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ABSTRACT

By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic
field evolution in the Sun’s corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningful measure of
how magnetic helicity is distributed within the coronal volume. It may be interpreted, for each magnetic field line, as a magnetic flux
linking with that field line. Using magneto-frictional simulations, we investigate how field line helicity evolves in the non-potential
corona as a result of shearing by large-scale motions on the solar surface. On open magnetic field lines, the helicity injected by the Sun
is largely output to the solar wind, provided that the coronal relaxation is sufficiently fast. But on closed magnetic field lines, helicity
is able to build up. We find that the field line helicity is non-uniformly distributed, and is highly concentrated in twisted magnetic flux
ropes. Eruption of these flux ropes is shown to lead to sudden bursts of helicity output, in contrast to the steady flux along the open
magnetic field lines.

Key words. magnetic fields – magnetohydrodynamics (MHD) – Sun: magnetic fields – Sun: coronal mass ejections (CMEs) –
Sun: corona

1. Introduction
Magnetic helicity is well-known to be invariant in ideal mag-
netohydrodynamics (MHD), and in highly conducting plasmas
it is almost conserved even for finite resistivity (Berger 1984;
Pariat et al. 2015). Helicity may be interpreted as a net linking
or winding of magnetic field lines around one another (Moffatt
1969). This linking can put a lower bound on the magnetic en-
ergy (Moffatt 1990; Freedman & He 1991; Berger 1993), reflect-
ing the physical barrier that, in ideal MHD, magnetic field lines
are unable to pass through one another or to reconnect.

In the corona, which is highly conducting and close to ideal,
there are two primary sources of helicity, both coming from the
solar interior: shearing of magnetic field lines by footpoint mo-
tions, and emergence of twisted magnetic fields. In this paper,
we will consider only the production of helicity by footpoint mo-
tions. These footpoint motions may arise either from large-scale
flows (primarily differential rotation), or from small-scale con-
vection. Here we model the net effect of convection on the large-
scale magnetic field with an isotropic diffusion on the solar sur-
face. We neglect the additional helicity injection that could arise
if the convective motions had a net sign of vorticity (Antiochos
2013; Mackay et al. 2014; Knizhnik et al. 2015).

Perhaps the most important practical consequence of he-
licity in the corona is the formation of twisted magnetic flux
ropes, and their eruption as coronal mass ejections (e.g., Chen
2011). These remove helicity from the corona and send it out
into the heliosphere. However, a difficulty in quantifying this
notion arises because helicity is a volume integral, and is not
conserved on an arbitrary sub-volume of the corona. Previous
authors have quantified the helicity generated by solar rotation
in two extreme cases: entire hemispheres (Berger & Ruzmaikin
2000), and a single isolated active region (DeVore 2000). The
goal of this paper is to show how one can meaningfully study

? Movies are available at http://www.aanda.org

the spatial distribution of helicity within the corona, with the ul-
timate aim of understanding the origin of solar eruptions. The
basic idea is to decompose the corona into infinitesimal tubular
volumes around each magnetic field line. The helicity of each of
these sub-volumes is an ideal invariant (provided that the field
line endpoints are fixed), called the field line helicity.

This idea of field line helicity is not a new one, and goes back
to Taylor (1974). Subsequently, Berger (1988) derived lower en-
ergy bounds based on field line helicity (see also Aly 2014;
Yeates et al. 2014), but the concept was not significantly de-
veloped for a number of years. More recently, field line helic-
ity has been found to be an invaluable tool for understanding
the turbulent relaxation of braided magnetic fields. For cylindri-
cal domains, Yeates & Hornig (2013, 2014) proved that know-
ing the field line helicity on each field line uniquely determines
the field line mapping from one end of the cylinder to the other.
And in sufficiently complex magnetic fields, Russell et al. (2015)
showed that field line helicity is efficiently redistributed by re-
connection, but is not destroyed on dynamical timescales. It
therefore acts as a constraint on magnetic relaxation, demon-
strated in the numerical experiments of Pontin et al. (2011).

The aim of this paper is to apply the tool of field line he-
licity to the Sun’s corona, in which the magnetic field has a
rather more complex topology than the cylinder. Accordingly,
the “completeness” proof of Yeates & Hornig (2014) no longer
applies, though field line helicity retains its importance as a topo-
logical invariant.

Since the global magnetic field in the coronal volume can
not be measured directly, a numerical model is required. How-
ever, for the study of helicity, a model more sophisticated than
potential field extrapolation is needed. Primarily, this is because
potential extrapolations lack the free magnetic energy that is as-
sociated with helicity. But it is also because they do not evolve
continuously over time, so do not preserve the connectivity of
magnetic field lines associated with an ideal evolution. In other
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words, a sequence of potential field extrapolations could “undo”
the field line entanglement imposed in reality by the footpoint
motions. Instead, in order to model the gradual injection of he-
licity over time, a time dependent model is required. Here we ap-
ply the magneto-frictional model (van Ballegooijen et al. 2000),
as a compromise that retains sufficient physics but is less compu-
tationally expensive than full-MHD simulations. The importance
of retaining a continuous time dependence has been demon-
strated before, but will be shown rather clearly by the field line
helicity.

The paper is organised as follows. Section 2 explains the
physical interpretation of field line helicity, and gives a practical
definition, then Sect. 3 describes the magneto-frictional model.
We then study three situations of increasing complexity: a dipo-
lar field (Sect. 4), a quadrupolar field (Sect. 5), and finally a more
realistic, non-axisymmetric configuration (Sect. 6). We conclude
in Sect. 7.

2. Field line helicity

We model the solar corona by a spherical shell D =
{(r, θ, φ) | r0 < r < r1}. The field line helicity of a magnetic field
line L ⊂ D is defined as

A(L) :=
∫

L(x)
A · eB dl, (1)

where eB = B/|B| is the unit vector aligned with the local di-
rection of the magnetic field B = ∇ × A. It follows that A is
undefined on ergodic magnetic field lines, which have infinite
length. In generic coronal magnetic fields, this situation does not
usually arise since field lines are typically finite in length, ending
on one or more of the domain boundaries r = r0 and r = r1. The
choice of A will be discussed below.

