., 2009; Yuan et al., 2012; Zhou 517 

et al., 2013).  518 

In contrast to Dyke 3, the bitumen Re-Os data from Dyke 1 yield no meaningful age 519 

because of the limited spread in 187Re/188Os and 187Os/188Os values. However, the 520 

bitumen Re-Os isotope compositions of Dyke 1 are similar to that of sample GY-5d 521 

from Dyke 3 (Table 2). Calculated at the age of Dyke 3 (483 Ma), the Re-Os bitumen 522 

data of Dyke 1 yield Osi values (0.96-0.99) which is similar to the range of that 523 

determined for Dyke 3 (0.96 - 0.98; except GY-1 and HSCD-1) (Table 2). Based on the 524 

similarity of the GC-MS (e.g., m/z 191 and 217; Fig. 5) and Re-Os data of bitumen from 525 

the Dyke 1 and Dyke 3, we consider the bitumen to be of the same oil generation 526 

episode. Together, the Re-Os data from both Dyke 3 (except GY-1 and HSCD-1) and 527 

Dyke 1 yield a Model 3 date of 486 ± 15 Ma (Fig. 6D).   528 

In comparison to the bitumen from Dyke 1 and 3, the Re-Os characteristics of the five 529 

bitumen samples from Dyke 2 and faults/fractures have very different Re-Os 530 



systematics. Calculated at 486 Ma the Re-Os data of Dyke 2 and faults/fractures yield 531 

negative 187Os/188Os values (-0.05 to -1.04; Table 2). Furthermore, relative to a ca.486 532 

Ma reference isochron, the five samples of Dyke 2 and faults/fractures have higher 533 

187Re/188Os ratios for a given 187Os/188Os (Fig. 6E). This suggests that these bitumen 534 

samples are either of a different generation age to that of Dyke 1 and 3, or the Re-Os 535 

bitumen systematics of the Dyke 2 and faults/fractures have been disturbed.  536 

The Re-Os data of the five bitumen samples from Dyke 2 (XKD-1d, XKD-2d) and 537 

fault/fractures (SKD-1f, LXB-1f, LXB-2f) together yield a Model 3 Re-Os date of 158 538 

± 76 Ma (187Os/188Os = 1.85 ± 0.61, MSWD = 79) (Fig. 6E). For the Re-Os isotope 539 

compositions (e.g., 187Re/188Os and 187Os/188Os) to yield a statistically meaningful 540 

isochron date, the samples comprising the dataset must have formed contemporaneously, 541 

must possess the same initial (187Os/188Os) isotope ratio, and the isotope systematics 542 

must not have been affected post formation (Cohen et al., 1999; Kendall et al., 2009; 543 

Selby et al., 2007). For these five bitumen samples, the degree of scatter about the best-544 

fit line of the data, as given by the MSWD, is 76. The high MSWD indicates that one of 545 

the criteria for developing a statistically meaningful isochron has not been met. 546 

Although post-depositional effects, diffrerent sample localities, and contemporaneity 547 

between the sample set may affect the Re-Os data, the positive correlation of the Re-Os 548 

data may indicate that the major reason for the scatter could be a result of variable initial 549 

187Os/188Os values. Using the Re-Os date derived by the isochron (158 Ma), initial 550 

187Os/188Os values (Osi) yield two populations for the sample set: (1) three samples with 551 

Osi values of ~1.89 (samples XKD-1d, XKD-2d, LXB-2f); and (2) two samples with 552 

Osi values of ~1.77 (samples SKD-1f; LXB-1f) (Table 2). Considering the sample set as 553 

two distinct populations, the three bitumen samples (XKD-1d, XKD-2d, LXB-2f) yield 554 



a Model 1 Re-Os date of 162 ± 14 Ma (Osi = 1.87 ± 0.12; MSWD = 0.95; Fig. 6F). 555 