Since there is a unique field line through each point (except
for magnetic null points where B = 0), we can also assign values
ofA to points x ∈ D, and think ofA as a function on D. This can
be useful for visualization. This functionA is evidently constant
along magnetic field lines, and will, furthermore, be continuous
in regions of continuous field line mapping. In the presence of
magnetic null points, A will generally be discontinuous across
their separatrix surfaces, like any field-line integrated quantity.

Although we have defined A as a line integral, it may also
be written as the limit

A(L) = lim
ε→0

1
Φε

∫
Dε

A · B dV, (2)

where Dε is the magnetic flux tube of radius ε around the field
line L, with Φε being the flux of this tube. This motivates the
name “field line helicity” (Berger 1988). Integrating Eq. (2) over
all field lines, weighted by their flux, will recover the total helic-
ity H =

∫
D A · B dV . In this sense, A is a meaningful density

for H, describing how topological sub-structure is distributed
within D.

2.1. Physical interpretation as magnetic flux

The physical meaning of A is clear when L is a closed curve
such as L1 in Fig. 1. In that case, Stokes’ theorem implies that
A is simply the magnetic flux that links through L. It follows
thatA must be an ideal invariant when L is a closed curve. This
conclusion does not depend on the chosen gauge of A, and in-
deed the value of A is independent of this gauge (provided that
A is single-valued).

Fig. 1. Physical interpretation of field line helicity A as the magnetic
flux linking a closed (L1) or open (L2) magnetic field line.

In the coronal situation, closed magnetic field lines are rare,
and we must consider field lines ending on one or more of the
domain boundaries (r = r0 and r = r1). For example, consider
the field line L2 in Fig. 1, linking two points x1 and x2 on r = r0.
Under a gauge transformation from A to A′ = A + ∇χ, the field
line helicity changes from A(L2) to A′(L2) = A(L2) + χ(x2) −
χ(x1). However, whichever gauge is used, we can always find a
corresponding surface S whose magnetic flux is exactly A(L2).
This is equivalent to the existence of some curve γ between x1
and x2 (as in Fig. 1) such that

∫
γ

A· dl = 0, which is demonstrated
in Appendix A.

In different gauges, the possible curves γ will differ, so
that the physical fluxes represented by A will depend on the
chosen gauge. But, whichever gauge is chosen, we may inter-
pret A in terms of the physical linking of fluxes. Note that
it is only the gauge on the boundary ∂D that matters; this is
analogous to the situation with relative helicity (Berger & Field
1984; Prior & Yeates 2014). For field lines such as L2, Antiochos
(1987) defined a “flux-per-field-line” which is equivalent toA if
we take γ to be a geodesic on ∂D between x1 and x2. However,
rather than specifying the curve γ explicitly like this, we will
specify the gauge of A explicitly, as described in the next sec-
tion. This makes A easier to compute, although it will lead (in
general) to more complex γ.

The interpretation in terms of linked fluxes shows thatA re-
mains an ideal invariant in the case of non-closed field lines,
provided that the gauge is fixed and, in addition, that there are no
motions of field line footpoints on ∂D. Of course, an important
feature of the corona is the injection of helicity through footpoint
motions, which will necessarily lead to a change inA. This will
be demonstrated in Sects. 4–6.

2.2. Gauge choice

For practical application, we must choose a gauge for A. In this
paper, we use the so-called DeVore gauge, chosen since it is
straightforward to compute and leads to a clear physical inter-
pretation forA. The gauge was introduced by DeVore (2000) in
Cartesian coordinates, and has been used by a number of authors
in both Cartesian geometry (Valori et al. 2012; Moraitis et al.
2014) and spherical geometry (Amari et al. 2013).

The DeVore gauge condition is that Ar ≡ 0. From B = ∇×A,
we get

B × er =
1
r
∂

∂r
(rA) , (3)
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which may be integrated in r to give

rA(r, θ, φ) = r0 A0(θ, φ) +

∫ r

r0

B(r′, θ, φ) × er r′ dr′. (4)

Here A0 is the vector potential on the initial surface r = r0.
Under our assumption that Ar ≡ 0, it follows that A0 has only θ
and φ components, which must satisfy

er · ∇ × A0 = Br(r0, θ, φ), (5)

but are otherwise arbitrary. We will follow Amari et al. (2013)
and fix A0 with the condition ∇ · A0 = 0, so that it may be
written as

A0(θ, φ) = ∇⊥ψ(θ, φ) × er. (6)

Note that ψ is (up to a constant) the poloidal flux function from a
poloidal-toroidal decomposition of B. Equation (5) then requires
that

∇2
⊥ψ = −Br(r0, θ, φ). (7)

Solving this Poisson equation for ψ on the sphere determines A0.
The function ψ is determined only up to an additive constant,
which we may fix by requiring that

∫
r=r0

ψ dΩ = 0. In spherical
geometry, the Green’s function for Eq. (7) is known, and the so-
lution may be expressed analytically (Kimura & Okamoto 1987)
as

ψ(θ, φ) =
1

4π

∫
r=r0

Br(θ′, φ′) log
(
1 − cos ξ

)
sin θ′ dθ′ dφ′, (8)

where

cos ξ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′). (9)

In the special case of a potential field B = Bp (i.e., ∇ × Bp = 0),
it follows from Eq. (4) that ∇· Ap = 0 everywhere in V . For a po-
tential field in this (Coulomb) gauge, we have

∫
D Ap · Bp dV = 0

(Berger 1984), although A need not vanish for any individual
field line – we will see an example of this in Sect. 6.

2.3. Physical interpretation of the gauge choice

One advantage of the DeVore gauge Eq. (4) is its explicit physi-
cal interpretation. We consider the contributions toA from both
the integral term in Eq. (4) and the boundary term rA0.