Although only two samples, the Re-Os data for bitumen samples SKD-1f and LXB-1f 556 

define Re-Os date of 172.7 ± 8.1 Ma (Fig. 6F). Both the Re-Os dates are within 557 

uncertainty and suggest that these five bitumen formed broadly contemporaneously 558 

during the Middle Jurassic at 162 - 173 Ma.  559 

The 187Os/188Os composition of an hydrocarbon at its time of generation is inherited 560 

from its source (Finlay et al., 2011; Lillis and Selby, 2013; Selby and Creaser, 2005; 561 

Selby et al., 2005; Selby et al., 2007). The difference in the initial 187Os/188Os 562 

compositions of the two temporally distinct bitumen samples (~0.95 vs ~1.85; Fig. 6; 563 

Table 2) could indicate the bitumen could have been derived from different source rocks. 564 

However, the organic geochemistry for all the bitumen samples are indicative of the 565 

source rock being the Late Neoproterozoic to Early Cambrian Doushantuo and 566 

Qiongzhusi formations. As such, the more radiogenic initial 187Os/188Os compositions of  567 

bitumen formed during the Jurassic (~1.85) is the result of the greater duration of 568 

radioactive ingrowth of 187Os from the decay of 187Re in the source rock since its 569 

deposition. Although no Re-Os data was obtained for the potential source rock samples 570 

in this study, Re-Os data of the Late Neoproterozoic – Early Cambrian shales from the 571 

South China Block (Yangtze Gorges area (Kendall et al., 2009) and Zunyi, Guizhou 572 

province (Jiang et al., 2007)) yield Osi values at ca. 485 Ma and ca. 165 Ma of 0.89 - 573 

0.98 and 1.54 - 2.01, respectively. The bitumen Osi values at ca. 486 Ma and ca. 165 Ma  574 

in this study all fall into this range, which further supports the bitumen are derived from 575 

the same source, but during two separate phases of oil generation.  576 

The Longmen Shan Thrust Belt records a series of complex tectonic events since the 577 

Palaeozoic (Chen and Wilson, 1996; Dai, 2011; Jin et al., 2010; Yan et al., 2011). Burial 578 



history models (Zhou et al., 2013; Zou et al., 2014b) coupled with the Re-Os dates of 579 

the Dykes 1 and 3 suggest that oil generation of the Late Neoproterozoic Doushantuo 580 

and Early Cambrian Qiongzhusi formations in the Northern Longmen Shan Thrust Belt 581 

and the adjacent Sichuan Basin occurred during the Middle Ordovician. Oil generation 582 

ceased during the Caledonian Orogeny (~450 – 400 Ma) due to more than 2000 m of 583 

uplift and denudation (Wang et al., 1989; Wang et al., 2007; Zhuang, 1985; Zou et al., 584 

2014b). The maturation history of the Early Cambrian Qiongzhusi Formation based on 585 

five different wells across the southwest Sichuan Basin indicates that the shales did not 586 

enter the oil window between the Late Devonian and Carboniferous (Liu et al., 2009). 587 

However, since  Triassic, the Northern Longmen Shan Thrust Belt has been affected by 588 

the Indosinian–Yanshan orogenies following the collison between the North and South 589 

China blocks (Liu et al., 2005). Compressional tectonics in the Longmen Shan Thrust 590 

Belt and Sichuan Basin continued into the Late Jurassic from the paleogeography model 591 

(Jin et al., 2009b; Liu et al., 1996); apatite fission track date of 162 ± 23 Ma (Arne et al., 592 

1997); and post-tectonic granitoid magmatism at ~160 Ma (Jin et al., 2008) (Fig. 7). The 593 

sheared bitumen accummulations observed in the sandstone country rock (Fig. 4D) also 594 

suggests that the bitumen emplacement of Dyke 2 may be syn-tectonic. The Re-Os dates 595 

(ca.162 - 172 Ma) of the five bitumen samples from Dyke 2 and fault/fractures coincide 596 

with the timing of the tectonism in the Longmen Shan Thrust Belt during the Jurassic. 597 