The integral term contributes to Aθ(r, θ, φ) when Bφ(r′, θ, φ)
is non-zero at some radius r′ between r0 and r. Similarly, it con-
tributes to Aφ(r, θ, φ) when Bθ(r′, θ, φ) is non-zero. So the con-
tribution to A from this term represents the net perpendicular
magnetic flux beneath the field line concerned (Fig. 2). For a
field line with both footpoints on r = r0, this is rather like choos-
ing the curve γ from Sect. 2.1 to be the radial projection γ′ of
the field line on r = r0. Accordingly, this term will measure the
twisting of magnetic field lines with height in the corona, and
the net linking of flux beneath magnetic arcades. But it should
be borne in mind that the projected curve γ′ will generally have∫
γ′

A · eB dl , 0, and the additional contribution from the bound-
ary term rA0 is needed to ensure that A gives an ideal-invariant
flux.

With our choice of A0 in Eq. (6), the boundary term contri-
bution toA represents the winding of coronal field lines around
strong sources of magnetic flux on r = r0. From Eq. (6), we
see that the integral curves of A0 are the curves of constant ψ
(cf. Hornig 2006). Since ψ solves the Poisson equation with

Fig. 2. Physical interpretation of field line helicity in the DeVore gauge.
The red circles show the direction of A0 (contours of ψ) arising from a
strong magnetic source Br > 0. The shaded surfaces are radial projec-
tions of the field lines L1 and L2. Both field lines have a contribution
to A from any flux linking through these surfaces (owing to the sec-
ond term of Eq. (4)), but only L1 has a contribution from A0, since the
projection of L2 is perpendicular to A0.

source term Br(r0, θ, φ), these curves are analogous to the sur-
faces of equal temperature in a solution to the heat equation
where Br(r0, θ, φ) corresponds to a distribution of heat sources
and sinks. Larger contributions to A arise when field lines (in
projection) are aligned with these curves, which encircle the
sources of (locally) strongest |Br |.

So, overall, A in our gauge represents the net effect of two
contributions: twisting of magnetic field lines with height, and
winding around centres of strong flux on the boundary r = r0.
The examples of Sect. 6 suggest that both terms are generally
significant.

3. Magneto-frictional model

To approximate the evolution of non-potential magnetic fields in
the corona, we use the magneto-frictional model introduced by
van Ballegooijen et al. (2000) and subsequently applied to the
global corona by Yeates et al. (2008). In this model, the coro-
nal magnetic field evolves through a continuous quasi-static se-
quence of approximately force-free equilibria, in response to
continual shearing by photospheric footpoint motions. In this
paper we use a uniform (but stretched) grid to cover the do-
main {r0 < r < r1, θ0 < θ < θ1, 0 < φ < 2π} with a resolu-
tion 28 × 160 × 192. Here we take r0 = R� (the photosphere),
r1 = 2.5 R�, θ0 = 0.05π, and θ1 = 0.95π. Omitting the poles
from our domain does not significantly affect the results pre-
sented here; the solution Eq. (8) for ψ remains valid provided that∫ θ=θ1

θ=θ0

∫ φ=2π
φ=0 Br dΩ = 0, which we impose in our initial condition.

3.1. Coronal evolution

In the magneto-frictional model, the coronal vector potential
evolves according to the induction equation

∂A
∂t

= u × B − η j + ∇Φ, (10)

where j = ∇ × B and η represents a turbulent resistivity aris-
ing from the cumulative effect of small-scale coronal flows. For
simplicity in this paper, we follow Mackay & van Ballegooijen
(2006) and set

η = η0

(
1 + 0.2

| j|
max |B|

)
, (11)
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Fig. 3. Illustration of the dipolar simulation with ν0 = 0.36×10−5 s−1 on days 0, 1, 2, and 20. Greyscale shading on r = r0 shows Br (white positive,
black negative, saturated at ±0.5), and projected coronal magnetic field lines traced from height r = R� are coloured (red/blue) according to A,
saturated at ±0.01 Mx with white indicatingA ≈ 0 Mx.

where η0 is a constant background value and the second term acts
only in regions of strong current density | j| to limit the formation
of unresolved gradients in B. An alternative would be to consider
higher-order hyperdiffusion (as in Yeates 2014), but the simpler
form suffices here.

The gauge Φ in Eq. (10) is, of course, arbitrary. For compu-
tation itself we use the Weyl gauge Φ ≡ 0, but for calculating
the field line helicity we subsequently recompute the DeVore
gauge A from B, as defined in Sect. 2.2.

The main simplification in the magneto-frictional method is
to forego solving the full MHD equations and instead approxi-
mate the plasma velocity by

u = ν
j × B
|B|2

+ vout

(
r
r1

)11.5

er. (12)

Here the first term is a friction-like term that enforces relaxation
towards a force-free equilibrium. The factor |B|2 prevents re-
laxation from being inhibited in weak-field regions, although it
must be limited away from zero near null points where |B| = 0.
The coefficient ν has the same dimensions as η, and is set to
ν = ν0r2 sin2 θ. The second term in Eq. (12) is a radial out-
flow imposed only near the outer boundary. This term simu-
lates (crudely) the effect of the solar wind in radially opening
out the magnetic field lines, while allowing horizontal field to
pass through the upper boundary if necessary.

Equations (10) and (12) are solved on a staggered grid (Yee
1966) using finite differences. Zero-gradient boundary condi-
tions are imposed at r = r1, and Bθ = 0 is imposed at θ = θ0, θ1.
At r = r0, we do not prescribe u according to Eq. (12), but
rather determine ∂Aθ/∂t and ∂Aφ/∂t from our imposed photo-
spheric driving. (No boundary condition on Ar is needed, ow-
ing to the staggered grid.) For a given photospheric driver, the
coronal model is then determined by three parameters: ν0, η0
and vout. The friction coefficient ν0 controls the speed of coro-
nal relaxation relative to the surface evolution, while η0 con-
trols the rate of coronal diffusion. Rather than η0, we vary the
dimensionless number η0/(R2

�ν0), which measures the relative
importance of diffusion compared to relaxation in the corona (cf.
Cheung & DeRosa 2012). For this paper, we fix the radial out-
flow speed vout = 100 km s−1.