The organic geochemistry of the Dyke 2 and fault/fracture bitumen suggest that it is 598 

sourced from the Late Neoproterozoic – Early Cambrian Doushantuo and Cambrian 599 

Qiongzhusi formations. These units were buried to more than 5000 m and re-entered the 600 

oil window (Ro ~1.2 %) during the Middle Jurassic (Liu et al., 2009; Zou et al., 2014b). 601 

The hydrocarbon generation intensity of the Cambrian source rock units from the 602 



Yangtze block (China) indicates that the Triassic and Middle Jurassic were the two peak 603 

oil generation intervals (Liang, 2007). Further, analysis on the Zi 1 and Gaoke 1 Wells 604 

from the center of the Sichuan Basin found that the Lower Cambrian shales achieved 605 

peak oil generation during the Middle Jurassic (ca. 175 – 161 Ma) (Liu et al., 2009; 606 

Zhang et al., 2005). Fluid inclusion homogenization temperatures (~120 ºC) and basin 607 

modeling in the Weiyuan gas field in the southwest Sichuan Basin also indicate that oil 608 

generation and migration occurred during the Triassic and Juriassic (ca. 200 – 170 Ma) 609 

(Fig. 7) (Ma et al., 2007a; Tang et al., 2004; Zou et al., 2014b).  610 

Integrating previous research work and the organic geochemistry, and Re-Os isotope 611 

analysis results of this study, we propose that the hydrocarbon evolution in 612 

Kuangshangliang area happened as follows:  613 

(1) During the Early Palaeozoic, the Late Neoproterozoic Doushantuo and Early 614 

Cambrian Qiongzhusi formations were buried to a depth of more than 2500 m and 615 

entering the oil window (Ro ~0.80), and leading to the first phase of oil generation. 616 

Following this oil generation event, the Caledonian Orogeny (~450 - 400 Ma) resulted 617 

in ~2000 m of uplift and thus halted hydrocarbon maturation of the Late Neoproterozoic 618 

and Early Cambrian source rocks (Fig. 7A, B).  619 

(2) As a result of the collison following the Indosinian-Yanshan orogenies during the 620 

Triassic and Jurassic, the Late Neoproterozoic Doushantuo and Early Cambrian 621 

Qiongzhusi formations were buried to a depth of more than 5000 m (Ro ~1.2) (Fig. 7C), 622 

leading to the second phase of oil generation from these formations.  623 

(3) Although no meaningful Re-Os age can be obtained from the present day oil seeps, 624 

the organic geochemisty data generated in this study along with the previous research 625 

work indicates that this oil may have been generated during the Mesozoic from a 626 



Permian source, i.e. the Dalong Formation (Fig. 7C).  627 

(4) Since the Cretaceous, continued tectonics, due to the collision between the Indian 628 

and Asian plates, has caused the rapid uplift and denudation of the entire Longmen Shan 629 

Thrust Belt (Dai, 2011; Yan et al., 2011). This erosion effect has exhumed the majority 630 

of the traps and reservoirs within the the petroleum systems (Fig. 7D). 631 

 632 

7. Implications and Conclusions 633 

Combining the bitumen and present day oil seep organic geochemisty and Re-Os 634 

isotope geochronology from Kuangshanliang area we provide quantitative constraints 635 

on the petroleum evolution within the northern Longmen Shan Thrust Belt and adjacent 636 

basins that record a similar temporal tectonic evolution. The organic geochemisty of all 637 

the bitumen in the Kuangshanliang area from both dykes and fault/fractures possess 638 

similar characteristic and suggest they are sourced from shales of the Late 639 

Neoproterozoic to Early Cambrian Doushantuo and Qiongzhusi formations. In contrast, 640 

the few organic geochemistry of the present day oil seeps indicate the oil seeps possess 641 

distinct characteristics in comparison to  the bitumen (e.g., lower tT24/TR26 (~0.5) 642 

value, higher GAM/H30 (3.9-7.6), DH30/H30 (3.1-5.5) ratio and δ13C (-25.9 ‰ to -643 

27.7 ‰) and are suggestive of being derived from the Permian Dalong Formation. 644 

The Re-Os isotope analysis showed that the Kuangshanliang area bitumen which has 645 

been derived from liquid hydrocarbon has two distinct episodes of generation. The Re-646 

Os data for bitumen from Dyke 1 and 3 yield a date of ca. 486 Ma. This Latest 647 

Cambiran to Earliest Ordovician age agrees well with previous understanding that the 648 

Late Neoproterozoic – Early Cambrian shales of the Doushantuo and Qiongzhusi 649 

formations in the Longmen Shan Thrust Belt and adjacent Sichuan Basin first entered 650 



into the oil window during the Ordovician based on basin burial modeling, and source 651 

rock maturation history (Liu et al., 2009; Yuan et al., 2012; Zhou et al., 2013). In 652 

contrast, the Re-Os data of bitumen from Dyke 2 and the fault/fractures yield a Middle 653 

Jurassic age (ca. 172 - 162 Ma). This Middle Jurassic age is coincident with the timing 654 

of the Indosinian-Yanshan orogenies (Arne et al., 1997; Jin et al., 2009b; Liu et al., 655 

1996; Yan et al., 2003), which lead to the second phase of oil generation from the shales 656 

of the Late Neoproterozoic Doushantuo and Early Cambrian Qiongzhusi formations 657 

(Liu et al., 2009; Zou et al., 2014b). Additionally, the timing is in agreement with the 658 

basin modelling and the homogenization temperatures (~120 ºC) of fluid inclusions in 659 

dolomite and quartz from the adjacent Sichuan Basin showing oil generation and 660 

migration occurred between the Triassic and Juraissic (Ma et al., 2007a; Tang et al., 661 

2004; Zou et al., 2014b).     662 

This research shows that Re-Os isotope analyses of bitumen have the potential to record 663 

multiple oil generation episodes in complex tectonic settings. In addition to the 664 

Longmen Shan Thrust Belt and the adjacent Sichuan Basin, multiple hydrocarbon 665 

generation phases related to tectonism are also reported in the Maracaibo Basin of 666 

Venezuela (Eocene and Miocene to present two continuous oil genertion episodes) 667 

(Lugo and Mann, 1995; Talukdar et al., 1986) and the Tarim Basin of Northwest China 668 

(two phases of oil generation during the Late Silurian and Late Permian) (Xin et al., 669 

2011). Thus, hydrocarbon (bitumen and oil) Re-Os chronology could aid in 670 

quantitatively constraining the petroleum evolution in basins worldwide, which may 671 

enhance our understanding of both the temporal and spatial evolution of a hydrocarbon 672 

system.  673 

 674 
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Figure Captions 1098 

Fig. 1. A) Regional map of the Longmen Shan Thrust Belt and the adjacent Sichuan 1099 

Basin and Songpan-Garze Belt in the SE and NW, respectively. The shaded area is 1100 

expanded in Figure 1B and 1C; B) Simplified map of the Sichuan Basin showing the 1101 

distribution of gas fields with different orogenic belts. Substantially modified after Li et 1102 
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al., 2015; Li et al., 2001; Ma et al., 2010; C) Structural map of the Longmen Shan 1103 

Thrust Belt showing the bitumen outcrop distribution, and the location of the Cambrian 1104 

cored Kuangshanliang anticline (our study area).  Substantially modified after Tian, 1105 

2009.      1106 

 1107 

Fig. 2. Stratigraphy, hydrocarbon system and tectonic events in the North Longmen 1108 

Shan area. Substantially modified after Chen and Wilson, 1996; Wu et al., 2012. 1109 