3.2. Photospheric driving
The magneto-frictional method simulates the evolution of the
coronal magnetic field in response to shearing by surface mo-
tions. In this paper, we consider the effect of these motions on
three different initial magnetic fields. The motions are mod-
elled by a simple surface flux transport model (Sheeley 2005;
Mackay & Yeates 2012; Jiang et al. 2014) in which, at r = r0,
we impose

∂Aθ

∂t
= r sin θΩ(θ)Br −

D
r0 sin θ

∂Br

∂φ
, (13)

∂Aφ

∂t
= −

D
r0

∂Br

∂θ
. (14)

The first term in Eq. (13) represents differential rotation. The
simulations are carried out in the carrington frame, and we
choose the Snodgrass (1983) angular velocity (in degrees per
day)

Ω(θ) = 0.18 − 2.3 cos2 θ − 1.62 cos4 θ. (15)

This implies that the coronal magnetic field is relaxing relative
to the carrington frame, rather than to the background stars. The
coefficient D = 600 km s−1 represents “supergranular diffusion”
of Br, namely the net large-scale effect of the random walk of
magnetic elements under supergranular convection on the solar
surface. For illustrative purposes, we neglect other flux transport
effects such as meridional flow, as well as the emergence of new
magnetic flux.

4. Dipolar field
Our first simulation is initialized with a potential field extrapola-
tion from the photospheric boundary condition

Br(r0, θ, φ) = cos7 θ, (16)

along with Bθ = 0 on the boundaries θ = θ0, θ1 and Bθ = Bφ = 0
on the outer boundary r = r1. The potential field is computed us-
ing the eigenfunction method of van Ballegooijen et al. (2000).
The coronal magnetic field is then evolved with magneto-
friction, as described in Sect. 3. For this example the coronal
field remains close to potential, with low electric currents, so
the results are insensitive to η0. Accordingly we will illustrate
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Fig. 4. Various integrated quantities as a function of time, for the dipo-
lar simulations with different ν0 (indicated by line styles). Panel a)
shows the open magnetic flux

∫
r=r1
|Br | dΩ, panel b) shows

∫
D
| j| dV ,

and panel c) shows HN (asterisks) and HS (circles). Panel d) shows the
terms in Eq. (18) for the northern hemisphere, with asterisks denoting
S 0, circles S 1, squares S eq, and diamonds S V .

only the effect of varying ν0, while holding the dimensionless
ratio η0/(R2

�ν0) fixed at 2.89 × 10−5 (a typical value from previ-
ous simulations). For the first day of evolution, no photospheric
motions are applied, so as to illustrate the effect of switching on
differential rotation from day 1 onwards.

The evolution of the magnetic field structure for one of the
runs is shown in Fig. 3. The evolution is straightforward: firstly
there is an opening out of the magnetic field, due to the ra-
dial outflow at the upper boundary. This expansion takes ap-
proximately 1 day, and creates electric currents near the outer
boundary associated with the extended “streamer” structure at
the equator. Once the surface motions are switched on, the field
then relaxes to a dynamical equilibrium between the footpoint
shearing and the magneto-frictional relaxation. As we will dis-
cuss below, there is non-zero field line helicity associated with
this dynamical equilibrium (shown by the colours in Fig. 3). The
time taken to reach equilibrium depends on ν0.

Indeed, it is instructive to consider the effect of ν0 (the rate of
frictional relaxation) on the evolution. Figure 4 shows a number
of integrated quantities, as a function of time for four runs with
different ν0. As seen in Fig. 4a, weaker friction allows the radial
outflow to open out the field further, leading to more open mag-
netic field lines, although this is not a particularly strong effect.
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Fig. 5. Latitudinal distribution of field line helicity for the dipolar simu-
lations, showing how the peak value tends to zero as the friction param-
eter ν0 is successively doubled. A log-log fit shows thatAmax ∼ ν

−0.8
0 .

More striking, in this example, is the increased coronal electric
current that weaker friction allows (Fig. 4b). A small part of this
difference in current arises from the greater initial expansion of
the field, but most arises from the character of the dynamical
equilibrium. When friction is weaker, the field lines relax back
less in response to shearing of their footpoints by differential ro-
tation, so more current is stored in the corona. The shearing of
field lines in the equilibrium is actually rather small and hard to
discern in Fig. 3, although it is just visible at the south pole on
day 20.

Next we consider the evolution of magnetic helicity. In this
unusually symmetric situation, it is helpful to consider the net
helicity in each hemisphere,

HN =

∫
θ<π/2

A · B dV, HS =

∫
θ>π/2

A · B dV. (17)

By symmetry these are equal and opposite (so that the total he-
licity vanishes). They are shown in Fig. 4c. Before the surface
motions are switched on there is no helicity, since Bφ ≡ 0 and
Aθ ≡ 0. After the motions are switched on, the helicity increases
to a steady value in each hemisphere. It is clear from Fig. 4c that
this steady value is larger when the friction is weaker, in accor-
dance with the greater shear of the equilibrium field lines.

The equilibrium distribution of field line helicityA is shown
both by the colours in Fig. 3 and, as a function of latitude, in
Fig. 5. It is clear that the helicity in each hemisphere is not dis-
tributed uniformly among all field lines, but is stored only on
open field lines. This is due to the symmetry of the configura-
tion: closed field lines cross the equator and pick up equal and
opposite contributions toA from each hemisphere.