 1110 

Fig. 3. A) Simplified geological map of the Kuangshanliang anticline; B) Detailed 1111 

geology feature in the Kuangshanliang area and locations of the bitumen and present 1112 

day oil seep samples.  1113 

 1114 

Fig. 4. Bitumen and oil sample locations and field relationships. A) Bitumen Dyke 1 1115 

showing the relationship between the dyke and the country rock. A’) detailed image of 1116 

the breccia zone shown in A. B) Bitumen sample (11SKD-3d, 11SKD-4d, 11SKD-5d, 1117 

SKD-1f) locations in Dyke 1 and related fault/fractures. C) Bitumen sample (XKD-1d, 1118 

XKD-2d) locations in Dyke 2. D) Syn / post thrust fault in Dyke 2. E) Bitumen sample 1119 

(HSCD-1d and GY1d-6d) locations in Dyke 3. F) Bitumen samples (LXB-1f, LXB-2f) 1120 

from a fault zone. G) Bitumen sample (11LXB-1f) from a fault plane. H) Present day oil 1121 

seep samples (Oil-3, Oil-5, Oil-7) occurring in the Early Cambrian Qiongzhusi 1122 

Formation.  1123 

 1124 



Fig. 5. Total Iron Chromatogram (TIC), m/z 191 and m/z 217 mass chromatograms of 1125 

the bitumen (11SKD-4d, XKD-1d, GY-3d, HSCD-1d, LXB-1f) and the present day oil 1126 

seeps (Oil-5) in the Kuangshangliang area. 1127 

 1128 

Fig. 6. A) Traditional 187Re/188Os vs 187Os/188Os plot showing all the Re-Os data for 1129 

bitumen from the dykes and faults/fractures, as well as the present day oil seeps in the 1130 

Kuangshanliang anticline (Bold for Dyke 1 bitumen; Underline for Dyke 2 bitumen; 1131 

Italic for Dyke 3 bitumen; Regular font for fault/fracture bitumen and Bold Italic for the 1132 

present day oil seeps). B) The Re-Os isotope data of Dyke 3 bitumen. C) The Re-Os 1133 

isotope data of bitumen from Dyke 1 and 3 and fault bitumen sample, 11LXB-1f. D) 1134 

The Re-Os isotope data of Dyke 1 and 3 bitumen (without HSCD-1 and GY-1). E. The 1135 

Re-Os isotope data of all Dyke 2 and fault/fracture bitumen. F) The Re-Os isotope data 1136 

of Dyke 2 and fault/fracture bitumen based on Osi values groups (~1.82 and ~1.89). 1137 

Data-point ellipses are shown with 2-sigma absolute uncertainty. Data labels are sample 1138 

numbers listed in Table 2. 1139 

 1140 

Fig. 7. The relationship between petroleum generation and tectonism. Shown is a 1141 

comparison of the Re-Os ages with source rocks (Xie et al., 2003; Zhou et al., 2013), 1142 

published basin model and fluid inclusion results (Ma et al., 2007a; Tang et al., 2004) 1143 

and muscovite 40Ar/39Ar ages (Li et al., 1999; Yan et al., 2011), Jurassic zircon fission 1144 

track ages (Arne et al., 1997) in Longmen Shan Thrust Belt. The schematic cartoon 1145 

model shows the hydrocarbon evolution in the Kuangshanliang  anticline, Northern 1146 

Longmen Shan Thrust Belt. A) First phase of oil generation during the Ordovician, 1147 

before the Caledonian Orogeny. B) Oil generation ceased due to uplift caused by the 1148 



Caledonian Orogeny (ca. 450 - 400 Ma). C) Second phase of oil generation during the 1149 

Middle Jurassic Indosinian-Yanshan orogenies. D) Present condition of the bitumen and 1150 

present day oil seeps after Cenozoic Himalayan Orogeny. 1151 
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Table 1. The biomarker characteristics of the bitumen and present day oil seeps from the Kuangshangliang area, Northern Longmen Shan Thrust Belt 

 

 

 

 

 
 

Sample 

name  

ASPH 

(%) 
CPI 

Pr/ 

C17 

Ph/ 

C18 
Pr/Ph 

GAM 

/H30 

Ts/ 

Ts+Tm 

TR23/ 

TR21  

TR23

/ tT24 

tT24/ 

TR26  

DH30

/H30 

H32 

S/(R+S)  

NOR25H

/H30  

S21/ 

S22 

C27R 

(%) 

C28R 

(%) 

C29R 

(%) 

C29S 

/(S+R) 

C29ββ/ 

(ββ+ɑɑ) 

Dyke 1  

11SKD-4d  / / 0.96 1.71 0.72 0.14 0.2 0.90 1.50 2.32 0.06 0.6 0.16 2.55 34.5 19.5 46 0.5 0.49 

Dyke 2 

XKD-1d 98 1.05 0.4 1.05 0.47 0.22 0.38 1.45 2.41 1.21 0.08 0.57 0.14 2.58 24.8 15.7 59.5 0.51 0.51 

Dyke 3                    

GY-1d /  1.04 / / / 0.18 0.32 1.67 2.85 1.03 0.05 0.54 0.16 2.41 30.1 15.2 54.7 0.52 0.53 

GY-3d /  1.16 / / / 0.19 0.32 1.57 2.88 1 0.05 0.56 0.16 2.42 27.7 14.4 57.9 0.5 0.53 

GY-5d /  0.91 / / / 0.13 0.31 1.31 2.20 1.43 0.05 0.58 0.17 2.5 30.4 16.2 53.4 0.52 0.55 

HSCD-1d 99 2.59 0.7 0.91 0.95 0.15 0.35 1.49 3.01 1.06 0.05 0.62 0.13 2.45 32.2 16.3 51.5 0.47 0.57 

Fault and fractures 

SKD-1f 98 0.94 / / / 0.12 0.24 1.00 1.28 2.61 0.02 0.6 0.07 2.46 29 15.2 55.7 0.46 0.5 

11LXB-1 99 1.21 / / / 0.17 0.32 1.38 2.82 1.01 0.05 0.6 0.17 2.26 30.8 16 53.2 0.47 0.55 

LXB-1f 98 0.35 / / / 0.18 0.33 1.38 2.83 1.00 0.06 0.58 0.19 2.32 31.90 14.80 53.40 0.46 0.55 

Oil                    

Oil-3 13.54  / / / / 7.59 0.37 / / 0.51 5.54 / / 0.21 / / / / / 

Oil-5 9.48  / / / / 3.91 0.36 / 0.26 0.52 3.1 / / 0.2 / / / / / 
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Table 2. Re-Os elemental and isotopic data of the bitumen and present day oil seeps from the Kuangshanliang area, Northern Longmen Shan Thrust Belt. 

Sample latitude longitude Re (ppb) Re blk % Os (ppt) Os blk % 187Re/188Os 187Os/188Os rho Osi503 Osi486 Osi483 Osi158 

Dyke 1 

11SKD-3d 32°20'27'' 105°27’47'' 403.5(1.0) 0.004 11094.0(64.7) 0.007 239.1(1.1) 2.92(0.02) 0.560 / / 0.99 / 

11SKD-4d 32°20'25'' 105°27’48'' 512.2(1.8) 0.003 14478.3(46.3) 0.006 230.7(0.9) 2.84(0.01) 0.260 / / 0.97 / 

11SKD-4d-rpt 32°20'25'' 105°27’48'' 518.8(1.3) 0.010 14605.3(75.8) 0.046 231.5(1.0) 2.83(0.01) 0.567 / / 0.96 / 

11SKD-5d 32°20'26'' 105°27’47'' 547.9(1.9) 0.009 15347.3(50.3) 0.042 232.8(0.9) 2.84(0.01) 0.238 / / 0.96 / 

Dyke 2 

XKD-1d 32°20'26'' 105°27’49'' 332.9(1.1) 0.007 6182.4(80.9) 0.107 349.7(5.2) 2.79(0.07) 0.591 / -0.05 / 1.87 