It is also interesting to consider the helicity flux through the
boundaries. To calculate this, it is most convenient to use the
form

dH
dt

= −2
∫

V
E · B dV +

∮
∂V

A ×
(
2E +

∂A
∂t

)
· da, (18)

which is easily derived using Faraday’s law

∂B
∂t

= −∇ × E. (19)

This is valid for the helicity in any subdomain V , whether mag-
netically closed or not. Here we use A computed in our gauge
to estimate ∂A/∂t, and we also record the electric field E during
the simulation. When we apply this formula to HN (or HS), we
obtain four contributions: the volume dissipation term S V , and
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Fig. 6. Schematic of helicity flow in the dipolar example, for the north-
ern hemisphere. Arrows show the direction of positive helicity transfer
as measured by the surface terms S 0, S 1, and S eq in Eq. (18).

three contributions to the surface integral from different bound-
aries, namely S 0 (r = r0), S 1 (r = r1), and S eq (θ = π/2), as
in Fig. 6. There is no contribution from the latitudinal bound-
aries θ = θ0 and θ = θ1 owing to our boundary conditions in the
simulation. Figure 4d shows these four contributions for each of
the dipole simulations, for the northern hemisphere. (The south-
ern hemisphere contributions are equal and opposite.) Firstly, the
volume dissipation term is small compared to the surface terms.
The main contributions are an injection S 0 of helicity through
r = r0, by differential rotation, and an output S 1 through the
upper boundary. The latter would correspond to winding up of
the solar wind (the Parker spiral). However, the helicity out-
put is rather less than the input (0.0026 Mx2 day−1 compared to
0.0032 Mx2 day−1 for ν0 = 0.36 × 10−5 s−1). The difference is
accounted for by S eq, which represents a net transfer of helic-
ity across the equator on closed field lines. During the relaxation
phase, there is a slight imbalance between these terms, allow-
ing the equilibrium helicity to build up in each hemisphere. The
overall flow of helicity is summarised in Fig. 6.

Note that, as the friction parameter ν0 is increased, the stored
field line helicity in each hemisphere, along with HN and HS,
tends to zero approximately as ν−0.8

0 . However, helicity is in-
jected by differential rotation through the photosphere at a con-
stant rate S 0 that is independent of ν0. Figure 4d shows that
the lack of stored helicity is compensated by the other surface
terms S 1 and S eq during the relaxation phase. Even for the finite
values of ν0 considered here, the stored helicity in the corona is
little more than the helicity injected in a single day by differen-
tial rotation. However, we will see in the subsequent examples
that much more helicity can be stored if we break the symmetry
of the magnetic configuration.

It is interesting to note that the sign of helicity injected into
the solar wind is opposite to that of Berger & Ruzmaikin (2000),
who estimated the injection of helicity into the volume r > r0 by
solar rotation. Figure 6 shows that the outward helicity flux in
the northern hemisphere is positive in our example, since S 1 is
negative (Fig. 4d). This sign is opposite to the direction of wind-
ing of the Parker spiral. However, this is an apparent difference
caused by our use of the carrington frame. If the constant 27-day
rotation rate were added back in, the sign would reverse.

5. Quadrupolar field
In more realistic configurations, differential rotation is able
to build up field line helicity on closed field lines. Our
second axisymmetric example gives a simple demonstration
of this process, starting from a potential field extrapolated

from the photospheric distribution

Br(θ, φ) = cos7 θ + B1
(

cos θ − cos θ1
)

exp
[
−

(cos θ − cos θ1)2

d2

]
+ B2

(
cos θ − cos θ2

)
exp

[
−

(cos θ − cos θ2)2

d2

]
. (20)

With B1 = B2 = 100, the bipolar rings each contain the same
unsigned magnetic flux 2πd2, provided that they overlap neither
each other nor the poles. We take d = 0.1, and locate them at
θ1 = 0.3π and θ2 = 0.55π (illustrated in Fig. 7). Since the rings
are asymmetrically placed with respect to the equator, we expect
differential rotation above each PIL to build up helicity at differ-
ent rates, even though both rings contain the same magnetic flux.
The same photospheric motions are imposed as in Sect. 4, except
that they are switched on immediately. A slightly different value
η0/(R2

�ν0) = 3.47 × 10−5 is used, although we will also consider
the effect of varying this parameter below.

Figure 7 shows how the magnetic field evolves over 68 days,
while Fig. 8 shows various integrated quantities, analogous to
Fig. 4. The most striking difference from the dipolar case is that
the quadrupolar system does not reach a dynamical equilibrium,
in spite of the fact that the rate S 0 of helicity injection by differ-
ential rotation remains fairly constant, albeit higher than before
owing to the greater magnetic flux on r = r0. (The slight decay
in S 0 over time arises from diffusive decay of the more concen-
trated photospheric field, visible in Fig. 7.) Instead, current and
helicity continue to be injected into the corona. The open flux
does initially level off, but then increases as the magnetic arcades
are sheared and energised.

It is clear from Fig. 7 that the additional helicity is primarily
stored along closed field lines, particularly those that do not cross
the equator. This arises because the footpoints are no longer sym-
metric about the equator, so that differential rotation shears the
magnetic loops. The sign injected is opposite for the arcades in
each hemisphere. More helicity is injected in the northern hemi-
sphere, simply because the two bipolar rings are asymmetrically
placed and the northern ring lies at a latitude with greater shear in
the differential rotation. This asymmetry also leads, eventually,
to negative helicity in the arcade straddling the equator (Fig. 7).
For finite ν0, the open field lines near the poles actually store
a similar amount of field line helicity as in the dipolar example,
but this is insignificant compared to that stored at lower latitudes.
Moreover, this lower latitude helicity is almost independent of
ν0, since it is enforced topologically by the footpoint motions
and cannot be removed by ideal relaxation, however rapid. As
the open flux increases gradually with energisation of the field,
the helicity output S 1 increases, consistent with the dipolar ex-
ample where open field lines act as continuous “conduits” of he-
licity from the photosphere out to the solar wind. The increasing
proportion of open field lines leads to the levelling off of hemi-
spheric helicity from about day 30 onwards. In this example, the
cross-equatorial helicity flux S eq is negligible.