XKD-2d 32°20'25'' 105°27’49'' 334(1.2) 0.007 5058.7(38.4) 0.133 440.2(3.2) 3.07(0.03) 0.576 / -0.51 / 1.91 

Dyke 3 

GY-1d 32°19'21'' 105°27’47'' 305.6(0.8) 0.008 7033.5(40.5) 0.012 302.9(1.3) 3.56(0.02) 0.581 1.01 / 1.11 / 

GY-2d 32°19'20'' 105°27’45'' 320.3(0.8) 0.007 7105.0(40.4) 0.012 313.1(1.4) 3.51(0.02) 0.582 0.87 / 0.98 / 

GY-3d 32°19'22'' 105°27’47'' 303.7(0.8) 0.008 6869.0(38.1) 0.012 304.4(1.3) 3.42(0.02) 0.577 0.85 / 0.96 / 

GY-4d 32°19'21'' 105°27’46'' 293.5(0.7) 0.008 6538.1(37.2) 0.013 311.3(1.4) 3.49(0.02) 0.577 0.88 / 0.98 / 

GY-5d 32°19'22'' 105°27’47'' 524.8(1.3) 0.005 14895.1(79.1) 0.005 229.5(1.0) 2.83(0.01) 0.562 0.89 / 0.97 / 

GY-6d 32°19'20'' 105°27’48'' 329.3(0.8) 0.007 7216.8(42.4) 0.012 317.6(1.4) 3.53(0.02) 0.567 0.86 / 0.97 / 

HSCD-1d 32°19'21'' 105°27’47'' 284.1(0.7) 0.006 6464.5(36.3) 0.013 307.0(1.3) 3.58(0.02) 0.581 0.99 / 1.10 / 

Fault and Fracture 

11LXB-1f 32°20'07'' 105°27’20'' 311.1(1.1) 0.005 6875.7(29.5) 0.013 312.2(1.3) 3.44(0.01) 0.408 / / / / 

SKD-1f 32°20'26'' 105°27’47'' 525.9(1.8) 0.004 8460.4(20.0) 0.074 404.8(1.4) 2.82(<0.01) 0.468 / -0.47 / 1.75 

LXB-1f 32°20'06'' 105°27’19'' 352.2(1.2) 0.005 4058.2(31.6) 0.413 595.1(4.2) 3.37(0.03) 0.582 / -1.47 / 1.80 

LXB-2f 32°20'06'' 105°27’20'' 334.4(1.1) 0.007 4259.3(25.6) 0.409 535.6(2.8) 3.32(0.02) 0.505 / -1.04 / 1.90 

Oil 

Oil-3 32°19'20'' 105°27’48'' 9.6(0.1) 0.185 127.2(1.9) 3.803 496.3(12.6) 2.92(0.08) 0.88 / / / / 

Oil-5 32°19'21'' 105°27’47'' 8.1(0.1) 0.312 91.7(2.0) 3.632 579.3(26.6) 2.89(0.14) 0.948 / / / / 

Oil-7 32°19'20'' 105°27’46'' 7.7(0.1) 0.308 90.3(1.9) 3.460 558.6(24.5) 2.94(0.13) 0.947 / / / / 

Table 2 Click here to download Table Table 2 20170227.docx 

http://www.editorialmanager.com/bltn/download.aspx?id=3773&guid=a6136575-233e-44db-b4c9-00936ad99a7f&scheme=1
http://www.editorialmanager.com/bltn/download.aspx?id=3773&guid=a6136575-233e-44db-b4c9-00936ad99a7f&scheme=1


Note: asphaltene fraction of the oil were fisrt precipitated using 40 times volume of n-heptane (~1 g oil with 40 ml solvent) at room temperature for at least 8 hrs and 

Re-Os analyses are conduct on the asphaltenes. 



  

Dataset

Click here to access/download
Dataset

appendix Re-Os data table 20170227.xlsx

http://www.editorialmanager.com/bltn/download.aspx?id=3774&guid=db8e18a5-d0b5-4c07-beb2-5d10561a8b4c&scheme=1
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