We remark that the sign of helicity in each hemisphere, in
this example, is opposite to the typical hemispheric pattern of he-
licity on the Sun, which is negative in the northern hemisphere
and positive in the south (Pevtsov & Balasubramaniam 2003).
This arises from the East-West orientation of the polarity inver-
sion line in our axisymmetric model. On the real Sun, polarity
inversion lines at active latitudes are often aligned North-South,
so that differential rotation injects helicity of the observed ma-
jority sign. This was illustrated by the simulations of DeVore
(2000) in Cartesian geometry, and Yeates & Mackay (2009b) in
spherical geometry.
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Fig. 8. Various integrated quantities as a function of time, for the
quadrupolar simulations with different ν0 (indicated by line styles). The
format is the same as Fig. 4. For clarity, panel d) shows only the run
with ν0 = 0.36 × 10−5 s−1, and only for the northern hemisphere, al-
though the hemispheres are no longer symmetric. The peak value of S 1
during the flux rope eruption is not shown, and is much larger, about
−1.16 Mx2 day−1.

As is evident in Fig. 8, the amount of electric current and he-
licity in the corona does not build up indefinitely, but is suddenly
reduced on about day 67 of the simulation. This sudden reduc-
tion results from ejection of the magnetic flux rope that forms
above the northern polarity inversion line. The flux rope is vis-
ible on day 66 in Fig. 7, but has been ejected through the outer
boundary r = r1 by day 68, leaving only a weakly sheared ar-
cade behind it. The mechanism by which the flux rope forms is
well understood (van Ballegooijen & Martens 1989); essentially,
it is a combination of reconnection of sheared magnetic loops
accompanied by flux cancellation due to supergranular diffusion
on r = r0, which leaves horizontal magnetic field in the corona
above polarity inversion lines. Due to the symmetry in this rather
artificial example, the flux rope that forms is detached from the
photosphere, encircling the whole Sun. Since the corresponding
magnetic field lines are either closed or ergodic (infinite length),
the field line helicity in the rope is undefined. (In Fig. 7, the
colour scale is saturated at ±0.2 Mx.) Nevertheless, integrating
for a finite length clearly indicates the location of the rope. As is
evident in Fig. 8d, the eruption causes a very high, sudden, spike
in the helicity output S 1, and a consequent sudden reduction in
the total helicity HN in the northern hemisphere (Fig. 8c). Af-
ter the eruption, the helicity begins to build up again since the
footpoint shearing continues.

Finally we consider the effect of the simulation parame-
ters ν0 and η0. We have already seen that the hemispheric he-
licity and open flux depend only weakly on ν0. We have also
run simulations with different η0/(R2

�ν0) but the same value of
ν0 = 0.36 × 10−5 s−1. We find that increasing η0/(R2

�ν0) from
1.73 × 10−5 to 6.94 × 10−5 delays the flux rope eruption by
three days, but has little impact on the magnitude of open flux
or hemispheric helicity overall. This is consistent with the find-
ings of Yeates & Mackay (2009a), who showed that higher diffu-
sion limits the speed at which highly twisted flux ropes are able
to form, by dissipating the concentrated electric currents in the
ropes. This led to a lower eruption rate.

This example has shown how field line helicity reveals the
storage of helicity on closed magnetic field lines in the corona,
as well as the sudden expulsion of this helicity in the form of
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Fig. 9. ADAPT maps of Br on r = r1, used to generate the initial po-
tential field extrapolations for periods A and B (white positive, black
negative, saturated at ±20 G).

flux rope eruptions. In the next section, we see these processes
at work in a more realistic global configuration.

6. Non-axisymmetric field

Our final example is a more realistic global magnetic configura-
tion. For simplicity, we still consider only driving by large-scale
surface motions, and continue to neglect the emergence of new
magnetic flux.

Two simulations are presented: period A and period B. Each
starts from a potential field extrapolation, as before, but now
these are computed from full-surface Br maps modelling the
real Sun on two dates: 2011-Jan.-01 and 2015-Mar.-10 (Fig. 9).
The maps are taken from the Air Force Data-Assimilative Pho-
tospheric Flux Transport (ADAPT) model (Arge et al. 2010;
Henney et al. 2012; Hickmann et al. 2015), which assimilates
observed magnetograms for the visible side of the Sun into
a surface flux transport model. Here we simply take the two
ADAPT maps as initial conditions for our two simulations. The
maps in question come from ADAPT runs based on GONG mag-
netograms, and have been remapped to our simulated grid. A
multiplicative flux correction has been applied to ensure flux
balance. The choice of ADAPT maps, as opposed to any other
model, is not particularly important; we simply wanted a realistic
distribution of magnetic flux on the full solar surface. Period B
represents a more active time in the solar cycle than period A,
with considerably larger total flux. By this time in early 2015,
the polar fields visible in period A have been almost completely
removed by cancellation with magnetic flux from Cycle 24 ac-
tive regions.

The magneto-frictional simulations use the same parameters
as Sect. 5, driven by the same differential rotation and super-
granular diffusion, with the parameters ν0 = 0.36 × 10−5 s−1 and
η0/(R2

�ν0) = 3.47 × 10−5. The evolution is followed for much
longer, up to 180 days. Whilst it is unrealistic to evolve the global
magnetic field for so long without any new flux emergence, our

purpose is to explore how the field line helicity responds to pho-
tospheric motions. On the Sun, the large-scale magnetic fields at
higher latitudes do indeed result from many months of evolution
of old active region fields (Petrie 2015).

Figure 10 shows four snapshots of the magnetic field dur-
ing each period, along with the field line helicity on a grid of
magnetic field lines. The effects of both differential rotation and
of supergranular diffusion are apparent on r = r0, where the pat-
tern of Br is both sheared and significantly smoothed out, remov-
ing smaller features. Once again, we see how field line helicity
is injected and stored in closed magnetic arcades. However, the
distribution of A among closed field lines is far from uniform.
The amount of field line helicity stored in any particular mag-
netic arcade is dependent on the degree of shearing of the ar-
cade, which depends both on the orientation and the Br pattern
on r = r0 (see also Yeates & Mackay 2009b). In fact, the non-
uniform distribution of magnetic flux across the solar surface
means that some field lines have non-zero A even in the ini-
tial potential field (day 0 for each period in Fig. 10). But much
stronger field line helicity builds up at particular locations where
the field orientation is favourable to shearing by differential ro-
tation. This often reverses the initial sign of A at a particular
location (e.g., around 300◦ longitude in the southern hemisphere
between days 0 and 60 of period B). As in the quadrupolar ex-
ample (Sect. 5), the largest values of |A| lie in twisted magnetic
flux ropes.

Figure 11 shows how global quantities evolve in the simula-
tions for periods A and B. In the initial map there is about twice
as much flux in period B as in period A, leading to correspond-
ingly higher open flux, total current, and hemispheric helicity
throughout the simulation. The total current and open flux in-
crease gradually over about the first 60 days as the coronal field
is energised, before reaching saturation and then gradually de-
caying over the rest of the simulation (owing to the decaying
photospheric flux). The root-mean-square A also takes about
2 months to reach its maximum value, although this does not
seem to decay over the remainder of the simulation. This indi-
cates how helicity is stored in the coronal magnetic field through
memory of the footpoint motions. The hemispheric helicities are
harder to interpret, highlighting the greater utility of A as a di-
agnostic when helicity is non-uniformly distributed through the
corona. Nevertheless, it is generally true that the helicity has
greater magnitude in period B than in period A, commensurate
with the greater flux.

A significant feature of the evolution are the multiple flux
rope ejections that occur over the 180-day simulations. These are
visible as transient peaks in the open flux (Fig. 11b), similar to
the quadrupolar example (Fig. 8) although less pronounced ow-
ing to their more localised nature. There are many more ejections
in period B than in period A, due to the more complex corona in
period B. The vertical grey lines in Fig. 11 indicate the times of
significant flux rope ejections. These have been determined not
from the open flux, but from monitoring the horizontal magnetic
field at the outer boundary r = r1. This is enhanced significantly
during the ejection of flux ropes, as is shown by the left column
of Fig. 12. This shows a running difference of B⊥ := (B2

θ + B2
φ)1/2

at r = r1, for a particular ejection during period A. The ejection
times shown in Fig. 11 were found by computing the number of
grid points on each day with B⊥ > 0.05 G day−1, then identifying
local maxima in this time series.

The second column of Fig. 12 shows the distribution ofA on
the solar surface r = r0. The black circles are the footpoints of
field lines with B⊥ > 0.05 G day−1, so represent the footpoints of
the ejected flux rope. It is clear that the region of strongest A is
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Fig. 10. Projected magnetic field lines in the period A (left column) and B (right column) simulations, on days 0, 60, 120, and 180. Greyscale
shading on r = r0 shows Br (white positive, black negative, saturated at ±10 G), and projected coronal magnetic field lines traced from height
r = r0 are coloured (red/blue) according toA, saturated at ±0.5 Mx. Animated versions of this figure for periods A and B are available online.

the erupting flux rope (and its overlying arcade). In fact, this flux
rope is clearly seen in Fig. 10. Further evidence that these are
the footpoints of the erupting rope comes from the significant
weakening of A in this region following ejection of the rope.
Similar behaviour is found for all of the ejections in periods A
and B.

Finally, consider the right-most column of Fig. 12. This
shows the dimensionless quantity

Tw =

∫
L

j · B
|B|2

dl, (21)

which Liu et al. (2016) call the twist number. In a force-free
field, which is approximately the case in our model, we have
j = αB with α constant along each field line, so Tw is sim-
ply α × length(L). This measure is also an indicator of where
twisted structures are located within the magnetic field, clearly
identifying the erupting flux rope in Fig. 12. For this rope, A
and Tw agree that this is the most significant twisted structure

present, and agree on the sign of twist. But in general, Tw andA
have different relative magnitude and sign. Partly, the difference
in relative magnitude can be explained by the fact that A has
units of magnetic flux while Tw is dimensionless. Put simply, a
flux rope with the same field line curves but lower field strength
would have the same Tw, but weaker A. This accounts for the
lower values of A at high latitudes in Fig. 12, because this is
a weak field region. However, significant differences in A and
Tw also arise because Tw depends only on the local twist around
a single field line, whereas A is a more global quantity. This
tends to give A a smoother distribution within each magnetic
subdomain, as is evident in Fig. 12. Overall, there is a significant
correlation between A and Tw, although the (rank) correlation
coefficient is only about 0.6. (This value remains steady after an
initial transient phase of about 24 days where the correlation is
lower.) Perhaps the most compelling reason to useA rather than
Tw is that Tw is not an ideal invariant (see Moffatt & Ricca 1992;
Berger & Prior 2006).
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Fig. 11. Various integrated quantities as a function of time, for the non-
axisymmetric simulations (periods A and B). Panel a) shows the total
photospheric magnetic flux

∫
r=r0
|Br | dΩ, panel b) shows the total open

flux
∫

r=r1
|Br | dΩ, panel c) shows

∫
D
| j| dV , panel d) shows HN (asterisks)

and HS (circles), and panel e) shows the root-mean-square field line
helicity (

∫
D
A2 dV/

∫
D

dV)1/2. The vertical grey lines indicate times of
strong flux rope ejections, as explained in the text.

7. Conclusion

We have shown how field line helicityA is an invaluable tool for
quantifying the distribution of topological structure within the
Sun’s corona. It is straightforward to compute from a 3D mag-
netic field, by first computing an appropriate vector potential. It
is a physically meaningful measure representing the linkage of
magnetic flux around each magnetic field line in the domain. In
particular, it is invariant under ideal motions within the domain,
provided that the field line footpoints on the boundary remain
fixed.

Although the value of A for a given field line is computed
by integrating A along that single field line, the vector potential
A being integrated is fundamentally a non-local quantity. This
enablesA to measure the linking with other magnetic field lines,
but it does mean that knowledge of the wider magnetic field is
required even to computeA on a single field line.

We mentioned, in Sect. 2, that A is a meaningful density
for the total magnetic helicity, being the limiting helicity on an

infinitesimal tubular domain around each magnetic field line. In
fact, this is the finest possible decomposition of magnetic helic-
ity into subdomains that will remain ideal invariants. Any finer
decomposition would necessarily have interfacial surfaces in the
corona with B·n , 0, across which there would be helicity fluxes
even in an ideal evolution.

Although the decomposition into field lines has an infi-
nite number of subdomains, we have seen (e.g., Fig. 12) that
the distribution of A tends to be rather smooth, on account
of its non-local definition. One could therefore give a first-
order characterisation of the magnetic structure by integrating
A over discrete topological subdomains, following decompo-
sition of the magnetic skeleton (e.g., Haynes & Parnell 2010).
We have not pursued this idea here, as identifying the skele-
ton is computationally challenging in non-potential fields (cf.
Edwards et al. 2015). However, a similar idea was proposed by
Longcope & Malanushenko (2008), who defined the “additive
self-helicity” of a sub-domain. Computations for simulations of
a twisted magnetic flux tube were able to relate this quantity to
the stability of the flux tube (Malanushenko et al. 2009).

The gauge dependence of A arises purely from the fact that
coronal magnetic field lines end on the boundaries rather than
being closed loops. This gauge dependence is unavoidable; how-
ever, we have shown that every gauge is physically meaningful,
corresponding to a different definition of what it means for flux
to be linked with a magnetic loop. We have suggested that the
DeVore gauge is a practical choice where not only is A is easy
to compute, but the resulting field line helicity is appropriate for
measuring twisted structures forming in the lower corona. An al-
ternative way to choose a gauge would be to fix a vector potential
where A× n matches some chosen reference field on the bound-
ary, as in the commonly-used relative helicity (Berger & Field
1984). But really the choice of reference field is just another way
of viewing the choice of gauge (Prior & Yeates 2014).

Having shown that field line helicity is a useful tool for
coronal simulations, there are many possible future applications.
An obvious one is to try to identify the locations where flux
rope eruptions will occur, but there are many others. For exam-
ple, we have, in this paper, neglected the direct emergence of
already-twisted structures from the solar interior, and we have
also neglected the net injection of helicity by small-scale con-
vective motions. The relative importance of these two effects
compared to surface shearing is important to establish, particu-
larly for explaining the hemispheric pattern of helical structures
in the corona (Pevtsov & Balasubramaniam 2003). It will also
be needed in order to make improved estimates of the Sun’s he-
licity output over the solar cycle (cf. DeVore 2000). Another ap-
plication will be to compare different methods of simulating the
coronal magnetic field evolution – for example, how accurate is
the magneto-frictional approximation? What is the importance
of including thermodynamics? What is the effect of different
parametrizations of turbulent diffusion in the corona? Or how
best do we drive coronal simulations based on limited photo-
spheric data (e.g., Kazachenko et al. 2014)? We hope to address
some of these questions in future research.
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Fig. 12. Example of a flux rope ejection from period A. From top to bottom, the rows show days 122, 124, 126, and 128. The left column shows the
(absolute) running daily difference of horizontal field B⊥ := (B2

θ + B2
φ)1/2 at the outer boundary r = r1. The middle column shows the distribution

of A on r = r0 (saturated at ±2 Mx), and the right column shows the distribution of Tw at r = r0 (saturated at ±40). The dashed lines in the left
column show the neutral line where Br(r1, θ, φ) = 0. Black circles in the other columns identify footpoints of field lines traced down from locations
at r = r1 where the running difference of B⊥ exceeds 0.05 G day−1. Animated versions of this figure for both periods A and B are available online.
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Appendix A: Existence of a surface with fluxA

Consider the magnetic field line L2 in Fig. 1, whose endpoints x1
and x2 both lie on the boundary r = r0. We will show that there
exists a curve γ from x1 to x2, lying on the surface r = r0, such
that∫
γ

A · dl = 0. (A.1)

This means that the surface bounded by L and γ has flux equal
toA(L).

To see that such a curve exists, suppose that we continuously
deform the original curve γ into either γ+ or γ−, as shown in
Fig. A.1. Since x2 is a field line footpoint, we must have Br(x2) ,
0. If Br(x2) > 0, then the curve γ+ will have a larger value of∫

A · dl than γ, and the curve γ− will have a smaller value. By
further deforming these curves to encircle x2 more than once, we
may ensure that

∫
γ+

A · dl > 0 and
∫
γ−

A · dl < 0. By continuity,
there must exist some intermediate curve with vanishing integral.

It is easy to see that there are many such curves γ with the
required property, for any pair of footpoints x1, x2, and even if
the gauge of A is fixed. But all of the corresponding surfaces
will have the same flux A(L), and this will be an ideal invariant
if footpoint motions are disallowed.

Clearly this argument applies equally if both footpoints lie
on r = r1 (a rarer situation in the corona). But what about an

Fig. A.1. The original and deformed curves, all on the boundary r = r0.

open field line, where x1 lies on r = r0 and x2 on r = r1? Now the
curve γ that completes the loop must pass through D, rather than
lying on the boundary. But, provided this portion of γ is chosen
to be a magnetic field line, the resulting surface will again have
an ideal-invariant flux. Again, this can be made equal to A(L)
(the field line helicity of the original field line) by appropriately
choosing the portions of γ on the two boundaries. So A still
represents an ideal-invariant flux, even if the field line is open.
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